Este material é a junção do slides usados durante as aulas da Prof a Peron no curso SMA801-Cálculo 1, no ICMC-USP, em 2023.

Conteúdo

C.1	Conjuntos numéricos	C.5
	Definição de Corpo	C.7
<u>C</u>	.2.1 Definição de Corpo ordenado	. 0.8
C.3	Definição de inf, sup e completeza	C.10
\mathbf{C}	Cortes de Dedekind e o conjunto dos Números Reais 4.1 Definição e notação de intervalos	
C.5	Algumas definições sobre funções	C.16
C.6	Propriedades de funções reais	C.20
C.7	Simetrias de funções	C.22
C C C C	Algumas funções típicas 8.1 Funções trigonométricas	.C.26 .C.27 .C.27
C.9	Translação de gráficos	C.30
C.10	Gráficos de funções trigonométricas	C.31
C.11	Gráficos de potências	C.31
C.12	Gráficos de funções exponenciais, logarítmicas e hiperbólicas	C.31
C.13	Definição de limite	C.31
C.14	Definição de continuidade	C.34
\mathbf{C}	Propriedades .15.1 Limite por vizinhanças	C.36 .C.36
C.16	Limites laterais: definição	C.41

C.17 Outros teoremas sobre limites C.17.1 Unicidade, conservação de sinal e comparação C.17.2 Confronto e Anulamento	
C.18 Limites infinitos: definição	C.46
C.19 Limites no infinito: definição	C.47
C.20 Propriedades dos limites infinitos	C.50
C.21 Propriedades dos limites no infinito	C.52
C.22 Limites Fundamentais C.22.1 Primeiro limite fundamental: $\lim_{x\to 0} \frac{\sin x}{x}$	C.53 .C.53
C.22.2 Segundo limite fundamental: $\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x \dots \dots \dots$.C.54
C.23 Teoremas sobre funções contínuas	C.56
C.24 Introdução Derivada	C.56
C.25 Definição de derivada C.25.1 Algumas interpretações de derivada	C.60 .C.61
C.26 Regras de derivação	C.62
C.27 Tabela de derivadas	C.64
C.28 Derivadas de ordem superior	C.68
C.29 Derivação implícita	C.69
C.30 A diferencial	C.69
C.31 Máximos e mínimos C.31.1 Máximos e mínimos absolutos em intervalos fechados	C.70 .C.72
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.C.76
C.33 Uso da derivada segunda	
C.34 Assíntotas	C.81

C.35 Regra de l'Hôpital	C.82
C.36 Polinômio de Taylor C.36.1 Alguns exemplos de Polinômio de Taylor	C.83
C.37 Integral de Riemann C.37.1 Motivação	C.89 C.92 C.93 C.94
C.38 Volumes e Superfícies	C.100
C.39 Posição, velocidade e aceleração	C.101
C.40 Técnicas de Integração C.40.1 Linearidade	. C.102 . C.102 . C.105 . C.106
C.41 Dicas de integração do Prof. Eugenio Massa: C.41.1 Alguns produtos, trigonométricas e hiperbólicas	
C.42 Caso (II): Integrais impróprias C.42.1 Intervalo I não fechado limitado e f não limitada em I	. C.114
C.43 Teoremas de comparação C.43.1 Teorema do Confronto	. C.118
C.44 Volume por Seção Transversal	C.121
C.45 Volume por Cascas Cilíndricas	C.125
C.46 Comprimento de Curva	C.127

C.47	Área de Superfície	C.128
C	Aplicação de Soma de Riemann em ciências biológicas 48.1 Total de pessoas acometidas por uma epidemia	al
C.49	Exercícios:	C.131
C.50	Números reais	C.131
C.51	Funções	C.132
C	Limites e Continuidade 5.52.1 Limites laterais	
C	Limites infinitos e no infinito 5.53.1 Primeiro limite fundamental	
	Derivada 54.1 Regras de derivação	C.139 . C.140
C.55	Máximos e mínimos	C.141
C.56	L'Hôpital	C.143
C.57	Polinômio de Taylor	C.143
C.58	Aplicações	C.144
C.59	Revisão para P2	C.144
C.60	Integral Definida	C.146
C C C	Técnicas de integração 6.61.1 Substituição 6.61.2 Integração por partes 6.61.3 Integrais trigonométricas 6.61.4 Substituição trigonométrica/hiperbólica 6.61.5 Frações Parciais	. C.148 . C.148 . C.148
C.62	Integrais Impróprias	C.149
C.63	Aplicações de integral de Riemann	C.150
C.64	Revisão para P3	C.152

C.1 Conjuntos numéricos

• Números naturais

$$\mathbb{N} = \{1, 2, 3, ...\}$$

- Soma e produto definidos naturalmente.
- Problemas nas operações inversas!
- Números inteiros

$$\mathbb{Z} = \{.., -3, -2, -1, 0, 1, 2, 3, ...\}$$

- Podemos definir a inversa da soma (contém o "elemento oposto"), não do produto (não contém o "elemento inverso").
- Números racionais

$$\mathbb{Q} = \left\{ \frac{a}{b} : \ a \in \mathbb{Z}, \ b \in \mathbb{N}; \ \frac{a}{b} = \frac{c}{d} \iff ad = cb \right\}$$

– Soma, produto e ordem definidos assim:

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
 e $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$

$$0 \le \frac{a}{b}$$
 se $a \in \mathbb{N} \cup \{0\}$ e $\frac{a}{b} \le \frac{c}{d}$ se $0 \le \frac{c}{d} - \frac{a}{b}$

(e $a \ge b$ significa $b \le a$)

– Em $\mathbb Q$ podemos definir a inversa da soma e do produto e uma ordem:

$$(\mathbb{Q},+,\cdot,\leq)$$
é um Corpo ordenado....

 \Diamond

– Note: Podemos identificar $\mathbb Z$ com um subconjunto de $\mathbb Q$ de maneira compatível com as operações e a ordem:

$$\mathbb{Z} \ni a \mapsto \frac{a}{1} \in \mathbb{Q}.$$

.... mas $(\mathbb{Q}, +, \cdot, \leq)$ é "**completo**"??

$$\sqrt{2} \in \mathbb{Q}$$
?????

— Precisamos: de um conjunto que "estenda" de modo natural $\mathbb{Q}, \mathbb{Z}, \mathbb{N}$ e que seja "completo".

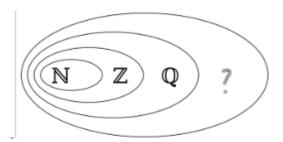


Figura 1: Fonte: Wikipedia

C.2 Definição de Corpo

 $(\mathbb{K}, +, \cdot)$, isto é, um conjunto \mathbb{K} com uma operação + dita *soma* e outra operação · dita *produto*, é um **Corpo** se valem as propriedades:

- (S1) (associativa da soma) (x+y)+w=x+(y+w), para quaisquer $x,y,w\in\mathbb{K}$;
- (S2) (comutativa da soma) x + y = y + x, para quaisquer $x, y \in \mathbb{K}$;
- (S3) (elemento neutro da soma) existe $z \in \mathbb{K}$ tal que x + z = x para todo $x \in \mathbb{K}$;
- (S4) (oposto da soma) para todo $x \in \mathbb{K}$ existe $y \in \mathbb{K}$ tal que x + y = z;
- (P1) (associativa do produto) $(x \cdot y) \cdot w = x \cdot (y \cdot w)$, para quaisquer $x, y, w \in \mathbb{K}$;
- (P2) (comutativa do produto) $x \cdot y = y \cdot x$, para quaisquer $x, y \in \mathbb{K}$;
- (P3) (elemento neutro do produto) existe $u \in \mathbb{K}$ tal que $x \cdot u = x$ para todo $x \in \mathbb{K}$;
- (P4) (inverso do produto) para todo $x \in \mathbb{K}$ com $x \neq z$, existe $y \in \mathbb{K}$ tal que $x \cdot y = u$;
- (D) (distributiva) $(x+y) \cdot w = x \cdot w + y \cdot w$, para quaisquer $x, y, w \in \mathbb{K}$.

Algumas propriedades que seguem das propriedades de corpo:

- 1. os neutros são únicos (logo indicaremos com 0 e 1);
- 2. oposto e inverso são únicos (logo indicaremos com -x (ou \overline{x}) e x^{-1});
- 3. $x \cdot 0 = 0 \text{ e } -x = -1 \cdot x$
- 4. (cancelamento da soma) x + w = y + w implica x = y;
- 5. (cancelamento do produto) $x \cdot w = y \cdot w$ sendo $w \neq 0$ implica x = y;
- 6. (anulamento do produto) $x \cdot w = 0$ implica x = 0 e/ou w = 0;

Exemplos:
$$\mathbb{Q}$$
, \mathbb{C} , \mathbb{Z}_2 (corpo)
 \mathbb{N} , \mathbb{Z} , \mathbb{Z}_4 (não corpo)

C.2.1 Definição de Corpo ordenado

Um corpo $(\mathbb{K}, +, \cdot)$ com uma relação \leq dita *ordem*, é um **corpo ordenado**, $(\mathbb{K}, +, \cdot, \leq)$ se

- \bullet valem (S1) (S4),(P1)–(P4), (D) e também
- (O0) (totalidade da ordem): para quaisquer $x, y \in \mathbb{K}$, vale

$$x \le y$$
 e/ou $y \le x$;

(O1) (reflexividade da ordem): para qualquer $x \in \mathbb{K}$, vale

$$x < x$$
;

(O2) (antissimetria da ordem):

se
$$x, y \in \mathbb{K}$$
, $x \leq y$ e $y \leq x$ então $x = y$;

(O3) (transitividade da ordem):

se
$$x, y, w \in \mathbb{K}$$
, $x \leq y$ e $y \leq w$ então $x \leq w$;

(OS) (relação soma-ordem):

se
$$x, y, w \in \mathbb{K}$$
 e $x \leq y$ então $x + w \leq y + w$;

(OP) (relação produto-ordem):

se
$$x, y, w \in \mathbb{K}$$
, $x \leq y$ e $w \geq 0$ então $x \cdot w \leq y \cdot w$.

Algumas propriedades que seguem das propriedades de corpo ordenado:

- 1. $x \le y$ e $z \le w$ implies $x + z \le y + w$
- 2. $0 \le x \le y$ e $0 \le z \le w$ implica $x \cdot z \le y \cdot w$
- 3. $w \ge 0$ se e só se $-w \le 0$;
- 4. $x \le y$ e $w \le 0$ implica $x \cdot w \ge y \cdot w$
- 5. $0 \le 1$

Sendo que x < y significa $x \le y$ com $x \ne y$:

- 6. x < y e $z \le w$ implica x + z < y + w
- 7. z > 0 e x < y implies $x \cdot z < y \cdot z$
- 8. z < 0 e x < y implica $x \cdot z > y \cdot z$
- 9. 0 < x < y implica $0 < y^{-1} < x^{-1}$ e -y < -x < 0
- 10. y < x < 0 implica $x^{-1} < y^{-1} < 0$ e 0 < -x < -y
- 11. x < 0 < y implica $x^{-1} < 0 < y^{-1}$
- 12. 0 < 1

Exemplos: \mathbb{Q}

C.3 Definição de inf, sup e completeza

Seja $(\mathbb{K}, +, \cdot, \leq)$ um corpo ordenado e $A \subseteq \mathbb{K}$

• se $x \in \mathbb{K}$ é tal que

$$x \ge a, \quad \forall a \in A,$$

então x é dito cota superior de A

 \blacksquare se $x \in \mathbb{K}$ é tal que

$$x < a, \quad \forall a \in A,$$

então x é dito cota inferior de A

- se existir uma cota superior de A, então dizemos que A é limitado superiormente
 - se existir uma cota inferior de A, então dizemos que A é limitado inferiormente
 - \blacksquare se ambas as anteriores acontecem dizemos que A é limitado
- **supremo de** A é a menor das cotas superiores de A (se existir)
 - \blacksquare **infimo de** A é a maior das cotas inferiores de A (se existir)

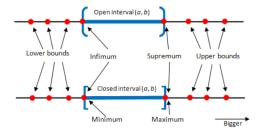


Figura 2: Fonte: internet: Mathematics and Such

Exemplo: Exercício 1 em Slides de Exercícios.

Dizemos que o corpo ordenado $(\mathbb{K},+,\cdot,\leq)$ é **completo** se todo subconjunto de \mathbb{K} limitado superiormente possui supremo em \mathbb{K} e todo subconjunto de \mathbb{K} limitado inferiormente possui ínfimo em \mathbb{K} .

Exemplo: \mathbb{Q} é completo?

C.4 Cortes de Dedekind e o conjunto dos Números Reais

Um **corte de Dedekind** é uma partição (α, B) dos números racionais \mathbb{Q} em dois subconjuntos $(\mathbb{Q} = \alpha \dot{\cup} B)$ tais que:

- $\alpha \neq \emptyset$ e $\alpha \neq \mathbb{Q}$ (faz com que os conjs. α, B sejam limit. sup./inf.)
- se $p \in \alpha$ e $q \in \mathbb{Q}$, q < p, então $q \in \alpha$ (todos os racionais a esquerda de p estão em α)
- se $p \in \alpha$, então existe $q \in \alpha$ tal que p < q (α não contém o maior elemento).

Note: α e B se determinam mutuamente, e com isso é comum simplificar a notação (α, B) e chamar apenas α de corte.

Exemplos: 1. $\gamma = \{p \in \mathbb{Q} : p < 2\}$ é corte

- 2. $\beta = \{ p \in \mathbb{Q} : p \leq 2 \}$ não é corte
- 3. $\alpha = \{ p \in \mathbb{Q} : p \leq 0 \text{ ou } p^2 < 2 \}$ é corte

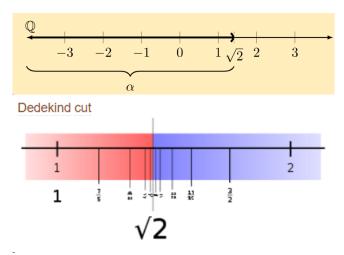


Figura 3: Fonte: Mathematique, internet

O conjunto de todos os cortes será denotado por \mathbb{R} .

 $\operatorname{Em} \mathbb{R}$ precisamos definir as operações de soma, produto e uma relação de ordem:

Para $\alpha, \beta \in \mathbb{R}$ definimos:

• relação de ordem \leq : $\alpha \leq \beta$ se, e somente se, $\alpha \subseteq \beta$

• **soma** + :

$$\alpha + \beta := \{ p = q + r : q \in \alpha, r \in \beta \},\$$

- \bullet $\alpha_0 := \{r \in \mathbb{Q} : r < 0\}$ (elemento neutro)
- produto ·:
 - \blacksquare se $\alpha, \beta > \alpha_0$, então

$$\alpha \cdot \beta := \{ p \in \mathbb{Q} : p < 0 \text{ ou } p = qr \text{ com } q \in \alpha, r \in \beta \text{ } e \text{ } q, r \geq 0 \}$$

- \blacksquare se $\alpha > \alpha_0$ e $\beta < \alpha_0$, então $\alpha \cdot \beta := \overline{\alpha \cdot \overline{\beta}} = -(\alpha(-\beta))$
- \blacksquare se $\alpha < \alpha_0$ e $\beta > \alpha_0$, então $\alpha \cdot \beta := \overline{\overline{\alpha} \cdot \beta}$
- se $\alpha < \alpha_0$ e $\beta < \alpha_0$, então $\alpha \cdot \beta := \overline{\alpha} \cdot \overline{\beta}$

Teorema. $(\mathbb{R},+,\cdot,\leq)$ é um corpo ordenado completo.

Figura 4: Fonte: Wikipedia

O conjunto \mathbb{R} é chamado de **conjunto dos números reais** e seus elementos (os cortes) de **números reais**.

Nota:

1. Podemos identificar $\mathbb Z$ com um subconjunto de $\mathbb Q$ de maneira compatível com as operações e a ordem:

$$\mathbb{Z} \ni a \mapsto \frac{a}{1} \in \mathbb{Q}.$$

2. Podemos identificar $\mathbb Q$ com um subconjunto de $\mathbb R$ de maneira compatível com as operações e a ordem:

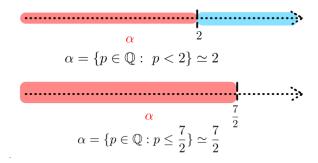
$$\mathbb{Q} \ni r \mapsto \alpha_r := \{ q \in \mathbb{Q} : q < r \} \in \mathbb{R}.$$

3. Como \mathbb{R} é completo para qualquer corte de Dedekind (α, B) de \mathbb{R} , o conjunto B deve possuir um elemento mínimo b. Assim, devemos ter

$$\alpha = \{x : x < b\}, \qquad B = \{x : x \ge b\}.$$

Neste caso, representamos

$$(\alpha, B)$$
 por b .



Exemplo: Exercício 2 em Slides de Exercícios.

C.4.1 Definição e notação de intervalos

Sejam a < b números reais: chamamos de **intervalos em** \mathbb{R} os seguintes conjuntos:

- intervalos limitados:
 - \blacksquare $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$: interv. limitado fechado
 - \blacksquare $(a,b) = \{x \in \mathbb{R} : a < x < b\}$: interv. limitado aberto
 - \blacksquare $[a,b) = \{x \in \mathbb{R} : a \le x < b\}$: interv. limitado semifechado (ou semiaberto)
 - \blacksquare $(a,b] = \{x \in \mathbb{R} : a < x \le b\}$: interv. limitado semifechado (ou semiaberto)
- intervalos não limitados:
 - \blacksquare $[a, \infty) = \{x \in \mathbb{R} : x \ge a\}$: semireta fechada
 - \blacksquare $(a, \infty) = \{x \in \mathbb{R} : x > a\}$: semireta aberta
 - \blacksquare $(-\infty, a] = \{x \in \mathbb{R} : x \le a\}$: semireta fechada
 - \blacksquare $(-\infty, a) = \{x \in \mathbb{R} : x < a\}$: semireta aberta
 - \blacksquare $(-\infty, \infty) = \mathbb{R}$: **reta real**

Exemplo: Exercício 3 em Slides de Exercícios.

C.4.2 Algumas propriedades de números reais

1. Valem todas as propriedades listadas na Seção C.2, em particular:

$$x \ge 0 \text{ e } y \le z \Longrightarrow xy \le xz$$

$$x \le 0 \text{ e } y \le z \Longrightarrow xy \ge xz$$

2. O **módulo** de um número real $x \in \mathbb{R}$ é definido por

$$|x| := \begin{cases} x, & x \ge 0 \\ -x, & x < 0. \end{cases}$$

Valem as propriedades:

- (a) $|x| \ge 0$ para todo $x \in \mathbb{R}$
- (b) |x| = 0 se e somente se x = 0
- (c) $|x| \le a \ (a > 0)$ se e somente se $-a \le x \le a$
- (d) $|x| \ge a \ (a > 0)$ se e somente se $x \le -a$ ou $x \ge a$
- (e) Desigualdade triangular:

$$|x+y| \le |x| + |y|, \quad \forall x, y \in \mathbb{R}$$

- (f) $|a| |b| \le |a b|$, para todo $a, b \in \mathbb{R}$ (tarefa!)
- (g) (tarefa!)

$$||x| - |y|| < |x - y|, \quad \forall x, y \in \mathbb{R}$$

Exemplo: Exercícios 4 e 5 em Slides de Exercícios.

3. Dado um número real não negativo x, **uma raiz quadrada** de x é um número real y tal que

$$y^2 = x$$
.

