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1 Introduction: scope, state-of-the-art, outline21

Positive semidefinite kernels are of broad interest in several fields of mathe-22

matics, such as operator theory (Aronszajn, 1950), approximation theory (Erb23

and Filbir, 2008), coding theory (Musin, 2008a) and distance geometry (Musin,24

2008b), as well as in computer experiments (Haaland and Qian, 2011), ma-25

chine learning (Hofmann et al., 2008), spatial and space-time statistics (Chen26

et al., 2021; Porcu et al., 2021), the latter field being the primary motivation27

of this work.28

Space-time data in meteorological, hydrological and climate studies often29

exhibit complex seasonal patterns. A usual approach to account for these pat-30

terns is to decompose the variable under study into a periodic deterministic31

trend and a random residual. Removing the trend (detrending) therefore allows32

studying the residual with the usual tools and methods of spatial statistics.33

Another approach advocated by Porcu and White (2022) is to embed spatial34

or space-time domains into a circle or a product of circles, i.e., to trade the35

traditional Euclidean geometry of the time coordinates for a periodic geometry.36

The idea of embedding time periodicities inside the geometry of the space37

where the data are collected is not novel. In particular, Shirota and Gelfand38

(2017) have applied such a methodology to model daily crime events using log-39

Gaussian Cox processes. Continuous-time monitoring of ground-level ozone40

concentrations has instead been proposed by White and Porcu (2019).41

Other relevant applications in environmental, atmospheric, oceanographic,42

physical and earth sciences where one would benefit from using random fields43

indexed with circular or spherical coordinates include the analysis of obser-44

vations collected over a large portion of the Earth (represented as a two-45

dimensional sphere), as well as of observations that are direction-dependent46

(e.g., electromagnetic radiation, temperature gradient, gravity gradient, to-47

pographic slope, tectonic plate motion, average wind speed or average ocean48

current velocity measured in a particular direction represented by a point on a49

circle or on a sphere). Accordingly, analyzing direction-dependent or seasonal-50

dependent observations that, at the same time, are scattered over the Earth51

would result in working with a random field with an index set consisting of52

the product of the unit circle S1 with the unit two-dimensional sphere S253

(sometimes the product of two spheres S2× S2) representing Time×Space or54

Direction×Space (Mastrantonio et al., 2016).55

An essential challenge for this approach to be successful is to identify the56

structure of such a random field, in particular, its covariance kernel. One av-57

enue is to define a separable covariance kernel, as the product of a kernel on S158

and another one on S2. However, separable kernels are often simplistic and do59

not allow characterizing complex interactions between the spatial variations60

on S1 and that on S2, hence the interest in finding nonseparable (and not too61

parameter-intensive) kernels.62

To date, simpler geometries than the product of a circle and a sphere have63

been considered to build up nonseparable covariance kernels. For instance,64

Shirota and Gelfand (2017) consider random fields defined over S1×R2, where65
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S1 is time wrapped over the circle and R2 is the spatial domain (a planar66

surface). In the same line, Mastrantonio et al. (2019) and White and Porcu67

(2019) consider a Bayesian hierarchical modeling where seasonality is modeled68

through conditioning sets. Peron et al. (2018) propose product-sum covariance69

kernels on Sk×R, while Shirota and Gelfand (2017), Porcu et al. (2016), Alegŕıa70

et al. (2019) and Emery et al. (2021) introduce nonseparable covariance kernels71

on Sk×R`, with k and ` two positive integers, motivated by applications that72

range from climatology to geological engineering.73

Yet, random fields defined over Sk × S` have been considered to a limited74

extent only. Characterizations of the covariance kernels associated with scalar-75

valued random fields that are continuously indexed over Sk × S` have been76

provided by Guella et al. (2015) and Guella and Menegatto (2016), while the77

work by Porcu and White (2022) provides parametric families of such kernels.78

The contribution by Bachoc et al. (2021) gives spectral representations for79

vector random fields, together with some specific parametric families of matrix-80

valued covariance kernels on Sk × S`.81

This paper provides a catalogue of parametric families of matrix-valued82

nonseparable covariance kernels associated with vector random fields that are83

continuously indexed over the product of two (hyper)spheres. The outline is84

the following. Section 2 contains a succinct mathematical and statistical back-85

ground. Section 3 lists 26 new families of covariance kernels, together with86

their spectral representations and sufficient validity conditions. A discussion on87

these kernels (Section 4), methodological proposals for parameter estimation88

and for random field simulation (Section 5) and concluding remarks (Section89

6) follow. Proofs are deferred to the Appendix to ease legibility.90

2 Background91

2.1 Positive semidefinite and conditionally negative semidefinite matrices92

Throughout, p is a positive integer and bold letters indicate real-valued p-93

dimensional vectors or symmetric p×p matrices. All matrix operations (prod-94

uct, ratio, or any function) are taken elementwise. For a p× p matrix a and a95

real value ω, ω ± a is taken as a shortcut of ω 1 ± a, where 1 is the all-ones96

matrix of size p× p.97

Let a = [ai,j ]
p
i,j=1 be a symmetric p×p real matrix, ω = [ω1, . . . , ωp]

> ∈ Rp98

(with > denoting the transpose operator) and the quadratic form99

Q(a,ω) :=

p∑
i=1

p∑
j=1

ωi ai,j ωj . (1)

The matrix a is positive semidefinite when Q(a,ω) ≥ 0 for any ω. If Q(a,ω) >100

0 for any nonzero ω, then the matrix is said to be positive definite. The101

matrix a is conditionally negative semidefinite when Q(a,ω) ≤ 0 for any ω102

whose components add to zero. Likewise, a is said to be conditionally negative103
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definite if Q(a,ω) < 0 for any nonzero ω whose components add to zero. The104

following criteria are useful to establish the positive or conditional negative105

semidefiniteness of a matrix:106

(1) a is conditionally negative (semi)definite if, and only if, [aip + apj − aij −107

app]
p−1
i,j=1 is positive (semi)definite (Reams, 1999, Lemma 2.4);108

(2) a is conditionally negative semidefinite if, and only if, exp(−ta) is positive109

semidefinite for any t ≥ 0 (Reams, 1999, Lemma 2.5);110

(3) a is conditionally negative semidefinite if it has nonnegative entries and111

a2 is conditionally negative semidefinite (Berg et al., 1984, Chapter 3,112

Corollary 2.10);113

(4) a is conditionally negative (semi)definite if −a is positive (semi)definite;114

(5) If a1 and a2 are positive semidefinite, so are a1 a2 (Schur product theorem)115

and a1 + a2;116

(6) If a1 and a2 are conditionally negative semidefinite, so is a1 + a2;117

(7) If a1 and −a2 are positive semidefinite, then a1 a2 is conditionally negative118

semidefinite.119

2.2 Positive semidefinite kernels on hypertori120

Let k, ` be positive integers. We define the (k, `)-hyperspherical torus or (k, `)-
hypertorus through the identity

Tk,` := Sk × S` = {x = (x, y) : (x, y) ∈ Rk+1 × R`+1, ‖x‖k+1 = ‖y‖`+1 = 1},

where ‖ · ‖k+1 and ‖ · ‖`+1 are the Euclidean norms on Rk+1 and R`+1 respec-121

tively. Here, Sk and S` denote the k- and `-dimensional unit spheres embedded122

in Rk+1 and R`+1, respectively. The name hyperspherical torus is due to the123

fact that T1,1, the product of two circles, is isomorphic to the classical circular124

torus.125

We identify Rp×p with the set of all p × p matrices with real entries and
consider a matrix-valued kernel K : Tk,` × Tk,` → Rp×p, defined as

K (x,x′) = [Kij (x,x′)]pi,j=1, x,x′ ∈ Tk,`.

