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Abstract4

Nested covariance models have been very popular in many branches of applied statis-5

tics, and in particular in geostatistics. A notorious limit of nested models is that the6

constants in the linear combination are bound to be nonnegative in order to preserve7
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1 Introduction17

Nested covariance models are linear combinations of covariance functions. They have an old18

history that can be traced back to geostatistics, and the reader is referred to Chilès and19

Delfiner (2012); Gregori et al. (2008); Journel and Huijbregts (1978); Wackernagel (2003);20

Porcu et al. (2006, 2013); Daley et al. (2015); De Iaco and Posa (2018) and Kleiber and Porcu21

(2015) for earlier as well as more recent examples.22

The notorious limit in the construction of nested models is that the weights are bound to23

be nonnegative, in order to preserve positive definiteness. Such a drawback has been noted,24

for instance, by Gregori et al. (2008), who found conditions such that at least one negative25

weight in the linear combination of isotropic covariance functions in d-dimensional Euclidean26

spaces can be negative.27

Admissible nested models with negative weights have important consequences to several28

branches of applied sciences. On the one hand, negative weights can allow for negative29

covariances or covariances oscillating between positive and negative values (see Yakhot et al.,30

1989). On the other hand, nested models with negative weights have recently become popular31

thanks to the notable approach by Bonat and Jørgensen (2016), who consider nontrivial32

extension for the Generalized Linear Model (GLM) to the case of multivariate covariates. The33

method is called multivariate covariance generalized linear model (MCGLM). In particular,34

the authors suggest to replace the identity matrix in the classical GLM setting with a matrix35

Ω that is implicitly specified through the relation36

h(Ω) =
N

∑
k=0

τkCk,

where τk are real constants and Ck are known matrices reflecting the covariance structure.37

Since positive definite functions are closed under nonlinear combinations involving non neg-38

ative constants, there is an apparent issue in specifying this model, in particular in knowing39

explicit restrictions for the parametric space of the constants τk. The idea of modelling a40

function of the covariance matrix by a linear structure goes back to Pourahmadi (1999, 2011)41

and Pan and Mackenzie (2003) among others (see Bonat and Jørgensen, 2016, for a thorough42

review). In particular, Bonat and Jørgensen (2016) emphasize the need to model the covari-43

ance structure explicitly, rather than treating it as a nuisance parameter. Taking verbatim44

from Bonat and Jørgensen (2016): many researchers claim that a suitable covariance link45

function must provide an unrestricted and interpretable parameterization. Although laudable,46

such a goal is probably overoptimistic and does not seem to have been achieved yet, at least47

not for the general case. The authors propose a numerical approach to this problem in order48

to get realistic values for τ0, . . . , τN . This paper offers an analytic approach that allows to49

determine the exact range for the parameters involved in a arbitrary linear combination.50

A third consequence of nested models with only nonnegative weights is that it has important51

implications in terms of statistical inference and testing, since, for instance, the value τk = 0,52

for k = 0, . . . ,N , lies on the boundary of the parameter space. Some criticism about this fact53
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is expressed in Bevilacqua et al. (2012).54

The problem of linear combinations of covariance functions in Euclidean spaces has been55

considered in Gregori et al. (2008) who propose the special case of the product sum model56

(and similar extensions). Motivated by the increasing need of statistical techniques for global57

data, typically defined over the sphere representing planet Earth, this paper considers linear58

combinations of covariance functions defined over spheres or over spheres across time. The59

fact that such covariances are defined over spheres implies that the natural metric to be used60

is the geodesic distance, and this fact has a nontrivial implication in terms of mathematical61

framework needed to implement valid covariance functions.62

There has been a fervent activity in the last five years around positive definite functions on63

spheres, as well as on positive definite functions on spheres cross time. The seminal paper by64

Gneiting (2013) provides a thorough overview of spherically isotropic positive definite kernels65

on sphere, with applications to probability theory, spatial statistics, numerical analysis and66

approximation theory, amongst others. Berg and Porcu (2017) provided the extension of the67

classical characterization theorem for positive definite functions on spheres to the case of the68

spheres cross time. Porcu et al. (2016) focussed on the geostatistical implications of using69

the geodesic distance for global data and the discrepancies in estimation and prediction when70

using the incorrect metric. The nonstationary case has been considered in Estrade et al.71

(2017). Regularity properties of Gaussian fields on spheres and spheres across time have72

been studied by Lang and Schwab (2015) and Clarke et al. (2018) respectively.73

This paper determines the exact range for the weights involving arbitrary linear combi-74

nations of space or space-time covariance functions . The plan of the paper is the following:75

Section 2 contains the background material needed for understanding the problem. Section76

3 provides results involving linear combinations of spatial covariance functions. Section 4 is77

devoted to the space-time case. We then offer, in Section 5, a list of examples that are useful78

for practitioners. The paper ends with a short discussion.79

2 Mathematical Background80

Let d be a positive integer. We define the d-dimensional unit sphere by Sd = {x ∈ Rd+1, ∥x∥ =
1}, where d ∈ N, and ∥ ⋅ ∥ is the Euclidean distance. The geodesic distance between any pair

of points x,y on Sd is defined as θ(x,y) = arccos(⟨x,y⟩), where ⟨⋅, ⋅⟩ is the standard inner

product on Rd+1. Throughout the text, we use the abuse of notation θ for θ(x,y) whenever no

confusion can arise. Let L2(Sd, ωd) be the space of squared-integrable real-valued functions on

the sphere Sd with respect to the uniquely determined Haar measure on the sphere, denoted

ωd. The surface measure of the sphere has a total mass given by

∥ωd∥ =
2π(d+1)/2

Γ((d + 1)/2)
.

Let X be a nonempty set. A function K ∶ X ×X → R is called positive definite on X

if for any system of constants {ck}Nk=1 ⊂ R and any finite dimensional collection of points
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{xk}Nk=1 ⊂X, one has
N

∑
k=1

N

∑
h=1

ckK(xk, xh)ch ≥ 0.