Todo número real não negativo tem <u>uma única</u> raiz real não negativa chamada de **raiz** quadrada principal¹ e denotada por $\sqrt{}$.

Portanto,

- (a) $\sqrt{x^2} = |x|$, para todo $x \in \mathbb{R}$.
- (b) $(\sqrt{x})^2 = x$, para todo $x \ge 0$.

Exemplo: Exercício 6 em Slides de Exercícios.

C.5 Algumas definições sobre funções

• Dados dois conjuntos A, B é dito **produto cartesiano de** A **com** B o conjunto

$$A \times B = \{(a, b) : a \in A, b \in B\}.$$

• Dados dois conjuntos A, B, uma função f de A em B é uma lei que associa a cada elemento de A um elemento de B.

Usaremos a notação

$$f: A \to B$$

 $a \mapsto f(a)$ ou $f: A \to B: a \mapsto f(a)$.

• A é dito **domínio** (D_f) da função, B é dito **contradomínio** da função.

a: variável independente

b = f(a): variável dependente

f(a): valor da função em a f em a

f: função

Dada uma função

$$f:A\to B$$

 $^{^{1}}$ usualmente " \mathbf{a} raiz quadrada" refere-se à raiz quadrada principal

• Imagem de f é o conjunto

$$Im(f) := \{b \in B : \exists a \in A : f(a) = b\}$$

• Gráfico de f é o conjunto

$$G(f) = \{(a,b) \in A \times B : b = f(a)\}$$

 \bullet Dado $C\subseteq A$ é dita restrição de fa Ca função

$$f|_C: C \to B: x \mapsto f(x)$$

No curso de Cálculo 1:

- \bullet Asempre será um subconjunto de $\mathbb R$
- \bullet $B = \mathbb{R}$

Consequentemente,

$$D_f, Im(f) \subseteq \mathbb{R}$$

e

$$G(f) \subset \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$$
.

Exemplo: Exercício 7 em Slides de Exercícios.

• Composição de funções:

Dadas $f: D_f \to B$ e $g: D_g \to C$ funções, se $Im(f) \subseteq D_g$, definimos "g composto f" como sendo a função:

$$g \circ f : D_f \to C : x \mapsto g(f(x))$$
.

.....

$$D_{g \circ f} = \{ x \in \mathbb{R} : x \in D_f \in f(x) \in D_g \} \stackrel{Im(f) \subseteq D_g}{=} D_f$$

Exemplo: Exercício 8 em Slides de Exercícios.

• $f:A\to B$ é dita **invertível** se existir $g:B\to A$ tal que

$$g \circ f = id_A$$
 e $f \circ g = id_B$,

isto é,

$$\begin{cases} g(f(a)) = a, & \forall a \in A \\ f(g(b)) = b, & \forall b \in B. \end{cases}$$

QUANDO UMA FUNÇÃO É INVERTÍVEL?

Dada

$$f: A \to B$$

• f é dita sobrejetora se Im(f) = B. Isto é,

$$\forall b \in B \ \exists a \in A : \ f(a) = b.$$

 \blacksquare f é dita **injetora** se

$$a_1, a_2 \in A \text{ com } a_1 \neq a_2 \text{ implies } f(a_1) \neq f(a_2)$$

equivalentemente,

$$f(a_1) = f(a_2) \Longrightarrow a_1 = a_2.$$

ou também

dado $b \in B$, se existir $a \in A$: f(a) = b, é único.

 \blacksquare f é dita bijetora se é sobrejetora e injetora. Isto é,

$$\forall b \in B \ \exists \,! \, a \in A : \ f(a) = b.$$

Proposição. Se $f: A \to B$ é bijetora, então a função $f^{-1}: B \to A$ definida por

$$f^{-1}(b) = a \iff f(a) = b$$

é a função inversa de f.

• $G(f^{-1})$ é obtido pela reflexão de G(f) em torno da reta y=x:

$$(b,a)\in G(f^{-1}) \Longleftrightarrow (a,b)\in G(f)$$

Exemplo: Exercício 9 em Slides de Exercícios.

C.6 Propriedades de funções reais

Dada $f: D \to C \text{ com } D, C \subseteq \mathbb{R}$.

• f é dita limitada superiormente se

existe $L \in \mathbb{R}$ tal que f(x) < L para todo $x \in D$.

• f é dita limitada inferiormente se

existe $L \in \mathbb{R}$ tal que f(x) > L para todo $x \in D$.

• f é dita **limitada** se

existe $L \in \mathbb{R}$ tal que |f(x)| < L para todo $x \in D$.

Definimos também

- supremo de f: sup $(f) = \sup(Im(f))$
- se existir

$$x_0 \in D$$
 tal que $f(x_0) = \sup(f)$

então chamamos:

- x₀ de "ponto de máximo (absoluto) de f"
- $-f(x_0)$ de "(valor) máximo (absoluto) de f".
- infimo de f: $\inf(f) = \inf(Im(f))$
- se existir

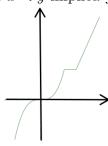
$$x_0 \in D$$
 tal que $f(x_0) = \inf(f)$

então chamamos:

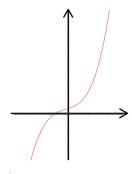
- x₀ de "ponto de mínimo (absoluto) de f"
- $-f(x_0)$ de "(valor) mínimo (absoluto) de f".

Exemplo: Exercício 10 em Slides de Exercícios.

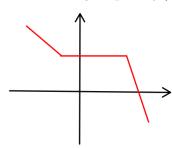
• f é dita **crescente** se: $x, y \in D$ e x < y implica $f(x) \le f(y)$.



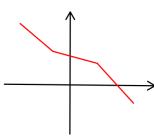
• f é dita estritamente crescente se: $x, y \in D$ e x < y implica f(x) < f(y).



• f é dita decrescente se: $x, y \in D$ e x < y implica $f(x) \ge f(y)$.



• f é dita estritamente decrescente se: $x, y \in D$ e x < y implica f(x) > f(y).



• f é dita monótona se vale uma das anteriores.

Exemplo: Exercício 11 em Slides de Exercícios.

C.7 Simetrias de funções

Dada $f: D \to C \text{ com } D, C \subseteq \mathbb{R}$.

• Suponha que D seja simétrico com respeito à origem, isto é,

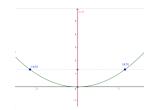
se $x \in D$ então $-x \in D$.

- f é dita par se f(x) = f(-x) para todo $x \in D$.
- f é dita **ímpar** se f(x) = -f(-x) para todo $x \in D$.
- \bullet Suponha que D tenha a propriedade que

existe T>0 tal que se $x\in D$ então $x+T\in D$.

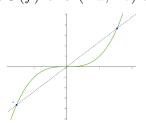
- f é dita **T-periódica** se f(x) = f(x+T) para todo $x \in D$.
- gráfico de uma função par é simétrico em relação ao eixo-y:

$$(a,b) \in G(f) \iff (-a,b) \in G(f)$$



• gráfico de uma função ímpar é simétrico em relação à origem:

$$(a,b)\in G(f) \Longleftrightarrow (-a,-b)\in G(f)$$

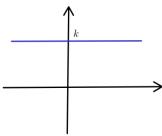


Geogebra

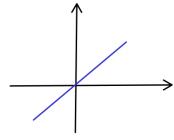
Exemplo: Exercício 12 em Slides de Exercícios.

C.8 Algumas funções típicas

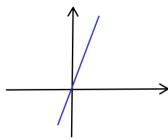
• função constante: $f: \mathbb{R} \to \mathbb{R}: x \mapsto k \text{ com } k \text{ fixado.}$



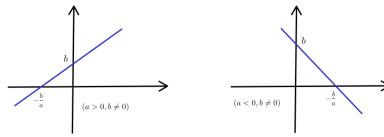
• função identidade: $f: \mathbb{R} \to \mathbb{R}: x \mapsto x$.



• função linear: $f: \mathbb{R} \to \mathbb{R}: x \mapsto ax$ com a fixado.

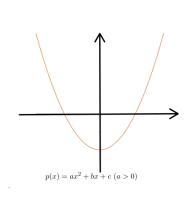


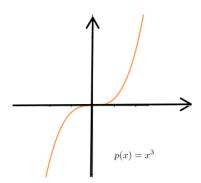
• função afim: $f: \mathbb{R} \to \mathbb{R}: x \mapsto ax + b \text{ com } a, b \text{ fixados.}$



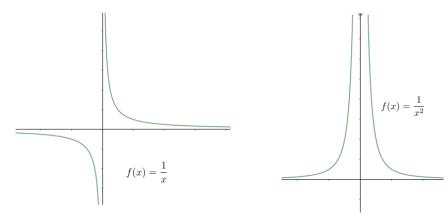
• função polinomial: $f: \mathbb{R} \to \mathbb{R}: x \mapsto p(x)$ com p polinômio:

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0.$$





• função racional: $f:D \to \mathbb{R}: x \mapsto p(x)/q(x) \text{ com } p,q \text{ polinômios}, D = \{x \in \mathbb{R}: \ q(x) \neq 0\}.$

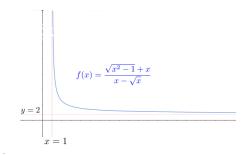


• função algébrica: $f:D\to\mathbb{R}$ definida compondo as 4 operações e radicais. Neste caso

 $D = \{x \in \mathbb{R} : \text{nunca divido por 0 nem pego raiz par de número negativo}\}$

Exemplo:

$$f(x) = \frac{\sqrt{x^2 - 1} + x}{x - \sqrt{x}}$$
 com $D = (1, +\infty)$.



C.8.1 Funções trigonométricas

• função seno: $f: \mathbb{R} \to [-1,1]: x \mapsto \sin x$

• função cosseno: $f: \mathbb{R} \to [-1,1]: x \mapsto \cos x$

• função tangente: $f: D_f \to \mathbb{R}: x \mapsto \frac{\sin x}{\cos x}$

:

•

$$\cos^2(\mathbf{x}) + \sin^2(\mathbf{x}) = \mathbf{1},$$

$$\cos(x) = \sin(x + \pi/2)$$

$$\cos(x) = -\cos(x + \pi), \qquad \sin(x) = -\sin(x + \pi)$$

$$\cos(x + \phi) = \cos(x)\cos(\phi) - \sin(x)\sin(\phi)$$

$$\sin(x + \phi) = \cos(x)\sin(\phi) + \sin(x)\cos(\phi)$$

$$\cos(x - \phi) = \dots$$

.

em particular

$$\cos(2\mathbf{x}) = \cos^2(\mathbf{x}) - \sin^2(\mathbf{x}), \qquad \sin(2\mathbf{x}) = 2\sin(\mathbf{x})\cos(\mathbf{x})$$

$$\cos^2(\mathbf{x}) = \frac{1+\cos(2\mathbf{x})}{2}\,, \qquad \sin^2(\mathbf{x}) = \frac{1-\cos(2\mathbf{x})}{2}\,,$$

$$2\cos(x)\cos(\phi) = \cos(x+\phi) + \cos(x-\phi)$$

$$2\cos(x)\sin(\phi) = \dots$$

.

$$\cos(x) + \cos(\phi) = 2\cos\left(\frac{x+\phi}{2}\right)\cos\left(\frac{x-\phi}{2}\right)$$
$$\cos(x) + \sin(\phi) = \dots$$

.....

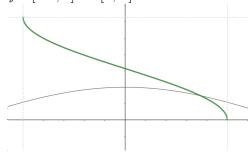
C.8.2 Trigonométricas Inversas

• função arco-seno: $f:[-1,1] \to [-\frac{\pi}{2},\frac{\pi}{2}]: x \mapsto \arcsin x$

$$\arcsin(\sin(x)) = x, \quad x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

$$\sin(\arcsin(x)) = x, \quad x \in [-1, 1].$$

• função arco-cosseno: $f:[-1,1] \rightarrow [0,\pi]: x \mapsto \arccos x$



$$\arccos(\cos(x)) = x, \quad x \in [0, \pi]$$

$$\cos(\arccos(x)) = x, \quad x \in [-1, 1].$$

Exemplo: Exercício 13 em Slides de Exercícios.

C.8.3 Função exponencial

Seja a>0 e $a\neq 1$. A função exponencial de base a é definida por

$$f: \mathbb{R} \to (0, \infty): f(x) = a^x.$$

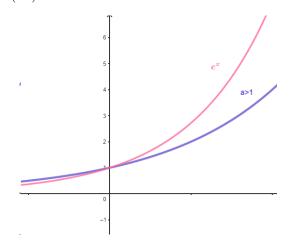
Propriedades:

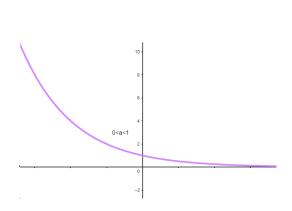
 $\bullet \ a^{x+y} = a^x a^y$

 $a^{x-y} = \frac{a^x}{a^y}$

 $\bullet \ (a^x)^y = a^{xy}$

 $(ab)^x = a^x b^x$



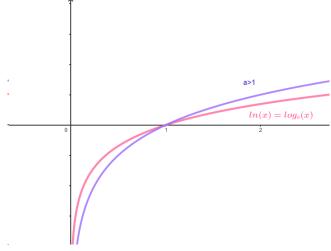


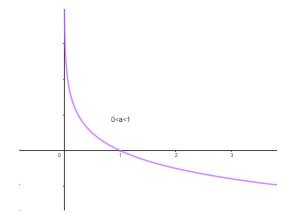
C.8.4 Função logarítmica

Seja a > 0 e $a \neq 1$. A função logarítmica de base a é a função inversa da função exponencial de base a:

$$\log_a(x) = y \iff a^y = x.$$

• $D_{\log_a} = (0, \infty) \ e \ Im(\log_a) = \mathbb{R}, \qquad \ln = \log_e$





C.8.5 Função potência

Seja $a \in \mathbb{R} \setminus \{0\}$. A função potência é definida por

$$f: D_f \to (0, \infty): f(x) = x^a.$$

- $a \in \mathbb{N}$: polinômio, $D_f = \mathbb{R}$
- $a = \frac{1}{p} \in \mathbb{Q}$: função raiz, $D_f = \mathbb{R}$ se p impar e $D_f = [0, \infty)$ se p par
- $a \in \mathbb{R} \setminus \mathbb{Q}$: $D_f = (0, \infty)$

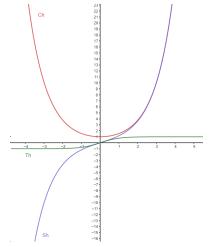
C.8.6 Funções hiperbólicas

As funções seno hiperbólico, cosseno hiperbólico e tangente hiperbólica são definidas, resp., por:

$$\mathbf{Sh}(\mathbf{x}) = \frac{\mathbf{e}^{\mathbf{x}} - \mathbf{e}^{-\mathbf{x}}}{\mathbf{2}}\,, \qquad \qquad \mathbf{Ch}(\mathbf{x}) = \frac{\mathbf{e}^{\mathbf{x}} + \mathbf{e}^{-\mathbf{x}}}{\mathbf{2}}\,, \qquad \qquad \mathbf{Th}(\mathbf{x}) = \frac{\mathbf{Sh}(\mathbf{x})}{\mathbf{Ch}(\mathbf{x})}$$

onde

$$D_{Sh} = D_{Ch} = D_{Th} = \mathbb{R};$$
 $Sh \text{ \'e impar e } Ch \text{ \'e par}$ $Im(Sh) = \mathbb{R},$ $Im(Ch) = [1, \infty),$



$$\begin{split} \mathbf{Ch^2(x)} - \mathbf{Sh^2(x)} &= 1, \\ \mathbf{Ch(2x)} &= \mathbf{Ch^2(x)} + \mathbf{Sh^2(x)} \,, \qquad \mathbf{Sh(2x)} &= \mathbf{2Sh(x)Ch(x)} \end{split}$$

Inversas:

$$SettSh = Sh^{-1}$$

$$SettCh = (Ch^*)^{-1}$$
 onde $Ch^* : [0, \infty) \to [1, \infty) : x \mapsto Ch(x)$

$$SettTh = (Th^*)^{-1}$$
 onde $Th^* : \mathbb{R} \to (-1, 1) : x \mapsto Th(x)$

Fórmula explicita para as inversas:

$$SettSh(x) = \ln(x + \sqrt{x^2 + 1}), \quad x \in \mathbb{R}$$

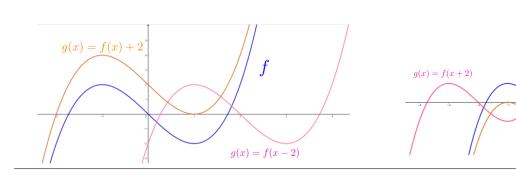
$$SettCh(x) = \ln(x + \sqrt{x^2 - 1}), \quad x \in [1, \infty)$$

$$SettTh(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right), \quad x \in (-1,1)$$

C.9 Translação de gráficos

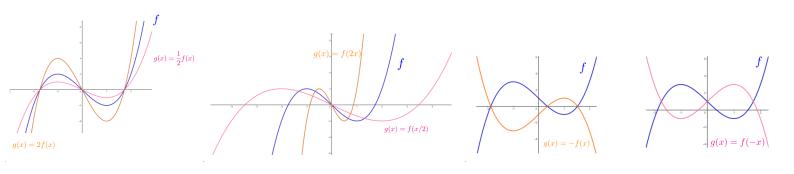
Seja c > 0. O gráfico da função:

- 1. g(x) = f(x) + c: é o G(f) transladado c unidades para cima;
- 2. g(x) = f(x) c: é o G(f) transladado c unidades para baixo;
- 3. g(x) = f(x+c): é o G(f) transladado c unidades para esquerda;
- 4. g(x) = f(x c): é o G(f) transladado c unidades para direita.



Seja c>1. Para obter o gráfico da função:

- 1. g(x) = cf(x): estique o G(f) verticalmente c unidades;
- 2. $g(x) = \frac{1}{c}f(x)$: comprima o G(f) verticalmente c unidades;
- 3. g(x) = f(cx): comprima o G(f) horizontalmente c unidades;
- 4. $g(x) = f\left(\frac{x}{c}\right)$: estique o G(f) horizontalmente c unidades;
- 5. g(x) = -f(x): reflita o G(f) em torno do eixo-x;
- 6. g(x) = f(-x): reflita o G(f) em torno do eixo-y;



Exemplo: Exercício 14 em Slides de Exercícios.

g(x) = f(x) - 2

C.10 Gráficos de funções trigonométricas

seno e cosseno seno, cosseno e tangente tangente e cotangente cosecante e secante arcoseno e arcocosseno arcotangente parametrização do circulo

C.11 Gráficos de potências

```
x, x^2, x^3, x^4

x, \sqrt{x}, \sqrt[3]{x}, \sqrt[4]{x}

x, \sqrt{x}, x^2

1/x, 1/x^2, 1/x^3, 1/\sqrt{x}, 1/\sqrt[3]{x}, 1/\sqrt[4]{x},
```

C.12 Gráficos de funções exponenciais, logarítmicas e hiperbólicas

exponencial e logaritmo natural 2^x e 4^x 2^x e 4^x com inversas seno hiperbólico cosseno hiperbólico as três hiperbólicas as três hiperbólicas inversas parametrização da hipérbole

C.13 Definição de limite

• Seja $A \subseteq \mathbb{R}$: $p \in \mathbb{R}$ é dito ponto de acumulação de A se

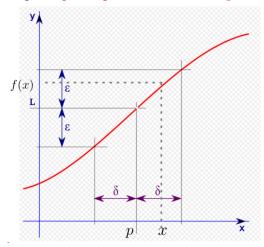
$$\forall \delta > 0 \ \exists x \in A : \ 0 < |x - p| < \delta$$

Exemplo 1. Exercício 15 em Slides de Exercícios.