K is positive semidefinite if, and only if, the matrix [[Kij (xm,xn)]pi,j=1]Nm,n=1

is positive semidefinite for any set of points x1, . . . ,xN ∈ Tk,`. The Kolmogorov
extension theorem states that such a positive semidefinite kernel is the covari-
ance of a Gaussian vector random field Z = [Z1, . . . , Zp]

> on Tk,`, i.e.

Kij (x,x′) = E (Zi(x)Zj(x
′)) , x,x′ ∈ Tk,`, i, j = 1, . . . , p,

with E denoting the mathematical expectation. Reciprocally, any covariance126

kernel on Tk,` × Tk,` is positive semidefinite.127

Building covariance (positive semidefinite) kernels is mathematically chal-128

lenging and simplifying assumptions are often required for modeling, estima-129

tion, and prediction (Chilès and Delfiner, 2012). Throughout, we assume that130
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there exists a continuous (continuity is intended as pointwise and elementwise)131

mapping C : [−1, 1]2 → Rp×p such that132

K (x,x′) = C(s, r), x = (x1, y1),x′ = (x′1, y
′
1), (2)

with s := 〈x1, x′1〉k, r := 〈y1, y′1〉`, for x1, x
′
1 ∈ Sk, y1, y

′
1 ∈ S` and where 〈·, ·〉k133

and 〈·, ·〉` are the usual dot products on Rk+1 and R`+1, respectively. Note134

that s and r are the cosines of the geodesic distances taken over Sk and S`,135

respectively.136

Hereinafter, we call C the componentwise isotropic part of the kernel K,137

and denote Pp(Tk,`) the class of continuous mappings C satisfying identity138

(2). We use the analogous notation Pp(Sk) for the class of continuous mappings139

g : [−1, 1]→ Rp×p such that the kernel (x, x′) 7→ g(〈x, x′〉k), for x, x′ ∈ Sk, is140

positive semidefinite.141

The componentwise isotropic part C ∈ Pp(Tk,`) is separable if it can be
written as the product of a function of s and a function of r:

C(s, r) = C1(s)C2(r), s, r ∈ [−1, 1].

A wealth of separable covariance kernels on the hypertorus Tk,` can be ob-142

tained by multiplying isotropic covariance kernels defined on the hyperspheres143

Sk and S`. We refer the reader to Huang et al. (2011), Gneiting (2013), Guin-144

ness and Fuentes (2016), Jeong et al. (2017), Xu (2018) and Lantuéjoul et al.145

(2019) for examples of scalar covariance kernels on hyperspheres, and to Porcu146

et al. (2016), Guella and Menegatto (2019), Bevilacqua et al. (2020) and Emery147

et al. (2022) for matrix-valued covariance kernels.148

2.3 Spectral representations149

Guella et al. (2016) proved that a continuous mapping C : [−1, 1]2 → R with150

C(1, 1) <∞ belongs to the class P1(Tk,`) if and only if151

C(s, r) =

∞∑
n=0

∞∑
m=0

bk,`n,mG(k−1)/2n (s)G(`−1)/2m (r), s, r ∈ [−1, 1], (3)

where Gλn stands for the Gegenbauer polynomial of degree n and order λ (for
λ > 0) or the Chebychev polynomial of the first kind of degree n (for λ = 0)
(Olver et al., 2010, Table 18.3.1), bk,`n,m ≥ 0,

∞∑
n=0

∞∑
m=0

bk,`n,mG(k−1)/2n (1)G(`−1)/2m (1) <∞

and

bk,`n,m ∝
∫ 1

−1
C(s, r)G(k−1)/2n (s)G(`−1)/2m (r)(1− s2)k/2−1(1− r2)`/2−1dsdr.
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A similar series expansion holds for the class P1(Sk), with the reader re-152

ferred to Schoenberg (1942) for details.153

The characterization of a p-variate isotropic covariance kernel on the k-154

dimensional sphere, K : Sk × Sk → Rp×p, with p > 1 and k > 0, can be155

found in Yaglom (1987) and an alternative proof can be found in Bonfim and156

Menegatto (2016): the isotropic part C : [−1, 1]→ Rp×p of K belongs to the157

class Pp(Sk) if and only if158

C(s) =

∞∑
n=0

bnG(k−1)/2n (s), s ∈ [−1, 1], (4)

where {bn}∞n=0 is a sequence of symmetric positive semidefinite matrices of size159

p× p such that
∑∞
n=0 bnG

(k−1)/2
n (1) <∞ (elementwise summation). This rep-160

resentation is a multivariate extension of Schoenberg’s theorem (Schoenberg,161

1942), reason for which the sequence {bn}∞n=0 is known as the k-Schoenberg162

sequence of C.163

Using the techniques of Bonfim and Menegatto (2016) and Guella et al.164

(2016), one can infer the following result, which is an extension of (3) and165

agrees with the findings of Bachoc et al. (2021).166

Theorem 1 Let p a positive integer. A function C : [−1, 1]2 → Rp×p belongs167

to the class Pp(Tk,`) if and only if168

C(s, r) =

∞∑
n=0

∞∑
m=0

bk,`n,mG(k−1)/2n (s)G(`−1)/2m (r), s, r ∈ [−1, 1], (5)

with {bk,`n,m}∞n,m=0 a sequence of symmetric positive semidefinite matrices of169

size p×p such that
∑∞
n=0

∑∞
m=0 b

k,`
n,mG

(k−1)/2
n (1)G(`−1)/2m (1) <∞ (elementwise170

summation).171

Hereinafter, we call bk,`n,m the (k, `)-Schoenberg matrix of C, and {bk,`n,m}∞n,m=0172

the (k, `)-Schoenberg sequence of C.173

3 Nonseparable covariance kernels on hypertori174

Throughout this section, we consider λ = k−1
2 and µ = `−1

2 . For n ∈ N and175

ν ∈ R, we define176

f(ν, n) =

{
ν exp(−πν/2) sinh(πν/2)

2π if n is even
ν exp(−πν/2) cosh(πν/2)

2π if n is odd,
(6)

with sinh and cosh the hyperbolic sine and cosine, respectively. We also use177

the symbols and functions listed in Table 1.178
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Table 1: Symbols and ordinary and special functions

Notation Function name

b·c Floor function
|·| Complex modulus
ι Imaginary unit
Gνn Gegenbauer (a.k.a. ultraspherical) polynomial of degree n and order ν
Jν Bessel function of the first kind of order ν
Iν Modified Bessel function of the first kind of order ν
Γ Gamma function

(·)k Pochhammer symbol, a.k.a. rising factorial

0F1 Confluent hypergeometric function

1F1 Kummer confluent hypergeometric function

2F1 Gauss hypergeometric function

Next, we provide 26 parametric classes of nonseparable models in Pp(Tk,`),179

with p > 0, k > 1 and ` > 1, together with their (k, `)-Schoenberg sequences180

(Tables 2 to 11). At the end of each table, we provide sufficient conditions com-181

mon to all the models of the table to be well-defined and positive semidefinite,182

i.e., to be valid covariance kernels.183

3.1 Models based on elementary and gamma functions184

The kernels (s, r) 7→ C(s, r) listed in Tables 2 and 3 are defined by sums, prod-185

ucts and compositions of finitely many polynomial, rational, inverse trigono-186

metric, logarithmic and exponential functions of the input parameters a, b,187

ν and ρ. Two other kernels also involving gamma functions are provided in188

Tables 4 and 5. Examples of graphical representations of the kernel marginals189

s 7→ C(s, 1) and r 7→ C(1, r) are shown in Figure 1.190

Table 2: Elementary covariance kernels, part 1.