If the inequality above is strict when at least one ck is nonzero, then K is called strictly81

positive definite (Menegatto, 1995).82

2.1 The Class P(Sd)83

We define P(Sd) as the class of continuous functions ψ ∶ [0, π] → R with ψ(0) = 1 such that84

K(x, y) ∶= ψ(θ(x, y)) is positive definite on Sd. We also define P(S∞) ∶= ∩d≥1P(Sd), with the85

inclusion relation P(S∞) ⊂ ⋯ ⊂ P(Sd) ⊂ P(Sd−1) ⊂ ⋯ ⊂ P(S1).86

Let us define the Gegenbauer polynomials C
(λ)
n through the intrinsic relation (see Dai87

and Xu, 2013; Atkinson and Han, 2012)88

(1 − 2xr + r2)−λ =
∞
∑
n=0

C(λ)n (x)rn, ∣r∣ < 1, x ∈ [−1,1], (2.1)

where λ > 0. For λ = 0, (2.1) has to be replaced by89

1 − xr
1 − 2xr + r2

=
∞
∑
n=0

C(0)n (x)rn, ∣r∣ < 1, x ∈ [−1,1],

where it is known that C
(0)
n (x) = cos(narccosx). For λ > 0, it is true that90

∫
1

−1
(1 − x2)λ−1/2C(λ)n (x)C(λ)m (x)dx = πΓ(n + 2λ)21−2λ

Γ2(λ)(n + λ)n!
δm,n, (2.2)

with δm,n denoting the Kronecker delta. When λ = 0, Equation (2.2) simplifies to91

∫
1

−1
(1 − x2)−1/2C(0)n (x)C(0)m (x)dx = { (π/2)δm,n if n > 0

πδm,n if n = 0,

which is equivalent to the classical orthogonality relations of the family cos(nx), n = 0,1, . . .92

(Berg and Porcu, 2017). It is important to note that C
(λ)
n (1) = (2λ)n/n!, with (a)n denoting93

the Pochammer symbol. Another important fact is that ∣C(λ)n (x)∣ ≤ C(λ)n (1), for x ∈ [−1,1].94

We now follow Berg and Porcu (2017) to illustrate the relation between Gegenbauer95

polynomials and spherical harmonics. A spherical harmonic of degree n for Sd is the restriction96

to Sd of a real-valued harmonic homogeneous polynomial in Rd+1 of degree n. Together with97

the zero function, the spherical harmonics of degree n form a finite dimensional vector space98

denoted Hn(d). It is a subspace of the space C(Sd) of continuous functions on Sd. One has99

Nn(d) ∶= dimHn(d) =
(d)n−1
n!

(2n + d − 1), n ≥ 1, N0(d) = 1,

(see Atkinson and Han, 2012).100

Due to the fact that the spaces Hn(d) are mutually orthogonal subspaces of the Hilbert101

space L2(Sd, ωd), which is in turn generated by them, we have that any F ∈ L2(Sd, ωd) has102

an orthogonal expansion of the type103
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F =
∞
∑
n=0

Sn, Sn ∈Hn(d), ∥F ∥22 =
∞
∑
n=0

∥Sn∥22, (2.3)

where the first series converges in L2(Sd, ωd), and the second series is Parseval’s equation.

The orthogonal projection Sn of F onto Hn(d) is given by

Sn(ξ) =
Nn(d)
∥ωd∥ ∫Sd

Gn(d, ξ ⋅ η)F (η)dωd(η).

Here we are consistent with Berg and Porcu (2017) when using Gn(d, x) for the normalized104

Gegenbauer polynomial, being identically equal to 1 for x = 1 when λ = (d − 1)/2, i.e., by105

Gn(d, x) = C((d−1)/2)n (x)/C((d−1)/2)n (1) = n!

(d − 1)n
C((d−1)/2)n (x), x ∈ [−1,1].

106

All these ingredients sum up to Schoenberg’s theorem (Schoenberg, 1942).107

Theorem 2.1. (Schoenberg, 1942) A continuous function ψ ∶ [0, π]→ R belongs to the class108

P(Sd), d = 1,2, . . ., if and only if109

ψ(θ) =
∞
∑
n=0

bn,dGn(d, cos θ), bn,d ≥ 0, θ ∈ [0, π], (2.4)

for a uniquely determined probability mass sequence (bn,d)∞n=0 given as110

bn,d =
∥ωd−1∥Nn(d)

∥ωd∥ ∫
π

0
ψ(x)Gn(d, cosx)(sinx)d−1dx.

Some comments are in order. By analogy with what was done in Daley and Porcu111

(2014), the coefficients bn,d are called d-Schoenberg coefficients and the sequence (bn,d)∞n=0 a112

d-Schoenberg sequence in Gneiting (2013). This stresses the fact that such a sequence is also113

related to the dimension of the sphere Sd, where positive definiteness is attained.114

When d = 1, the representation in Equation (2.4) reduces to115

ψ(θ) =
∞
∑
n=0

bn,1 cos(nθ), bn,1 ≥ 0, θ ∈ [0, π],

and for d = 2 the Gegenbauer polynomials simplify to Legendre polynomials.116

The class P(S∞) consists of those continuous mappings ψ ∶ [0, π] → R having expansion117

(see Schoenberg, 1942)118

ψ(θ) =
∞
∑
n=0

bn(cos θ)n, bn ≥ 0, θ ∈ [0, π], (2.5)

where ∑∞n=1 bn = 1. By defining Gn(∞, x) ∶= xn, we can see how the representation (2.5) is of119

the same form as (2.4). A relation between the coefficients of Equations (2.4) and (2.5) can120

be found in a more general context in Berg et al. (2018).121

A wealth of examples and interesting results are provided in Gneiting (2013). Observe122

that Gneiting makes explicit distinction between positive definite and strictly positive definite123
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functions on spheres, the latter being attained when, in Equation (2.4), the d-Schoenberg124

coefficients are strictly positive for infinitely many even and odd n when d ≥ 2 (Chen et al.,125

2003) and when d = 1, given integers 0 ≤ j < n, there exist k ≥ 0 such that the d-Schoenberg126

coefficient bnk+j,d are strictly positive (Menegatto et al., 2006). Such a distinction is beyond127

the scope of this paper.128

There is an explicit connection between Gaussian random fields and the class P(Sd). Let129

Z = {Z(x) ∣ x ∈ Sd} be a real-valued zero mean Gaussian random field. By Theorem 5.13 of130

Marinucci and Peccati (2011), Z admits a stochastic expansion being the analogue of (2.3).131

Such a representation is also called stochastic Peter-Weyl theorem on the sphere.132

By well known facts, any positive definite function is the covariance function of a random133

process. For the reminder of the paper, we use equivalently both terminologies, whenever no134

confusion can arise.135

2.2 The Class P(Sd,R)136

We start by considering covariance functions on the real line. We call P(R) the class of

continuous functions ϕ ∶ R→ R with ϕ(0) = 1 such that K(x, y) ∶= ϕ(x−y) is positive definite

on R. By Bochner’s theorem, such functions are represented as the Fourier transforms of

probability measures µ:

ϕ(u) = ∫
+∞

−∞
eiuτµ(dτ), u ∈ R.