Nota. Um ponto de acumulação de um conjunto A pode ou não pertencer ao conjunto A.

Definição C.13.1.

Sejam $f: D_f \to \mathbb{R}$ uma função e p um ponto de acumulação de D_f .



Fonte: Wikipedia

• $\lim_{x\to p} f(x) = L$ significa

$$\forall \, \varepsilon > \mathbf{0} \,\, \exists \, \delta > \mathbf{0} \,\, \mathrm{tal} \,\, \mathrm{que} \,\, \mathbf{x} \in \mathbf{D_f} \,\, \mathbf{e} \,\, \mathbf{0} < |\mathbf{x} - \mathbf{p}| < \delta \,\, \mathrm{implica} \,\, |\mathbf{f}(\mathbf{x}) - \mathbf{L}| < \varepsilon$$

• se a afirmação acima é falsa para todo $L \in \mathbb{R}$, isto é,

$$\forall \mathbf{L} \in \mathbb{R}, \exists \, \varepsilon > \mathbf{0} \ \, \mathrm{tal } \, \mathrm{que} \, \, \forall \, \delta > \mathbf{0} \, \, \exists \mathbf{x} \in \mathbf{D_f}; \, \, \mathbf{0} < |\mathbf{x} - \mathbf{p}| < \delta \, \, \mathrm{e} \, \, |\mathbf{f}(\mathbf{x}) - \mathbf{L}| \geq \varepsilon,$$

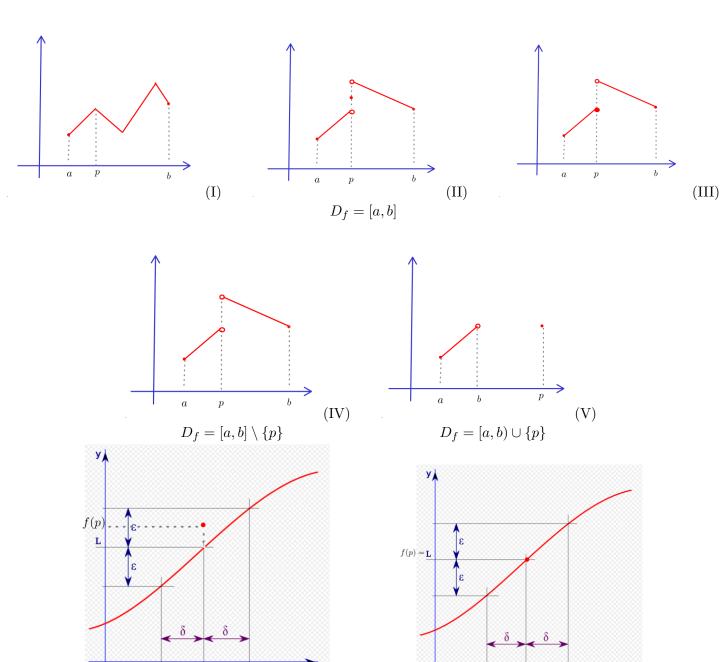
dizemos que $\lim_{x\to p} f(x)$ não existe

Exemplo 2. Exercício 16 em Slides de Exercícios.

C.14 Definição de continuidade

Sejam $f: D_f \to \mathbb{R}$ uma função e $p \in D_f$.

Quais dos seguintes desenhos podemos dizer que representam gráfico de função contínua ?



Definição C.14.1.

Seja $f: D_f \to \mathbb{R}$ uma função e $p \in D_f$

• dizemos que f é contínua em p, se

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{tal que } \mathbf{x} \in \mathbf{D_f} \ \mathbf{e} \ |\mathbf{x} - \mathbf{p}| < \delta \ \text{implica} \ |\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{p})| < \varepsilon$$
 (*)

- dizemos que f é descontínua em p, se a propriedade (*) é falsa
- se f é contínua em p para todo $p \in A \subset D_f$ dizemos f é contínua em A
- se f é contínua em p para todo $p \in D_f$ dizemos f é contínua

Nota.

- 1. Se f é contínua em $p \in D_f$, temos duas possibilidades:
 - $\bullet\,$ se p é ponto de acumulação de $D_f,$ então

$$f$$
 é contínua em $p \iff \lim_{x \to p} f(x) = f(p)$

- se p não é ponto de acumulação de D_f , então f é contínua em p
- 2. Se $p \notin D_f$, não se fala sobre continuidade ou descontinuidade em p !!!

Nota. As figuras (I), (IV) e (V) da página C.34 representam gráficos de funções contínuas e (II) e (III) não representam gráficos de funções contínuas!

Exemplo 3. Exercício 17 em Slides de Exercícios.

C.15 Propriedades

C.15.1 Limite por vizinhanças

Dados $p \in \mathbb{R}$ e r > 0, definimos:

- vizinhança de p: um qualquer intervalo aberto que contém p
- vizinhança de p de raio r: o intervalo $V_r(p) := (p-r, p+r)$

Seja $A \subseteq \mathbb{R}$:

• p é ponto de acumulação de A se

$$\forall \, \delta > 0 \,\, \exists \, x \in A : \,\, 0 < |x-p| < \delta$$

$$\forall \, \delta > 0 \,\, \exists \, x \in A, \,\, x \neq p : \,\, x \in (p-\delta,p+\delta)$$

$$\forall \, \delta > 0 \,\, \exists \, x \in A \cap V_\delta(p) \setminus \{p\}$$

$$\forall \, X \,\, \text{vizinhança de } p \,\, \exists \, x \in A \cap X \setminus \{p\}$$

Seja $f:D_f\to\mathbb{R}$ e p um ponto de acumulação de D_f

• $\lim_{x \to p} f(x) = L$ significa

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{tal que } x \in D_f \ e \ 0 < |x - p| < \delta \ \text{implica} \ |f(x) - L| < \varepsilon$$

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{tal que } x \in D_f \cap V_\delta(p) \setminus \{p\} \quad \text{implica } f(x) \in V_\varepsilon(L)$$

 $\forall Y$ vizinhança de $L \exists X$ vizinhança de p tal que

$$x \in D_f \cap X \setminus \{p\}$$
 implies $f(x) \in Y$

C.15.2 Teoremas sobre operações com limites

Teorema (Operações com limites).

Sejam

$$f:D_f\to\mathbb{R}\,,\quad g:D_g\to\mathbb{R}\,,\quad p$$
 ponto de acumulação de $D_f\cap D_g$,
$$\lim_{x\to p}f(x)=L_f\,,\qquad\qquad \lim_{x\to p}g(x)=L_g\,.$$

Então

$$\begin{cases} \lim_{x \to p} f(x) \pm g(x) = L_f \pm L_g \,, \\ \\ \lim_{x \to p} f(x)g(x) = L_f L_g \,, \\ \\ \\ \lim_{x \to p} f(x)/g(x) = L_f/L_g & \text{desde que } L_g \neq 0 \,. \end{cases}$$

Corolário (Operações com funções contínuas).

Sejam

$$f:D_f \to \mathbb{R}\,, \quad g:D_g \to \mathbb{R}\,, \quad p$$
 ponto de acumulação de $D_f \cap D_g$.

Além disso, se $p \in D_f \cap D_g$, $f \in g$ são contínuas em p, então

```
\begin{cases} f\pm g \text{ \'e contínua em } p\,,\\ \\ fg \text{ \'e contínua em } p\,,\\ \\ f/g \text{ \'e contínua em } p\,,\\ \end{cases} \quad \text{desde que } g(p) \neq 0\,.
```

Exemplo 4. Exercícios 18 e 19 em Slides de Exercícios.

Teorema (Limite da composta).

Sejam

$$f: D_f \to \mathbb{R}$$
, $g: D_g \to \mathbb{R}$ tais que $Im(f) \subseteq D_g$,

p ponto de acumulação de D_f , a ponto de acumulação de D_g tais que

$$\lim_{x \to p} f(x) = a \qquad \lim_{y \to a} g(y) = L.$$

Além disso, valha pelo menos UMA entre

- (a) $a \in D_g$ e g contínua em a.
- (b) $\exists r > 0 : x \in D_f \ e \ 0 < |x p| < r \Rightarrow f(x) \neq a$.

Então

$$\lim_{x \to p} (g \circ f)(x) = L$$

[TESE:]

• $\lim_{x\to p} (g\circ f)(x) = L = g(a)$:

Dado
$$\varepsilon > 0$$
, $\stackrel{?}{\exists} \delta = \ldots > 0$ tal que $x \in D_{g \circ f} = D_f$ e $0 < |x - p| < \ldots \Rightarrow |g(f(x)) - g(a)| < \varepsilon$

[HIPÓTESES:]

• g contínua em $a \iff L = \lim_{y \to a} g(y) = g(a)$: Dado $\varepsilon > 0$,

$$\exists \delta_1 > 0; \mathbf{y} \in D_g, \ 0 < |\mathbf{y} - a| < \delta_1 \Rightarrow |g(\mathbf{y}) - g(a)| < \varepsilon$$

• $\lim_{x\to p} f(x) = a$: Dado $\varepsilon = \ldots > 0$,

$$\exists \delta_2 > 0; x \in D_f, \ 0 < |x - p| < \delta_2 \Rightarrow |f(x) - a| < \dots$$

Corolário (Continuidade da composta).

Sejam

$$f: D_f \to \mathbb{R}, \quad g: D_g \to \mathbb{R}, \quad Im(f) \subseteq D_g,$$
 $p \in D_f \quad (\Rightarrow f(p) \in D_g) \text{ tais que}$

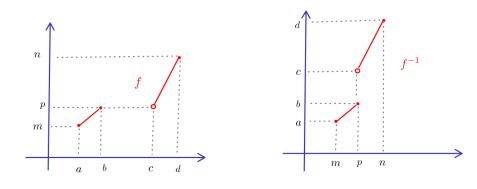
p ponto de acumulação de D_f , f(p) ponto de acumulação de D_g ,

f contínua em p e g contínua em f(p).

Então $g \circ f$ é contínua em p.

Teorema (Continuidade da inversa).

Seja $f: A \to B$ uma função bijetora. Se f é contínua e A é um intervalo então f^{-1} é contínua.



f é contínua e bijetora mas f^{-1} não é contínua!

Corolário (Continuidade das composições de contínuas).

Qualquer função obtida via soma, diferença, produto, divisão, composição ou inversão (se o domínio é um intervalo) de funções contínuas, **é contínua no seu domínio natural**.

Exemplo 5. São funções contínuas (contínuas em seus domínios naturais):

- 1. função constante;
- 2. função módulo |x|;
- 3. função potência x^n , com $n \in \mathbb{N}$: produto de funções contínuas;
- 4. funções polinomiais: soma e produto de funções contínuas;
- 5. funções racionais: quociente de funções contínuas;
- 6. **função raiz** *n***-ésima**: inversa de função contínua definida em intervalo;
- 7. $\sin x \in \cos x$: usaremos o "primeiro limite fundamental";
- 8. as demais funções trigonométricas tan, sec, csc, cot: quociente de funções contínuas;
- 9. **funções trigonométricas inversas**: inversas de funções contínuas definidas em intervalos;
- 10. função exponencial e^x : usaremos o "segundo limite fundamental";
- 11. ln x: inversa de função contínua definida em intervalo;
- 12. funções hiperbólicas: soma e produto de funções contínuas;
- 13. funções hiperbólicas inversas: composta de funções contínuas;
- 14. função potência x^a com $a \in \mathbb{R}$, $a \neq 1$: composta de contínuas $x^a = e^{a \ln x}$;
- 15. função logarítmica $\log_a x = \frac{1}{\ln a} \ln x$, com a > 0, $a \neq 1$: produto de funções contínuas;
- 16. função exponencial a^x , com a > 0, $a \neq 1$: inversa de contínua $\log_a x$.

Exemplo 6. Exercícios 20 e 21 em Slides de Exercícios.

C.16 Limites laterais: definição

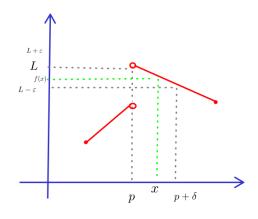
Seja $f: D_f \to \mathbb{R}$

• se p é ponto de acumulação de D_f , $\lim_{x\to p} f(x) = L$ significa

 $\forall \, \varepsilon > \mathbf{0} \,\, \exists \, \delta > \mathbf{0} \,\, \mathrm{tal} \,\, \mathrm{que} \,\, \mathbf{x} \in \mathbf{D_f} \,\, \mathbf{e} \,\, \mathbf{0} < |\mathbf{x} - \mathbf{p}| < \delta \,\, \mathrm{implica} \,\, |\mathbf{f}(\mathbf{x}) - \mathbf{L}| < \varepsilon$

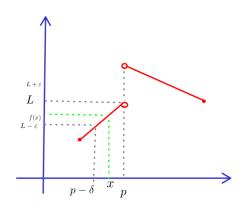
• se p é ponto de acumulação de $D_f \cap (p, \infty)$, $\lim_{\mathbf{x} \to \mathbf{p}^+} f(x) = L$ significa

 $\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{tal que } \mathbf{x} \in \mathbf{D_f} \ \mathbf{e} \ \mathbf{p} < \mathbf{x} < \mathbf{p} + \delta \ \text{implica} \ |\mathbf{f}(\mathbf{x}) - \mathbf{L}| < \varepsilon$



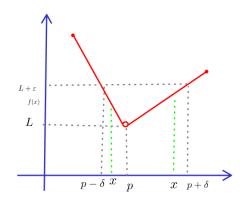
• se p é ponto de acumulação de $D_f \cap (-\infty, p)$, $\lim_{\mathbf{x} \to \mathbf{p}^-} f(x) = L$ significa

 $\forall \, \varepsilon > \mathbf{0} \,\, \exists \, \delta > \mathbf{0} \,\, \mathrm{tal} \,\, \mathrm{que} \,\, \mathbf{x} \in \mathbf{D_f} \,\, \mathbf{e} \,\, \mathbf{p} - \delta < \mathbf{x} < \mathbf{p} \,\, \mathrm{implica} \,\, |\mathbf{f}(\mathbf{x}) - \mathbf{L}| < \varepsilon$



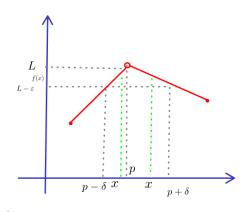
• se p é ponto de acumulação de D_f , $\lim_{x\to p} f(x) = \mathbf{L}^+$ significa

 $\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{tal que } \mathbf{x} \in \mathbf{D_f} \ \mathbf{e} \ \mathbf{0} < |\mathbf{x} - \mathbf{p}| < \delta \ \text{implica} \ \mathbf{L} \le \mathbf{f}(\mathbf{x}) < \mathbf{L} + \varepsilon$



• se p é ponto de acumulação de D_f , $\lim_{x\to p} f(x) = \mathbf{L}^-$ significa

 $\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{tal que } \mathbf{x} \in \mathbf{D_f} \ \mathbf{e} \ 0 < |\mathbf{x} - \mathbf{p}| < \delta \ \text{implica} \ \mathbf{L} - \varepsilon < \mathbf{f}(\mathbf{x}) \le \mathbf{L}$



-
-

Teorema.

Seja $f: D_f \to \mathbb{R}$ e seja p ponto de acumulação de $D_f \cap (p, \infty)$ e de $D_f \cap (-\infty, p)$. Então vale a seguinte equivalência:

$$\exists \lim_{\mathbf{x} \to \mathbf{p}} \mathbf{f}(\mathbf{x}) = \mathbf{L} \qquad \Longleftrightarrow \qquad \exists \lim_{\mathbf{x} \to \mathbf{p}^+} \mathbf{f}(\mathbf{x}) = \lim_{\mathbf{x} \to \mathbf{p}^-} \mathbf{f}(\mathbf{x}) = \mathbf{L}$$

Também valem análogos dos teoremas sobre operações com limites e limite da composta:

- \bullet substituindo $x \to p$ por $x \to p^+$ e 0 < |x-p| < r por p < x < p + r
- substituindo $x \to p$ por $x \to p^-$ e 0 < |x p| < r por p r < x < p
- substituindo $y \to a$ por $y \to a^+$ e a por a^+
- substituindo $y \to a$ por $y \to a^-$ e a por a^-

Exemplo:

Teorema.

Sejam

$$f: D_f \to \mathbb{R}, \quad g: D_q \to \mathbb{R}, \quad Im(f) \subseteq D_q,$$

p ponto de acumulação de $D_f\cap(p,\infty)$, a ponto de acumulação de $D_g\cap(-\infty,a)$,

$$\lim_{x \to p^+} f(x) = a^-, \qquad \lim_{y \to a^-} g(y) = L.$$

Além disso, valha pelo menos UMA entre

- (a) $a \in D_g$ e g contínua em a,
- (b) $\exists r > 0 : x \in D_f \ e \ p < x < p + r \Rightarrow f(x) \neq a$.

Então

$$\lim_{x \to p^+} g \circ f(x) = L.$$

Exemplo 7. Exercícios 22 e 23 em Slides de Exercícios.

C.17 Outros teoremas sobre limites

Considere funções $f, g, h: D \to \mathbb{R}$ e seja p ponto de acumulação de D.

C.17.1 Unicidade, conservação de sinal e comparação

Teorema (Unicidade do limite).

Se

$$\exists \lim_{x \to p} f(x) = L_1$$
 $e \exists \lim_{x \to p} f(x) = L_2$

então $L_1 = L_2$

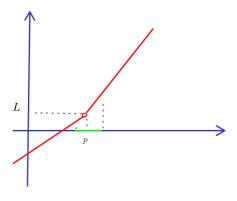
Teorema (de conservação do sinal).

Se

$$\exists \lim_{x \to p} f(x) = L > 0 \text{ (resp. } L < 0)$$

então

$$\exists \, r > 0: \ x \in D \ e \ 0 < |x - p| < r \ \Rightarrow f(x) > 0 \ \ (resp. \ f(x) < 0)$$

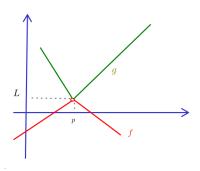


Teorema (de comparação).

Se

$$\exists r > 0: x \in D \ e \ 0 < |x - p| < r \ \Rightarrow f(x) \le g(x) \quad (\text{ou } f(x) < g(x))$$
$$\exists \lim_{x \to p} f(x) = L_f \qquad e \quad \exists \lim_{x \to p} g(x) = L_g$$

então $L_f \leq L_g$.



C.17.2 Confronto e Anulamento

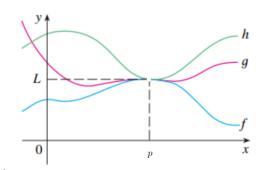
Teorema (de confronto).

Se

$$\exists \, r > 0: \, x \in D \, e \, 0 < |x - p| < r \, \Rightarrow f(x) \le g(x) \le h(x) \qquad \text{(ou } f(x) < g(x) < h(x))$$

$$\exists \, \lim_{x \to p} f(x) = \lim_{x \to p} h(x) = L$$

então $\exists \lim_{x \to p} g(x) = L$



Fonte: Stewart, Cálculo, vol. 1

Exemplo 8. Exercício 24 em Slides de Exercícios: Verifique que

$$\lim_{x \to p} f(x) = 0 \Longleftrightarrow \lim_{x \to p} |f(x)| = 0.$$

Teorema (do anulamento).