Elementary model 1

Covariance kernel:

C = ρ (1− 2r exp(ν(s− a)− b) + exp(2ν(s− a)− 2b))−µ

Schoenberg matrices:

bk,`n,m = ρ exp(−maν −mb)2λΓ (λ)(λ+ n)(mν)−λIλ+n(mν)

Elementary model 2

Covariance kernel:

C = ρ (1− r exp(ν(s− a)− b)) (1− 2r exp(ν(s− a)− b) + exp(2ν(s− a)− 2b))−ν−1

Schoenberg matrices:

bk,`n,m = ρ
m+ 2µ

4µ
exp(−maν −mb) 2λΓ (λ)(λ+ n)(mν)−λIλ+n(mν)

To be continued
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Table 2 (continued)

Elementary model 3

Covariance kernel:

C = ρ 2µ−1/2(1− 2r exp(ν(s− a)− b) + exp(2ν(s− a)− 2b))−1/2

×
(

1− r exp(ν(s− a)− b) +
√

1− 2r exp(ν(s− a)− b) + exp(2ν(s− a)− 2b)
)1/2−µ

Schoenberg matrices:

bk,`n,m = ρ
(µ+ 1

2 )m

(2µ)m
exp(−maν −mb)2λΓ (λ)(λ+ n)(mν)−λ Iλ+n(mν)

Elementary model 4

Covariance kernel:

C = ρ (1 + 2r exp(ν(s− a)− b) + exp(2ν(s− a)− 2b))κ/2

×Gµκ

(
r + exp(ν(s− a)− b)√

1 + 2r exp(ν(s− a)− b) + exp(2ν(s− a)− 2b)

)
Schoenberg matrices:

bk,`n,m =

0 if m > κ

ρ
exp(−(κ−m)(aν + b))Γ (κ+ 2µ)

(κ−m)!Γ (m+ 2µ)
2λ Γ (λ)(λ+ n)((κ−m)ν)−λ Iλ+n((κ−m)ν) otherwise

Elementary model 5

Covariance kernel:

C = ρ (1 + 2r exp(ν(s− a)− b) + exp(2ν(s− a)− 2b))κ/2

×Gµκ

(
1 + r exp(ν(s− a)− b)√

1 + 2r exp(ν(s− a)− b) + exp(2ν(s− a)− 2b)

)
Schoenberg matrices:

bk,`n,m =

0 if m > κ

ρ
exp(−maν −mb)Γ (κ+ 2µ)

(κ−m)!Γ (m+ 2µ)
2λ Γ (λ)(λ+ n)(mν)−λ Iλ+n(mν) otherwise

Sufficient conditions for convergence:

κ ∈ N, ν and b+ (a− 1)ν with entries in (0,∞), and ρ with entries in R

Sufficient conditions for positive semidefiniteness:

(A) (1) a is conditionally negative semidefinite
(2) b is conditionally negative semidefinite
(3) ν = ν1
(4) ρ is positive semidefinite
or

(B) (1) −a is positive semidefinite
(2) b is conditionally negative semidefinite
(3) ν is positive semidefinite
(4) ρ is positive semidefinite
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Table 3: Elementary covariance kernels, part 2.

Elementary model 6

Covariance kernel:

C = ρ(1− 2 exp(−ν(arccos(s) + a))r + exp(−2ν(arccos(s) + a)))−µ

Schoenberg matrices:

bk,`n,m = ρ exp(−maν)f(mν, n) (λ+ n)Γ (λ)Γ (λ+ 1)

∣∣Γ (n+ιmν2 )
∣∣2∣∣Γ (λ+ 1 + n+ιmν
2 )

∣∣2
Elementary model 7

Covariance kernel:

C = ρ(1− exp(−ν(arccos(s) + a))r)(1− 2 exp(−ν(arccos(s) + a))r + exp(−2ν(arccos(s) + a)))−µ−1

Schoenberg matrices:

bk,`n,m = ρ
(m+ 2µ)

4µ
exp(−maν)f(mν, n) (λ+ n)Γ (λ)Γ (λ+ 1)

∣∣Γ (n+ιmν2 )
∣∣2∣∣Γ (λ+ 1 + n+ιmν
2 )

∣∣2
Elementary model 8

Covariance kernel:

C = ρ 2µ−1/2(1− 2 exp(−ν(arccos(s) + a))r + exp(−2ν(arccos(s) + a)))−1/2

×
(

1− exp(−ν(arccos(s) + a))r +
√

1− 2 exp(−ν(arccos(s) + a))r + exp(−2ν(arccos(s) + a))
)1/2−µ

Schoenberg matrices:

bk,`n,m = ρ
(µ+ 1

2 )m

(2µ)m
exp(−maν)f(mν, n) (λ+ n)Γ (λ)Γ (λ+ 1)

∣∣Γ (n+ιmν2 )
∣∣2∣∣Γ (λ+ 1 + n+ιmν
2 )

∣∣2
Elementary model 9

Covariance kernel:

C = ρ (1 + 2 exp(−ν(arccos(s) + a))r + exp(−2ν(arccos(s) + a)))κ/2

×Gµκ

(
r + exp(−ν(arccos(s) + a))√

1 + 2 exp(−ν(arccos(s) + a))r + exp(−2ν(arccos(s) + a))

)
Schoenberg matrices:

bk,`n,m =



0, if m > κ

ρ
Γ (κ+ 2µ) exp(−(m− κ)aν)

(κ−m)!Γ (m+ 2µ)

×f((κ−m)ν, n)(λ+ n)Γ (λ)Γ (λ+ 1)

∣∣∣Γ (n+ι(κ−m)ν
2 )

∣∣∣2∣∣∣Γ (λ+ 1 + n+ι(κ−m)ν
2 )

∣∣∣2 , otherwise

Elementary model 10

Covariance kernel:

C = ρ (1 + 2 exp(−ν(arccos(s) + a))r + exp(−2ν(arccos(s) + a)))κ/2

×Gµκ

(
1 + exp(−ν(arccos(s) + a))r√

1 + 2 exp(−ν(arccos(s) + a))r + exp(−2ν(arccos(s) + a))

)
To be continued
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Table 3 (continued)

Schoenberg matrices:

bk,`n,m =


0, if m > κ

ρ
Γ (κ+ 2µ) exp(−maν)

(κ−m)!Γ (m+ 2µ)
f(mν, n) (λ+ n)Γ (λ)Γ (λ+ 1)

∣∣Γ (n+ιmν2 )
∣∣2∣∣Γ (λ+ 1 + n+ιmν
2 )

∣∣2 , otherwise

Sufficient conditions for convergence:

κ ∈ N, a and ν with entries in (0,∞), and ρ with entries in R

Sufficient conditions for positive semidefiniteness:

(A) (1) a is conditionally negative semidefinite
(2) ν = ν1
(3) ρ is positive semidefinite
or

(B) (1) a = a1
(2) ν2 is conditionally negative semidefinite
(3) ρf(ν, 0) is positive semidefinite
(4) ρf(ν, 1) is positive semidefinite

Table 4: Covariance kernels involving elementary and gamma functions, part 1.

Special model 1

Covariance kernel:

C =
ρΓ (2µ)Γ (κ+ 1)

Γ (κ+ 2µ)(1− 2r exp(ν(s− a)− b) + exp(2ν(s− a)− 2b))µ+κ/2

×Gµκ

(
1− r exp(ν(s− a)− b)√

1− 2r exp(ν(s− a)− b) + exp(2ν(s− a)− 2b)

)
Schoenberg matrices:

bk,`n,m = ρ
(κ+ 2µ)m exp(−maν −mb)

(2µ)m
2λ Γ (λ) (λ+ n) (mν)−λIλ+n(mν)

Sufficient conditions for convergence:

ν and b+ (a− 1)ν with entries in (0,∞), κ with entries in N, and ρ with entries in R

Sufficient conditions for positive semidefiniteness:

To be continued
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Table 4 (continued)

(A) (1) a is conditionally negative semidefinite
(2) b is conditionally negative semidefinite
(3) ν = ν1
(4) κ is positive semidefinite
(5) ρ is positive semidefinite
or

(B) (1) −a is positive semidefinite
(2) b is conditionally negative semidefinite
(3) ν is positive semidefinite
(4) κ is positive semidefinite
(5) ρ is positive semidefinite

Table 5: Covariance kernels involving elementary and gamma functions, part 2.