The hypothesis that ϕ ∈ L1(R) ensures that there exists a nonnegative mapping ϕ̂ ∈ L1(R),137

such that138

ϕ(u) = 1

2π
∫

+∞

−∞
eiuτ ϕ̂(τ)dτ, u ∈ R. (2.6)

We finally call P(Sd,R) the class of continuous mappings ψ ∶ [0, π] × R with ψ(0,0) = 1139

such that the function K ∶ Sd×Sd×R→ R defined through K(x, y, u) ∶= ψ(θ(x, y), u) is positive140

definite on Sd ×R.141

We also define P(S∞,R) ∶= ∩d≥1P(Sd,R), with the inclusion relation P(S∞,R) ⊂ ⋯ ⊂142

P(Sd,R) ⊂ P(Sd−1,R) ⊂ ⋯ ⊂ P(S1,R).143

A characterization of this class has become recently available (see Berg and Porcu, 2017):144

a continuous mapping φ ∶ [0, π] ×R→ R belongs to the class P(Sd,R) if and only if145

φ(θ, u) =
∞
∑
n=0

λn,d(u)Gn(d, cos θ), (θ, u) ∈ [0, π] ×R, (2.7)

with {λn,d(⋅)}∞n=0 ⊂ P(R) such that ∑∞n=1 λn,d(0) = 1. Also, we have

λn,d(u) =
Nn(d)∥ωd−1∥

∥ωd∥ ∫
π

0
φ(x,u)Gn(d, cosx) sin(x)d−1 dx.

Berg and Porcu (2017) use the term Schoenberg function sequence for (λn,d(⋅))∞n=0.146

The class P(Sd,R) is having many applications to applied problems (see, for example147

Porcu et al., 2016, 2017).148
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3 Nested Models within the Class P(Sd)149

We start by considering a simple strategy that allows to obtain covariances on spheres Sd as150

weighted sums of basic covariances with potentially negative weights. Specifically, let N be a151

positive integer and ψk, for k = 1,2, . . . ,N , a collection of elements of the class P(Sd). Thus,152

for every k there exists an associated d-Schoenberg sequence (b(k)n,d)
∞
n=0, such that153

ψk(θ) =
∞
∑
n=0

b
(k)
n,dGn(d, cos θ), θ ∈ [0, π], b

(k)
n,d ≥ 0,

∞
∑
n=0

b
(k)
n,d = 1. (3.1)

For a given system {ck ∶ k = 1,2, . . . ,N} of real constants, we now consider the function154

C ∶ [0, π]→ R defined through155

C(θ) ∶= 1

κ

N

∑
k=1

ckψk(θ), θ ∈ [0, π], (3.2)

where κ ∶= ∑Nk=1 ck ≠ 0 is a normalizing constant so that C(0) = 1. We now seek the conditions156

on the constants ck such that C is still an element of P(Sd). The answer is trivial if the157

constants ck are restricted to be nonnegative. But the fact that at least one of them might be158

extended to a negative interval is what gives a motivation for a deep study of the problem.159

A direct inspection shows that C has Schoenberg coefficients bn,d given by160

bn,d =
1

κ

N

∑
k=1

ckb
(k)
n,d,

and ∑∞n=0 bn,d = 1. Thus, the application of Theorem 2.1 shows that C is an element of the161

class P(Sd) if and only if the sequence (bn,d)∞n=0 is nonnegative and summable.162

Throughout the paper we assume κ > 0. We show below that at least one of the coeffi-163

cients ck can be negative while preserving the fact that C ∈ P(Sd). A technical hypothesis is164

needed and we explicitly state it here for the convenience of the reader:165

166

Hypothesis H1. Let b
(k)
n,d be the coefficients defined through Equation (3.1). We suppose167

throughout that b
(N)
n,d > 0 for all n ∈ Z+.168

169

Hypothesis H1 is indeed necessary to develop the rest of our findings. In fact, we can now170

write171

bn,d =
1

κ
b
(N)
n,d

⎡⎢⎢⎢⎢⎣

N−1
∑
k=1

ck
b
(k)
n,d

b
(N)
n,d

+ cN
⎤⎥⎥⎥⎥⎦
, n ∈ Z+.

By assuming κ > 0 (for κ < 0, see Remark 3.4) we obtain that bn,d ≥ 0, n ∈ Z+, if, and only if,172

N−1
∑
k=1

ck
b
(k)
n,d

b
(N)
n,d

+ cN ≥ 0, n ∈ Z+. (3.3)
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Next, inspired by Gregori et al. (2008), we define173

Mk ∶= sup

⎧⎪⎪⎪⎨⎪⎪⎪⎩

b
(k)
n,d

b
(N)
n,d

∶ n ∈ Z+
⎫⎪⎪⎪⎬⎪⎪⎪⎭
, mk ∶= inf

⎧⎪⎪⎪⎨⎪⎪⎪⎩

b
(k)
n,d

b
(N)
n,d

∶ n ∈ Z+
⎫⎪⎪⎪⎬⎪⎪⎪⎭
, k = 1,2, . . . ,N − 1. (3.4)

Note that mk ≥ 0 and Mk > 0, for k = 1,2, . . . ,N − 1. The following lemma will simplify the174

exposition of the results following subsequently.175

Lemma 3.1. Let ψk ∈ P(Sd), k = 1, . . . ,N , with associated d-Schoenberg coefficients b
(k)
n,d and176

assume the Hypothesis H1. Let C ∶ [0, π]→ R be the function defined through Equation (3.2)177

such that κ > 0. Then, the following assertions hold true.178

(i) If C ∈ P(Sd), then179

cN ≥ −
N−1
∑
k=1

ck [Mk1{ck≥0} +mk1{ck<0}] . (3.5)

(ii) If180

cN ≥ −
N−1
∑
k=1

ck [Mk1{ck<0} +mk1{ck≥0}] , (3.6)

then C ∈ P(Sd).181

Proof. We give a constructive proof. Suppose C ∈ P(Sd), then bn,d ≥ 0 for all n. From

Equation (3.3) we get

0 ≤
N−1
∑
k=1

ck
b
(k)
n,d

b
(N)
n,d

+ cN ≤
N−1
∑
k=1
ck≥0

ckMk +
N−1
∑
k=1
ck<0

ckmk + cN .