Se f é limitada numa vizinhança de p, ou seja,

$$\exists M > 0, \exists r > 0: x \in D \ e \ 0 < |x - p| < r \implies |f(x)| \le M$$

e

$$\lim_{x \to p} g(x) = 0$$

então $\lim_{x\to p} f(x)g(x) = 0.$

Todos os teoremas desta seção valem:

- \bullet substituindo $x \to p$ por $x \to p^+$ e 0 < |x-p| < r por p < x < p + r
- substituindo $x \to p$ por $x \to p^-$ e 0 < |x-p| < r por p-r < x < p

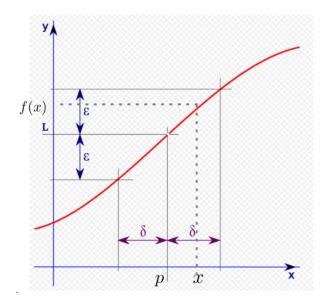
Exemplo 9. Exercício 25 em Slides de Exercícios.

C.18 Limites infinitos: definição

Se $f: D_f \to \mathbb{R}$ e p é ponto de acumulação de D_f

• $\lim_{x \to p} f(x) = L$ significa

 $\forall\,\varepsilon>\mathbf{0}\,\,\exists\,\delta>\mathbf{0}\,\,\mathrm{tal}\,\,\mathrm{que}\,\,\mathbf{x}\in\mathbf{D_f}\,\,\mathbf{e}\,\,\mathbf{0}<|\mathbf{x}-\mathbf{p}|<\delta\,\,\mathrm{implica}\,\,|\mathbf{f}(\mathbf{x})-\mathbf{L}|<\varepsilon$



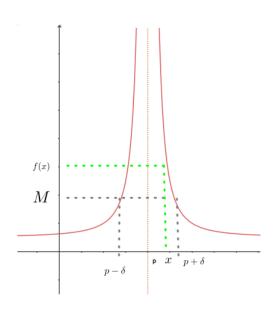
Massa & Peron

SMA801 - Cálculo 1

Calc. Dif. & Int.

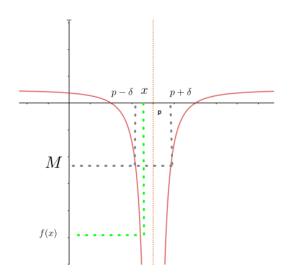
• $\lim_{x \to p} f(x) = +\infty$ significa

 $\forall\,\mathbf{M}\in\mathbb{R}\,\,\exists\,\delta>\mathbf{0}\,\,\mathrm{tal}\,\,\mathrm{que}\,\,\mathbf{x}\in\mathbf{D_f}\,\,\mathbf{e}\,\,\mathbf{0}<|\mathbf{x}-\mathbf{p}|<\delta\,\,\mathrm{implica}\,\,\mathbf{f}(\mathbf{x})>\mathbf{M}$



• $\lim_{x \to p} f(x) = -\infty$ significa

 $\forall\,\mathbf{M}\in\mathbb{R}\,\,\exists\,\delta>\mathbf{0}\,\,\mathrm{tal}\,\,\mathrm{que}\,\,\mathbf{x}\in\mathbf{D_f}\,\,\mathbf{e}\,\,\mathbf{0}<|\mathbf{x}-\mathbf{p}|<\delta\,\,\mathrm{implica}\,\,\mathbf{f}(\mathbf{x})<\mathbf{M}$



C.19 Limites no infinito: definição

Se $f:D_f\to\mathbb{R}$ e D_f não é limitado superiormente

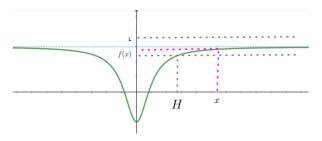
Massa~ &~ Peron

 ${\bf SMA801}$ - Cálculo 1

Calc. Dif. & Int.

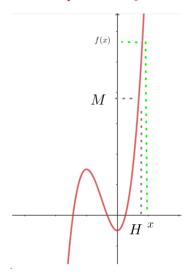
• $\lim_{x \to +\infty} f(x) = L$ significa

 $\forall \varepsilon > 0 \ \exists H \in \mathbb{R} \ \text{tal que } \mathbf{x} \in \mathbf{D_f} \ \mathbf{e} \ \mathbf{x} > \mathbf{H} \ \text{implica} \ |\mathbf{f}(\mathbf{x}) - \mathbf{L}| < \varepsilon$



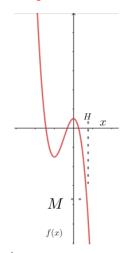
• $\lim_{x \to +\infty} f(x) = +\infty$ significa

 $\forall\,M\in\mathbb{R}\,\,\exists\,H\in\mathbb{R}\,\,\mathrm{tal}\,\,\mathrm{que}\,\,x\in D_f\,\,e\,\,x>H\,\,\mathrm{implica}\,\,f(x)>M$



• $\lim_{\mathbf{x} \to +\infty} f(x) = -\infty$ significa

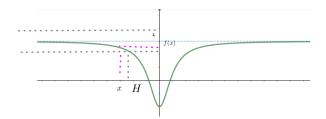
 $\forall\,M\in\mathbb{R}\,\,\exists\,H\in\mathbb{R}\,\,\mathrm{tal}\,\,\mathrm{que}\,\,\mathbf{x}\in\mathbf{D_f}\,\,\mathbf{e}\,\,\mathbf{x}>H\,\,\mathrm{implica}\,\,\mathbf{f}(\mathbf{x})<\mathbf{M}$



Se $f: D_f \to \mathbb{R}$ e D_f não é limitado inferiormente

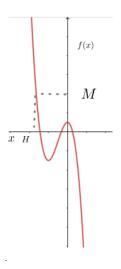
• $\lim_{\mathbf{x} \to -\infty} f(x) = L$ significa

 $\forall \varepsilon > 0 \ \exists \mathbf{H} \in \mathbb{R} \ \mathrm{tal} \ \mathrm{que} \ \mathbf{x} \in \mathbf{D_f} \ \mathbf{e} \ \mathbf{x} < \mathbf{H} \ \mathrm{implica} \ |\mathbf{f}(\mathbf{x}) - \mathbf{L}| < \varepsilon$



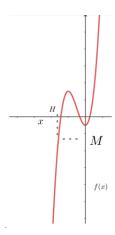
• $\lim_{x \to -\infty} f(x) = +\infty$ significa

 $\forall\,M\in\mathbb{R}\,\,\exists\,H\in\mathbb{R}\,\,\mathrm{tal}\,\,\mathrm{que}\,\,x\in D_f\,\,e\,\,x< H\,\,\mathrm{implica}\,\,f(x)>M$



• $\lim_{x \to -\infty} f(x) = -\infty$ significa

 $\forall\,M\in\mathbb{R}\,\,\exists\,H\in\mathbb{R}\,\,\mathrm{tal}\,\,\mathrm{que}\,\,x\in D_f\,\,e\,\,x< H\,\,\mathrm{implica}\,\,f(x)< M$



C.20 Propriedades dos limites infinitos

Sejam $f,g:D\to\mathbb{R}$ e seja p ponto de acumulação de D. Considere limites para $x\to p$.

- se $f \to +\infty$, $g \to +\infty$ então $f + g \to +\infty$, $fg \to +\infty$
- se $f \to -\infty$, $g \to -\infty$ então $f + g \to -\infty$, $fg \to +\infty$
- se $f \to +\infty$, $g \to -\infty$ então f + g DÚVIDA!, $fg \to -\infty$

• se
$$f \to L$$
, $g \to +\infty$ então $f+g \to +\infty$, $fg \to \begin{cases} +\infty & se \ L > 0 \\ -\infty & se \ L < 0 \end{cases}$
DÚVIDA! se $L=0$

• se
$$f \to L$$
, $g \to -\infty$ então $f + g \to -\infty$, $fg \to \begin{cases} -\infty & se \ L > 0 \\ +\infty & se \ L < 0 \end{cases}$
DÚVIDA! se $L = 0$

• se
$$c \in \mathbb{R} \setminus \{0\}$$
 e $f \to +\infty$ ou $f \to -\infty$ então $\frac{c}{f} \to 0$

A saber,

se
$$f \to +\infty$$
, então $\frac{c}{f} \to 0^+$ se $c > 0$; $\frac{c}{f} \to 0^-$ se $c < 0$

ou

se
$$f \to -\infty$$
, então $\frac{c}{f} \to 0^-$ se $c > 0$; $\frac{c}{f} \to 0^-$ se $c < 0$.

²Os mesmos resultados valem se $x \to +\infty$ ou $x \to -\infty$ ou $x \to p^+$ ou $x \to p^-$.

$$ullet$$
 se $f o 0^+$ então $\dfrac{1}{f} o +\infty$ (desde que p seja de acumulação para $D_{1/f}$)

$$\frac{c}{f} \to +\infty \text{ se } c > 0; \qquad \frac{c}{f} \to -\infty \text{ se } c < 0$$

$$ullet$$
 se $f o 0^-$ então $\dfrac{1}{f} o -\infty$ (desde que p seja de acumulação para $D_{1/f}$)

$$\frac{c}{f} \to -\infty$$
 se $c > 0$; $\frac{c}{f} \to +\infty$ se $c < 0$

Nota. São indeterminações:

$$(+\infty) + (-\infty) \qquad 0.\infty \qquad \frac{\infty}{\infty}$$

$$\frac{0}{0} \qquad 0^0$$

$$\infty^0 \qquad 1^\infty$$

Não é indeterminação: $\frac{0}{\infty}$. Basta reescrever " $\frac{0}{\infty} = 0\frac{1}{\infty} = 0.0 = 0$ ".

Definição C.20.1. Dizemos que a reta:

• x = p é uma assíntota vertical (AV) do gráfico de f quando:

$$\lim_{\mathbf{x} \to \mathbf{p}} f(x) = \pm \infty \quad \text{ou} \quad \lim_{\mathbf{x} \to \mathbf{p}^+} f(x) = \pm \infty \quad \text{ou} \quad \lim_{\mathbf{x} \to \mathbf{p}^-} f(x) = \pm \infty$$

• y = L é uma assíntota horizontal (AH) do gráfico de f quando:

$$\lim_{\mathbf{x} \to +\infty} f(x) = L$$
 ou $\lim_{\mathbf{x} \to -\infty} f(x) = L$

Teorema (de confronto com limites infinitos).

Sejam $f, g: D \to \mathbb{R}$ e seja p ponto de acumulação de D. Suponha que

$$\exists r > 0: x \in D \ e \ 0 < |x - p| < r \implies f(x) \le g(x)$$

Então:

$$se \lim_{x \to p} f(x) = +\infty \quad \textbf{então} \quad \lim_{x \to p} g(x) = +\infty$$

$$se \lim_{x \to p} g(x) = -\infty \quad \textbf{então} \quad \lim_{x \to p} f(x) = -\infty$$

Ainda,

- no Teorema do Limite da composta, podemos ter $\pm \infty$ no lugar de a ou no lugar de L;
- os teoremas de unicidade e de permanência do sinal valem também se os limites valem $\pm \infty$;

C.21Propriedades dos limites no infinito

Todos os teoremas vistos ainda valem

- substituindo
 - $-x \to p \text{ por } x \to +\infty,$ $-\exists r > 0 : \dots 0 < |x - p| < r \dots \text{ por } \exists H \in \mathbb{R} : \dots x > H \dots$

 - -p de acumulação de D_f por D_f não limitado superiormente
- \bullet substituindo
 - $-x \to p \text{ por } x \to -\infty,$
 - $-\exists r > 0 : \dots 0 < |x p| < r \dots \text{ por } \exists H \in \mathbb{R} : \dots x < H \dots,$
 - -p de acumulação de D_f por D_f não limitado inferiormente

PS: também valem análogos com limites laterais.

Exemplo 10. Exercícios 27 e 28 em Slides de Exercícios.

C.22 Limites Fundamentais

C.22.1 Primeiro limite fundamental: $\lim_{x\to 0} \frac{\sin x}{x}$



 $area(\Delta OAP) < area(setor\,circular\,OAP) < area(\Delta OAT)$

$$0 < \frac{\sin x}{2} \stackrel{(*)}{<} \frac{x}{2} < \frac{\tan x}{2} \Longleftrightarrow \cos x < \frac{\sin x}{x} < 1, \quad 0 < x < \frac{\pi}{2}$$

$$\cos x < \frac{\sin x}{x} \stackrel{(**)}{<} 1, \quad -\frac{\pi}{2} < x < 0$$

Portanto,

$$\cos x < \frac{\sin x}{x} < 1, \quad |x| < \frac{\pi}{2}, \ x \neq 0 \qquad (***)$$

A função seno é contínua em 0:

use (*), (**) e o Teorema do Confronto;

A função cosseno é contínua em 0:

use $\cos x = \sqrt{1 - \sin^2 x}$, para x numa vizinhança de 0;

As funções seno e cosseno são contínuas em \mathbb{R} :

use $\lim_{x\to p} \cos x = \lim_{y\to 0} \cos(y+p)$;

•

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

use (***) e o Teorema do Confronto.

Exemplo 11. Exercício 30 em Slides de Exercícios.

C.22.2 Segundo limite fundamental: $\lim_{x\to +\infty} \left(1+\frac{1}{x}\right)^x$

Sequência: $n \in \mathbb{N}$: n = 1, 2, 3, ..., 300, ..., 3.000, ..., 30.000, ...

$$\left(1+\frac{1}{n}\right)^n: 2, 2.25, 2.370, \dots, 2.713765, \dots, 2.7178289, \dots, 2.7182365, \dots$$

- $x \in \mathbb{R} \Longrightarrow \exists n \in \mathbb{N} \text{ tal que } n \leq x \leq n+1$
- •

$$\underbrace{\left(1+\frac{1}{n}\right)^{n}\left(1+\frac{1}{n}\right)}_{\downarrow} \ge \left(1+\frac{1}{x}\right)^{x} \ge \underbrace{\left(1+\frac{1}{n+1}\right)^{n+1}}_{\downarrow} \underbrace{\frac{1}{\left(1+\frac{1}{n+1}\right)}}_{\downarrow}$$

$$e \qquad 1$$

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e$$

Formas equivalentes do segundo limite fundamental:

$$\lim_{x\to -\infty} \left(1+\frac{1}{x}\right)^x = e$$

$$\lim_{x \to 0} (1+x)^{1/x} = e$$

Limites úteis:

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

Consequência:

A função exponencial e^x é contínua em 0.

Mas,

$$\lim_{x \to 0} e^x = e^0 \iff \lim_{x \to 0} (e^x - 1) = 0.$$

$$\lim_{x \to 0} (e^x - 1) = \lim_{x \to 0} \frac{e^x - 1}{x} x = 0.$$

A função exponencial e^x é contínua em \mathbb{R} .

$$\lim_{x \to p} e^x \quad \overset{u = x - p}{\underset{u \to 0}{=}} \quad \lim_{u \to 0} e^{u + p} = \lim_{u \to 0} e^u e^p = e^0 e^p = e^p$$

C.23 Teoremas sobre funções contínuas

Teorema (de conservação do sinal para funções contínuas).

Seja $f: D \to \mathbb{R}$, seja $p \in D$ um ponto de acumulação de D e seja f contínua em p. Se f(p) > 0 (resp. f(p) < 0), então

$$\exists r > 0: x \in D \ e \ |x - p| < r \ \Rightarrow f(x) > 0 \ (resp. \ f(x) < 0)$$

Teorema (Teorema de Bolzano (ou dos zeros)).

Seja $f:[a,b] \to \mathbb{R}$ contínua, com f(a)f(b) < 0, então existe $c \in (a,b): f(c) = 0$.

Corolário (Teorema do valor intermediário).

Seja $f:[a,b]\to\mathbb{R}$ contínua, e seja $\gamma\in\mathbb{R}$ tal que

$$f(a) > \gamma > f(b)$$
 ou $f(a) < \gamma < f(b)$

então existe $c \in (a, b)$: $f(c) = \gamma$.

Em particular f assume todos os valores entre f(a) e f(b).

Teorema (Teorema de Weiestrass).

Seja $f:[a,b] \to \mathbb{R}$ contínua, então existem $x_1, x_2 \in [a,b]: f(x_1) \le f(x) \le f(x_2) \ \forall x \in [a,b].$

Corolário.

Seja $f:[a,b] \to \mathbb{R}$ contínua, então

$$Im(f) = [m, M],$$

onde m, M são, respectivamente, o mínimo e o máximo de f.

bisec.c bisec.exe

C.24 Introdução Derivada

Problema:

Dada $f: D_f \to \mathbb{R}$ e $p \in D_f$ um ponto de acumulação de D_f , queremos **determinar a reta** tangente ao gráfico de f no ponto P = (p, f(p)).

Considerações:

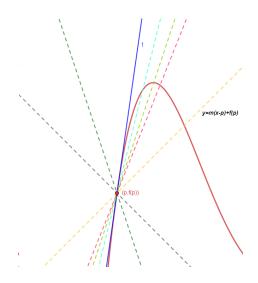
• pelo ponto P = (p, f(p)) passam infinitas retas, que podem ser distinguidas pelo coeficiente angular: y = m(x - p) + f(p).

Massa & Peron

SMA801 - Cálculo 1

Calc. Dif. & Int.

• o que exatamente define uma reta tangente?



Definição:

Sejam $f,g:D\to\mathbb{R}$ e pum ponto de acumulação de D.

Diremos

"
$$\mathbf{f}(\mathbf{x}) = \sigma(\mathbf{g}(\mathbf{x}))$$
 quando $x \to p$ "

 $(f \in \mathbf{ozinho} de g quando x tende a p),$

(f 'e infinit'esima com respeito a g quando x tende a p),

se

$$\lim_{x \to p} \frac{f(x)}{g(x)} = 0.$$

Exemplos:

$$\ln(1+x) = \sigma(1)$$
 quando $x \to 0$
 $\sin(x^2) = \sigma(x)$ quando $x \to 0$
 $\sin(x) = \sigma(x)$ quando $x \to \infty$

Cuidado:

$$x^2 = \sigma(x)$$
 quando $x \to 0$
 $x = \sigma(x^2)$ quando $x \to +\infty$

Definição C.24.1. Reta tangente ao gráfico de f em (p, f(p)):

é a única (se existir) reta r que passa por (p, f(p)) que satisfaz a propriedade:

$$f(x) - r(x) = \sigma(x - p)$$
 quando $x \to p$,

isto é, tal que

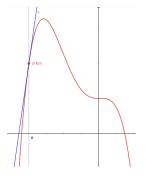
$$\lim_{x \to p} \frac{f(x) - r(x)}{x - p} = 0.$$

r é a função afim que (neste sentido) melhor aproxima a função f, próximo de p.

Massa & Peron

SMA801 - Cálculo 1

Calc. Dif. & Int.