Special model 2

Covariance kernel:

C =
ρΓ (2µ)Γ (κ+ 1)

Γ (κ+ 2µ)(1− 2 exp(−ν(arccos(s) + a))r + exp(−2ν(arccos(s) + a)))µ+κ/2

×Gµκ

(
1− exp(−ν(arccos(s) + a))r√

1− 2 exp(−ν(arccos(s) + a))r + exp(−2ν(arccos(s) + a))

)
Schoenberg matrices:

bk,`n,m = ρ
(2µ+ κ)m exp(−maν)

(2µ)m
f(mν, n) (λ+ n)Γ (λ)Γ (λ+ 1)

∣∣Γ (n+ιmν2 )
∣∣2∣∣Γ (λ+ 1 + n+ιmν
2 )

∣∣2
Sufficient conditions for convergence:

a and ν with entries in (0,∞), κ with entries in N and ρ with entries in R

Sufficient conditions for positive semidefiniteness:

To be continued
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Table 5 (continued)

(A) (1) a is conditionally negative semidefinite
(2) ν = ν1
(3) κ is positive semidefinite
(4) ρ is positive semidefinite
or

(B) (1) a = a1
(2) ν2 is conditionally negative semidefinite
(3) κ is positive semidefinite
(4) ρf(ν, 0) is positive semidefinite
(5) ρf(ν, 1) is positive semidefinite
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(a) Elementary model 1 (b) Elementary model 2 (c) Elementary model 3

(d) Elementary model 4 (e) Elementary model 5 (f) Elementary model 6

(g) Elementary model 7 (h) Elementary model 8 (i) Elementary model 9

(j) Elementary model 10 (k) Special model 1 (l) Special model 2

Fig. 1: Examples of elementary models and special models involving elementary and gamma
functions. Representation of the marginals s 7→ C(s, 1) (green) and r 7→ C(1, r) (blue) for s
and r ranging from −1 to 1
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3.2 Bessel and hypergeometric models191

Tables 6 to 11 list covariance kernels involving Bessel or hypergeometric func-192

tions, while Figures 2 and 3 show examples of kernel marginals.193

Table 6: Bessel covariance kernels, part 1.

Bessel model 1

Covariance kernel:

C = ρΓ (µ+ 1
2 ) exp(r exp(ν(s− a)− b))

×
(
1
2 exp(ν(s− a)− b)(1− r2)1/2

) 1
2−µ Jµ− 1

2
(exp(ν(s− a)− b)(1− r2)1/2)

Schoenberg matrices:

bk,`n,m = ρ
exp(−maν −mb)

(2µ)m
2λΓ (λ)(λ+ n)(mν)−λIλ+n(mν)

Bessel model 2

Covariance kernel:

C = ρ
(
1
2 exp(ν(s− a)− b)(1− r2)1/2

) 1
2−µ

×Jµ− 1
2

(√
2 exp(ν(s− a)− b)(1− r)

)
Iµ− 1

2

(√
2 exp(ν(s− a)− b)(1 + r)

)
Schoenberg matrices:

bk,`n,m = ρ
exp(−maν −mb)

Γ (µ+ 1
2 )Γ (µ+m+ 1

2 )(2µ)m
2λΓ (λ)(λ+ n)(mν)−λIλ+n(mν)

Sufficient conditions for convergence:

ν and b+ (a− 1)ν with entries in (0,∞), and ρ with entries in R

Sufficient conditions for positive semidefiniteness:

(A) (1) a is conditionally negative semidefinite
(2) b is conditionally negative semidefinite
(3) ν = ν1
(4) ρ is positive semidefinite
or

(B) (1) −a is positive semidefinite
(2) b is conditionally negative semidefinite
(3) ν is positive semidefinite
(4) ρ is positive semidefinite
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Table 7: Bessel covariance kernels, part 2.

Bessel model 3

Covariance kernel:

C = ρΓ (µ+ 1
2 ) exp(e−ν(arccos(s)+a)r)

(
1
2e
−ν(arccos(s)+a)(1− r2)1/2

) 1
2−µ Jµ− 1

2

(
e−ν(arccos(s)+a)(1− r2)1/2

)
Schoenberg matrices:

bk,`n,m = ρ
exp(−maν)

(2µ)m
f(mν, n)Γ (λ)(λ+ n)

∣∣Γ (n+ιmν2 )
∣∣2∣∣Γ (λ+ 1 + n+ιmν
2 )

∣∣2
Bessel model 4

Covariance kernel:

C = ρ
(
1
2 exp(−ν(arccos(s) + a))(1− r2)1/2

) 1
2−µ

×Jµ− 1
2

(√
2 exp(−ν(arccos(s) + a))(1− r)

)
Iµ− 1

2

(√
2 exp(−ν(arccos(s) + a))(1 + r)

)
Schoenberg matrices:

bk,`n,m = ρ
exp(−maν)

Γ (µ+ 1
2 )Γ (µ+m+ 1

2 )(2µ)m
f(mν, n)(λ+ n)Γ (λ)Γ (λ+ 1)

∣∣Γ (n+ιmν2 )
∣∣2∣∣Γ (λ+ 1 + n+ιmν
2 )

∣∣2
Sufficient conditions for convergence:

a and ν with entries in (0,∞), and ρ with entries in R

Sufficient conditions for positive semidefiniteness:

(A) (1) a is conditionally negative semidefinite
(2) ν = ν1
(3) ρ is positive semidefinite
or

(B) (1) a = a1
(2) ν2 is conditionally negative semidefinite
(3) ρf(ν, 0) is positive semidefinite
(4) ρf(ν, 1) is positive semidefinite
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(a) Bessel model 1 (b) Bessel model 2

(c) Bessel model 3 (d) Bessel model 4

Fig. 2: Examples of Bessel models. Representation of the marginals s 7→ C(s, 1) (green)
and r 7→ C(1, r) (blue) for s and r ranging from −1 to 1

Table 8: Hypergeometric covariance kernels, part 1.

Hypergeometric model 1

Covariance kernel:

C =
ρ

(1− exp(−ν(arccos(s) + a))r)κ
2F1

(
κ

2
,
κ+ 1

2
;µ+

1

2
;−exp(−2ν(arccos(s) + a))(1− r2)

(1− exp(−ν(arccos(s) + a))r)2

)
Schoenberg matrices:

bk,`n,m = ρ
exp(−amν)(κ)m

(2µ)m
f(mν, n)(λ+ n)Γ (λ)Γ (λ+ 1)

∣∣Γ (n+ιmν2 )
∣∣2∣∣Γ (λ+ 1 + n+ιmν
2 )

∣∣2
Hypergeometric model 2

To be continued
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Table 8 (continued)

Covariance kernel:

C =
ρ

(1− exp(ν(s− 1− a))r)κ
2F1

(
κ

2
,
κ+ 1

2
;µ+

1

2
;−exp(2ν(s− 1− a))(1− r2)

(1− exp(ν(s− 1− a))r)2

)
Schoenberg matrices:

bk,`n,m = ρ
exp(−(1 + a)mν)(κ)m

(2µ)m
2λ(λ+ n)(mν)−λΓ (λ)Iλ+n(mν),

Sufficient conditions for convergence:

a with entries in ( ln(2)
2ν ,∞), ν > 0 and ρ and κ with entries in R

Sufficient conditions for positive semidefiniteness:

(1) a is conditionally negative semidefinite
(2) ρ is positive semidefinite
(3) κ is positive semidefinite

Table 9: Hypergeometric covariance kernels, part 2.

