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Abstract

Schoenberg’s theorem for the complex Hilbert sphere proved by Chris-
tensen and Ressel in 1982 by Choquet theory is extended to the following
result: Let L denote a locally compact group and let D denote the closed
unit disc in the complex plane. Continuous functions f : D× L→ C such
that f(ξ · η, u−1v) is a positive definite kernel on the product of the unit
sphere in `2(C) and L are characterized as the functions with a uniformly
convergent expansion

f(z, u) =

∞∑
m,n=0

ϕm,n(u)zmzn,

where ϕm,n is a double sequence of continuous positive definite functions on
L such that

∑
ϕm,n(eL) <∞ (eL is the neutral element of L). It is shown

how the coefficient functions ϕm,n are obtained as limits from expansions
for positive definite functions on finite dimensional complex spheres via a
Rodrigues formula for disc polynomials.

Similar results are obtained for the real Hilbert sphere.
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1 Introduction and main results

Characterizations of positive definite functions on spheres or on products of
spheres with locally compact groups can be found in the literature, see [4], [5], [6],
[7], [10], [15], [19]. The spheres can be real or complex and of finite or countably
infinite dimension. In this paper we obtain a characterization of positive definite
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functions on the product of the unit sphere in the complex Hilbert space `2(C)
with a locally compact group via a power series expansion. This is the only miss-
ing case in the above picture. We show how the coefficients of this expansion are
related with those of the expansions on the product of finite dimensional complex
spheres with locally compact groups.

In the case of real spheres there has been several statistical applications of such
results, see [1], [9], [17], but we do not know of statistical applications in the case
of complex spheres. The interested reader is referred to [13], where parametric
families of positive definite functions on complex spheres are provided.

In order to arrive quickly at the main results of the paper, we postpone precise
definitions to Section 2.

Schoenberg’s theorems in [19] for real spheres Sd, d = 1, 2, . . . ,∞, give uni-
formly convergent expansions

f(x) =
∞∑
n=0

ϕn,dcn(d, x), x ∈ [−1, 1] (1)

for certain classes P(Sd) of continuous functions f : [−1, 1] → R. Here, cn(d, x)
are normalized ultraspherical polynomials when d ∈ N, see (13), while cn(∞, x) =
xn. Furthermore, (ϕn,d)n≥0 is a sequence of non-negative numbers satisfying∑

n ϕn,d <∞.
Schoenberg’s theorems were extended in [5] to classes P(Sd, L) of continuous

functions f : [−1, 1]×L→ C, where L is an arbitrary locally compact group. In
this case the uniformly convergent expansions are

f(x, u) =
∞∑
n=0

ϕn,d(u)cn(d, x), x ∈ [−1, 1], u ∈ L, (2)

and the expansion coefficients ϕn,d from (2) belong to the class P(L) of continu-
ous positive definite functions on the group L. They are called the d-Schoenberg
functions associated with f . The extension was motivated by problems in geo-
statistics in the particular case, where L is the additive group R of real numbers
representing time.

In the special case where L is reduced to the neutral element eL, the results
of [5] yield Schoenberg’s theorems.

The sets P(Sd, L) are decreasing:

P(Sd+1, L) ⊆ P(Sd, L), P(S∞, L) =
∞⋂
d=1

P(Sd, L),

so a function f ∈ P(S∞, L) has expansion coefficient functions ϕn,d for d =
1, 2, . . . ,∞. In Schoenberg’s paper [19] the scalar coefficients ϕn,∞ have been
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obtained as accumulation points of ϕn,d as d→∞, and this has been sharpened
in [5] to pointwise limits

lim
d→∞

ϕn,d(u) = ϕn,∞(u) (3)

for each u ∈ L, n ≥ 0.
In this paper we have a different approach which in (3) yields the local uni-

form convergence with respect to u ∈ L. It is based on a sharpening of the
differentiability properties of f ∈ P(S∞, L) with respect to x ∈ ]−1, 1[ given
in Proposition 3.2, and the Rodrigues formula for the Gegenbauer polynomials.
This is our first main result.

Theorem 1.1. Let f ∈ P(S∞, L) and let ϕn,d, n ≥ 0, d < ∞, denote the d-
Schoenberg functions associated with f .

For each n = 0, 1, . . .

lim
d→∞

ϕn,d(u) =
1

n!

∂nf(0, u)

∂xn

uniformly for u in compact subsets of L. The sequence of functions

u 7→ 1

n!

∂nf(0, u)

∂xn
, n ≥ 0,

belongs to P(L) and gives the coefficient sequence (ϕn,∞) in Eq. (2) when d =∞.

The proof of Theorem 1.1 will be given in Section 3.
The main purpose of this paper is to achieve a similar result for the complex

Hilbert sphere, but since this is considerably more technical, the real case will
serve as an introduction to the complex case, which we shall introduce now.

Schoenberg’s theorems have been extended to complex spheres Ω2q, where
q = 1, 2, . . . or q = ∞. The case q = ∞ was settled by Christensen and Ressel
[7] in 1982 and the case q < ∞ was done by Menegatto and Peron [15] in 2001.
The authors obtain uniformly convergent expansions

f(z) =
∞∑

m,n=0

ϕ(q−2)
m,n Rq−2

m,n(z), z ∈ D (4)

for certain classes P(Ω2q) of continuous functions f : D→ C, where

D = {z ∈ C : |z| < 1}, D = {z ∈ D : |z| ≤ 1}. (5)

Here, (ϕ
(q−2)
m,n )m,n≥0 is a double sequence of non-negative numbers satisfying

∞∑
m,n=0

ϕ(q−2)
m,n <∞,
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and Rq−2
m,n are special cases of the disc polynomials Rα

m,n, α > −1, see (22), while

R∞m,n(z) = zmzn.

See [13] for examples of functions from the class P(Ω2q).
Note that while Schoenberg’s Theorem for P(S∞) was obtained by a limit

procedure from his theorem for P(Sd) by letting d tend to infinity, this has not
been the case for complex spheres. The result for P(Ω∞) was obtained long before
the case P(Ω2q) with finite q was settled. See Remark 4.7 for an open question
related to this.