•

$$\lim_{x \to p} \frac{f(x) - r(x)}{x - p} = \lim_{x \to p} \frac{f(x) - f(p) - m(x - p)}{x - p}$$
$$= \lim_{x \to p} \left(\frac{f(x) - f(p)}{x - p}\right) - m$$

•

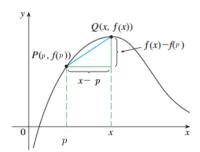
$$\lim_{x \to p} \frac{f(x) - r(x)}{x - p} = 0 \Longleftrightarrow \lim_{x \to p} \left(\frac{f(x) - f(p)}{x - p} \right) = m$$

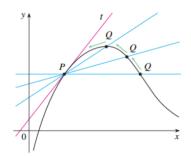
Logo, a reta tangente ao gráfico de f em (p, f(p)) é a reta com inclinação:

$$m = \lim_{x \to p} \frac{f(x) - f(p)}{x - p}$$

Nota. O limite acima pode ser visto como o limite quando $t \to p$, do coeficiente angular $m_{p,x}$ da reta secante ao gráfico de f em (p, f(p)) e em (x, f(x)):

$$m_{p,x} = \frac{f(x) - f(p)}{x - p}.$$





uma secante outra secante ...limite

QUAL É A VELOCIDADE/ACELERAÇÃO MÉDIA? VELOCIDADE/ACELERAÇÃO INSTANTÂNEA?

C.25 Definição de derivada

Seja $f: D_f \to \mathbb{R}$ e $p \in D_f$ um ponto de acumulação de D_f .

• Se existir

$$\lim_{\mathbf{x} \to \mathbf{p}} \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{p})}{\mathbf{x} - \mathbf{p}} = \mathbf{L} \ \in \mathbb{R} \,,$$

então dizemos que

- \blacksquare f é derivável (ou diferenciável) em p,
- L é a derivada de f em p; notação: f'(p) := L.
- Se o limite n\(\tilde{a}\) existir (ou for infinito), dizemos que
 f n\(\tilde{a}\) é deriv\(\tilde{a}\) vel (ou diferenc\(\tilde{a}\) vel) em p.

y ----- *y* ----- *y*

O limite acima é equivalente ao seguinte limite:

$$\lim_{\mathbf{h}\to\mathbf{0}}\frac{\mathbf{f}(\mathbf{p}+\mathbf{h})-\mathbf{f}(\mathbf{p})}{\mathbf{h}}.$$

Dado um conjunto $A \subset D_f \subseteq \mathbb{R}$

- se f é derivável em p para todo $p \in A$ dizemos f é derivável em A,
- se f é derivável em p para todo $p \in D_f$ dizemos f é derivável.

Podemos então definir uma nova função: a função derivada de f:

$$\mathbf{f}': \mathbf{D}_{\mathbf{f}'} \to \mathbb{R}: \mathbf{p} \mapsto \mathbf{f}'(\mathbf{p})$$

onde $D_{f'} = \{ p \in D_f : p \text{ \'e de acumul. de } D_f \text{ e } f \text{ \'e deriv\'avel em } p \}$

Notações:
$$f' = \frac{df}{dx} = \frac{dy}{dx} = Df$$

$$f'(p) = \frac{df}{dx}(p) = \left. \frac{dy}{dx} \right|_{x=p} = Df(p)$$

C.25.1 Algumas interpretações de derivada

- derivada é a inclinação de reta tangente à gráfico de função
- se f(t) indica a posição ao longo de uma reta de uma partícula em função do tempo, então f'(t) indica a **velocidade instantânea**
- se f(t) indica a velocidade ao longo de uma reta de uma partícula em função do tempo, então f'(t) indica a aceleração instantânea
- mais em geral, se f(t) indica uma certa quantidade física em função do tempo, então
 f' indica a taxa de variação desta quantidade.
 exemplo: c(t) é a concentração de um reagente numa solução, então c'(t) taxa de variação da concentração.
- se f(x) indica uma certa quantidade física A em função de outra quantidade B, então
 f' indica a taxa de variação de A com respeito a B.
 exemplo: V(P) é o volume de um gás em função da Pressão P, então V'(P) é a taxa de variação do volume em função da pressão

Exemplo 12. Exercícios 32 e 33 em Slides de Exercícios.

Teorema.

Seja $f: D_f \to \mathbb{R}$ e $p \in D_f$ um ponto de acumulação de D_f . Se f é derivável em p então f é contínua em p.

Exemplo 13. Exercícios 34, 35 e 36 em Slides de Exercícios.

C.26 Regras de derivação

Teorema (Operações com derivadas).

Sejam $f, g: D \to \mathbb{R}$, p ponto de acumulação de $D \in k \in \mathbb{R}$.

Se f e g são deriváveis em p, então

- kf, $f \pm g$, fg são deriváveis em p,
- f/g é derivável em p, desde que $g(p) \neq 0$,
- vale

$$\begin{cases} (kf)'(p) = k f'(p), \\ (f \pm g)'(p) = f'(p) \pm g'(p), \\ (fg)'(p) = f'(p)g(p) + f(p)g'(p), \\ \\ (f/g)'(p) = \frac{f'(p)g(p) - f(p)g'(p)}{(g(p))^2} & (\text{se } g(p) \neq 0). \end{cases}$$

Exemplo 14. Exercício 37 em Slides de Exercícios.

Teorema (Derivada da composta - Regra da cadeia). Sejam

$$f: D_f \to \mathbb{R}, \quad g: D_g \to \mathbb{R}, \quad Im(f) \subseteq D_g,$$
 $f \text{ derivável em } p, \quad g \text{ derivável em } f(p).$

 $(p\in D_f$ um ponto de acumulação de $D_f,\, f(p)\in D_g$ um ponto de acumulação de $D_g)$

Então $g \circ f$ é derivável em p e vale

$$(g \circ f)'(p) = g'(f(p)) \cdot f'(p).$$

Corolário (Derivabilidade das composições de deriváveis).

Qualquer função obtida via soma, diferença, produto, divisão ou composição de funções deriváveis, **é derivável**.

Exemplo 15. Exercícios 38 e 39 em Slides de Exercícios.

Teorema (Derivada da inversa).

Seja $f: A \to B$ contínua e bijetora onde A é um intervalo (e portanto f^{-1} é contínua). Se f derivável em x_0 e $f'(x_0) \neq 0$

então f^{-1} é derivável em $y_0 := f(x_0)$ e vale

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}$$

.

Exemplo 16. Exercícios 40 e 41 em Slides de Exercícios.

C.27 Tabela de derivadas

Funções Elementares: exponencial, potências, logaritmo

Função	domínio	Função derivada	domínio
$x^n \ (n \in \mathbb{N});$	$x \in \mathbb{R}$	$(x^n)' = nx^{n-1},$	$x \in \mathbb{R}$
$x^n = \frac{1}{x^{-n}}, (n \in \mathbb{Z});$	$x \in \mathbb{R} \setminus \{0\}$	$(x^n)' = nx^{n-1},$ $(x^n)' = nx^{n-1},$	$x \in \mathbb{R} \setminus \{0\}$
$\sqrt[n]{x}$ (n par);	$x \in [0, \infty)$	$\left (\sqrt[n]{x})' = \frac{1}{n} x^{n-1}, \right $	$x \in (0, \infty)$
$\sqrt[n]{x}$; $(n \text{ impar})$	$x \in \mathbb{R}$	$\left (\sqrt[n]{x})' = \frac{1}{n} x^{n-1}, \right $	$x \in \mathbb{R}$
$\sqrt[q]{x^p}$; $(p \in \mathbb{Z}, q \in \mathbb{N},)$	$x \in D$	$(x^{p/q})' = \frac{p}{q} x^{\frac{p}{q} - 1},$	$x \in D \setminus \{0\}$
$x^{\alpha}; \ (\alpha \in \mathbb{R} \setminus \mathbb{Q})$	$x \in (0, \infty)$	$(x^{\alpha})' = \alpha x^{\alpha - 1}$	$x \in (0, \infty)$

 $(x^{\beta})' = \beta x^{\beta-1}$, com os devidos cuidados com os domínios

e^x ,	$x \in \mathbb{R}$	$(e^x)' = e^x,$	$x \in \mathbb{R}$
$ \ln(x), \\ \ln(-x), $	$x \in (0, \infty)$ $x \in (-\infty, 0)$	$\left (\ln x)' = \frac{1}{x}, \right $	$x \in \mathbb{R} \setminus \{0\}$

Funções elementares: trigonométricas e trigonométricas inversas

Função	Domínio	Função derivada	Domínio
$\sin x$,	$x \in \mathbb{R}$	$(\sin x)' = \cos x,$	$x \in \mathbb{R}$
$\cos x$,	$x \in \mathbb{R}$	$(\cos x)' = -\sin x,$	$x \in \mathbb{R}$
$\sec x;$	(* em apropriados intervalos)	$(\sec x)' = \sec x \tan x$	
$\tan x;$	(* em apropriados intervalos)	$(\tan x)' = \sec^2 x$	
$\arctan x$,	$x \in \mathbb{R};$	$\arctan x)' = \frac{1}{1+x^2},$	$x \in \mathbb{R}$
$\arcsin x$,	$x \in [-1, 1]$	$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}},$	$x \in (-1, 1)$
$\arccos x,$	$x \in [-1, 1]$	$(\arccos x)' = \frac{-1}{\sqrt{1-x^2}},$	$x \in (-1, 1)$
$\operatorname{arcsec} x,$	x > 1	$(\operatorname{arcsec} x)' = \frac{1}{x\sqrt{x^2 - 1}},$	x > 1

Funções elementares: hiperbólicas e hiperbólicas inversas

Função e seu domínio	Função derivada e seu domínio
$ \sinh^{-1} x = \ln\left(x + \sqrt{1 + x^2}\right), x \in \mathbb{R} $	$(\sinh^{-1} x)' = \frac{1}{\sqrt{1+x^2}}, x \in \mathbb{R}$
$\cosh^{-1} x = \ln\left(x + \sqrt{x^2 - 1}\right), x \ge 1$	$(\cosh^{-1} x)' = \frac{1}{\sqrt{x^2 - 1}}, x > 1$
$\operatorname{sech}^{-1} x = \ln\left(\frac{1 + \sqrt{1 - x^2}}{x}\right), 0 < x \le 1$	$(\operatorname{sech}^{-1} x)' = \frac{-1}{x\sqrt{1-x^2}}, 0 < x < 1$
$ \tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right), x < 1 $	$(\tanh^{-1} x)' = \frac{1}{1 - x^2}, x < 1$
$\operatorname{cotanh}^{-1} x = \frac{1}{2} \ln \left(\frac{1+x}{x-1} \right), x > 1$	$(\operatorname{cotanh}^{-1} x)' = \frac{1}{1 - x^2}, x > 1$

Pela Regra da Cadeia: se u = u(x) é uma função derivável, então:

* com devidos cuidados com os dominios! *

$$\bullet \ \frac{d(u^n)}{dx} = nu^{n-1} \mathbf{u'}$$

•
$$\frac{d(a^u)}{dx} = a^u(\ln a)\mathbf{u'}$$
 $(::(e^u)' = e^u\mathbf{u'})$

$$\bullet \ \frac{d(\ln|u|)}{dx} = \frac{1}{u} u'$$

$$\bullet \ \frac{d(\sin u)}{dx} = \cos(u)u'$$

•
$$\frac{d(\cos u)}{dx} = -\sin(u)u'$$

•
$$\frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1 - u^2}} u' \qquad (|u| < 1)$$

•
$$\frac{d(\sinh u)}{dx} = \cosh(u)u'$$

•
$$\frac{d(\cosh u)}{dx} = \sinh(u)u'$$

Usando a Regra da Cadeia, podemos obter a regra:

$$D(f(x)^{g(x)}) = f(x)^{g(x)} \left(g'(x) \ln(f(x)) + g(x) \frac{f'(x)}{f(x)} \right)$$

$$x^2 \sin(1/x)$$

C.28 Derivadas de ordem superior

Seja $f: D_f \to \mathbb{R}$ derivável em $D_{f'}$ e $p \in D_{f'}$ um ponto de acumulação de $D_{f'}$.

• Se existir

$$\lim_{t\to p}\frac{f'(t)-f'(p)}{t-p}=L\ \in\mathbb{R}\,,$$

então dizemos que

- \blacksquare f é duas vezes derivável em p,
- L é a derivada segunda de f em p; notação: $\mathbf{f}''(\mathbf{p}) := L$.
- Se o limite não existir (ou for infinito), dizemos que

f não é duas vezes derivável em p.

Podemos então definir uma nova função: a função derivada segunda de f:

$$\mathbf{f}'':\mathbf{D}_{\mathbf{f}''}\to\mathbb{R}:\mathbf{p}\mapsto\mathbf{f}''(\mathbf{p})$$

onde

 $D_{f''} = \{ p \in D_{f'} : p \text{ \'e de acumul. de } D_{f'} \text{ e } f \text{ \'e duas vezes deriv\'avel em } p \}$

Seja $f: D_f \to \mathbb{R}$ derivável k vezes em $D_{f^{(k)}}$ e $p \in D_{f^{(k)}}$ um ponto de acumulação de $D_{f^{(k)}}$.

• Se existir

$$\lim_{t\to \mathbf{p}}\frac{f^{(\mathbf{k})}(t)-f^{(\mathbf{k})}(\mathbf{p})}{t-\mathbf{p}}=\mathbf{L}\ \in \mathbb{R}\,,$$

então dizemos que

- $\blacksquare f \notin k+1$ vezes derivável em p,
- L é a derivada (k+1)-ésima de f em p; not.: $\mathbf{f^{(k+1)}(p)} := L$.
- Se o limite não existir (ou for infinito), dizemos que

f não é k+1 vezes derivável em p.

Podemos então definir uma nova função: a função derivada (k+1)-ésima de f:

$$f^{(k+1)}:D_{f^{(k+1)}}\rightarrow \mathbb{R}:p\mapsto f^{(k+1)}(p)$$

onde

 $D_{f^{(k+1)}} = \{ p \in D_{f^{(k)}} : p \text{ \'e de acum. de } D_{f^{(k+1)}} \text{ e } f \text{ \'e } k+1 \text{ vezes deriv. em } p \}$

Dado um conjunto $A \subset D_f \subseteq \mathbb{R}$

- se $f \in k$ vezes derivável em p para todo $p \in A$ dizemos $f \notin k$ vezes derivável em A,
- se f é k vezes derivável em p para todo $p \in D_f$ dizemos f é k vezes derivável.

Exemplo 17. Exercício 42 em Slides de Exercícios.

C.29 Derivação implícita

Suponha y = f(x) para alguma função $f: I \subset \mathbb{R} \to \mathbb{R}$. Dizemos que a equação

$$F(x,y) = 0$$

define y como função de x implicitamente. Se f é diferenciável, podemos usar a Regra da Cadeia para encontrar a derivada de f.

Exemplo 18. Assumindo que $y = f(x), x \in I$, e que satisfaz a equação

$$F(x,y) = y^2x + \cos(xy) = 2,$$

então a equação F(x,y)=0, onde $F(x,y)=y^2x+\cos(xy)-2$ define y implicitamente.

Exemplo 19. Exercício 43 em Slides de Exercícios.

C.30 A differential

Seja $f: D_f \to \mathbb{R}$ derivável em p.

A diferencial de f em p é a função (linear)

$$df_p: \mathbb{R} \to \mathbb{R}: h \to f'(p)h$$

Pelo que vimos possui a propriedade que

$$f(x) - f(p) = df_p(x - p) + o(x - p)$$
, quando $x \to p$.

Resumo: se existir (real) $f'(p) := \lim_{t \to p} \frac{f(t) - f(p)}{t - p}$ então

• Derivada de f em p: é o número f'(p).

- Diferencial de f em p: é a função linear $df_p: \mathbb{R} \to \mathbb{R}: h \to f'(p)h$
- Reta tangente ao gráfico de f em p: é dada pela função afim

$$T_p(x): \mathbb{R} \to \mathbb{R}: x \to f(p) + f'(p)(x-p) = f(p) + df_p(x-p)$$

C.31 Máximos e mínimos

Seja $f: D_f \to \mathbb{R}$ e $p \in D_f$

• p é ponto de máximo global (absoluto) de f (PMA) se

$$\forall x \in D_f \text{ vale } f(x) \leq f(p)$$

- -f(p) é o valor máximo global (absoluto) de f (VMA).
- p é ponto de máximo local de f (PML) se

$$\exists \ \delta : \forall x \in D_f \cap V_\delta(p) \text{ vale } f(x) \leq f(p)$$

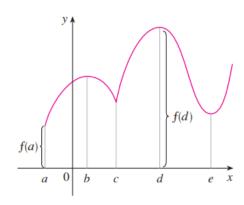
- -f(p) é o valor máximo local de f (VML).
- p é ponto de mínimo global (absoluto) de f (pma) se

$$\forall x \in D_f \text{ vale } f(x) \geq f(p)$$

- -f(p) é o valor mínimo global (absoluto) de f (vma).
- p é ponto de mínimo local de f (pml) se

$$\exists \ \delta : \forall x \in D_f \cap V_{\delta}(p) \text{ vale } f(x) > f(p)$$

- -f(p) é o valor mínimo local de f (vml).
- p é ponto de extremo (local ou global) de f se for ponto de máximo ou de mínimo (local ou global) de f.



Fonte: Stewart, Cálculo, vol.1. Se $f:[a,\infty)\to\mathbb{R}$, inferimos que a,c,e são pml, a é pma e b,d PML.

Qual a relação entre os pontos onde ocorre os extremos de f e a derivada de f nesses pontos?

Teorema (de Fermat). $f: D_f \to \mathbb{R} \in p \in D_f$.

Se $p \in D_f$ é ponto de extremo, então

- \bullet ou f não é derivável em p;
- ou f é derivável em p e f'(p) = 0.

Seja $f: D_f \to \mathbb{R}$ e $p \in D_f$

• p é **ponto crítico (pc) de** f se: f é derivável em p e f'(p) = 0 ou f não é derivável em p.

Consequências: Se $p \in D_f$ e

- p é ponto de extremo, então p é ponto crítico;
- $p \notin tal \ que \ f'(p) \neq 0$, então $p \ não \notin ponto \ de \ extremo$.

Exemplo 20. Exercício 44 em Slides de Exercícios.

RESUMO: Possíveis pontos de extremo (pontos de D_f):

- $\bullet\,$ pontos interiores de $D_{f'}$ que tenham derivada nula,
- \bullet pontos de D_f onde f não é derivável,
- ponto na borda de $D_{f'}$,
- pontos de D_f onde f não é contínua.

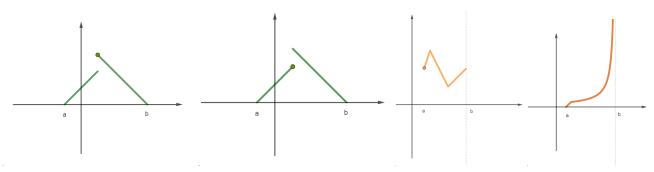
Como decidir quando um ponto crítico é um ponto de extremo local/absoluto?

Teorema (Teorema de Weiestrass).

Seja $f:[a,b]\to\mathbb{R}$ contínua no intervalo fechado [a,b]. Então existem

$$x_1, x_2 \in [a, b]: f(x_1) \le f(x) \le f(x_2), \quad \forall x \in [a, b],$$

ou seja, f assume o valor máximo absoluto e o valor mínimo absoluto.



Se alguma hipótese do T. Weierstrass não está contemplada, a função pode ou não assumir os valores extremos.

C.31.1 Máximos e mínimos absolutos em intervalos fechados

Se $f:[a,b] \to \mathbb{R}$ é uma função contínua no intervalo fechado [a,b]:

- 1. encontre os pontos $p \in (a, b)$ em que f é derivável e f'(p) = 0;
- 2. encontre os pontos $q \in (a, b)$ em que f não é derivável;

Massa & Peron

SMA801 - Cálculo 1

Calc. Dif. & Int.