Hypergeometric model 3

Covariance kernel:

C = ρ 2F1

(
κ, 2µ− κ;µ+ 1

2 ;
1− e−ν(arccos(s)+a) −

√
1− 2e−ν(arccos(s)+a)r + e−2ν(arccos(s)+a)

2

)

× 2F1

(
κ, 2µ− κ;µ+ 1

2 ;
1 + e−ν(arccos(s)+a) −

√
1− 2e−ν(arccos(s)+a)r + e−2ν(arccos(s)+a)

2

)
Schoenberg matrices:

bk,`n,m = ρ
exp(−amν)(2µ− κ)m(κ)m

(2µ)m(µ+ 1
2 )m

f(mν, n)(λ+ n)Γ (λ)Γ (λ+ 1)

∣∣Γ (n+ιmν2 )
∣∣2∣∣Γ (λ+ 1 + n+ιmν
2 )

∣∣2
Hypergeometric model 4

Covariance kernel:

C = ρ 2F1

(
κ, 2µ− κ;µ+ 1

2 ;
1−exp(ν(s−1−a))−

√
1−2 exp(ν(s−1−a))r+exp(2ν(s−1−a))

2

)
× 2F1

(
κ, 2µ− κ;µ+ 1

2 ;
1+exp(ν(s−1−a))−

√
1−2 exp(ν(s−1−a))r+exp(2ν(s−1−a))

2

)
Schoenberg matrices:

To be continued
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Table 9 (continued)

bk,`n,m = ρ
exp(−(1 + a)mν)(2µ− κ)m(κ)m

(2µ)m(µ+ 1
2 )m

2λ(λ+ n)(mν)−λΓ (λ)Iλ+n(mν),

Sufficient conditions for convergence:

a with entries in (0,∞), ν > 0 and ρ and 2µκ− κ2 with entries in R

Sufficient conditions for positive semidefiniteness:

(1) a is conditionally negative semidefinite
(2) ρ is positive semidefinite
(3) 2µκ− κ2 is positive semidefinite

Table 10: Hypergeometric covariance kernels, part 3.

Hypergeometric model 5

Covariance kernel:

C =
ρ

(1− 2b exp(−ν(arccos(s) + a))r + exp(−2ν(arccos(s) + a)))µ

× 2F1

(
µ

2
,
µ+ 1

2
;µ+

1

2
;

4 exp(−2ν(arccos(s) + a))(1− b2)(1− r2)

(1− 2b exp(−ν(arccos(s) + a))r + exp(−2ν(arccos(s) + a)))2

)
Schoenberg matrices:

bk,`n,m = ρ
exp(−amν)Γ (2µ)m!Gµm(b)

Γ (2µ+m)
f(mν, n)(λ+ n)Γ (λ)Γ (λ+ 1)

∣∣Γ (n+ιmν2 )
∣∣2∣∣Γ (λ+ 1 + n+ιmν
2 )

∣∣2
Hypergeometric model 6

Covariance kernel:

C =
ρ

(1− 2b exp(ν(s− 1− a))r + exp(2ν(s− 1− a)))µ

× 2F1

(
µ

2
,
µ+ 1

2
;µ+

1

2
;

4 exp(2ν(s− 1− a))(1− b2)(1− r2)

(1− 2b exp(ν(s− 1− a))r + exp(2ν(s− 1− a)))2

)
Schoenberg matrices:

bk,`n,m = ρ
exp(−(1 + a)mν)Γ (2µ)m!Gµm(b)

Γ (2µ+m)
2λ(λ+ n)(mν)−λΓ (λ)Iλ+n(mν)

Hypergeometric model 7

Covariance kernel:

C =
ρ(1− exp(−2ν(arccos(s) + a)))

(1− 2b exp(−ν(arccos(s) + a))r + exp(−2ν(arccos(s) + a)))µ+1

To be continued
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Table 10 (continued)

× 2F1

(
µ+ 1

2
,
µ

2
+ 1;µ+

1

2
;

4 exp(−2ν(arccos(s) + a))(1− b2)(1− r2)

(1− 2b exp(−ν(arccos(s) + a))r + exp(−2ν(arccos(s) + a)))2

)
Schoenberg matrices:

bk,`n,m = ρ
exp(−amν)Γ (2µ)m! (1 + m

µ )Gµm(b)

Γ (2µ+m)
f(mν, n)(λ+ n)Γ (λ)Γ (λ+ 1)

∣∣Γ (n+ιmν2 )
∣∣2∣∣Γ (λ+ 1 + n+ιmν
2 )

∣∣2
Hypergeometric model 8

Covariance kernel:

C =
ρ(1− exp(2ν(s− 1− a)))

(1− 2b exp(ν(s− 1− a))r + exp(2ν(s− 1− a)))µ+1

× 2F1

(
µ+ 1

2
,
µ

2
+ 1;µ+

1

2
;

4 exp(2ν(s− 1− a))(1− b2)(1− r2)

(1− 2b exp(ν(s− 1− a))r + exp(2ν(s− 1− a)))2

)
Schoenberg matrices:

bk,`n,m = ρ
exp(−(1 + a)mν)Γ (2µ)m! (1 + m

µ )Gµm(b)

Γ (2µ+m)
2λ(λ+ n)(mν)−λΓ (λ)Iλ+n(mν)

Sufficient conditions for convergence:

a with entries in (0,∞), b = [〈si, sj〉`]pi,j=1 for a set of points s1, . . . , sp ∈ S`, ν > 0 and ρ with entries in R

Sufficient conditions for positive semidefiniteness:

(1) a is conditionally negative semidefinite
(2) ρ is positive semidefinite

Table 11: Hypergeometric covariance kernels, part 4.

Hypergeometric model 9

Covariance kernel:

C = ρ
(1−2e−ν(arccos(s)+a)r+e−2ν(arccos(s)+a))µ

exp

(
− 2b e−ν(arccos(s)+a)(r − e−ν(arccos(s)+a))

1− 2e−ν(arccos(s)+a)r + e−2ν(arccos(s)+a)

)
× 0F1

(
;µ+

1

2
;
e−2ν(arccos(s)+a)b2(4r2 − 6 e−ν(arccos(s)+a)r + 3 e−2ν(arccos(s)+a) − 1)

4(1− 2 e−ν(arccos(s)+a)r + e−2ν(arccos(s)+a))2

)
Schoenberg matrices:

bk,`n,m = ρ exp(−amν) 1F1(−m; 2µ; b) f(mν, n)(λ+ n)Γ (λ)Γ (λ+ 1)

∣∣Γ (n+ιmν2 )
∣∣2∣∣Γ (λ+ 1 + n+ιmν
2 )

∣∣2
Hypergeometric model 10

To be continued
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Table 11 (continued)

Covariance kernel:

C =
ρ

(1− 2 exp(ν(s− 1− a))r + exp(2ν(s− 1− a)))µ
exp

(
− 2b exp(ν(s− 1− a))(r − exp(ν(s− 1− a)))

1− 2 exp(ν(s− 1− a))r + exp(2ν(s− 1− a))

)
× 0F1

(
;µ+

1

2
;

exp(2ν(s− 1− a))b2(4r2 − 6 exp(ν(s− 1− a))r + 3 exp(2ν(s− 1− a))− 1)

4(1− 2 exp(ν(s− 1− a))r + exp(2ν(s− 1− a)))2

)
Schoenberg matrices:

bk,`n,m = ρ exp(−(1 + a)mν) 1F1(−m; 2µ; b) 2λ(λ+ n)(mν)−λΓ (λ)Iλ+n(mν)

Sufficient conditions for convergence:

a with entries in (0,∞), ν > 0 and ρ and b with entries in R

Sufficient conditions for positive semidefiniteness:

(1) a is conditionally negative semidefinite
(2) ρ is positive semidefinite
(3) −b is positive semidefinite
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(a) Hypergeometric model 1 (b) Hypergeometric model 2 (c) Hypergeometric model 3

(d) Hypergeometric model 4 (e) Hypergeometric model 5 (f) Hypergeometric model 6

(g) Hypergeometric model 7 (h) Hypergeometric model 8 (i) Hypergeometric model 9

(j) Hypergeometric model 10

Fig. 3: Examples of hypergeometric models. Representation of the marginals s 7→ C(s, 1)
(green) and r 7→ C(1, r) (blue) for s and r ranging from −1 to 1
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4 Discussion194