This is exactly (3.5).182

Now we assume that (3.6) is true. We need to prove that bn,d ≥ 0 for all n. By Equation

(3.6),

N−1
∑
k=1

ck
b
(k)
n,d

b
(N)
n,d

+ cN ≥
N−1
∑
k=1
ck≥0

ck
b
(k)
n,d

b
(N)
n,d

+
N−1
∑
k=1
ck<0

ck
b
(k)
n,d

b
(N)
n,d

−
N−1
∑
k=1
ck<0

ckMk −
N−1
∑
k=1
ck≥0

ckmk

=
N−1
∑
k=1
ck≥0

ck
⎛
⎜
⎝

b
(k)
n,d

b
(N)
n,d

−mk

⎞
⎟
⎠
+
N−1
∑
k=1
ck<0

ck
⎛
⎜
⎝

b
(k)
n,d

b
(N)
n,d

−Mk

⎞
⎟
⎠
≥ 0, n ∈ Z+.

Therefore, by (3.3), bn,d ≥ 0 for all n.183

184

The special case N = 2 allows for a complete characterization of the problem.185

Proposition 3.2. Let ψk ∈ P(Sd) with associated d-Schoenberg coefficients b
(k)
n,d, k = 1,2.

Suppose that Hypothesis H1 holds. Let c1, c2 ∈ R such that c1 + c2 > 0. Then,

C(θ) = 1

c1 + c2
[c1ψ1(θ) + c2ψ2(θ)] , θ ∈ [0, π],

belongs to P(Sd) if, and only if,186

c2 ≥ −c1 [M11{c1<0} +m11{c1≥0}] . (3.7)

8



Proof. Suppose that ψ ∈ P(Sd). By Equation (3.3),

c2 ≥ −c1
b
(1)
n,d

b
(2)
n,d

, n ∈ Z+.

We now note that all numbers b
(1)
n,d/b

(2)
n,d, n ∈ Z+ are nonnegative, which in turn implies

that M1 and m1 are nonnegative. Previous inequality implies that

{ c2 ≥ −c1M1, c1 < 0
c2 ≥ −c1m1, c1 ≥ 0

This is exactly Equation (3.7). The converse is shown through straight application of Lemma187

3.1.188

189

An important case follows.190

Corollary 3.3. Let ψk ∈ P(Sd) with associated d-Schoenberg coefficients b
(k)
n,d, k = 1,2. Sup-191

pose that Hypothesis H1 holds. Let ρ ∈ R. Then,192

C = ρψ1 + (1 − ρ)ψ2 (3.8)

belongs to P(Sd) if, and only if,193

1

1 −max{1,M1}
≤ ρ ≤ 1

1 −min{1,m1}
, (3.9)

where the left side is −∞ if the maximum is 1 and 0 if the maximum is +∞. The right side194

is +∞ if the minimum is 1.195

Proof. We consider Proposition 3.2 with c1 = ρ and c2 = 1 − ρ. Then

{ ρ(1 −M1) ≤ 1, ρ < 0
ρ(1 −m1) ≤ 1, ρ ≥ 0.

This is equivalent to (3.9).196

197

Remark 3.4. If κ < 0, we can proceeding in the same way as before and then Equations

(3.5), (3.6) and (3.7) become, respectively,

cN ≤ −
N−1
∑
k=1

ck [Mk1{ck≤0} +mk1{ck>0}] , cN ≤ −
N−1
∑
k=1

ck [Mk1{ck>0} +mk1{ck≤0}] ,

c2 ≤ −c1 [M11{c1>0} +m11{c1≤0}] .

Note that under the hypotheses of Corollary 3.3, c1 + c2 = 1 > 0, for all ρ ∈ R.198
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4 Product-Sum Models with Potentially Negative Weights199

within the Class P(Sd,R)200

4.1 A Product-Sum Model201

Product-sum models have been first proposed by De Iaco and coauthors (see De Iaco et al.,

2001). We start this section by recalling that the class P(Sd,R) is a convex cone, being

closed under the topology of pointwise convergence. This implies that, for given ψ ∈ P(Sd)
and ϕ ∈ P(R), the function (θ, u) ↦ φ(θ, u) = ψ(θ)ϕ(u), (θ, u) ∈ [0, π] × R, belongs to the

class P(Sd,R). In virtue of Theorem 3.3 in Berg and Porcu (2017), this in turn implies that

the model

φ(θ, u) =
∞
∑
n=1

λn,d(u)Gn(d, cos θ),
∞
∑
n=1

λn,d(0) <∞, λn,d ∈ P(R),

has d-Schoenberg functions λn,d given by

λn,d(u) = bn,dϕ(u), u ∈ R,

with bn,d being the d-Schoenberg coefficients of ψ as in (2.4).202

This remark opens for a simple modeling strategy that we will illustrate now. Consider203

a finite dimensional collection of functions ϕk ∈ P(R), k = 1,2, . . . ,N such that, for all k,204

ϕk ∈ L1(R). This implies that each ϕk can be uniquely written as in (2.6) , with ϕ̂k being205

the Fourier pair of ϕk. In particular, we have ϕ̂k(w) ≥ 0, for w ∈ R and ϕ̂k ∈ L1(R) because206

of Parseval’s identity.207

Now, let ck ∈ R and ψk ∈ P(Sd), k = 1,2 . . . ,N . Consider the function C ∶ [0, π] ×R → C208

defined by209

C(θ, u) ∶= 1

κ

N

∑
k=1

ckψk(θ)ϕk(u), (θ, u) ∈ [0, π] ×R. (4.1)

Apparently, C has d-Schoenberg functions given by

λn,d(u) =
1

κ

N

∑
k=1

ckb
(k)
n,dϕk(u), n ∈ Z+, u ∈ R,

and of course we have that ∑∞n=1 λn,d(0) <∞ and λn,d ∈ L1(R). Now, note that

λn,d(u) =
1

κ

N

∑
k=1

ckb
(k)
n,dϕk(u) =

1

κ

N

∑
k=1

ckb
(k)
n,d ∫

∞

−∞
eiwuϕ̂k(w)dw

= ∫
∞

−∞
eiwu (1

κ

N

∑
k=1

ckb
(k)
n,dϕ̂k(w))dw, n ∈ Z+, u ∈ R,

that is,

λ̂n,d(w) = 1

κ

N

∑
k=1

ckb
(k)
n,dϕ̂k(w), w ∈ R.