- 3. calcule os valores de f em cada p e em cada q (valores de f nos pc);
- 4. calcule os valores de f em a e em b
- 5. o maior valor entre os valores dos passos 3 e 4 é o VMA de f em [a,b] e o menor valor desses valores é o vma de f em [a,b].

Exemplo 21. Exercício 45 em Slides de Exercícios.

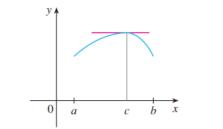
E QUANTO AOS EXTREMOS LOCAIS?

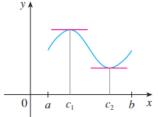
C.32 Uso da derivada primeira

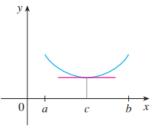
C.32.1 Teoremas importantes

Teorema C.32.1 (de Rolle).

Seja f contínua em [a, b] e derivável em (a, b): se f(a) = f(b) então existe $c \in (a, b)$ tal que f'(c) = 0.





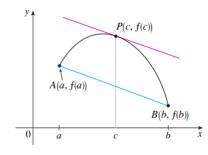


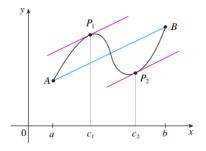
Fonte: Stewart, Cálculo, vol. 1. A reta tangente ao gráfico de f em (c, f(c)) é horizontal.

Teorema C.32.2 (do valor médio).

Seja f contínua em [a,b] e derivável em (a,b): então existe $c \in (a,b)$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$



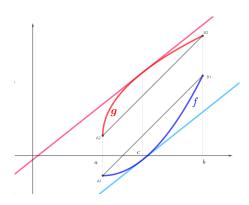


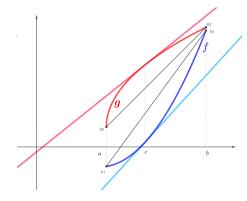
Fonte: Stewart, Cálculo, vol. 1. A reta tangente ao gráfico de f em (c, f(c)) é paralela à reta secante AB.

Teorema C.32.3 (de Cauchy).

Sejam f, g contínuas em [a, b] e deriváveis em (a, b): então existe $c \in (a, b)$ tal que

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$





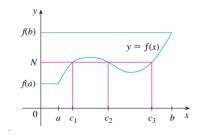
Geogebra. Na esquerda, as retas secantes A1B1 e A2B2 são paralelas e as retas tangentes aos gráficos de f e g em (c, f(c)) e (c, g(c)) são paralelas. Na direita, a reta secante A1B1 de f é mais inclinada que a reta secante A2B2 de g, e as inclinação da reta tangente ao gráfico de f em (c, f(c)) é mais inclinada que a reta tangente ao gráfico de g em (c, g(c)) na mesma proporção das inclinações das secantes.

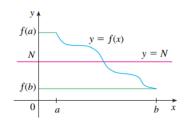
Teorema C.32.4 (do valor intermediário).

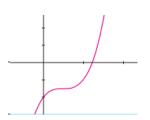
Seja $f:[a,b]\to\mathbb{R}$ contínua, e seja $N\in\mathbb{R}$ tal que

$$f(a) > N > f(b)$$
 ou $f(a) < N < f(b)$

então existe $c \in (a,b)$: f(c) = N. (Em particular f assume todos os valores entre f(a) e f(b).)







Fonte: Stewart, Cálculo, vol. 1

C.32.2 Relação entre f' e f

Corolário C.32.5.

Seja f contínua em [a, b] e derivável em (a, b):

- se f'(x) > 0 em (a, b), então f é estritamente crescente em [a, b],
- se $f'(x) \ge 0$ em (a, b), então f é crescente em [a, b],
- se f'(x) < 0 em (a, b), então f é estritamente decrescente em [a, b],
- se $f'(x) \le 0$ em (a, b), então f é decrescente em [a, b],
- se f'(x) = 0 em (a, b), então f é constante em [a, b].

Corolário. Se f e g são contínuas em [a,b], deriváveis em (a,b) com f'(x) = g'(x), para todo $x \in (a,b)$, então f = g + c é constante em (a,b).

Exemplo 22. Exercício 46 em Slides de Exercícios.

Também vale: se f é contínua em [a, b] e derivável em (a, b):

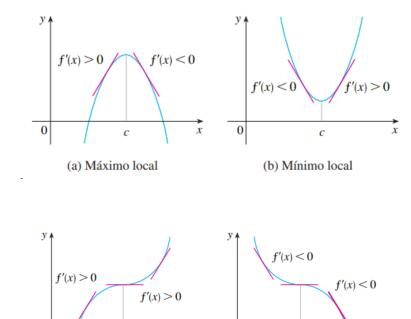
- se f é crescente (ou estr. cresc.) em [a,b] então $f'(x) \ge 0$ em (a,b),
- se f é decrescente (ou estr. decresc.) em [a,b] então $f'(x) \leq 0$ em (a,b).

C.32.2.1 Teste da Derivada Primeira

Corolário C.32.6 (teste da derivada primeira).

Seja $c \in (a, b)$, f contínua em [a, b] e derivável em $(a, b) \setminus \{c\}^3$:

- se f'(x) > 0 em (a, c) e f'(x) < 0 em (c, b), então c é ponto de máximo local;
- se f'(x) < 0 em (a, c) e f'(x) > 0 em (c, b), então c é ponto de mínimo local.



(c) Nem máximo, nem mínimo

(d) Nem mínimo, nem máximo

Stewart, Cálculo, vol. 1.

Exemplo 23. Exercício 47 em Slides de Exercícios.

 $^{^3}$ podendo ser ou não derivável em c

C.33 Uso da derivada segunda

Notação: Denotemos por

$$T_p(x) = f(p) + f'(p)(x - p)$$

a reta tangente no ponto (p, f(p)) ao gráfico de f.

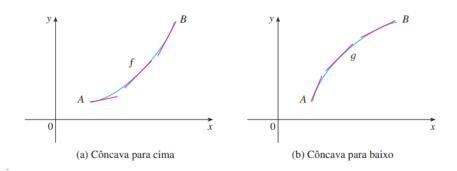
Seja f derivável em (a, b): dizemos que

• f tem concavidade para cima em (a, b) se

 $\forall x, p \in (a, b), x \neq p,$ vale $f(x) > T_p(x);$

• f tem concavidade para baixo em (a, b) se

 $\forall x, p \in (a, b), x \neq p,$ vale $f(x) < T_p(x)$.



Stewart, Cálculo, vol. 1.

Teorema C.33.1.

Se f é derivável em (a, b) e

- f' é estrit. crescente em (a, b), então f tem concavidade para cima em (a, b),
- f' é estrit. decrescente em (a,b), então f tem concavidade para baixo em (a,b).

C.33.1 Relação entre f'' e f

Corolário C.33.2.

Se f é duas vezes derivável em (a, b) e

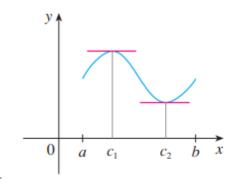
- f'' > 0 em (a, b), então f tem concavidade para cima em (a, b),
- f'' < 0 em (a, b), então f tem concavidade para baixo em (a, b).

C.33.1.1 Teste da Derivada Segunda

Corolário C.33.3 (teste da derivada segunda).

Seja f duas vezes derivável em $(p - \delta, p + \delta)$, f'(p) = 0 e f'' contínua em p:

- se f''(p) > 0 então p é ponto de mínimo local,
- se f''(p) < 0 então p é ponto de máximo local.



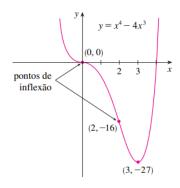
Stewart, Cálculo, vol. 1.

Definição: p é dito **ponto de inflexão** (pi) de f se existir um $\delta > 0$ tal que:

- f é contínua em $(p \delta, p + \delta)$, derivável em $(p \delta, p)$ e em $(p, p + \delta)$, e vale uma das seguintes:
 - f tem concavidade para cima em $(p \delta, p)$ e para baixo em $(p, p + \delta)$,
 - \blacksquare f tem concavidade para baixo em $(p-\delta,p)$ e para cima em $(p,p+\delta)$.

Além disso, se f é derivável em p, classificamos em

- ponto de inflexão horizontal, se f'(p) = 0,
- ponto de inflexão oblíqua, se $f'(p) \neq 0$.



Stewart, Cálculo, vol. 1.

Vale o seguinte:

- se f é duas vezes derivável em $(p-\delta,p+\delta)$ e p é de inflexão então f''(p)=0,
- se f é três vezes derivável em $(p-\delta,p+\delta),$ f''(p)=0 e $f'''(p)\neq 0$ então p é de inflexão.

RESUMO: Possíveis pontos de inflexão (pontos de D_f):

- pontos interiores de $D_{f''}$ que tenham derivada de segunda ordem nula,
- pontos de D_f onde f não tem derivada de segunda ordem.

C.34 Assíntotas

Verticais

• x = p é uma assíntota vertical (AV) do gráfico de f quando:

$$\lim_{\mathbf{x}\to\mathbf{p}} f(x) = \infty \quad \text{ou} \quad \lim_{\mathbf{x}\to\mathbf{p}} f(x) = -\infty$$
 ou
$$\lim_{\mathbf{x}\to\mathbf{p}^+} f(x) = \infty \quad \text{ou} \quad \lim_{\mathbf{x}\to\mathbf{p}^+} f(x) = -\infty$$
 ou
$$\lim_{\mathbf{x}\to\mathbf{p}^-} f(x) = \infty \quad \text{ou} \quad \lim_{\mathbf{x}\to\mathbf{p}^-} f(x) = -\infty$$

Horizontais

• y = L é uma assíntota horizontal (AH) do gráfico de f quando:

$$\lim_{\mathbf{x}\to +\infty} f(x) = L$$
 ou $\lim_{\mathbf{x}\to -\infty} f(x) = L$

Oblíquas

• y = mx + b é uma assíntota oblíqua (AO) do gráfico de f quando:

$$\lim_{x \to +\infty} [f(x) - (mx + n)] = 0$$
 ou $\lim_{x \to -\infty} [f(x) - (mx + n)] = 0$

• determine m, caso exista, por:

$$m = \lim_{\mathbf{x} \to +\infty} \frac{f(x)}{x}$$
 ou $m = \lim_{\mathbf{x} \to -\infty} \frac{f(x)}{x}$

• calcule

$$n = \lim_{\mathbf{x} \to +\infty} [f(x) - mx]$$
 ou $n = \lim_{\mathbf{x} \to -\infty} [f(x) - mx]$

- se $n < \infty$ e $m \neq 0$, a reta y = mx + n é AO.
- se $n < \infty$ e m = 0, a reta y = mx + n é AH.

Exemplo 24. Exercício 48 em Slides de Exercícios.

C.35 Regra de l'Hôpital

Teorema (Regra de l'Hôpital).

Sejam f,g deriváveis e $g'(x) \neq 0$ no conjunto $(p-\delta,p+\delta) \setminus \{p\}$. Se

$$\lim_{x \to p} f(x) = \lim_{x \to p} g(x) = 0 \qquad \text{ou} \qquad \lim_{x \to p} f(x) = \lim_{x \to p} g(x) = \pm \infty$$

е

$$\exists \lim_{x \to p} \frac{f'(x)}{g'(x)} = L,$$

então

$$\exists \lim_{x \to p} \frac{f(x)}{g(x)} = L.$$

OBS:

- A regra de l'Hôpital vale se $L \in \mathbb{R}$ ou $L = +\infty$ ou $L = -\infty$;
- A regra de l'Hôpital vale também para limites do tipo $x \to p^{\pm}$ ou $x \to \pm \infty$.

Exemplo 25. Exercício 49 em Slides de Exercícios.

C.36 Polinômio de Taylor

Lembrando:

Se existe f'(p) então a reta tangente ao gráfico de f em (p, f(p)) é dada pela função (ver Definição C.24.1)

$$T_p(x) = f(p) + f'(p)(x - p)$$

e satisfaz

$$\mathbf{E}_{\mathbf{p}}(\mathbf{x}) := \mathbf{f}(\mathbf{x}) - \mathbf{T}_{\mathbf{p}}(\mathbf{x}) = \mathbf{o}(\mathbf{x} - \mathbf{p}) \text{ quando } \mathbf{x} \to \mathbf{p},$$
 (C.36.1)

isto é,

 $T_p(x)$ é o único polinômio de grau <u>no máximo</u> 1 que satisfaz (C.36.1) e tal que

$$T_p(p) = f(p), T'_p(p) = f'(p),$$

Pergunta 1) Se f é k vezes derivável em p, existe polinômio T de grau no máximo k tal que

$$T^{(j)}(p) = f^{(j)}(p)$$
 para todo j=0,...,k ? (C.36.2)

Caso k=2:

Se existem f'(p) e f''(p), então existe polinômio T de grau no máximo 2 tal que

$$T^{(j)}(p) = f^{(j)}(p)$$
 para todo j=0,1,2 ?

isto é, exitem $a_0, a_1, a_2 \in \mathbb{R}$ e

$$T(x) = a_0 + a_1(x - p) + a_2(x - p)^2$$

tais que

$$T(p) = f(p)$$
, e $T'(p) = f'(p)$, e $T''(p) = f''(p)$?

Caso
$$k=2$$
:

- $T(x) = a_0 + a_1(x p) + a_2(x p)^2$ tal que:
 - $\blacksquare T(p) = f(p) \Longrightarrow \boxed{a_0 = f(p)}$
 - T'(p) = f'(p):

$$T'(x) = a_1 + 2a_2(x-p) \Longrightarrow \boxed{a_1 = f'(p)}$$

■ T''(p) = f''(p):

$$T''(x) = 2a_2 \Longrightarrow \boxed{a_2 = \frac{f''(p)}{2}}$$

$$T_{f,p}^2 = f(p) + f'(p)(x-p) + \frac{f''(p)}{2}(x-p)^2$$

Resposta 1) SIM: de fato, existe um único polinômio de grau <u>no máximo</u> k satisfazendo (C.36.2) que é dado por:

$$T_{f,p}^{k}(x) = \sum_{j=0}^{k} \frac{f^{(j)}(p)}{j!} (x-p)^{j}$$

$$T_{f,p}^k(x) = f(p) + f'(p)(x-p) + \frac{f''(p)}{2}(x-p)^2 + \frac{f'''(p)}{3!}(x-p)^3 + \ldots + \frac{f^{(k)}(p)}{k!}(x-p)^k$$

chamado de Polinômio de Taylor de ordem k, da função f, no ponto p.

Pergunta 2) Vale uma propriedade análoga a propriedade (C.36.1):

$$f(x) - T_p(x) := E_p(x) = o(x - p)$$
 quando $x \to p$

, para o polinômio de Taylor de ordem k?

CASO: POLINÔMIO DE TAYLOR DE ORDEM 2:

•
$$E_p(x) := f(x) - T_{f,p}^2$$

•
$$E_p(x) := f(x) - T_{f,p}^2$$

• $\lim_{x \to p} \frac{E_p(x)}{x - p}$

$$\lim_{x \to p} \frac{E_p(x)}{x - p} = \lim_{x \to p} \frac{f(x) - f(p) - f'(p)(x - p) - \frac{f''(p)}{2}(x - p)^2}{x - p} = 0$$

•
$$\lim_{x \to p} \frac{E_p(x)}{(x-p)^2} = 0 \iff E_p(x) = o((x-p)^2), \quad x \to p$$

$$\lim_{x \to p} \frac{E_p(x)}{(x-p)^2} \stackrel{L'H}{=} \lim_{x \to p} \frac{1}{2} \frac{f'(x) - f'(p) - f''(p)(x-p)}{x-p} = 0$$

$$T_{f,p}^2$$
 é o único polinômio de grau no máximo 2 tal que
$$f(x)-T_{f,p}^2=E_p(x),\quad {\rm com}\quad \lim_{x\to p}\frac{E_p(x)}{(x-p)^2}=0.$$

Resposta 2) SIM:

Teorema (P.d.T. com resto de Peano).

Se f é k vezes derivável em p, então

$$\lim_{x \to p} \frac{f(x) - T_{f,p}^k(x)}{(x - p)^k} = 0.$$

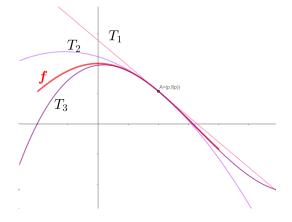
Em outras palavras,

$$\mathbf{E}_{\mathbf{p}}(\mathbf{x}) := \mathbf{f}(\mathbf{x}) - \mathbf{T}_{\mathbf{f},\mathbf{p}}^{\mathbf{k}}(\mathbf{x}) = \mathbf{o}((\mathbf{x} - \mathbf{p})^{\mathbf{k}}) \text{ quando } \mathbf{x} \to \mathbf{p}. \tag{C.36.3}$$

Além disso, $T_{f,p}^k(x)$ é o único polinômio de grau no máximo k com esta propriedade.

Nota.

- 1. $E_p(x)$ (que depende da ordem k) é o erro que se comete quando usamos o valor do polinômio de Taylor $T_{f,p}^k$ de ordem k avaliado em x, $T_{f,p}^k(x)$, para obter uma aproximação do valor da função f em x, f(x).
- 2. Por (C.36.3), podemos inferir:
 - (a) para $x \in D_f$, menor é o erro cometido na aproximação de f(x) quanto maior é a ordem do polinômio de Taylor usado;
 - (b) quanto mais próximo x está de p, menor é o erro cometido na aproximação de f(x) quando utilizado um polinômio de Taylor de dada ordem.



Pergunta 3) Vale alguma propriedade sobre o erro E_p ? O erro é conhecido?

Caso: polinômio de Taylor de ordem 1: quem é $E_p(x)$?

•
$$E_p(x) = f(x) - T_p(x) = f(x) - f(p) - f'(p)(x - p)$$

•
$$E'_p(x) = f'(x) - f'(p), \quad E''_p(x) = f''(x)$$

• $h(x) := (x - p)^2$

•
$$h(x) := (x - p)^2$$

•
$$h'(x) = 2(x - p);$$
 $h''(x) = 2$

$$\bullet \begin{cases}
E_p(p) = 0 \\
E'_p(p) = 0
\end{cases} e \begin{cases}
h(p) = 0 \\
h'(p) = 0
\end{cases}$$

$$\frac{E_p(x)}{(x-p)^2} = \frac{E_p(x) - E_p(p)}{h(x) - h(p)} \xrightarrow{\substack{T.Cauchy \\ \exists x_1 \in (p,x)}} \frac{E'_p(x_1)}{h'(x_1)}$$

$$= \frac{E'_p(x_1) - E'_p(p)}{h'(x_1) - h'(p)} \xrightarrow{\substack{T.Cauchy \\ \exists \bar{x} \in (p,x_1)}} \frac{E''_p(\bar{x})}{h''(\bar{x})}$$

$$= \frac{f''(\bar{x})}{2} \Longrightarrow E_p(x) = \frac{f''(\bar{x})}{2}(x-p)^2$$

Resposta 3) SIM. NÃO

Teorema (P.d.T. com resto de Lagrange).

Se, para um $\delta > 0$, $f \in k+1$ vezes derivável em $V_{\delta}(p)$, então dado $x \in V_{\delta}(p) \setminus \{p\}$ existe $c_x \in (p,x)$ (resp. $c_x \in (x,p)$ se x < p) tal que

$$E_p^{k+1}(x) := f(x) - T_{f,p}^k(x) = \frac{f^{(k+1)}(c_x)}{(k+1)!} (x-p)^{k+1}.$$

Nota.