All the covariance kernels presented in Tables 2 to 11 are nonseparable, i.e.,195

the componentwise isotropic part (s, r) 7→ C(s, r) cannot be written as the196

elementwise product of a function of s with a function of r; equivalently, the197

Schoenberg matrix bk,`n,m cannot be written as the elementwise product of a198

matrix depending on n with a matrix depending on m. This is illustrated in199

Figure 4, which shows the full covariance maps (not only the marginals) for two200

specific models of the above list: in both cases, the curvature of the isopleths201

is not compatible with a separable covariance. The interest in nonseparable202

covariance kernels for random fields defined on Sk × S` lies in the fact that203

they allow modeling complex interactions between the spatial variations on204

Sk and that on S`. To date, many nonseparable covariance kernels have been205

designed for modeling data indexed in a Euclidean space (Cressie and Huang,206

1999; Gneiting, 2002; Stein, 2005; Apanasovich and Genton, 2010; Rodrigues207

and Diggle, 2010; Allard et al., 2022) or the product of a Euclidean space with208

a sphere (Shirota and Gelfand, 2017; Porcu et al., 2016; Alegŕıa et al., 2019;209

Emery et al., 2021), but we are not aware of such kernels for modeling data210

indexed in the product of two spheres, except for the recent works of Bachoc211

et al. (2021) and Porcu and White (2022).212

(a) Elementary model 1 with µ = 1/2, a = 2,
b = 0, ν = 1 and ρ = 1

(b) Bessel model 1 with µ = 1/2, a = 2,
b = 0, ν = 1 and ρ = 1

Fig. 4: Mapping (s, r) 7→ C(s, r) for s and r ranging from −1 to 1, for the elementary model
1 and Bessel model 1 whose marginals are shown in Figures 1 and 2, respectively

The expression of the proposed kernels contain up to five matrix-valued pa-213

rameters, which are often necessary to ensure the convergence of the Schoen-214

berg sequence, i.e., the existence of the kernel. As an exception, in Tables 2, 4215

and 6, either the matrix-valued parameter a or the matrix-valued parameter b216

can be set to zero, but not both simultaneously, while b can also be set to zero217

to yield more parsimonious kernels in Table 11. However, all these are minor218

simplifications, and dealing with 3 to 5 parameters allows an interesting trade-219
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off between the number of parameters and the structural features that can be220

fitted. In particular, from the previous figures, one sees that the behavior at221

short distances (s or r close to 1), shape and monotonicity of the marginal222

covariances can be different. The same happens with multivariate kernels: the223

parameters controlling the shape, large-scale and short-scale behaviors can be224

different for all the entries of the covariance, which offers much more versa-225

tility to the practitioners than traditional modeling approaches such as the226

well-known and parameter-intensive linear model of coregionalization (Chilès227

and Delfiner, 2012; Genton and Kleiber, 2015). In our constructions, the con-228

ditions on the matrix-valued parameters refer to positive semidefiniteness and229

negative conditional semidefiniteness and are straightforward to check (see cri-230

teria in Section 2.1).231

232

The case of the hypertorus T1,` deserves a separate treatment. Tables 2233

to 11 provide covariance kernels on Tk,` × Tk,` together with their (k, `)-234

Schoenberg sequences, for any integers k and ` greater than 1. In particular,235

the following holds:236

(1) Each (k, `)-Schoenberg matrix bk,`n,m is positive semidefinite.237

(2) The series
∑∞
n=0

∑∞
m=0 b

k,`
n,mG

(k−1)/2
n (s)G(`−1)/2m (r) converges (pointwise and238

componentwise) to C(s, r) for any s, r ∈ [−1, 1].239

(3) For all the presented models, the analytical expression of C depends on `240

(equivalently, µ) but not on k (equivalently, λ).241

Looking at the proofs in Appendix A and in Emery et al. (2022), it is seen242

that the positive semidefiniteness of the Schoenberg matrices (1) and the con-243

vergence of the Schoenberg series (2) actually hold for any real numbers (not244

necessarily integers) k and ` greater than 1. If one makes k tend to 1, with245

` > 1 fixed, it becomes possible to extend the previous kernels to the hy-246

pertorus T1,`, which is of interest for modeling variables evolving in time or247

direction-dependent variables (recall Section 1).248

Specifically, for each fixed natural integer m, define

b1,`n,m =

limk→1 b
k,`
n,m if n = 0

limk→1
2λ
n b

k,`
n,m if n > 0.

The above limits exist and are finite for all the models of Tables 2 to 11, insofar
as the Schoenberg matrix always contains a term Γ (λ)(λ+ n), with λ = k−1

2
and limλ→0 Γ (λ)(λ+ n) = 1 if n = 0

limλ→0
2λ
n Γ (λ)(λ+ n) = 2 if n > 0.

Also, b1,`n,m is the limit of a sequence of positive semidefinite matrices, hence it
is positive semidefinite for any n and m. Accordingly, taking the limit of both



24 Xavier Emery et al.

sides of (5) as k tends to 1, one obtains:

lim
k→1

C(s, r) = lim
k→1

∞∑
n=0

∞∑
m=0

bk,`n,mG(k−1)/2n (s)G(`−1)/2m (r)

= lim
k→1

∞∑
m=0

bk,`0,mG
(k−1)/2
0 (s)G(`−1)/2m (r)

+ lim
k→1

∞∑
n=1

∞∑
m=0

2λ

n
bk,`n,m

n

2λ
G(k−1)/2n (s)G(`−1)/2m (r), s, r ∈ [−1, 1],

i.e.,249

C(s, r) =

∞∑
n=0

∞∑
m=0

b1,`n,mG0n(s)G(`−1)/2m (r), s, r ∈ [−1, 1], (7)

where G0n is the Chebyshev polynomial of the first kind (Olver et al., 2010,
formula 18.7.25):

G0n =

1 if n = 0

limλ→0
n
2λG

λ
n if n > 0.

The identity (7) gives a valid (1, `)-Schoenberg sequence for the mapping C,250

viewed as the componentwise isotropic part of a covariance on the hypertorus251

T1,`.252

253

Finally, a side product of this work is the design of new p-variate isotropic
covariance kernels on spheres or hyperspheres, together with sufficient validity
conditions on their parameters. Indeed, for all the models presented in Tables
2 to 11, the marginals s 7→ C(s, 1) and r 7→ C(1, r) belong to Pp(Sk) and
Pp(S`), respectively. The marginals obtained by setting s to 1 have already
been studied in Emery et al. (2022). Likewise, the marginals obtained by set-
ting r to 1 are members of Pp(Sk) and their spectral representation is derived
from (5):

C(s, 1) =

∞∑
n=0

bkn G(k−1)/2n (s), s ∈ [−1, 1],

with

bkn =

∞∑
m=0

bk,`n,m G(`−1)/2m (1), n ∈ N.