The expansions (4) have been extended in [4] for q <∞ to classes P(Ω2q, L)
of continuous functions f : D× L→ C, where L as before is an arbitrary locally
compact group. Functions f ∈ P(Ω2q, L) have a uniformly convergent expansion

f(z, u) =
∞∑

m,n=0

ϕ(q−2)
m,n (u)Rq−2

m,n(z), z ∈ D, u ∈ L. (6)

Like the case of real spheres the coefficient functions ϕ
(q−2)
m,n in (6) belong to

P(L). In [4] it is pointed out that similar expansions hold for all compact Gelfand
pairs, thus giving a unified treatment of the expansion questions related to real
and complex finite-dimensional spheres.

The sets P(Ω2q, L) are decreasing:

P(Ω2(q+1), L) ⊆ P(Ω2q, L), P(Ω∞, L) =
∞⋂
q=2

P(Ω2q, L).

In this paper we shall settle the case q =∞ and prove an analogue of Theorem 1.1.
It is based on a sharpening of the differentiability properties of f ∈ P(Ω∞, L)
given in Proposition 4.5, and a Rodrigues formula for the disc polynomials given
in [21]. It is our second main result.

Theorem 1.2. Let f ∈ P(Ω∞, L) and for q ≥ 2 let (ϕ
(q−2)
m,n )m,n≥0 denote the

double sequence from P(L) such that (6) holds. For m,n ≥ 0 we have

lim
q→∞

ϕ(q−2)
m,n (u) =

1

m!n!

∂m+n

∂zn∂zm
f(0, u)

uniformly for u in compact subsets of L. The functions

ϕm,n(u) :=
1

m!n!

∂m+n

∂zn∂zm
f(0, u)

belong to P(L), and we have the representation

f(z, u) =
∞∑

m,n=0

ϕm,n(u)zmzn, z ∈ D, u ∈ L, (7)
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where
∞∑

m,n=0

ϕm,n(eL) <∞. (8)

The series in (7) is uniformly convergent on D× L.

Theorem 1.2 settles the difficult “only if”-part of the following representation
theorem for P(Ω∞, L).

Theorem 1.3. Let f : D×L→ C be a continuous function. Then f ∈ P(Ω∞, L)
if and only if f has a representation

f(z, u) =
∞∑

m,n=0

ϕm,n(u)zmzn, z ∈ D, u ∈ L, (9)

where ϕm,n ∈ P(L) satisfy
∑

m,n ϕm,n(eL) <∞.

The proofs of Theorem 1.2 and 1.3 will be given in Section 4.

2 Background material

In his seminal paper [19] Schoenberg introduced and characterized positive defi-
nite functions on spheres. The d-dimensional unit sphere of Rd+1 is given as

Sd =

{
x = (x1, . . . , xd+1) ∈ Rd+1 :

d+1∑
k=1

x2
k = 1

}
, d ≥ 1.

For vectors ξ, η belonging to Sd, the scalar product ξ ·η belongs to [−1, 1]. By
P(Sd) we denote the set of continuous functions f : [−1, 1] → R such that the
kernel (ξ, η) 7→ f(ξ · η) is positive definite on Sd in the sense that for any n ∈ N,
arbitrary ξ1, . . . , ξn ∈ Sd and c1, . . . , cn ∈ R one has

n∑
j,k=1

f(ξj · ξk)cjck ≥ 0, (10)

i.e., the symmetric matrix [f(ξj · ξk)]nj,k=1 is positive semidefinite.
In a general setting we recall that for an arbitrary non-empty set X, a kernel

on X is a function K : X2 → C. It is called a positive definite kernel, if for any
n ∈ N, arbitrary points x1, . . . , xn ∈ X and numbers c1, . . . , cn ∈ C one has

n∑
j,k=1

K(xj, xk)cjck ≥ 0,

5



i.e., the matrix [K(xj, xk)]
n
j,k=1 is Hermitian and positive semidefinite. For a

treatment of these concepts see e.g. [3]. A positive definite kernel on Sd of the
form f(ξ · η) is automatically real-valued by symmetry of the scalar product.

Let L denote an arbitrary locally compact group written multiplicatively and
with neutral element eL. By P(L) we denote the set of continuous positive
definite functions f : L → C, i.e., the continuous functions f for which the
kernel (u, v) 7→ f(u−1v) is positive definite on L. This class of functions is very
important in the theory of unitary representations of L on Hilbert spaces, see [8],
[18].

Schoenberg’s characterization of the class P(Sd) is a special case of the Bochner-
Godement Theorem for Gelfand pairs, see [4] and the references therein. In an-
other direction it has been extended in [5] to the class P(Sd, L) of continuous
functions f : [−1, 1]×L→ C such that the kernel ((ξ, u), (η, v)) 7→ f(ξ · η, u−1v)
is positive definite on Sd × L.

Their result is reported here for a self-contained exposition.

Theorem 2.1. (Theorem 3.3 in [5]) Let d ∈ N and let f : [−1, 1] × L → C be
a continuous function. Then f belongs to P(Sd, L) if and only if there exists a
sequence of functions (ϕn,d)n≥0 from P(L) with

∑
n ϕn,d(eL) <∞ such that

f(x, u) =
∞∑
n=0

ϕn,d(u)cn(d, x), x ∈ [−1, 1], u ∈ L. (11)

The above expansion is uniformly convergent for (x, u) ∈ [−1, 1]×L, and we have

ϕn,d(u) =
Nn(d)σd−1

σd

∫ 1

−1

f(x, u)cn(d, x)(1− x2)d/2−1 dx. (12)

Here we have used the notation

cn(d, x) = C(λ)
n (x)/C(λ)

n (1), λ = (d− 1)/2, d ≥ 2, (13)

for the ultraspherical polynomials cn(d, x) as normalized Gegenbauer polynomials

C
(λ)
n (x) for the parameter λ = (d−1)/2, while cn(1, x) = Tn(x) are the Chebyshev

polynomials, cf. [2, p. 302], [5]. For later use we recall that

C(λ)
n (1) =

(2λ)n
n!

, λ > 0. (14)

The symbol (a)n refers to the Pochhammer symbol:

(a)n = a(a+ 1) . . . (a+ n− 1), n ≥ 1, (a)0 = 1.

The constant σd denotes the total mass of the surface measure ωd on Sd

σd = ωd(Sd) =
2π(d+1)/2

Γ((d+ 1)/2)
. (15)
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Note that
σd−1

σd

∫ 1

−1

(1− x2)d/2−1 dx = 1.