1. Os polinômios de Taylor podem ser usados para dar aproximações dos valores da função numa vizinhança de um dado ponto p:

$$f(x) \approx T_{f,p}^k(x), \quad x \approx p.$$

2. Se k=0, o Teorema do P. de Taylor com resto de Lagrange é o T.V.M:

$$f(x) - T_{f,p}^{0}(x) = f(x) - f(p) = \frac{f'(c)}{1}(x - p).$$

3. Se as derivadas até ordem k+1 de f são limitadas numa vizinhança de p, podemos usar o Teorema do P. de Taylor com resto de Lagrange para ter **uma estimativa do erro** E_p^{k+1} :

Se
$$|f^{(k+1)}(x)| \leq M$$
, para todo $x \in V_{\delta}(p) \setminus \{p\}$, então

$$|E_p^{k+1}(x)| \le \frac{M}{(k+1)!} |x-p|^{k+1}, \quad x \in V_\delta(p) \setminus \{p\},$$

Exemplo 26. Exercício 50 em Slides de Exercícios.

C.36.1 Alguns exemplos de Polinômio de Taylor

$$\begin{array}{c} \sin(x) \ \mathrm{com} \ T^1, \ T^3, \ T^5, \ T^7, \ T^{13} \\ \ln(x) \ \mathrm{com} \ T^1, \ T^4, \ T^7, \ T^{10} \\ \mathrm{zoom} \ \ln(x) \ \mathrm{com} \ T^1, \ T^4, \ T^7, \ T^{10}, \ T^{13} \end{array}$$

C.37 Integral de Riemann

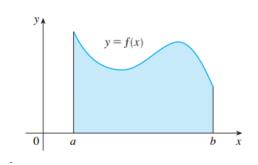
C.37.1 Motivação

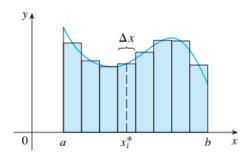
QUAL A ÁREA DA REGIÃO LIMITADA PELAS CURVAS:

$$y = 0, \quad x = a, \quad x = b, \quad y = f(x)$$
?

Simulação de valores aproximados da área da região:

- retângulos com base de mesmo comprimento
- retângulos com base de diferentes comprimentos





Fonte: Stewart, Cálculo, vol. 1 (Caso f > 0)

C.37.2 Caso (I): Integrais definidas

 $f:[a,b] \to \mathbb{R}$ limitada (com $[a,b] \subset \mathbb{R}$ limitado)

Partição de [a,b]: é um conjunto finito de pontos da forma:

$$\mathcal{P} = \{x_0, ..., x_n : a = x_0 < x_1 < x_2 < ... < x_{n-1} < x_n = b\}.$$

$$\Delta_i x := x_i - x_{i-1}; \qquad \|\mathcal{P}\| := \max\{\Delta_i x : i = 1, \dots, n\}, \quad \xi_i \in [x_{i-1}, x_i].$$

Defina a Soma de Riemann (irregular) (regular) (Wikipédia):

$$\sum_{i=1}^{n} f(\xi_i) \Delta_i x$$

Considere o limite

$$\lim_{\|\mathcal{P}\| \to 0} \sum_{i=1}^{n} f(\xi_i) \Delta_i x$$

• quando o limite acima existe, é um número real $L \in \mathbb{R}$, e é independente da escolha dos pontos ξ_i em $[x_{i-1}, x_i]$, isto é:

$$\forall \epsilon > 0, \exists \delta > 0; \forall \mathcal{P}, \|\mathcal{P}\| < \delta, \forall \xi_i \in [x_{i-1}, x_i], \text{ temos } \left| \sum_{i=1}^n f(\xi_i) \Delta_i x - L \right| < \varepsilon,$$

dizemos que

- $f \in$ Riemann integrável no sentido próprio em [a, b],
- L é a integral definida (de Riemann) de f em [a,b]:

$$L = \int_{a}^{b} f;$$

- $\bullet\,$ se tal Lnão existir (ou depender da escolha dos $\xi's),$ dizemos que
 - \blacksquare f não é Riemann integrável em [a,b].

Área

• Seja $R \subseteq \mathbb{R}^2$ a região do plano definida por

$$R = \{(x, y) \in \mathbb{R}^2 : x \in [a, b], 0 \le y \le f(x)\}$$

onde $f:[a,b]\to\mathbb{R}$ é limitada, integrável e $f\geq 0$. Então,

$$\int_{a}^{b} f \ge 0$$

e a área da região R é dada por

$$A(R) := \int_a^b f$$

Observação: Estamos interessados em estudar quando uma dada função é "integrável em um dado intervalo I" e como encontrar sua integral em I.

Neste curso, integrabilidade é no sentido de Riemann, e então dizer que "f é integrável" é equivalente a dizer que "f é Riemann integrável".

Primeiro estamos considerando o caso em que f é uma função limitada definida em intervalo I fechado e limitado: neste caso, dizemos que f é (ou não) Riemann integrável no sentido próprio em I. Neste contexto aprenderemos a encontrar sua integral em I chamada usualmente de integral definida de f em I.

Quando também considerarmos os casos em que a função f pode ser não limitada em I ou pode estar definida em intervalo I não limitado, então diremos que f é (ou não) Riemann integrável no sentido impróprio em I. Também aprenderemos a encontrar a integral de f em I, chamada usualmente de integral imprópria de f em I.

Definição C.37.1. Se f é integrável em [a, b], definimos

$$\int_{\mathbf{b}}^{\mathbf{a}}\mathbf{f}:=-\int_{\mathbf{a}}^{\mathbf{b}}\mathbf{f}\qquad e\qquad \int_{\mathbf{a}}^{\mathbf{a}}\mathbf{f}:=\mathbf{0}\,.$$

C.37.3 Propriedades

• se $f:[a,b]\to\mathbb{R}$ é limitada e integrável, e $g:[a,b]\to\mathbb{R}$ é tal que o conjunto $\{x\in[a,b]:\ f(x)\neq g(x)\}$ contém um número finito de pontos, **então** g **é integrável** e $\int_a^b f=\int_a^b g$.

Sejam $f, g: [a, b] \to \mathbb{R}$ funções limitadas e integráveis em [a, b]. Então

• $\alpha f + \beta g$ é integrável em [a, b] e

$$\int_{a}^{b} (\alpha f + \beta g) = \alpha \left(\int_{a}^{b} f \right) + \beta \left(\int_{a}^{b} g \right), \forall \alpha, \beta \in \mathbb{R},$$

• |f| é integrável em [a, b]

$$\left| \int_{a}^{b} f \right| \leq \int_{a}^{b} |f|,$$

- fg é integrável em [a, b],
- Se $f \geq g$ em [a, b], então

$$\int_{a}^{b} f \ge \int_{a}^{b} g.$$

Seja $f: D_f \to \mathbb{R}$ limitada.

- Se $[a,b] \subseteq D_f$ e f é integrável em [a,b] e $[\alpha,\beta] \subseteq [a,b]$, então f é integrável em $[\alpha,\beta]$.
- Se $[a,b],[b,c] \subseteq D_f$ e f é integrável em [a,b] e em [b,c], então f é integrável em [a,c] e vale

$$\int_a^c f = \int_a^b f + \int_b^c f.$$

De fato, pela Definição C.37.1, a propriedade acima vale para quaisquer ordem de a,b,c.

Exemplo 27. Exercícios 63 e 64 em Slides de Exercícios.

C.37.4 Integrabilidade

Se f é limitada em [a, b], então f é integrável em [a, b]?

$$f: [0,1] \to \mathbb{R} \text{ dada por } f(x) = \begin{cases} 0, & x \in \mathbb{R} \setminus \mathbb{Q} \\ 1, & x \in \mathbb{Q} \end{cases}$$

Quando f (limitada) é integrável em [a, b]?

Teorema C.37.2 (integrabilidade das contínuas).

Se f é contínua em [a, b] então f é Riemann integrável em [a, b].

Teorema C.37.3 (integrabilidade das contínuas por partes).

Se $f:[a,b]\to\mathbb{R}$ é limitada e contínua exceto possivelmente em um número finito de pontos, então f é Riemann integrável em [a,b].

Como calcular a integral definida de f?

Sejam I um intervalo aberto em \mathbb{R} e $F:I\to\mathbb{R}$ uma função derivável. Se F'=f em I dizemos que F é primitiva de f em I e vale:

- $\bullet\,$ se F é uma primitiva de f em I então $F+c~(\forall\,c\in\mathbb{R})$ também é
- $\bullet\,$ se F,Gsão primitivas de f em I então F-G=constante. Escrevemos

$$\int f = F + c, \ c \in \mathbb{R}.$$

 $\int f =$ integral indefinida de f = "a primitiva na forma mais geral" de f = a família (conjunto) de todas as primitivas de f (num certo intervalo fixado)

$$\int (\alpha f + \beta g) = \alpha \int f + \beta \int g, \quad \forall \alpha, \beta \in \mathbb{R}.$$

Exemplo 28. Exercício 66 em Slides de Exercícios.

C.37.5 Tabela de primitivas e derivadas

Acesse aqui.

C.37.6 Teorema Fundamental do Cálculo, partes 1 e 2

1º Teorema Fundamental do Cálculo

Sejam $f:[a,b]\to\mathbb{R}$ contínua e $[a,b]\subset I$. Se $F:I\to\mathbb{R}$ é uma primitiva de f em [a,b]. Então,

$$\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) d\mathbf{x} = \mathbf{F}(\mathbf{x}) \Big|_{\mathbf{a}}^{\mathbf{b}} = \mathbf{F}(\mathbf{b}) - \mathbf{F}(\mathbf{a}).$$

Exemplo 29. Exercício 67 em Slides de Exercícios.

Teorema do Valor Médio para integral ou Teorema da Média Integral

Se $f:[a,b]\to\mathbb{R}$ é limitada ($m\leq f\leq M$ em [a,b])e integrável, então

- $m \le \frac{\int_a^b f}{b-a} \le M$
- se f é também contínua, então existe $c \in (a, b)$ tal que

$$\frac{\int_{\bf a}^{\bf b} {\bf f}}{{\bf b}-{\bf a}} = {\bf f}({\bf c}) \ \ ({\rm chamado\ Valor\ M\'edio\ de\ } f\ {\rm em\ } [a,b])$$

2º Teorema Fundamental do Cálculo

Sejam $f:[a,b]\to\mathbb{R}$ contínua e $c\in[a,b]$. Defina a função integral $F_c:[a,b]\to\mathbb{R}$ por

$$F_c(x) = \int_c^x f(t)dt, \quad x \in [a, b].$$

Então,

- F_c é derivável em [a,b]
- $F'_c = f$ em [a, b], $(i.e, F_c \ \acute{e} \ primitiva \ de \ f \ em \ [a, b])$.

Atenção:

- $\int_a^b f$ é um número,
- $\int f$ é uma família de funções,
- $\int_{-\infty}^{x} f$ é uma função.

Derivação da função integral

Sejam $f:[a,b]\to\mathbb{R}$ contínua (logo integrável em [a,b]) e $c\in[a,b]$.

Seja

$$\mathbf{F}: [\mathbf{a}, \mathbf{b}] \to \mathbb{R}: \mathbf{x} \mapsto \int_{\mathbf{a}}^{\mathbf{x}} \mathbf{f}.$$

Então vale $\mathbf{F}'(\mathbf{x}) = \mathbf{f}(\mathbf{x})$ para todo $x \in [a, b]$. (2° TFC)

Agora seja

$$\mathbf{G}: [\mathbf{a}, \mathbf{b}] o \mathbb{R}: \mathbf{x} \mapsto \int_{\mathbf{x}}^{\mathbf{c}} \mathbf{f}$$
 .

Então vale $\mathbf{G}'(\mathbf{x}) = -\mathbf{f}(\mathbf{x})$ para todo $x \in [a, b]$.

Agora seja $g:[\alpha,\beta]\to [a,b]$ derivável e

$$\mathbf{G}: [\alpha, \beta] \to \mathbb{R}: \mathbf{x} \mapsto \int_{\mathbf{f}}^{\mathbf{g}(\mathbf{x})} \mathbf{f}.$$

Então vale $\mathbf{G}'(\mathbf{x}) = \mathbf{f}(\mathbf{g}(\mathbf{x}))\mathbf{g}'(\mathbf{x})$ para todo $x \in [\alpha, \beta]$.

Agora sejam $g, h : [\alpha, \beta] \to [a, b]$ deriváveis e

$$\mathbf{G}: [\alpha, \beta] \to \mathbb{R}: \mathbf{x} \mapsto \int_{\mathbf{h}(\mathbf{x})}^{\mathbf{g}(\mathbf{x})} \mathbf{f}.$$

Então vale $\mathbf{G}'(\mathbf{x}) = \mathbf{f}(\mathbf{g}(\mathbf{x}))\mathbf{g}'(\mathbf{x}) - \mathbf{f}(\mathbf{h}(\mathbf{x}))\mathbf{h}'(\mathbf{x})$ para todo $x \in [\alpha, \beta]$.

Exemplo 30. Exercício 68 em Slides de Exercícios.

C.37.7 Área

 $\bullet\,$ Seja $R\subseteq\mathbb{R}^2$ uma região do plano definida como

$$R = \{(x, y) \in \mathbb{R}^2 : x \in [a, b], 0 \le y \le f(x)\}$$

onde $f:[a,b]\to\mathbb{R}$ é limitada, integrável e $f\geq 0$. Então a área da região R é dada por (definição)

$$A_{R} = \int_{a}^{b} f$$

 $\bullet\,$ Seja $R\subseteq\mathbb{R}^2$ uma região do plano definida como

$$R = \{(x, y) \in \mathbb{R}^2 : x \in [a, b], f(x) \le y \le 0\}$$

onde $f:[a,b]\to\mathbb{R}$ é limitada, integrável e $f\le 0$. Então a área da região R é dada por

$$A_{R} = -\int_{a}^{b} f$$

 $\bullet\,$ Seja $R\subseteq\mathbb{R}^2$ uma região do plano definida como

$$R = \{(x, y) \in \mathbb{R}^2 : x \in [a, b], \ 0 \le y \le f(x) \text{ ou } 0 \ge y \ge f(x) \}$$

onde $f:[a,b]\to\mathbb{R}$ é limitada e integrável. Então a área da região R é dada por

$$\mathbf{A_R} = \int_{\mathbf{a}}^{\mathbf{b}} |\mathbf{f}|$$

• Seja $R \subseteq \mathbb{R}^2$ uma região do plano definida como

$$R = \{(x, y) \in \mathbb{R}^2 : x \in [a, b], f(x) \le y \le g(x)\}$$

onde $f,g:[a,b]\to\mathbb{R}$ são limitadas, integráveis e $f\le g$. Então a área da região R é dada por

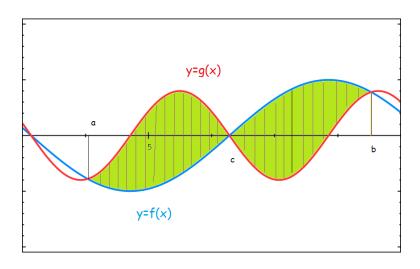
$$\mathbf{A_R} = \int_{\mathbf{a}}^{\mathbf{b}} \mathbf{g} - \mathbf{f}$$

 $\bullet\,$ Seja $R\subseteq\mathbb{R}^2$ uma região do plano definida como

$$R = \{(x, y) \in \mathbb{R}^2 : x \in [a, b], f(x) \le y \le g(x) \text{ ou } g(x) \le y \le f(x)\}$$

onde $f,g:[a,b]\to\mathbb{R}$ são limitadas e integráveis. Então a área da região R é dada por

$$\mathbf{A_R} = \int_{\mathbf{a}}^{\mathbf{b}} |\mathbf{g} - \mathbf{f}| = \int_{\mathbf{a}}^{\mathbf{b}} |\mathbf{g}(\mathbf{x}) - \mathbf{f}(\mathbf{x})| \, d\mathbf{x}$$

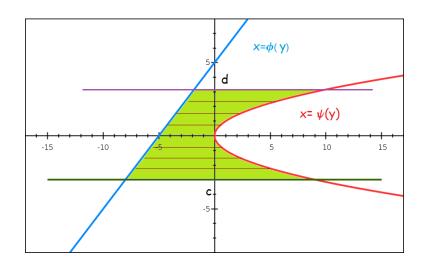


 $\bullet\,$ Seja $R\subseteq\mathbb{R}^2$ uma região do plano definida como

$$R = \{(x, y) \in \mathbb{R}^2 : y \in [c, d], \quad \phi(y) \le x \le \psi(y) \text{ ou } \psi(y) \le x \le \phi(y)\}$$

onde $\phi, \phi: [c, d] \to \mathbb{R}$ são limitadas e integráveis. Então a área da região R é dada por

$$\mathbf{A_R} = \int_{\mathbf{c}}^{\mathbf{d}} |\psi - \phi| = \int_{\mathbf{c}}^{\mathbf{d}} |\psi(\mathbf{y}) - \phi(\mathbf{y})| \, d\mathbf{y}$$



Exemplo 31. Exercício 69 em Slides de Exercícios.