5 Estimation and simulation254

A common challenge in spatial statistics is the estimation of the covariance255

parameters from a set of sampling data (observations). Having chosen a para-256

metric class of covariance models among those presented in Tables 2 to 11 and257

assuming that the random field under study is Gaussian, maximum likelihood258
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techniques can be used to specify the model parameters. In the presence of259

large datasets, composite or pairwise likelihood may be good alternatives to260

full likelihood (Curriero and Lele, 1999; Varin and Vidoni, 2005). Also, the261

maximization of the likelihood function can be done with iterative optimiza-262

tion algorithms that work sequentially on a subset of parameters and leave the263

other parameters fixed to the values previously attained; the reader is referred264

to Bourotte et al. (2016) and Allard et al. (2022) for details on the proce-265

dure and convincing examples. Although it has been developed for modeling266

data in Euclidean spaces, this procedure can be adapted to data on hypertori267

and benefits from the fact that all the kernels presented in this work are rela-268

tively parsimonious (with two to five matrix-valued parameters), so as to reach269

a trade-off between model complexity, interpretability and versatility and to270

avoid overfitting.271

272

We now turn into the simulation of Gaussian vector random fields that are273

continuously indexed over the hypertorus.274

For each model in Tables 2 to 11, the Schoenberg sequence has a known an-275

alytic expression, which makes possible to simulate a Gaussian vector random276

field on the hypertorus by spectral algorithms. A straightforward extension of277

the arguments exposed in Alegŕıa et al. (2020) implies that a zero-mean vector278

random field Z on Tk,` with matrix-valued covariance K associated with the279

Schoenberg sequence {bk,`n,m}∞n,m=0 can be obtained by putting280

Z(x) = ε

√
p(2κ1 + k − 1)(2κ2 + `− 1)

aκ1,κ2(k − 1)(`− 1)
γ
(q)
κ1,κ2,k,`

G(k−1)/2κ1
(〈ω1, x〉k)G(`−1)/2κ2

(〈ω2, y〉`),

(8)
where:281

(1) x = (x, y) ∈ Tk,` = Sk × S`, with k, ` > 1282

(2) ε is a random variable with a Rademacher distribution (symmetric two-283

point distribution concentrated at 1 and +1)284

(3) κ = (κ1, κ2), where κ1 and κ2 are random integers with joint probability285

mass P(κ1 = n, κ2 = m) = an,m for any nonnegative integers n and m286

(4) an,m > 0 for any (n,m) such that bk,`n,m is nonzero287

(5) q is a random integer uniformly distributed in {1, . . . , p}288

(6) γn,m,k,` is the positive semidefinite square root of bk,`n,m289

(7) γ
(q)
n,m,k,` is the q-th column of γn,m,k,`290

(8) ω1 and ω2 are random vectors uniformly distributed on Sk and S`, respec-291

tively292

(9) ε, κ, q, ω1 and ω2 are mutually independent.293

Other constructions are possible, e.g., by using hyperspherical harmonics294

instead of Gegenbauer polynomials in (8) (Emery and Porcu, 2019).295

296
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For k = 1 and ` > 1, the simulated random field takes the form297

Z(x) = ε

√
2p(2κ2 + `− 1)

aκ1,κ2
(`− 1)

γ
(q)
κ1,κ2,1,`

G0κ1
(〈ω1, x〉k)G(`−1)/2κ2

(〈ω2, y〉`),

x = (x, y) ∈ T1,`.

(9)

Finally, a zero-mean Gaussian random field with covariance K can be298

obtained via a central limit approximation of the form299

Z̃(x) =
1√
J

J∑
j=1

Zj(x), x ∈ Tk,`, (10)

where J is a large integer and {Zj : j = 1, . . . , J} is a set of independent300

copies of Z as defined in (8) (if k > 1) or (9) (if k = 1).301

Although any bivariate probability mass function such that an,m > 0 if
bk,`n,m 6= 0 is acceptable for simulating the random degrees (κ1, κ2), some choices
are more judicious than others to improve the central limit approximation. In
particular, if bk,`n,m = 0, then γn,m,k,` = 0 and the pair (n,m) contributes with
a zero (constant) field to the sum (8) or (9). Accordingly, it is good practice
to choose an,m = 0 when bk,`n,m = 0, in order not to use a copy of Z that does
not add any spatial variability. Also, for the sake of simplicity, it is suggested
that κ1 and κ2 are independent. Based on these arguments, a good choice for
an,m is the product of two long-tailed probability mass functions, for instance
(shifted zeta distributions of parameter 2)

an,m =
36

π4
(1 + n)−2(1 +m)−2, n,m ∈ N.

This choice is certainly not the best option for the elementary models 4, 5, 9
and 10, for which bk,`n,m = 0 for m > κ. In such cases, one suggestion is the
product of a shifted zeta distribution with a uniform distribution:

an,m =


6

(1+κ)π2 (1 + n)−2, n ∈ N and m ≤ κ

0, n ∈ N and m > κ.

The computational cost for constructing a realization of Z̃ as in (10) is302

essentially proportional to the number of copies J and to the number of target303

locations on the hypertorus, while the memory requirements are minimal (the304

simulated values can be exported as soon as they are generated). The cal-305

culations are furthermore parallelizable, which makes the proposed spectral306

algorithm an attractive approach when large-scale simulations are required.307
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6 Concluding remarks308

The present paper has provided a rich catalogue of matrix-valued covariance309

kernels, together with their spectral representations and sufficient validity con-310

ditions on the parameters, for vector random fields indexed over hypertori.311

This catalogue may be useful for practitioners who deal with the modeling312

of direction-dependent (e.g., electromagnetic radiation, temperature gradient,313

gravity gradient, topographic slope, tectonic plate motion, wind speed, ocean314

current velocity) or seasonal-dependent (e.g., temperature, precipitation, hu-315

midity, pressure, air quality, solar radiation) variables observed over a large316

portion of planet Earth. The paper has also provided a straightforward sim-317

ulation algorithm for random fields on hypertori, for which the knowledge of318

the spectral representation of the covariance kernel is relevant.319

Understanding the regularity properties of random fields is a subject of320

major importance in probability theory and statistics, for which an abundant321

literature is available. The works by Lang and Schwab (2015), Clarke et al.322

(2018) and Cleanthous et al. (2021) suggest that extensions of the mentioned323

approaches to our models might be doable. This is certainly a subject of in-324

terest for future researches.325
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A Appendix: Proofs for the models in Tables 2 to 11349

Lemma 1 Let k be a positive integer and λ = k−1
2

. Let {bn}∞n=0 be a sequence of symmet-350

ric positive semidefinite matrices, such that the series
∑∞
n=0 bnGλn(s) converges elementwise351

for all s ∈ [−1, 1]. Then, the series is not only convergent, but also absolutely convergent.352

Proof For n ∈ N, let bn = [bij,n]pi,j=1. The diagonal entries bii,n, i = 1, . . . , p, are nonneg-
ative, while the absolute value of the off-diagonal entries can be upper bounded by use of
Cauchy-Schwarz’s and AM-GM inequalities:

|bij,n| ≤
√
bii,n bjj,n ≤

bii,n + bjj,n

2
.

Accordingly, the absolute convergence of the series
∑∞
n=0 bnGλn(s) stems from the fact that,

for any s ∈ [−1, 1], |Gλn(s)| ≤ Gλn(1) (Olver et al., 2010, formula 18.14.4):

∞∑
n=0

|bij,nGλn(s)| ≤
1

2

( ∞∑
n=0

bii,nGλn(1) +

∞∑
n=0

bjj,nGλn(1)

)
<∞, s ∈ [−1, 1], i, j = 1, . . . , p.

353

Lemma 2 Let k, ` be positive integers, λ = k−1
2

and µ = `−1
2

. Also, let {bk,`n,m}∞n,m=0 be
a doubly-indexed sequence of symmetric positive semidefinite matrices such that the double

series
∑∞
m=0

∑∞
n=0 b

k,`
n,mGλn(s)Gµm(r) converges elementwise for all s, r ∈ [−1, 1]. Then, this

series is absolutely convergent and one can interchange the order of the summations:

−∞ <

∞∑
m=0

∞∑
n=0

bk,`n,mGλn(s)Gµm(r) =

∞∑
n=0

∞∑
m=0

bk,`n,mGµm(r)Gλn(s) <∞, s, r ∈ [−1, 1].