Since b
(k)
n,d, ϕ̂k(w) ≥ 0, for all n, k,w, we have to find conditions on the scalars ck so that

λ̂n,d(w) ≥ 0, w ∈ R,
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in order to guarantee that C belongs to the class P(Sd,R). A technical hypothesis is again210

needed to ensure that we can go further with our findings.211

212

Hypothesis H2. Let ϕ̂k be the Fourier pair of ϕk as in the Equation (2.6). We suppose213

throughout that ϕ̂N(w) > 0, for all w ∈ R.214

215

If Hypotheses H1 and H2 hold, then we can write216

λ̂n,d(w) = 1

κ
b
(N)
n,d ϕ̂N(w)

⎡⎢⎢⎢⎢⎣

N−1
∑
k=1

ck
b
(k)
n,dϕ̂k(w)

b
(N)
n,d ϕ̂N(w)

+ cN
⎤⎥⎥⎥⎥⎦
, n ∈ Z+, w ∈ R.

Since κ > 0 (see Remark 4.4 for κ < 0), then λ̂n,d(w) ≥ 0, n ∈ Z+, w ∈ R, if, and only if,217

N−1
∑
k=1

ck
b
(k)
n,dϕ̂k(w)

b
(N)
n,d ϕ̂N(w)

+ cN ≥ 0, n ∈ Z+, w ∈ R. (4.2)

Now, defining

M̃k ∶= sup{ ϕ̂k(w)
ϕ̂N(w)

∶ w ∈ R} , m̃k ∶= inf { ϕ̂k(w)
ϕ̂N(w)

∶ w ∈ R} , k = 1,2, . . . ,N − 1,

we obtain the following.218

Lemma 4.1. Let C as defined at (4.1) with κ > 0 and assume the Hypotheses H1 and H2.219

Then the following assertions hold true.220

(i) If C ∈ P(Sd,R), then221

cN ≥ −
N−1
∑
k=1

ck [MkM̃k1{ck≥0} +mkm̃k1{ck<0}] . (4.3)

(ii) If222

cN ≥ −
N−1
∑
k=1

ck [MkM̃k1{ck<0} +mkm̃k1{ck≥0}] , (4.4)

then C ∈ P(Sd,R).223

Proof. If C ∈ P(Sd,R), then λ̂n,d(w) ≥ 0 for all n and w. By (4.2),

0 ≤
N−1
∑
k=1

ck
b
(k)
n,d

b
(N)
n,d

ϕ̂k(w)
ϕ̂N(w)

+ cN ≤
N−1
∑
k=1
ck≥0

ckMkM̃k +
N−1
∑
k=1
ck<0

ckmkm̃k + cN .

This is exactly (4.3).224
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If (4.4) holds, we need prove that λ̂n,d(w) ≥ 0 for all n and w ∈ R. By (4.4),

N−1
∑
k=1

ck
b
(k)
n,dϕ̂k(w)

b
(N)
n,d ϕ̂N(w)

+ cN ≥
N−1
∑
k=1
ck≥0

ck
b
(k)
n,dϕ̂k(w)

b
(N)
n,d ϕ̂N(w)

+
N−1
∑
k=1
ck<0

ck
b
(k)
n,dϕ̂k(w)

b
(N)
n,d ϕ̂N(w)

−
N−1
∑
k=1
ck<0

ckMkM̃k −
N−1
∑
k=1
ck≥0

ckmkm̃k

=
N−1
∑
k=1
ck≥0

ck
⎛
⎜
⎝

b
(k)
n,dϕ̂k(w)

b
(N)
n,d ϕ̂N(w)

−mkm̃k

⎞
⎟
⎠
+
N−1
∑
k=1
ck<0

ck
⎛
⎜
⎝

b
(k)
n,dϕ̂k(w)

b
(N)
n,d ϕ̂N(w)

−MkM̃k

⎞
⎟
⎠
≥ 0,

for all n ∈ Z+ and w ∈ R. By Equation (4.2), λ̂n,d(w) ≥ 0, n ∈ Z+, w ∈ R.225

For the special case N = 2 we attain the following characterization.226

Proposition 4.2. Let ψk ∈ P(Sd) with associated d-Schoenberg coefficients b
(k)
n,d and ϕk ∈

P(R), k = 1,2. Let c1, c2 ∈ R such that c1 + c2 > 0. Suppose that Hypothesis H1 and H2 hold.

Then,

C = 1

c1 + c2
[c1ψ1ϕ1 + c2ψ2ϕ2]

belongs to P(Sd,R) if and only if227

c2 ≥ −c1 [M1M̃11{c1<0} +m1m̃11{c1≥0}] . (4.5)

Proof. Suppose that C ∈ P(Sd,R). By Equation (4.2),

c2 ≥ −c1
b
(1)
n,dϕ̂1(w)

b
(2)
n,dϕ̂2(w)

, n ∈ Z+, w ∈ R.

Since all numbers b
(1)
n,d/b

(2)
n,d, n ∈ Z+, ϕ̂1(w)/ϕ̂2(w), w ∈ R, and M1, M̃1,m1, m̃1 are nonnegative,

in particular, the previous inequality implies

{ c2 ≥ −c1M1M̃1, c1 < 0
c2 ≥ −c1m1m̃1, c1 ≥ 0.

This is Equation (4.5). The converse is obtained from Lemma 4.1.228

An immediate consequence is:229

Corollary 4.3. Let ψk ∈ P(Sd) with associated d-Schoenberg coefficients b
(k)
n,d and ϕk ∈ P(R),230

k = 1,2. Suppose that Hypothesis H1 and H2 hold. Let ρ ∈ R. Then,231

C = ρψ1ϕ1 + (1 − ρ)ψ2ϕ2 (4.6)

belongs to P(Sd,R) if and only if232

1

1 −max{1,M1M̃1}
≤ ρ ≤ 1

1 −min{1,m1m̃1}
, (4.7)

where the left side is −∞ if the maximum is 1 and 0 if the maximum is +∞. The right side233

is +∞ if the minimum is 1.234
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Remark 4.4. If κ < 0, we can proceeding in the same way as before and then Equations

(4.3), (4.4) and (4.5) become, respectively,

cN ≤ −
N−1
∑
k=1

ck [MkM̃k1{ck≤0} +mkm̃k1{ck>0}] , cN ≤ −
N−1
∑
k=1

ck [MkM̃k1{ck>0} +mkm̃k1{ck≤0}] ,

c2 ≤ −c1 [M1M̃11{c1>0} +m1m̃11{c1≤0}] .