Finally, Nn(d) is the dimension of a space of spherical harmonics, cf. [5, Eq. (11)]
or [16, p. 4], and is given by

Nn(d) =
(d)n−1

n!
(d+ 2n− 1), n ≥ 1, N0(d) = 1. (16)

Schoenberg’s Theorem for P(Sd) is the special case of the previous theorem,
where the group L = {eL} is trivial. The functions in P(L) are then just non-
negative constants.

If we restrict the vectors ξ1, . . . , ξn ∈ Sd to lie on the subsphere Sd−1, identified
with the equator of Sd, we see that P(Sd, L) ⊆ P(Sd−1, L).

We also consider

P(S∞, L) :=
∞⋂
d=1

P(Sd, L), (17)

which is the set of continuous functions f : [−1, 1]× L→ C such that the kernel

((ξ, u), (η, v)) 7→ f(ξ · η, u−1v) (18)

is positive definite on Sd × L for all d ∈ N. We note in passing that the notation
P(S∞, L) suggests an intrinsic definition using the real Hilbert sphere

S∞ =

{
(xk)k∈N ∈ RN :

∞∑
k=1

x2
k = 1

}
,

which is the unit sphere in the Hilbert sequence space `2(R) of square summable
real sequences. The intrinsic definition of P(S∞, L) is as the set of continuous
functions f : [−1, 1] × L → C such that the kernel (18) is positive definite on
S∞ × L. This identification is made explicit in [5].

The following holds:

Theorem 2.2. (Theorem 3.10 in [5]) Let L denote a locally compact group and
let f : [−1, 1]× L→ C be a continuous function. Then f belongs to P(S∞, L) if
and only if there exists a sequence (ϕn,∞)n≥0 from P(L) with

∑
n ϕn,∞(eL) <∞

such that

f(x, u) =
∞∑
n=0

ϕn,∞(u)xn, (x, u) ∈ [−1, 1]× L. (19)

The above expansion is uniformly convergent for (x, u) ∈ [−1, 1]× L.

Ziegel [23] discovered that f ∈ P(Sd) is continuously differentiable of order
[(d− 1)/2] on ]− 1, 1[ and this was extended to P(Sd, L) in [5].
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For f ∈ P(S∞, L) we know that f(·, u) ∈ C∞(] − 1, 1[) for each u ∈ L and
from (19) we get

ϕn,∞(u) =
1

n!

∂nf(0, u)

∂xn
, u ∈ L, n ≥ 0.

We are now going to explain similar results for complex spheres.
The complex unit sphere of (real) dimension 2q − 1 is given by

Ω2q =

{
z = (z1, . . . , zq) ∈ Cq : ||z||2 =

q∑
k=1

|zk|2 = 1

}
, q ≥ 1,

and Cq is equipped with the Hermitian scalar product

z · w =

q∑
k=1

zkwk, z, w ∈ Cq.

Similarly Ω∞ denotes the unit sphere in the complex Hilbert space `2(C) with
the usual Hermitian scalar product z · w for z, w ∈ `2(C).

For vectors ξ, η ∈ Ω2q, q = 1, 2, . . . ,∞, the Hermitian scalar product ξ · η
belongs to the closed unit disc D defined in (5). For 2 ≤ q ≤ ∞ we have

{ξ · η : ξ, η ∈ Ω2q} = D,

while for q = 1

ξ · η = ξη = ξη−1, ξ, η ∈ C, |ξ| = |η| = 1,

hence
{ξ · η : ξ, η ∈ Ω2} = {z ∈ C : |z| = 1} =: T.

By P(Ω2q), q ≥ 2, we denote the set of continuous functions f : D → C such
that the kernel (ξ, η) 7→ f(ξ · η) is positive definite on Ω2q. For a locally compact
group L we denote by P(Ω2q, L) the set of continuous functions f : D × L → C
such that the kernel ((ξ, u), (η, v)) 7→ f(ξ ·η, u−1v) is positive definite on Ω2q×L.
When L = {eL} is trivial, then P(Ω2q, L) can be identified with P(Ω2q).

For q = 1 we define P(Ω2) = P(T) as the set of continuous positive definite
functions f : T → C on the circle group T. They are characterized as the
functions

f(eiθ) =
∑
n∈Z

ane
inθ, eiθ ∈ T,

where (an)n∈Z is a sequence of non-negative numbers satisfying
∑

n an <∞. This
is Bochner’s Theorem for the compact abelian group T. Similarly P(Ω2, L) =
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P(T×L) is the set of continuous positive definite functions f : T×L→ C. They
are characterized as the functions

f(eiθ, u) =
∑
n∈Z

an(u)einθ, eiθ ∈ T, u ∈ L,

where (an(u))n∈Z is a sequence of functions from P(L) satisfying
∑

n an(eL) <∞.
This is a special case of Theorem 3.4 in [4]. See also Corollary 3.5 in [4].

Note that Ω2q as a set is equal to S2q−1, if Cq is identified with R2q. However,
P(S2q−1, L) and P(Ω2q, L) are different since the first consists of functions f :
[−1, 1]× L→ C and the second of consists of functions f : D× L→ C. See [15,
Section 5] for relations between these classes when L = {eL}.

In the following we shall always assume that q ≥ 2.
In [4] the authors proved the following result, which extends a result by

Menegatto and Peron [15, Theorem 4.2] for the case P(Ω2q).

Theorem 2.3. (Theorem 6.1 in [4]) Let 2 ≤ q < ∞ and let f : D × L → C be
a continuous function. Then f belongs to P(Ω2q, L) if and only if there exists a

double sequence of functions (ϕ
(q−2)
m,n )m,n≥0 from P(L) with

∞∑
m,n=0

ϕ(q−2)
m,n (eL) <∞

such that

f(z, u) =
∞∑

m,n=0

ϕ(q−2)
m,n (u)Rq−2

m,n(z), z ∈ D, u ∈ L. (20)

The above expansion is uniformly convergent on D× L, and for u ∈ L we have

ϕ(q−2)
m,n (u) = N(q;m,n)

q − 1

π

∫ 1

0

∫ 2π

0

f(reiθ, u)Rq−2
m,n(reiθ)r(1− r2)q−2 dθ dr. (21)

Here

N(q;m,n) =
m+ n+ q − 1

q − 1

(
m+ q − 2

m

)(
n+ q − 2

n

)
is the dimension of a certain finite-dimensional space, see [12, Eq. (3.12)],[20, p.
295].