354

Proof The absolute convergence can be established in the same way as in Lemma 1. The355

interchange of the summation order follows from Fubini’s theorem for the counting measure356

on N.357

358

We can now prove the results given in Tables 2 to 11.359

Let k and ` be integers greater than 1, λ = k−1
2

and µ = `−1
2

. Let C0(· ;α, θ) be the360

isotropic part of a continuous p-variate covariance kernel on S`, i.e., C0 ∈ Pp(S`), where α361

and θ are real matrices of parameters, the former with size p×p and entries in (αmin, αmax)362

such that αmax > 0 ≥ αmin. Assume that C0 has a spectral representation of the form363

C0(r;α, θ) =

∞∑
m=0

αφm θm Gµm(r), r ∈ [−1, 1], (11)

where φm and θm are a nonnegative integer and a p × p matrix, respectively, that depend364

analytically on θ and m, but not on α.365

Let now C1(· ;β) be the isotropic part of a continuous p-variate covariance kernel on Sk,366

i.e., C1 ∈ Pp(Sk), where β is a real matrix of parameters, such that, for any nonnegative367

integer m, the k-Schoenberg sequence of [C1]φm has a known analytical expression:368

[C1(s;β)]φm =

∞∑
n=0

βn,φm G
λ
n(s), s ∈ [−1, 1]. (12)
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The series (12) converges elementwise for any s ∈ [−1, 1] and m ∈ N, insofar as [C1]φm ∈369

Pp(Sk) for any m ∈ N.370

For n,m ∈ N, define the matrix371

bk,`n,m = βn,φm θm. (13)

Based on the previous statements and on Lemma 2, if the entries of C1 take values in the372

open interval (αmin, αmax) and bk,`n,m is positive semidefinite for any n,m ∈ N, the composite373

function (s, r) 7→ C(s, r) := C0(r;C1(s;β), θ) defined on [−1, 1]2 has a representation of the374

form (5) and belongs to Pp(Tk,`).375

Tables 12 and 13 indicate the functions C0 and C1 used to construct the 26 kernels376

presented in Tables 2 to 11, and give the analytical expressions of φm, θm and βn,m as377

defined in (11) and (12). We refer the reader to Emery et al. (2022) for a derivation of such378

expressions and for a proof that C0 and C1 belong to Pp(S`) and Pp(Sk), respectively. From379

this information, it is straightforward to derive the analytical expressions of the kernels and380

of their Schoenberg sequences (as per (13)) given in Tables 2 to 11.381

382

Convergence of the Schoenberg sequence (5) of C. (αmin, αmax) = (−1, 1) for all the entries383

of Table 12, except for the one associated with the hypergeometric kernels 1 and 2, in which384

case (αmin, αmax) = (−
√

2/2,
√

2/2). The fact that the entries of C1 take values in the open385

interval (αmin, αmax) can easily be verified on the basis of the convergence conditions given386

in Tables 2 to 11.387

388

Positive semidefiniteness of the Schoenberg matrix bk,`n,m. Based on the criteria given in389

Section 2.1 and on the positive semidefiniteness conditions given in Emery et al. (2022),390

the conditions indicated in Tables 2 to 11 ensure that θm and βn,m are positive semidef-391

inite matrices for any nonnegative integers m and n. The positive semidefiniteness of the392

Schoenberg matrix (13) follows from the Schur product theorem, which concludes the proof.393

394
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Alegŕıa, A., Emery, X., and Lantuéjoul, C. (2020). The turning arcs: a computationally396

efficient algorithm to simulate isotropic vector-valued Gaussian random fields on the d-397

sphere. Statistics and Computing, 30(5):1403–1418.398
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Table 12: List of functions C0 and associated parameters used to construct the covariance
kernels given in Tables 2 to 11

Kernel C0(r;α, θ) φm θm

Elementary 1 & 6 ρ (1− 2αr + α2)−µ m ρ

Elementary 2 & 7 ρ (1− αr)(1− 2αr + α2)−µ−1 m ρ
(m+2µ)

4µ

Elementary 3 & 8 ρ 2µ−
1
2 (1− 2αr + α2)−

1
2 (1− αr +

√
1− 2αr + α2)

1
2
−µ m

ρ (µ+ 1
2
)m

(2µ)m

Elementary 4 & 9 ρ (1 + 2α r + α2)
κ
2 Gµκ

(
r+α√

1+2α r+α2

)
κ−m


0 if m > κ

ρ
Γ (κ+2µ)

(κ−m)!Γ (m+2µ)
otherwise

Elementary 5 & 10 ρ (1 + 2α r + α2)
κ
2 Gµκ

(
1+α r√

1+2α r+α2

)
m


0 if m > κ

ρ
Γ (κ+2µ)

(κ−m)!Γ (m+2µ)
otherwise

Special 1 & 2 ρ
Γ (2µ)Γ (κ+1)

Γ (κ+2µ) (1−2αr+α2)µ+κ/2
Gµκ
(

1−αr√
1−2αr+α2

)
m ρ

(κ+2µ)m
(2µ)m

Bessel 1 & 3 ρΓ (µ+ 1
2

) exp (α r)
(
1
2
α (1− r2)1/2

) 1
2
−µ

Jµ− 1
2

(α (1− r2)1/2) m ρ
(2µ)m

Bessel 2 & 4 ρ
(
1
2
α(1− r2)1/2

) 1
2
−µ

Jµ− 1
2

(
√

2α(1− r)) Iµ− 1
2

(
√

2α(1 + r)) m ρ

Γ (µ+ 1
2
)Γ (µ+m+ 1

2
) (2µ)m

Hypergeometric 1 & 2 ρ
(1−αr)κ 2F1

(
κ
2
, κ+1

2
;µ+ 1

2
;−α

2 (1−r2)
(1−αr)2

)
m ρ

(κ)m
(2µ)m

Hypergeometric 3 & 4
ρ 2F1

(
κ, 2µ− κ;µ+ 1

2
;
1−α−

√
1−2αr+α2

2

)
m ρ

(2µ−κ)n (κ)m
(2µ)m (µ+ 1

2
)m

× 2F1

(
κ, 2µ− κ;µ+ 1

2
;
1+α−

√
1−2αr+α2

2

)
Hypergeometric 5 & 6 ρ

(1−2αbr+α2)µ 2F1

(
µ
2
, µ+1

2
;µ+ 1

2
;
4α2(1−b2)(1−r2)
(1−2αbr+α2)2

)
m ρ

Γ (2µ)m!
Γ (2µ+m)

Gµm(b)

Hypergeometric 7 & 8
ρ (1−α2)

(1−2αbr+α2)µ+1 2F1

(
µ+1
2
, µ
2

+ 1;µ+ 1
2

;
4α2(1−b2)(1−r2)
(1−2αbr+α2)2

)
m ρ

Γ (2µ)m!
Γ (2µ+m)

(
1 + m

µ

)
Gµm(b)

Hypergeometric 9 & 10
ρ

(1−2αr+α2)µ
exp

(
− 2αb(r−α)

1−2αr+α2

)
m ρ 1F1 (−m; 2µ; b)

× 0F1

(
;µ+ 1

2
;
α2 b2 (4r2−6αr+3α2−1)

4(1−2αr+α2)2

)

Table 13: List of functions C1 and associated parameters used to construct the covariance
kernels given in Tables 2 to 11

Kernel C1(s;β) βn,m

Elementary 1 to 5, Bessel 1 & 2 exp(−νa− b) exp(νs) exp(−mνa−mb)2λΓ (λ)(λ+ n)(mν)−λIλ+n(mν)

Elementary 6 to 10, Bessel 3 & 4 exp(−νa) exp (−ν arccos(s)) exp(−mνa)f(mν, n) (λ+ n)Γ (λ)Γ (λ+ 1)

∣∣∣Γ(
n+ιmν

2

)∣∣∣2∣∣∣Γ(
λ+1+n+ιmν

2

)∣∣∣2
Hypergeometric 1, 3, 5, 7, 9 exp(−νa) exp (−ν arccos(s)) exp(−mνa)f(mν, n) (λ+ n)Γ (λ)Γ (λ+ 1)

∣∣∣Γ(
n+ιmν

2

)∣∣∣2∣∣∣Γ(
λ+1+n+ιmν

2

)∣∣∣2
Hypergeometric 2, 4, 6, 8, 10 exp(−ν(1 + a)) exp (ν s) exp(−mν(1 + a))2λΓ (λ)(λ+ n)(mν)−λIλ+n(mν)
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