4.2 A General Formulation within the Class P(Sd,R)235

This section faces the most general and tricky case within the class P(Sd,R). Examples236

of functions in this class can be found in Porcu et al. (2017). We consider a collection237

{ψk ∶ k = 1, . . . ,N} ⊂ P(Sd,R), and constants ck ∈ R, for k = 1,2, . . . ,N . Consider the238

function C ∶ [0, π] ×R→ C defined by239

C(θ, u) ∶= 1

κ

N

∑
k=1

ckψk(θ, u), (θ, u) ∈ [0, π] ×R. (4.8)

Using (2.7) we get that C has d-Schoenberg functions given by

λn,d(u) =
1

κ

N

∑
k=1

ckλ
(k)
n,d(u), n ∈ Z+, u ∈ R,

where ∑∞n=1 λn,d(0) <∞ and λn,d ∈ L1(R). For this, note that, since240

λn,d(u) =
1

κ

N

∑
k=1

ck ∫
∞

−∞
eiuwλ̂

(k)
n,d(w)dw

= ∫
∞

−∞
eiuw (1

κ

N

∑
k=1

ckλ̂
(k)
n,d(w))dw, n ∈ Z+, u ∈ R,

we have

λ̂n,d(w) = 1

κ

N

∑
k=1

ckλ̂
(k)
n,d(w), n ∈ Z+, w ∈ R.

Thus, we have to find conditions on the scalars ck so that

λ̂n,d(w) ≥ 0, w ∈ R, n ∈ Z+.

The following additional hypothesis is needed subsequently.241

242

Hypothesis H3. Let C as in (4.8), where ψk ∈ P(Sd,R), for all k = 1,2, . . . ,N . Let λ̂
(k)
n,d243

be the Fourier pair of the coefficients λ
(k)
n,d associated to C. We suppose throughout that244

λ̂
(N)
n,d (w) > 0, for all w ∈ R and n ∈ Z+.245

246

If Hypothesis H3 holds, then we have247

λ̂n,d(w) = λ̂(N)n,d (w)
⎡⎢⎢⎢⎢⎣

N−1
∑
k=1

ck
λ̂
(k)
n,d(w)

λ̂
(N)
n,d (w)

+ cN
⎤⎥⎥⎥⎥⎦
, w ∈ R, n ∈ Z+.
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Since κ > 0 (see Remark 4.8 for κ < 0), we have that λ̂n,d(⋅) is nonnegative if, and only if,248

N−1
∑
k=1

ck
λ̂
(k)
n,d(w)

λ̂
(N)
n,d (w)

+ cN ≥ 0, w ∈ R, n ∈ Z+.

Let n ∈ Z+ fixed and define249

Mn,k ∶= sup

⎧⎪⎪⎪⎨⎪⎪⎪⎩

λ̂
(k)
n,d(w)

λ̂
(N)
n,d (w)

∶ w ∈ R
⎫⎪⎪⎪⎬⎪⎪⎪⎭
, mn,k ∶= inf

⎧⎪⎪⎪⎨⎪⎪⎪⎩

λ̂
(k)
n,d(w)

λ̂
(N)
n,d (w)

∶ w ∈ R
⎫⎪⎪⎪⎬⎪⎪⎪⎭
, k = 1,2, . . . ,N − 1.

Note that mn,k ≥ 0 and Mn,k > 0, for k = 1,2, . . . ,N − 1.250

Defining251

M̆k ∶= sup{Mn,k ∶ n ∈ Z+} , m̆k ∶= inf {mn,k ∶ n ∈ Z+} , k = 1,2, . . . ,N − 1,

similarly to the previous cases we have the following lemma.252

Lemma 4.5. Let C as defined at (4.8) with κ > 0 and assume the Hypotheses H3. Then the253

following assertions hold true.254

(i) If C ∈ P(Sd,R), then

cN ≥ −
N−1
∑
k=1

ck [M̆k1{ck≥0} + m̆k1{ck<0}] .

(ii) If

cN ≥ −
N−1
∑
k=1

ck [M̆k1{ck<0} + m̆k1{ck≥0}] ,

then C ∈ P(Sd,R).255

For the particular case N = 2 we have the following characterizations.256

Proposition 4.6. Let ψk ∈ P(Sd,R) such that Hypothesis H3 is satisfied, for k = 1,2. Let

c1, c2 ∈ R with c1 + c2 > 0. Then,

C = 1

c1 + c2
[c1ψ1 + c2ψ2]

belongs to P(Sd,R) if, and only if,257

c2 ≥ −c1 [M̆11{c1<0} + m̆11{c1≥0}] .

Corollary 4.7. Let ψk ∈ P(Sd,R) such that Hypothesis H3 is satisfied, for k = 1,2. Let ρ ∈ R.

Then,

C = ρψ1 + (1 − ρ)ψ2

belongs to P(Sd,R) if, and only if,258
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1

1 −max{1, M̆1}
≤ ρ ≤ 1

1 −min{1, m̆1}
,

where the left side is −∞ if the maximum is 1 and 0 if the maximum is +∞. The right side259

is +∞ if the minimum is 1.260

Remark 4.8. If κ < 0, then the equations in Lemma 4.5 and Proposition 4.6 become,

respectively,

cN ≤ −
N−1
∑
k=1

ck [M̆k1{ck≤0} + m̆k1{ck>0}] , cN ≤ −
N−1
∑
k=1

ck [M̆k1{ck>0} + m̆k1{ck≤0}] ,

c2 ≤ −c1 [M̆11{c1>0} + m̆11{c1≤0}] .