The functions Rq−2
m,n(z) belong to the class of disc polynomials given in [12,

Eq. (3.15)] for α > −1 as

Rα
m,n(reiθ) = r|m−n|ei(m−n)θR

(α,|m−n|)
min(m,n) (2r2 − 1), 0 ≤ r ≤ 1, 0 ≤ θ < 2π, (22)

where
R

(α,β)
k (x) = P

(α,β)
k (x)/P

(α,β)
k (1), α, β > −1, k ∈ N0 (23)

9



are normalized Jacobi polynomials P
(α,β)
k , cf. [2, p. 99]. The case α = 0 was

considered by Zernike and Brinkman in [22].
See [21] for other expressions and properties of the disc polynomials.
Like for the case of real spheres we have

P(Ω2(q+1), L) ⊆ P(Ω2q, L),

and we consider the set

P(Ω∞, L) :=
∞⋂
q=2

P(Ω2q, L), (24)

which can be identified with the set of continuous functions f : D× L→ C such
that the kernel ((ξ, u), (η, v)) 7→ f(ξ · η, u−1v) is positive definite on Ω∞ × L.

3 Proofs in the case of the real Hilbert sphere

We need the following sharpening of Proposition 3.8 in [5], which is inspired by
results of Ziegel [23].

For functions F : [−1, 1]× L→ C we denote

||F || = sup{|F (x, u)| : x ∈ [−1, 1], u ∈ L} ≤ ∞.

Note that if f ∈ P(Sd, L) then ||f || = f(1, eL) <∞.

Proposition 3.1. Let d ∈ N and suppose that f ∈ P(Sd+2, L). Then f(·, u) is
continuously differentiable with respect to x in ]−1, 1[ and (1−x2)∂f/∂x extends
to a continuous function on [−1, 1]× L such that

(1− x2)
∂f(x, u)

∂x
= f1(x, u)− f2(x, u), (x, u) ∈ [−1, 1]× L (25)

for functions fi ∈ P(Sd, L) satisfying

||fi|| ≤ d||f ||, i = 1, 2. (26)

Proof. Let us first assume d ≥ 2. By the proof of Proposition 3.8 in [5] we have
(25) for (x, u) ∈ ]−1, 1[× L, where

f1(x, u) = d
∞∑
n=0

(2n+ d− 1)(n+ 1)

(2n+ d+ 1)(n+ d− 1)
ϕn+1,d(u)cn(d, x)

and

f2(x, u) = d

∞∑
n=2

n− 1

n+ d− 1
ϕn−1,d+2(u)cn(d, x).
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These formulas show that f1, f2 ∈ P(Sd, L) and that

||f1|| = f1(1, eL)

= d

∞∑
n=0

(2n+ d− 1)(n+ 1)

(2n+ d+ 1)(n+ d− 1)
ϕn+1,d(eL)

≤ d

∞∑
n=0

ϕn+1,d(eL) = d

∞∑
n=1

ϕn,d(eL) ≤ d||f ||,

and

||f2|| = f2(1, eL) = d
∞∑
n=2

n− 1

n− 1 + d
ϕn−1,d+2(eL) ≤ d

∞∑
n=1

ϕn,d+2(eL) ≤ d||f ||.

This also shows that the left-hand side of Eq. (25) extends to a continuous
function on [−1, 1]× L.

For d = 1, Eq. (25) holds again, now with

f1(x, u) =
1

2
ϕ1,1(u)c0(1, x) +

∞∑
n=1

ϕn+1,1(u)cn(1, x)

and

f2(x, u) =
∞∑
n=2

n− 1

n
ϕn−1,3(u)cn(1, x).

This shows that (26) holds also in this case.

Let Ed denote the subspace of continuous functions F : [−1, 1] × L → C
spanned by functions of the form p(x)f(x, u), where p is a polynomial with com-
plex coefficients and f ∈ P(Sd, L). Clearly Ed+1 ⊆ Ed. By Proposition 3.1 we see
that (1− x2)∂/∂x maps Ed+2 into Ed.

Proposition 3.2. Let d, n ∈ N and assume that f ∈ P(Sd+2n, L). Then f(·, u) ∈
Cn(]− 1, 1[) for u ∈ L and for k ≤ n we have

(1− x2)k
∂kf(x, u)

∂xk
∈ Ed+2(n−k). (27)

In particular the function in (27) has a continuous extension to [−1, 1]× L.

Proof. It follows by Proposition 3.1 that f(·, u) ∈ Cn(]− 1, 1[) for u ∈ L.
We prove (27) by induction in k, and it certainly holds for k = 1 by Proposi-

tion 3.1.
Suppose (27) holds for k < n. Then the function in (27) is differentiable for

−1 < x < 1 and differentiation and multiplication with 1− x2 shows that

−2kx(1− x2)k
∂kf(x, u)

∂xk
+ (1− x2)k+1∂

k+1f(x, u)

∂xk+1
∈ Ed+2(n−k−1).
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Using

2kx(1− x2)k
∂kf(x, u)

∂xk
∈ Ed+2(n−k) ⊆ Ed+2(n−k−1),

we see that

(1− x2)k+1∂
k+1f(x, u)

∂xk+1
∈ Ed+2(n−k−1).

In the next proposition we prove the weak convergence of a certain net
(τλ)λ>−1 of measures introduced below. This convergence is decisive for the proof
of our main Theorem 1.1.

For λ > −1 define the probability measure τλ on [−1, 1] by

τλ = B(λ+ 1, 1/2)−1(1− x2)λ dx, (28)

where B is the Beta-function given by B(a, b) = Γ(a)Γ(b)/Γ(a+ b).
The set C([−1, 1]) of continuous functions f : [−1, 1]→ C is a Banach space

under the uniform norm ||f ||∞ = supx∈[−1,1] |f(x)|.

Proposition 3.3. Let F ⊂ C([−1, 1]) be a set of continuous functions on [−1, 1]
such that

(i) F is bounded, i.e., supf∈F ||f ||∞ <∞,

(ii) F is equicontinuous at x = 0, i.e., for every ε > 0 there exists 0 < δ < 1
such that |f(x)− f(0)| ≤ ε for all f ∈ F and all real x with |x| ≤ δ.