5 Examples261

In this section we give classes of the functions that belong to P(Sd), P(S∞) or P(R) so that262

the functions in (3.8) and (4.6) are respectively spatial and space-time covariance functions.263

We consider some of the most celebrated models on spheres for which an explicit expression of264

the Schoenberg coefficient is available. We also provide the supremum and infimum necessary265

so that the range of the parameter ρ in (3.9) and (4.7) becomes well determined.266

5.1 Examples from P(Sd) and P(S∞)267

This section illustrates some examples from Corollary 3.3, that is, C(θ) = ρψ1(θ)+(1−ρ)ψ2(θ).268

Thus, necessary ingredients are:269

1. Parametric classes within the classes P(Sd) and P(S∞) for ψ1 and ψ2.270

2. Computation of M1 and m1 as in Corollary 3.3.271

In particular, we consider the following parametric classes:272

• Multiquadric functions:273

Let p1, p2 ∈ (0,1), τ1, τ2 be positive integers and σ1, σ2 positive real numbers. The274

functions275

ψk(θ) = σ2k (
1 − pk

1 − pk cos θ
)
τk
, 0 ≤ θ ≤ π, k = 1,2, (5.1)

belong to the class P(S∞) and their coefficients in the expansion are given by (Arafat

et al., 2018)

b(k)n = b(k)n (pk, τk) = σ2k(
τk + n − 1

n
)pnk(1 − pk)

τk , n = 0,1, . . . , k = 1,2.
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• Multiquadric functions and P(Sd):276

Let d ≥ 2. A reparameterization of (5.1) with pk = 2δk/(1 + δ2k), with δk ∈ (0,1), for277

k = 1,2, provide us the functions278

ψk(θ) = σ2k
(1 − δk)2τk

(1 + δ2k − 2δk cos θ)τk
, 0 ≤ θ ≤ π, k = 1,2. (5.2)

If τk = (d−1)/2, then ψk belongs to the class P(Sd), and their d-Schoenberg coefficients279

are given by (see Equation (4.31) of Møller et al., 2018)280

b
(k)
n,d = σ

2
k(1 − δk)

d−1(d + n − 2

n
)δnk .

• Sine Power functions:281

Let α1, α2 ∈ (0,2) and σ1, σ2 be positive real numbers. Then the functions282

ψk(θ) = σ2k [1 − (sin
θ

2
)
αk

] , 0 ≤ θ ≤ 2π, k = 1,2, (5.3)

belong to the class P(S∞), and their Schoenberg coefficients are given by (Soubeyrand

et al., 2008; Gneiting, 2013)

b(k)n = −
σ2k√

2

1

(n + 1)!

n

∏
m=0

(m − αk
2

) , n = 0,1, . . . , k = 1,2.

In the above cases, the supremum M1 and the infimum m1 required in Corollary 3.3 can283

be found by simple techniques.284

As an illustration, Figure 1 displays two nested Multiquadratic covariance functions corre-285

sponding to Table 1 and realizations of Gaussian random fields with such covariance functions.286

The covariance reaches a minimum less than −0.141 in the first case and −0.222 in the second287

case.288

289
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(a) p1 = 0.5; p2 = 0.2; τ1 = 2;
τ2 = 1; σ1 = 1; σ2 = 1

(b) δ1 = 0.5; δ2 = 0.2; σ1 = 1;
σ2 = 1

(c) (d)

Figure 1: Nested Multiquadric covariance functions with the above specified parameters
(a,b) and ρ calculated with the minimum allowed value in Equation (3.9), and realizations
of Gaussian random fields with such covariance functions (c,d).
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Table 1: Bounds m1 and M1 associated to ρ in Equations (3.8) and (3.9). Here τk ∈ Z+,
pk ∈ (0,1), δk ∈ (0,1) and σk > 0, k = 1,2. Here, both ψ1 and ψ2 belong to the Multiquadric
family as in (5.1).

Parameters m1 M1

τ1 ≥ τ2 (σ1
σ2

)
2 (1 − p1)τ1Γ(τ2)
(1 − p2)τ2Γ(τ1)

+∞

p1 > p2

τ1 ≤ τ2 0 (σ1
σ2

)
2 (1 − p1)τ1Γ(τ2)
(1 − p2)τ2Γ(τ1)

p1 < p2

Some setting but considering Equation (5.2) for both ψ1 and ψ2.

Parameters m1 M1

δ1 > δ2 (σ1
σ2

)
2

(1 − δ1
1 − δ2

)
d−1

+∞

δ1 < δ2 0 (σ1
σ2

)
2

(1 − δ1
1 − δ2

)
d−1

Table 2: Upper bounds m1 and M1 for ρ as in Equation (3.9). Here αk ∈ (0,2), σk > 0,
k = 1,2. Both ψ1 and ψ2 in (3.8) belong to the Sine Power family as in (5.3)

Parameters m1 M1

α1 > α2 0
α1

α2
(σ1
σ2

)
2

α1 < α2
α1

α2
(σ1
σ2

)
2

+∞
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Table 3: Upper bounds m1 and M1 for ρ as in Equation (3.9). Here σk > 0, k = 1,2. Here,
ψ1 is the Multiquadric as in (5.1) and ψ2 is the Sine Power as in (5.3).

Parameters m1 M1

p1 ∈ (0, 12), α2 ∈ (0,2) 0 max{−
√

2(σ1
σ2

)
2 (1 − p1)τ1

Γ(τ1)

τ1 ∈ Z+ ∖ {0} × Γ(τ1 + n)
∏nm=0(2m − α2)

(n + 1)

n0 ≥ max{τ1, 4p1−21−2p1}
∗

× (2p1)n ∶ n = 0,1, . . . , n0}

α2 = p1 ∈ (0, 25) 0 2
√

2(σ1
σ2

)
2 1 − p1

p1
τ1 = 1

α2 = p1 ∈ (2
5 ,

1
2
) 0 8

√
2(σ1
σ2

)
2 1 − p1

2 − p1
τ1 = 1

∗If p1 ∈ (0, 14), then max{τ1, 4p1−21−2p1} = τ1.290

5.2 Examples from the Classes P(Sd,R) and P(S∞,R)291

Let αGk
∈ R+ and σGk

> 0, k = 1,2. It is known that Gauss functions given by292

ϕGk
(u) = σ2Gk

exp(−αGk
∣u∣2), k = 1,2, (5.4)

belong to the class P(R). The supremum and infimum, M̃1, m̃1, needed in Proposition 4.2293

and Corollary 4.3 are available in Table 1 in Gregori et al. (2008).294

Using Table 1 in Gregori et al. (2008) and the tables of the previous subsection, we obtain295

Tables 4 – 6 below.296

Here all parameters are subscripted in each case with the initial of the used function.297

As an illustration, Figure 2 displays a nested Multiquadric coupled with Gauss covariance298

function corresponding to Table 4 and a realization of a Gaussian random field with such a299

covariance function. The covariance reaches a minimum less than −0.079.300

301
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(a) pMq1 = 0.5; pMq2 = 0.2;
τMq1 = 2; τMq2 = 1; αG1 = 3;
αG2 = 2; σM1 = σM2 = σG1 =
σG2 = 1

(b) (c)

Figure 2: Nested Multiquadric coupled with Gauss covariance function with the above speci-
fied parameters (a) and ρ calculated with the minimum allowed value in Equation (4.7), and
realization of a Gaussian random field with such a covariance function at two time instants:
(b) t = 0 and (c) t = 0.3.