Then limλ→∞
∫
f dτλ = f(0), uniformly for f ∈ F .

In particular, limλ→∞ τλ = δ0 weakly, where δ0 denotes the Dirac measure
concentrated at 0.

Proof. For any 0 < δ < 1 and f ∈ F we have∫
f dτλ − f(0) =

∫ δ

−δ

(
f(x)− f(0)

)
dτλ(x) +

∫
δ≤|x|≤1

(
f(x)− f(0)

)
dτλ(x).

Using |f(x)− f(0)| ≤ 2||f ||∞, we get for λ > 0∣∣∣∣ ∫ f dτλ − f(0)

∣∣∣∣ ≤ sup
|x|≤δ

∣∣∣∣f(x)− f(0)

∣∣∣∣+
2||f ||∞

B(λ+ 1, 1/2)

∫
δ≤|x|≤1

(1− x2)λ dx

≤ sup
|x|≤δ

∣∣∣∣f(x)− f(0)

∣∣∣∣+
4||f ||∞(1− δ)
B(λ+ 1, 1/2)

(1− δ2)λ.

For given ε > 0 we first choose 0 < δ < 1 so that by (ii)

|f(x)− f(0)| ≤ ε/2, for all |x| ≤ δ, f ∈ F .

12



By Stirling’s formula

B(λ+ 1, 1/2)−1 ∼ π−1/2λ1/2, λ→∞,

and limλ→∞ λ
1/2(1− δ2)λ = 0. Therefore, and using (i),

sup
f∈F
||f ||∞

4(1− δ)
B(λ+ 1, 1/2)

(1− δ2)λ < ε/2

for λ ≥ Λ0, where Λ0 is sufficiently large. This shows that

sup
f∈F

∣∣∣∣∫ f dτλ − f(0)

∣∣∣∣ ≤ ε, λ ≥ Λ0.

Proof of Theorem 1.1:
It is known that the Gegenbauer polynomials C

(λ)
n (x) satisfy the Rodrigues

formula, cf. [2, Eq. (6.6.14)]

C(λ)
n (x) =

(−2)n(λ)n
n!(n+ 2λ)n

(1− x2)1/2−λ d
n

dxn
(1− x2)n+λ−1/2.

For the normalized ultraspherical polynomials cn(d, x) given by (13), the Ro-
drigues formula reads

cn(d, x) =
(−1)n

2n(d/2)n
(1− x2)1−d/2 d

n

dxn
(1− x2)n+d/2−1. (29)

Inserting this in Eq. (12) we get

ϕn,d(u) =
Nn(d)σd−1

σd

(−1)n

2n(d/2)n

∫ 1

−1

f(x, u)
dn

dxn
(1− x2)n+d/2−1 dx.

We now make use of n integrations by parts to get

ϕn,d(u) =
Nn(d)σd−1

σd

1

2n(d/2)n

∫ 1

−1

∂nf(x, u)

∂xn
(1− x2)n+d/2−1 dx,

because the boundary terms

∂kf(x, u)

∂xk
dn−k−1

dxn−k−1
(1− x2)n+d/2−1, k = 0, 1, . . . , n− 1

vanish for x = ±1 by Proposition 3.2. In fact,

dn−k−1

dxn−k−1
(1− x2)n+d/2−1 = (1− x2)k+d/2Rk(x)

13



for some polynomial Rk(x) and

(1− x2)k
∂kf(x, u)

∂xk
,

has finite values while (1− x2)d/2Rk(x) vanishes for x = ±1.
Using the measure (28) with λ = d/2− 1, we find

ϕn,d(u) =
Nn(d)

2n(d/2)n

∫ 1

−1

(1− x2)n
∂nf(x, u)

∂xn
dτd/2−1(x),

and we note that

lim
d→∞

Nn(d)

2n(d/2)n
= lim

d→∞

1

n!

(d)n−1(d+ 2n− 1)

2n(d/2)n
=

1

n!
.

By Proposition 3.3 we then get that

lim
d→∞

ϕn,d(u) =
1

n!

[
(1− x2)n

∂nf(x, u)

∂xn

]
x=0

=
1

n!

∂nf(0, u)

∂xn
. (30)

Given a compact set K in L the family

F :=

{
x 7→ (1− x2)n

∂nf(x, u)

∂xn
: u ∈ K

}
satisfies the conditions of Proposition 3.3, so the convergence in (30) is uniform
for u in compact subsets of L.

This also implies that the function

u 7→ 1

n!

∂nf(0, u)

∂xn

belongs to P(L) and is the coefficient ϕn,∞(u) of the power series in (19). �

4 Proofs in the case of the complex Hilbert sphere

Let us first consider a function f ∈ P(Ω2q, L), where 2 ≤ q ≤ ∞. Then we know
that

f(z, u) = f(z, u−1), |f(z, u)| ≤ f(1, e), z ∈ D, u ∈ L.
To f and to elements u1, . . . , un ∈ L and numbers c1, . . . , cn ∈ C we define a

new function F : D→ C by

F (z) =
n∑

j,k=1

f(z, u−1
j uk)cjck. (31)

It is easy to see that F (z) = F (z), but in fact, this follows from the more general
result inspired by [10] and which can be stated as:
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Lemma 4.1. For any f in P(Ω2q, L), the function F in (31) belongs to P(Ω2q).

Proof. Let ξ1, . . . , ξm ∈ Ω2q and d1, . . . , dm ∈ C be arbitrary. We shall prove that
S ≥ 0, where

S :=
m∑

µ,ν=1

F (ξµ · ξν)dµdν .

However,

S =
m∑

µ,ν=1

n∑
j,k=1

f(ξµ · ξν , u−1
j uk)cjckdµdν ≥ 0,

because it is “a sum” belonging to the list of mn elements from Ω2q × L

(ξ1, u1), . . . , (ξ1, un), (ξ2, u1), . . . , (ξ2, un), . . . , (ξm, u1), . . . , (ξm, un)

together with the list of scalars

d1c1, . . . , d1cn, d2c1, . . . , d2cn, . . . , dmc1, . . . , dmcn.

As preparation for the proof of Theorem 1.2 we shall discuss smoothness of
functions from P(Ω2q, L).