Table 4: Upper bounds m1m̃1 and M1M̃1 for ρ as in Equation (4.7). Here τMqk ∈ Z+,
pMqk ∈ (0,1), δMqk ∈ (0,1) and σMqk , σGk

> 0, αGk
∈ R+, k = 1,2. Both ψ1 and ψ2 are

Multiquadric functions as in (5.1) and both ϕ1, ϕ2 are Gauss functions as in (5.4).

Parameters mMq1,Mq2mG1,G2 MMq1,Mq2MG1,G1

τMq1 ≥ τMq2 0 +∞

pMq1 > pMq2

αG1 < αG2

τMq1 ≥ τMq2 (σM1

σM2

)
2 (1 − pMq1)τMq1Γ(τMq2)
(1 − pMq2)τMq2Γ(τMq1)

× +∞

pMq1 > pMq2 ×(σG1

σG2

)
2

(αG2

αG1

)
1/2

αG1 ≥ αG2

τMq1 ≤ τMq2 0 (σM1

σM2

)
2 (1 − pMq1)τMq1Γ(τMq2)
(1 − pMq2)τMq2Γ(τMq1)

×

pMq1 < pMq2 ×(σG1

σG2

)
2

(αG2

αG1

)
1/2
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Continuation of Table 4

Parameters mMq1,Mq2mG1,G2 MMq1,Mq2MG1,G1

αG1 < αG2

τMq1 ≤ τMq2 0 +∞

pMq1 < pMq2

αG1 ≥ αG2

Both ψ1 and ψ2 are Multiquadric functions as in (5.2)
and both ϕ1, ϕ2 are Gauss functions as in (5.4)

δMq1 > δMq2 0 +∞

αG1 < αG2

δMq1 > δMq2 (
σMq1

σMq2

)
2

(
1 − δMq1

1 − δMq2

)
d−1

+∞

αG1 ≥ αG2 ×(σG1

σG2

)
2

(αG2

αG1

)
1/2

δMq1 < δMq2 0 (
σMq1

σMq2

)
2

(
1 − δMq1

1 − δMq2

)
d−1

αG1 < αG2 ×(σG1

σG2

)
2

(αG2

αG1

)
1/2

δMq1 < δMq2 0 +∞

αG1 ≥ αG2
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Table 5: Upper bounds m1m̃1 and M1M̃1 for ρ as in Equation (4.7). Here αSPk
∈ (0,2),

αGk
∈ R+ and σSPk

, σGk
> 0, k = 1,2. Both ψ1 and ψ2 are Sine Power functions as in (5.3)

and both ϕ1, ϕ2 are Gauss functions as in (5.4).

Parameters mSP1,SP2mG1,G2 MSP1,SP2MG1,G2

αSP1 > αSP2 0
αSP1

αSP2

(σSP1

σSP2

)
2

×

αG1 < αG2 ×(σG1

σG2

)
2

(αG2

αG1

)
1/2

αSP1 > αSP2 0 +∞

αG1 ≥ αG2

αSP1 < αSP2 0 +∞

αG1 < αG2

αSP1 < αSP2

αSP1

αSP2

(σSP1

σSP2

)
2

× +∞

αG1 ≥ αG2 ×(σG1

σG2

)
2

(αG2

αG1

)
1/2
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Table 6: Upper bounds m1m̃1 and M1M̃1 for ρ as in Equation (4.7). Here σMq, σSP , σGk
> 0

and αGk
∈ R+, k = 1,2. Here ψ1 is Multiquadric function as in (5.1), ψ2 is a Sine Power

function as (5.3) and ϕ1, ϕ2 are Gauss functions as in (5.4)

Parameters mMq,SPmG1,G2 MMq,SPMG1,G2

pMq ∈ (0,
1

2
), αSP ∈ (0,2) 0 C

†
Mq,SP (σG1

σG2

)
2

(αG2

αG1

)
1/2

τMq ∈ Z+ ∖ {0}

n0 ≥ max{τMq,
4pMq−2
1−2pMq

}

αG1 < αG2

pMq ∈ (0,
1

2
), αSP ∈ (0,2) 0 +∞

τMq ∈ Z+ ∖ {0}

n0 ≥ max{τMq,
4pMq−2
1−2pMq

}

αG1 ≥ αG2

αSP = pMq ∈ (0,
2

5
) 0 2

√
2(
σMq

σSP
)
2 1 − pMq

pMq

τMq = 1 ×(σG1

σG2

)
2

(αG2

αG1

)
1/2

αG1 < αG2

αSP = pMq ∈ (0,
2

5
) 0 +∞

τMq = 1

αG1 ≥ αG2

αSP = pMq ∈ (2

5
,
1

2
) 0 8

√
2(
σMq

σSP
)
2 1 − pMq

2 − pMq

τMq = 1 ×(σG1

σG2

)
2

(αG2

αG1

)
1/2

αG1 < αG2

αSP = pMq ∈ (2

5
,
1

2
) 0 +∞

τMq = 1

αG1 ≥ αG2

†CMq,SP ∶= max
n∈{0,1,...,n0}

{−
√

2(
σMq

σSP
)
2 (1 − pMq)τMq

Γ(τMq)
Γ(τMq + n1)

∏nm=0(2m − αSP )
(n + 1) (2pMq)n}
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6 Discussion302

We have provided simple strategies that allow to obtain admissible nested covariance models303

with (some) negative coefficients. Our findings allow to enrich the classes of covariance304

functions on spheres as well as spheres cross time. In particular, our model allow for potential305

negative correlations at large distances over the sphere representing planet Earth.306

A subsequent step in our research will be to consider a more general class of processes307

over spheres, called axially symmetric in Jones (1963). Such a class is more suitable for308

modeling climate processes, that are notoriously stationary with respect to longitude, but309

nonstationary with respect to latitude.310

Another important research for the future will be to consider the regularity properties of311

Gaussian fields with admissible nested covariance functions. This would imply to emulate312

the tours de force in Lang and Schwab (2015) and in Clarke et al. (2018).313
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