The smoothness results of Ziegel [23] for functions in P(Sd) have been ex-
tended to functions in P(Ω2q) in a paper by Menegatto, see [14]. This extension
required new ideas, while a further extension to functions in P(Ω2q, L) follows
the same lines as in [14], so we shall just give the results with a few indications.

For f ∈ P(Ω2(q+1), L) ⊆ P(Ω2q, L) we have the expansions, cf. Theorem 2.3,

f(z, u) =
∞∑

m,n=0

ϕ(q−1)
m,n (u)Rq−1

m,n(z) =
∞∑

m,n=0

ϕ(q−2)
m,n (u)Rq−2

m,n(z), z ∈ D, u ∈ L,

and the coefficient functions are related in the following way:

Proposition 4.2. Let 2 ≤ q < ∞. If f ∈ P(Ω2(q+1), L), then for m,n ≥ 0 and
u ∈ L

ϕ(q−1)
m,n (u) =

(m+ q − 1)(n+ q − 1)

(q − 1)(m+ n+ q − 1)
ϕ(q−2)
m,n (u)− (m+ 1)(n+ 1)

(q − 1)(m+ n+ q + 1)
ϕ

(q−2)
m+1,n+1(u).

(32)
In particular,

ϕ(q−2)
m,n (eL) ≥ (m+ 1)(n+ 1)(m+ n+ q − 1)

(m+ q − 1)(n+ q − 1)(m+ n+ q + 1)
ϕ

(q−2)
m+1,n+1(eL). (33)

Proof. For the first part we can use the same technique as in the proof of [14,

Proposition 4.1]. The second part follows from the fact that ϕ
(q−1)
m,n (eL) ≥ 0 and

from the first part.
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Proposition 4.3. Let 2 ≤ q < ∞. If f ∈ P(Ω2(q+1), L), then for each u ∈ L
fixed

lim
M,N→∞

N+1∑
n=1

M(n+ q − 2)

M + n+ q − 2
ϕ

(q−2)
M,n−1(u) = 0

and

lim
M,N→∞

M−1∑
m=1

m(N + q − 1)

m+N + q − 1
ϕ

(q−2)
m,N (u) = 0.

Both limits are uniform with respect to u ∈ L.

Proof. Define

AM,N :=
N+1∑
n=1

M(n+ q − 2)

M + n+ q − 2
ϕ

(q−2)
M,n−1(u).

Then

|AM,N | ≤
∞∑
n=1

M(n+ q − 2)

M + n+ q − 2
|ϕ(q−2)
M,n−1(u)| ≤

∞∑
n=1

M(n+ q − 2)

M + n+ q − 2
ϕ

(q−2)
M,n−1(eL).

Define

cM :=
∞∑
n=1

n+ q − 2

M + n+ q − 2
ϕ

(q−2)
M,n−1(eL), M = 1, 2, . . . .

We have 0 ≤ cM <∞ and

∞∑
M=1

cM =
∞∑

M=1

∞∑
n=1

n+ q − 2

M + n+ q − 2
ϕ

(q−2)
M,n−1(eL) <∞,

because
n+ q − 2

M + n+ q − 2
≤ 1,

∞∑
m,n=0

ϕ(q−2)
m,n (eL) <∞,

and then we can use Lemma 3.2 in [14].
Since 0 ≤ |AM,N | ≤McM for all M,N , we have

lim
M,N→∞

AM,N = 0

provided limM→∞McM = 0. To see this we get from (33) with m = M and n
replaced by n− 1
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cM ≥
∞∑
n=1

(M + 1)n

(M + q − 1)(M + n+ q)
ϕq−2
M+1,n(eL)

=
M + 1

M + q − 1

∞∑
n=1

n+ q − 2

M + 1 + n+ q − 2

(
1− q − 1

n+ q − 2

)
ϕq−2
M+1,n−1(eL)

=
M + 1

M + q − 1
cM+1 −

M + 1

M + q − 1

∞∑
n=1

q − 1

M + n+ q − 1
ϕq−2
M+1,n−1(eL)

≥ M + 1

M + q − 1
cM+1 −

(M + 1)(q − 1)

(M + q − 1)2

∞∑
n=1

ϕq−2
M+1,n−1(eL).

Now, limM→∞McM = 0 follows as in [14].

In analogy with Theorem 1.1 in [14] we have:

Proposition 4.4. Let 2 ≤ q < ∞ and assume that f ∈ P(Ω2(q+1), L). Then
f(·, u) is differentiable with respect to z and z in D and there exist functions
fi ∈ P(Ω2q, L), i = 1, 2, 3, 4 such that for (z, u) ∈ D× L

(1− |z|2)
∂f(z, u)

∂z
= f1(z, u)− f2(z, u) (34)

(1− |z|2)
∂f(z, u)

∂z
= f3(z, u)− f4(z, u). (35)

In particular, the two functions to the left in (34) and in (35) have continuous
extensions to D× L.

Let G2q denote the subspace of continuous functions F : D× L→ C spanned
by functions of the form p(z, z)f(z, u), where p is a polynomial in z and z with
complex coefficients and f ∈ P(Ω2q, L). Clearly G2(q+1) ⊆ G2q.

By Proposition 4.4 we see that (1−|z|2)∂/∂z and (1−|z|2)∂/∂z maps G2(q+1)

into G2q.

Proposition 4.5. Let 2 ≤ q <∞ and assume that f ∈ P(Ω2(q+n), L) for n ≥ 1.
Then f(·, u) is n times differentiable with respect to z and z in D and for r+s ≤ n

(1− |z|2)r+s
∂r+sf(z, u)

∂zr∂zs
∈ G2(q+n−r−s). (36)

In particular, the function in (36) has a continuous extension to D× L.

Proof. We prove (36) by induction in r + s.
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It certainly holds for r + s = 1 by Proposition 4.4. Assume that it holds for
r+s < n. Differentiating the function in (36) with respect to z and multiplication
with 1− |z|2 shows that

(1− |z|2)r+s+1∂
r+s+1f(z, u)

∂zr+1∂zs
− (r + s)z(1− |z|2)r+s

∂r+sf(z, u)

∂zr∂zs

belongs to G2(q+n−r−s−1), and since

(r + s)z(1− |z|2)r+s
∂r+sf(z, u)

∂zr∂zs
∈ G2(q+n−r−s) ⊆ G2(q+n−r−s−1),

we see that

(1− |z|2)r+s+1∂
r+s+1f(z, u)

∂zr+1∂zs
∈ G2(q+n−r−s−1).

Differentiating the function in (36) with respect to z and multiplying with (1 −
|z|2) gives that

(1− |z|2)r+s+1∂
r+s+1f(z, u)

∂zr∂zs+1 ∈ G2(q+n−r−s−1).

In the next proposition we prove the weak convergence of a certain net
(να)α>−1 of measures introduced below. This convergence is decisive for the
proof of Theorem 1.2.

Let να, α > −1, denote the probability measure on D given by

να =
α + 1

π
(1− x2 − y2)α dx dy, x2 + y2 < 1, (37)

and in polar coordinates the expression is

να =
α + 1

π
(1− r2)αr dr dθ, 0 ≤ r < 1, 0 ≤ θ < 2π.

The set C(D) of continuous functions f : D → C is a Banach space under
the uniform norm ||f ||∞ = supz∈D |f(z)|.

Proposition 4.6. Let F ⊂ C(D) be a set of continuous functions on D such that

(i) F is bounded, i.e., supf∈F ||f ||∞ <∞,

(ii) F is equicontinuous at z = 0, i.e., for every ε > 0 there exists 0 < δ < 1
such that |f(z)− f(0)| ≤ ε for all f ∈ F and all complex z with |z| ≤ δ.

Then limα→∞
∫
f dνα = f(0), uniformly for f ∈ F .

In particular, limα→∞ να = δ0 weakly.
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Proof. For any 0 < δ < 1 and f ∈ F we have∫
f dνα − f(0) =

α + 1

π

∫ 2π

0

(∫ δ

0

+

∫ 1

δ

(f(reiθ)− f(0))r(1− r2)α dr

)
dθ,

hence∣∣∣∣∫ f dνα − f(0)

∣∣∣∣ ≤ sup
|z|≤δ
|f(z)− f(0)|+ 2||f ||∞

α + 1

π

∫ 2π

0

∫ 1

δ

r(1− r2)α dr dθ

= sup
|z|≤δ
|f(z)− f(0)|+ 2||f ||∞(1− δ2)α+1.

For given ε > 0, we first choose δ > 0 so small that the first term is smaller
than ε/2.

With this δ, the second term tends to zero as α → ∞, hence ≤ ε/2 for α
sufficiently large.

Proof of Theorem 1.2:
If f ∈ P(Ω∞, L), then for every 2 ≤ q <∞

f(z, u) =
∞∑

m,n=0

ϕ(q−2)
m,n (u)Rq−2

m,n(z), (z, u) ∈ D× L, (38)

where ϕ
(q−2)
m,n ∈ P(L) satisfy

∞∑
m,n=0

ϕ(q−2)
m,n (eL) <∞,

and

ϕ(q−2)
m,n (u) = N(q;m,n)

∫
D
f(z, u)Rq−2

m,n(z)dνq−2(z) (39)

by Theorem 2.3 and (37).
There is a formula of Rodrigues type for the disc polynomials, see [21, Eq.

(2.6)]:

(1− |z|2)q−2Rq−2
m,n(z) =

(−1)m+n(q − 2)!

(m+ n+ q − 2)!

∂m+n

∂zm∂zn
(1− |z|2)m+n+q−2. (40)

Thus, using Rq−2
m,n(z) = Rq−2

n,m(z),

ϕ(q−2)
m,n (u) =

q − 1

π

(−1)m+n(q − 2)!

(m+ n+ q − 2)!
N(q;m,n)

∫
D
f(z, u)

∂m+n

∂zn∂zm
(1− |z|2)m+n+q−2dxdy.

19



Denote by I the integral in the previous equation. Now, note that

I =

∫
D
f(z, u)

∂

∂z

[
∂m+n−1

∂zn∂zm−1
(1− |z|2)m+n+q−2

]
dxdy

=

∫
D

∂

∂z

[
f(z, u)

∂m+n−1

∂zn∂zm−1
(1− |z|2)m+n+q−2

]
dxdy

−
∫
D

∂

∂z
f(z, u)

∂m+n−1

∂zn∂zm−1
(1− |z|2)m+n+q−2dxdy.

By Green’s Theorem, ∫
D

∂g

∂z
(z)dxdy = − i

2

∫
∂D
g(z)dz (41)

and ∫
D

∂g

∂z
(z)dxdy =

i

2

∫
∂D
g(z)dz (42)

for a continuously differentiable function g on D. Using (42) we get

I =
i

2

∫
∂D
f(z, u)

∂m+n−1

∂zn∂zm−1
(1− |z|2)m+n+q−2dz

−
∫
D

∂

∂z
f(z, u)

∂m+n−1

∂zn∂zm−1
(1− |z|2)m+n+q−2dxdy.

Since
∂m+n−1

∂zn∂zm−1
(1− |z|2)m+n+q−2

is the product of a polynomial in z and z by (1− |z|2)q−1, we have

f(z, u)
∂m+n−1

∂zn∂zm−1
(1− |z|2)m+n+q−2 = 0, z ∈ ∂D.

Therefore

I = −
∫
D

∂

∂z
f(z, u)

∂m+n−1

∂zn∂zm−1
(1− |z|2)m+n+q−2dxdy,

and similarly by (41)

I = −
∫
D

∂

∂z
f(z, u)

∂m+n−1

∂zn−1∂zm
(1− |z|2)m+n+q−2dxdy.

We now make further integrations by parts, a total of m integrations with respect
to z and n with respect to z. We need the following terms to vanish on the
boundary of D

∂lf(z, u)

∂zl
∂m+n−l−1

∂zn∂zm−l−1
(1− |z|2)m+n+q−2, l = 1, 2, . . . ,m− 1, (43)
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and
∂k+mf(z, u)

∂zk∂zm
∂n−k−1

∂zn−k−1
(1− |z|2)m+n+q−2, k = 0, 1, . . . , n− 1. (44)

This is true because

∂r+s

∂zr∂zs
(1− |z|2)N = p(z, z)(1− |z|2)N−r−s, r + s ≤ N

for a polynomial p in z, z. Therefore the terms in (43), (44) are of the form
(1 − |z|2)q−1F (z, u), where F is continuous on D × L by Proposition 4.5. The
terms then vanish on the boundary of D because q ≥ 2.

We obtain

ϕ(q−2)
m,n (u) =

q − 1

π

(q − 2)!

(m+ n+ q − 2)!
N(q;m,n)

∫
D

∂m+n

∂zn∂zm
f(z, u)(1− |z|2)m+n+q−2dxdy

= N(q;m,n)
(q − 2)!

(m+ n+ q − 2)!

∫
D

∂m+n

∂zn∂zm
f(z, u)(1− |z|2)m+ndνq−2(z).

We have

N(q;m,n)
(q − 2)!

(m+ n+ q − 2)!
=

1

m!n!

q − 1 +m+ n

q − 1

(q − 2 +m)!

(q − 2)!

(q − 2 + n)!

(q − 2 +m+ n)!
.

Using
(a+ n)! = a!(a+ 1)n,

we find for a = q − 2

N(q;m,n)
(q − 2)!

(m+ n+ q − 2)!
=

1

m!n!

q − 1 +m+ n

q − 1

(q − 1)m(q − 1)n
(q − 1)m+n

,

and then

lim
q→∞

[
N(q;m,n)

(q − 2)!

(m+ n+ q − 2)!

]
=

1

m!n!
.

The function

h(z, u) := (1− |z|2)m+n ∂m+n

∂zn∂zm
f(z, u)

is continuous on D × L by Proposition 4.5, and therefore the family F of the
functions h(·, u) ∈ C(D), where u belongs to a compact subset of L, is bounded
and equicontinuous at z = 0.

By Proposition 4.6 it follows that

lim
q→∞

ϕ(q−2)
m,n (u) =

1

m!n!

∂m+n

∂zn∂zm
f(0, u),
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uniformly for u in compact subsets of L. It follows that

ϕm,n(u) :=
1

m!n!

∂m+n

∂zn∂zm
f(0, u)

belongs to P(L) for all m,n ≥ 0.
We still have to establish (7) and (8).
For f ∈ P(Ω∞, L) we get by Lemma 4.1 that F of (31) belongs to P(Ω∞).

Using a theorem due to Christensen and Ressel, see [7], it can be written as

F (z) =
∞∑

m,n=0

am,nz
mzn,

where am,n ≥ 0 are uniquely determined by F and satisfy
∑
am,n <∞. In fact

am,n =
1

m!n!

∂m+nF

∂zn∂zm
(0). (45)

We now use the special case of (31) with n = 2, u1 = eL, u2 = u, c1 = 1, c2 = c,
so F = Fu,c takes the form

Fu,c(z) = f(z, eL)(1 + |c|2) + f(z, u)c+ f(z, u−1)c. (46)

For all u ∈ L, c ∈ C we have a representation

Fu,c(z) =
∞∑

m,n=0

am,n(u, c)zmzn, z ∈ D,

where

am,n(u, c) ≥ 0,
∞∑

m,n=0

am,n(u, c) <∞. (47)

Letting c = 1,−1, i we obtain

Fu,1(z) = 2f(z, eL) + f(z, u) + f(z, u−1) =
∞∑

m,n=0

am,n(u, 1)zmzn,

Fu,−1(z) = 2f(z, eL)− f(z, u)− f(z, u−1) =
∞∑

m,n=0

am,n(u,−1)zmzn,

Fu,i(z) = 2f(z, eL)− if(z, u) + if(z, u−1) =
∞∑

m,n=0

am,n(u, i)zmzn.

This gives

1− i
4

Fu,1(z)− 1 + i

4
Fu,−1(z) +

i

2
Fu,i(z) = f(z, u) =

∞∑
m,n=0

ϕ̃m,n(u)zmzn,
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where

ϕ̃m,n(u) :=
1− i

4
am,n(u, 1)− 1 + i

4
am,n(u,−1) +

i

2
am,n(u, i).

By (47) we get
∞∑

m,n=0

|ϕ̃m,n(u)| <∞, u ∈ L,

hence

ϕ̃m,n(u) =
1

m!n!

∂m+n

∂zn∂zm
f(0, u) = ϕm,n(u).

This shows that (7) and (8) hold because |ϕ̃m,n(eL)| = ϕm,n(eL). �

Proof of Theorem 1.3:
The difficult “only if”-part of the proof is contained in Theorem 1.2.
For the “if”-part we note that it is easy to see that (ξ, η) 7→ ξ · η is a positive

definite kernel on Ω∞. By the Schur product theorem for positive definite kernels,
cf. [3, Theorem 3.1.12], we see that zmzn belongs to P(Ω∞) for m,n ≥ 0. It
is therefore elementary that any function of the form (7) with ϕm,n ∈ P(L)
satisfying

∞∑
m,n=0

ϕm,n(eL) <∞,

belongs to P(Ω∞, L). �

Remark 4.7. It is known and easy to see that the disc polynomials Rα
m,n have

the following limit property

lim
α→∞

Rα
m,n(z) = zmzn, z ∈ D (48)

for each m,n ≥ 0 fixed, cf. [21, (2.12)].
This is the analogue of the following limit result for the normalized Gegen-

bauer polynomials

lim
λ→∞

C(λ)
n (x)/C(λ)

n (1) = xn, −1 < x < 1

for each n ≥ 0. Schoenberg [19, p. 103] proved that this convergence is uniform
in n ≥ 0 for fixed x, and this was the clue to his proof of the representation
theorem for P(S∞), cf. [19, Theorem 2].

A proof of the theorem of Christensen and Ressel or the more general The-
orem 1.3 can be given following the ideas of Schoenberg provided that one can
prove that the convergence in (48) is uniform in m,n ≥ 0 for each fixed z ∈ D.
It is not difficult to prove that the convergence is uniform in n for each fixed m,
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but we have not been able to prove the uniformity in m and n. This is equivalent
to the following property of the normalized Jacobi polynomials cf. (23)

lim
α→∞

((1 + x)/2)β/2R(α,β)
n (x) = ((1 + x)/2)n+β/2, −1 < x < 1

uniformly in n, β ∈ N0. Unfortunately, this question is open and does not seem
to be related to the recent deep result in [11, Theorem 1.1] about the Jacobi
polynomials.
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