C.38 Volumes e Superfícies

Seja $f:[a,b]\to\mathbb{R}$ contínua, com $f\geq 0$, e seja

$$R = \{(x, y) \in \mathbb{R}^2 : x \in [a, b], 0 \le y \le f(x)\}$$

O Volume do sólido de rotação obtido quando a região R roda ao redor do eixo \overrightarrow{x} é

$$V_{\overrightarrow{x}} = \int_{a}^{b} \pi f^{2}(x) \, dx$$

O Volume do **sólido de rotação** obtido quando a região R roda ao redor do **eixo** \overrightarrow{y} é (assuma $a \ge 0$)

$$V_{\overrightarrow{y}} = \int_{a}^{b} 2\pi x f(x) \, dx$$

Seja $f:[a,b]\to\mathbb{R}$ contínua, com derivada contínua, e seja γ a curva dada pelo gráfico de f O comprimento de γ é

$$c = \int_a^b \sqrt{1 + f'(x)^2} \, dx$$

A área da superfície de rotação obtida quando γ roda ao redor do eixo \overrightarrow{x} é (assuma $f \geq 0)$

$$A_{\overrightarrow{x}} = \int_a^b 2\pi \sqrt{1 + f'(x)^2} f(x) \, dx$$

A área da superfície de rotação obtida quando γ roda ao redor do eixo \overrightarrow{y} é (assuma $a \geq 0)$

$$A_{\overrightarrow{y}} = \int_{a}^{b} 2\pi x \sqrt{1 + f'(x)^2} \, dx$$

C.39 Posição, velocidade e aceleração

Sabemos que se s(t) descreve a posição de uma partícula sobre uma reta em função do tempo então

- v(t) := s'(t) representa a **velocidade**,
- a(t) := v'(t) = s''(t) representa a aceleração,

Isso significa que

- s é uma primitiva de v, logo (TFC) $s(t) s(t_0) = \int_{t_0}^t v$;
- v é uma primitiva de a, logo (TFC) $v(t) v(t_0) = \int_{t_0}^t a;$

Obtemos então as fórmulas

$$\bullet \ \mathbf{v}(\mathbf{t}) = \mathbf{v}(\mathbf{t_0}) + \int_{\mathbf{t_0}}^{\mathbf{t}} \mathbf{a}(\tau) \, d\tau,$$

$$\bullet \ \mathbf{s}(\mathbf{t}) = \mathbf{s}(\mathbf{t_0}) + \int_{\mathbf{t_0}}^{\mathbf{t}} \mathbf{v}(\theta) \, d\theta = \mathbf{s}(\mathbf{t_0}) + \int_{\mathbf{t_0}}^{\mathbf{t}} \left[\mathbf{v}(\mathbf{t_0}) + \int_{\mathbf{t_0}}^{\theta} \left(\mathbf{a}(\tau) \, d\tau \right) \right] \, d\theta.$$

Podemos também definir o espaço percorrido entre t_0 e t como

$$\mathbf{e}(\mathbf{t_0}, \mathbf{t}) = \int_{\mathbf{t_0}}^{\mathbf{t}} |\mathbf{v}(\theta)| \, d\theta \,.$$

C.40 Técnicas de Integração

C.40.1 Linearidade

Sejam f, g funções contínuas. Então,

$$\int (\alpha \mathbf{f} + \beta \mathbf{g}) d\mathbf{x} = \alpha \left(\int \mathbf{f} \right) + \beta \left(\int \mathbf{g} \right).$$

Na integral definida:

$$\int_{\mathbf{a}}^{\mathbf{b}} (\alpha \mathbf{f} + \beta \mathbf{g}) \mathbf{dx} = \alpha \left(\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f} \right) + \beta \left(\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{g} \right).$$

C.40.2 Substituição (mudança de variável)

Sejam f contínua e g contínua com derivada contínua. Então,

$$\int \mathbf{f}(\mathbf{g}(\mathbf{x}))\mathbf{g}'(\mathbf{x})\mathbf{d}\mathbf{x} = \mathbf{F}(\mathbf{g}(\mathbf{x})), \qquad \mathrm{onde} \quad \mathbf{F}(\mathbf{u}) = \int \mathbf{f}(\mathbf{u})\mathbf{d}\mathbf{u}$$

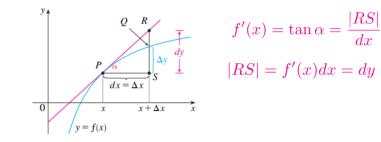
C.40.2.1 Interpretando como mudança de variável:

Definição C.40.1. Seja f uma função derivável em um intervalo aberto I e $y = f(x), x \in I$. A diferencial da variável independente x é uma variável independente:

$$dx = h, \quad \forall h \in \mathbb{R},$$

e a **diferencial**⁴ da função f é a função $df: \mathbb{R} \to \mathbb{R}$ dada por:

$$df_x = df_x(dx) = df_x(h) = dy := f'(x)dx, \quad dx = h \in \mathbb{R}.$$



A inclinação da reta tangente PR é a derivada f'(x). Assim, a distância direta de S to R é f'(x) dx = dy. Consequentemente, dy representa a distância que a reta tangente sobe ou desce (a variação na linearização), enquanto Δy representa a distância que a curva y = f(x) sobe ou

Fonte: Stewart, Cálculo, vol. 1: desce quando x varia por uma quantidade dx.

- $substituímos\ g(x) = u\ e\ du = g'(x)dx,$
- calculamos a primitiva de f
- substituímos de volta u = g(x)

$$\int f(\mathbf{g}(\mathbf{x}))\mathbf{g}'(\mathbf{x})d\mathbf{x} = \left. \int f(\mathbf{u})d\mathbf{u} \right|_{\mathbf{u} = \mathbf{g}(\mathbf{x})}.$$

⁴Veja também Seção C.30

Na integral definida:

$$\int_a^b f(g(x))g'(x)dx = F(g(x))\Big|_{x=a}^b, \quad \text{onde} \quad F(u) = \int f(u)du.$$

Interpretando como mudança de variável:

- $substitu\'{m}os\ g(x) = u\ e\ du = g'(x)dx,$
- substituímos os extremos de integração, mantendo a ordem: $\begin{cases} x = a \Longrightarrow & u = g(a) \\ x = b \Longrightarrow & u = g(b) \end{cases}$ $\int_a^b f(g(x))g'(x)dx = \int_{g(a)}^{g(b)} f(u)du = F(u) \bigg|_{u=g(a)}^{g(b)}$

Exemplo 32. Exercícios 70 a 72 em Slides de Exercícios.

Sites conhecidos que calculam primitivas:

Integral Calculator; Wolfram Alpha; Symbolab

Cuidado com os resultados!

$$\int_0^{2\sin(t)} x \sqrt{4 - x^2} \, dx = -\frac{8(\cos^3(t) - 1)}{3}$$

Passos

$$\int_0^{2\sin(t)} x \sqrt{4 - x^2} \, dx$$

Aplicar integração por substituição

$$=\int_4^{4-4\sin^2(t)}-\frac{\sqrt{u}}{2}du$$

Remover a constante: $\int a \cdot f(x) dx = a \cdot \int f(x) dx$ = $-\frac{1}{2} \cdot \int_4^{4-4\sin^2(t)} \sqrt{u} du$

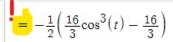
Aplicar a regra da potência

$$= -\frac{1}{2} \left[\frac{2}{3} u^{\frac{3}{2}} \right]_{4}^{4 - 4\sin^{2}(t)}$$

Simplificar $4 - 4\sin^2(t)$: $4\cos^2(t)$

$$= -\frac{1}{2} \left[\frac{2}{3} u^{\frac{3}{2}} \right]_{4}^{4 \cos^{2}(t)}$$

Calcular os limites: $\frac{16}{3}\cos^3(t) - \frac{16}{3}$



Simplificar

$$= -\frac{8(\cos^3(t) - 1)}{3}$$

$$\int_0^{2\pi} \int_0^{2\sin(t)} r \sqrt{4 - r^2} \, dr dt = \frac{16\pi}{3} \quad \text{(Decimal: } 16.75516...)$$

Passos

$$\int_0^{2\pi} \int_0^{2\sin(t)} r \sqrt{4 - r^2} \, dr dt$$

$$\int_0^{2\sin(t)} r\sqrt{4 - r^2} \, dr = -\frac{8(\cos^3(t) - 1)}{3}$$

$$\int_0^{2\pi} \left(-\frac{8(\cos^3(t) - 1)}{3} \right) dt$$

$$\int_0^{2\pi} \left(-\frac{8(\cos^3(t) - 1)}{3} \right) dt = \frac{16\pi}{3}$$

C.40.3 Integração por partes

Sejam f, g funções contínuas e deriváveis com derivadas contínuas. Então,

$$\int \underbrace{f(t)}_{\mathbf{u}} \underbrace{g'(t)}_{\mathbf{d}\mathbf{v}} dt = \underbrace{f(t)}_{\mathbf{u}} \underbrace{\mathbf{g}(\mathbf{t})}_{\mathbf{v}} - \int \underbrace{\mathbf{g}(\mathbf{t})}_{\mathbf{v}} \underbrace{\mathbf{f}'(\mathbf{t})}_{\mathbf{d}\mathbf{u}} d\mathbf{t}.$$

.....

Note:

$$\begin{cases} u = f(t), & \mathbf{du} = \mathbf{f}'(\mathbf{t}) \, \mathbf{dt} \\ dv = g'(t) \, dt, & \mathbf{v} = \mathbf{g}(\mathbf{t}) \end{cases} \implies \int \mathbf{u} \, \mathbf{dv} = \mathbf{uv} - \int \mathbf{v} \, \mathbf{du}$$

.....

Filme: Vivir dos veces (Live Twice, Love Once) personagem principal ensina que a regra se lê:

"un día vi una vaca - vestida de uniforme"

Karina, Colombia diz que o lado direito da igualdade se lê:

"una vaca no se viste de uniforme"

.....

Na integral definida:

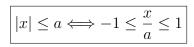
$$\int_{a}^{b} \underbrace{f(t)}_{u} \underbrace{g'(t)}_{dv} dt = \left[\underbrace{f(t)}_{u} \underbrace{g(t)}_{v}\right]_{a}^{b} - \int_{a}^{b} \underbrace{g(t)}_{v} \underbrace{f'(t)}_{du} dt$$
$$= f(b)g(b) - f(a)g(a) - \int_{a}^{b} g(t)f'(t) dt.$$

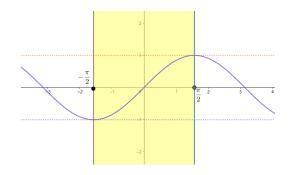
Exemplo 33. Exercícios 73 a 74 em Slides de Exercícios.

C.40.4 Substituição Trigonométrica/Hiperbólica

Usada quando aparece no integrando termo de uma das formas $\sqrt{\pm a^2 \pm x^2}$ (a>0), se não tiver substituição melhor!

1. $\sqrt{a^2 - x^2}$: $x = a \sin \theta$, $\theta \in [-\pi/2, \pi/2]$, $dx = a \cos \theta d\theta$:



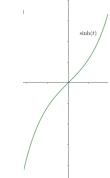


2. $\sqrt{a^2 + x^2}$:

• $x = a \tan \theta$, $\theta \in (-\pi/2, \pi/2)$, $dx = a \sec^2 \theta d\theta$:

 $x \in \mathbb{R}$

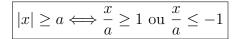
• $x = a \sinh(t), \quad t \in \mathbb{R}, \quad dx = a \cosh(t)dt$

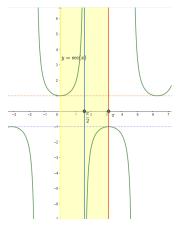


 $x \in \mathbb{R}$

3. $\sqrt{x^2 - a^2}$:

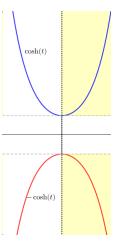
•
$$x = a \sec \theta$$
, $\operatorname{com} \left\{ \begin{array}{l} \theta \in [0, \frac{\pi}{2}), & se \frac{x}{a} \ge 1 \\ \theta \in (\frac{\pi}{2}, \pi], & se \frac{x}{a} \le -1 \end{array} \right.$; $dx = a \sec \theta \tan \theta d\theta$:





• $x = \pm a \cosh(t)$, t > 0, $dx = \pm \sinh(t)$

$$|x| \ge a \Longleftrightarrow \frac{x}{a} \ge 1 \text{ ou } \frac{x}{a} \le -1$$



Atenção: o cálculo de algumas integrais que pode ser bastante longo quando usado substituição trigonométrica pode ser bastante simples quando utilizado função hiperbólica. Fique atento!

Exemplo 34. Exercícios 75 a 79 em Slides de Exercícios.

C.40.5 Frações Parciais

Aplicável quando o integrando é uma função racional na forma:

$$\frac{P(x)}{Q(x)}$$
, $\mathbf{g}rau(P) < \mathbf{g}rau(Q)$,

onde o polinômio Q pode ser decomposto em fatores lineares e/ou quadráticos irredutíveis (distintos ou com repetições):

$$Q(x) = (a_1x + b_1)^{k_1}(a_2x + b_2)^{k_2}\dots(a_rx + b_r)^{k_r}(a_1x^2 + b_1x + c_1)^{s_1}\dots(a_tx^2 + b_tx + c_t)^{s_t}$$

Neste caso, existem únicas constantes A_j, B_j de modo que se pode decompor a fração P/Q da seguinte forma:

$$\begin{split} \frac{P(x)}{Q(x)} &= \frac{A_1^1}{(a_1x+b_1)} + \frac{A_2^1}{(a_1x+b_1)^2} + \ldots + \frac{A_{k_1}^1}{(a_1x+b_1)^{k_1}} + \\ & \vdots \\ &+ \frac{A_1^r}{(a_rx+b_r)} + \frac{A_2^r}{(a_rx+b_r)^2} + \ldots + \frac{A_{k_r}^r}{(a_rx+b_r)^{k_r}} + \\ &+ \frac{B_1^1x + C_1^1}{(a_1x^2+b_1x+c_1)} + \frac{B_2^1x + C_2^1}{(a_1x^2+b_1x+c_1)^2} + \ldots + \frac{B_{s_1}^1x + C_{s_1}^1}{(a_1x^2+b_1x+c_1)^{s_1}} + \\ &\vdots \\ &+ \frac{B_1^tx + C_1^t}{(a_2x^2+b_2x+c_2)} + \frac{B_2^tx + C_2^t}{(a_2x^2+b_2x+c_2)^2} + \ldots + \frac{B_{s_t}^tx + C_{s_t}^t}{(a_tx^2+b_tx+c_t)^{s_t}}. \end{split}$$

Note: para o termo na decomposição de Q que aparece k_i (ou r_j) vezes, tem-se k_i (ou r_j) "frações parciais" relativas a esse termo.

Resumindo, relativo ao termo linear que aparecer r vezes $(\mathbf{ax} + \mathbf{b})^{\mathbf{r}}$ temos que escrever a soma das r frações:

$$\frac{A_1}{ax+b}+\frac{A_2}{(ax+b)^2}+\ldots+\frac{A_r}{(ax+b)^r},$$

relativo ao termo quadrático **irredutível** que aparecer r vezes $(\mathbf{ax^2} + \mathbf{bx} + \mathbf{c})^{\mathbf{r}}$ temos que escrever a soma das r frações:

$$\frac{B_1x + C_1}{ax^2 + bx + c} + \frac{B_2x + C_2}{(ax^2 + bx + c)^2} + \ldots + \frac{B_rx + C_r}{(ax^2 + bx + c)^r}.$$

Note que:

1. $(a \neq 0)$ substituição e logarítmo:

$$\int \frac{A}{ax+b} dx \stackrel{u=ax+b}{=} \frac{A}{a} \int \frac{1}{u} du = \frac{A}{a} \ln|ax+b| + k, \quad k \in \mathbb{R}.$$

2. $(a \neq 0)$ substituição e potência:

$$\int \frac{A}{(ax+b)^n} dx \stackrel{u=ax+b}{=} \frac{A}{a} \int u^{-n} du = \frac{A}{a} \frac{1}{(-n+1)(ax+b)^{n-1}} + k, \quad k \in \mathbb{R}, \ (n \ge 2).$$

3. (a > 0)

$$\int \frac{Bx + C}{ax^2 + bx + c} dx = \int \frac{Bx + C}{(\sqrt{a}x + \tilde{a})^2 + \tilde{c}} dx \stackrel{\mathbf{u} = \sqrt{a}x + \tilde{a}}{=} \frac{1}{\sqrt{a}} \int \frac{\tilde{B}u + \tilde{C}}{u^2 + \tilde{c}} du$$
$$= \frac{1}{\sqrt{a}} \int \frac{\tilde{B}u}{u^2 + \tilde{c}} du + \frac{1}{\sqrt{a}} \int \frac{\tilde{C}}{u^2 + \tilde{c}} du,$$

onde $\tilde{a} = b/2\sqrt{a}$, $\tilde{c} = (4ac - b^2)/4a > 0$, $\tilde{B} = B\sqrt{a}$, $\tilde{C} = C - B\tilde{a}a/\sqrt{a}$,

• substituição e logarítmo:

$$\int \frac{\tilde{B}u}{u^2 + \tilde{c}} du \stackrel{v = u^2 + \tilde{c}}{=} \frac{\tilde{B}}{2} \int \frac{1}{v} dv = \frac{\tilde{B}}{2} \ln|u^2 + \tilde{c}| + k$$

• substituição e arco-tangente:

$$\int \frac{\tilde{C}}{u^2 + \tilde{c}} du = \frac{\tilde{C}}{\tilde{c}} \int \frac{1}{\left(\frac{u}{\sqrt{\tilde{c}}}\right)^2 + 1} du \stackrel{v = \frac{u}{\sqrt{\tilde{c}}}}{=} \frac{\tilde{C}}{\tilde{c}} \int \frac{1}{v^2 + 1} dv = \frac{\tilde{C}\sqrt{\tilde{c}}}{\tilde{c}} \arctan\left(\frac{u}{\sqrt{\tilde{c}}}\right) + k.$$

Logo

$$\int \frac{Bx+C}{ax^2+bx+c} dx = \frac{B}{2} \ln|ax^2+bx+c| + \frac{\tilde{C}}{\tilde{c}\sqrt{a}} \arctan\left(\frac{x+b/2\sqrt{a}}{\sqrt{(4ac-b^2)/4a}}\right) + k$$

4. Um roteiro para integrais na forma

$$\int \frac{Bx + C}{(ax^2 + bx + c)^n} dx \quad (n \ge 2)$$

pode ser encontrado na lista de exercício do Prof. E. Massa aqui.

Quanto mais integrais você resolver mais habilidade com as técnicas você terá!

Exemplo 35. Exercícios 80 a 84 em Slides de Exercícios.

C.41 Dicas de integração do Prof. Eugenio Massa:

C.41.1 Alguns produtos, trigonométricas e hiperbólicas

• produto $x^n h(x)$ onde conheça primitivas de h:

integre por partes pondo $g(x) = x^n$, assim na integral que sobra terá $g'(x) = nx^{n-1}$... continuando até eliminar a potência.

Funciona para $x^n e^x$, $x^n \cos(x)$,

Exemplo:

$$\int x^2 e^x dx = x^2 e^x - \int 2x e^x dx = x^2 e^x - 2x e^x + \int 2e^x dx = x^2 e^x - 2x e^x + 2e^x + 2e^x + k, \ k \in \mathbb{R}$$

• produto $x^n h(x)$ onde h tem derivada racional:

integre por partes pondo g(x) = h(x), assim na integral que sobra terá apenas uma racional.

Funciona para $x^n \ln(x)$, $x^n \arctan(x)$,

Exemplo:

$$\int x^2 \ln(x) dx = x^3 \ln(x)/3 - \int (x^3/3x) dx = x^3 \ln(x)/3 - x^3/9 + k, \ k \in \mathbb{R}$$

• quadrado de trigonométrica ou hiperbólica:

integre por partes e depois use identidades...

Exemplo:

$$\int Ch^{2}(x) dx = Sh(x)Ch(x) - \int Sh^{2}(x) dx = = Sh(x)Ch(x) - \int (Ch^{2}(x) - 1) dx \logo 2 \int Ch^{2}(x) dx = Sh(x)Ch(x) + \int 1 dx = Sh(x)Ch(x) + x + k, \ k \in \mathbb{R}$$

• trigonométrica com exponencial:

integre por partes duas vezes e leve do outro lado... Funciona também para $Sh(x)\cos(x), \ldots$

Exemplo:

$$\int e^x \cos(x) \, dx = e^x \sin(x) - \int e^x \sin(x) \, dx = = e^x \sin(x) - \left[e^x (-\cos(x)) - \int e^x (-\cos(x)) \, dx \right] \logo 2 \int e^x \cos(x) \, dx = e^x \sin(x) + e^x \cos(x) + k, \ k \in \mathbb{R}$$

- substituição trigonométrica ou hiperbólica: quando aparece o termo $\sqrt{\pm a^2 \pm x^2}$, se não tiver substituição melhor:
 - \blacksquare no caso $\sqrt{a^2-x^2}$, substitua $x=a\sin(t), t\in(-\pi/2,\pi/2)$;
 - \blacksquare no caso $\sqrt{a^2 + x^2}$, substitua $x = a Sh(t), t \in \mathbb{R}$;
 - \blacksquare no caso $\sqrt{x^2-a^2}$, substitua $x=\pm a\,Ch(t),\ t>0$.

isso leva a eliminar a raiz usando relações trigonométricas-hiperbólicas.

Exemplo:

$$\int \sqrt{4 + x^2} \, dx = (x = 2Sh(t), \ dx = 2Ch(t) \, dt) \int \sqrt{4(1 + Sh^2(t))} \, 2Ch(t) \, dt$$
$$= \int \sqrt{4Ch^2(t)} \, 2Ch(t) \, dt = \int 4Ch^2(t) \, dt = \dots$$

Alernativa:

Também pode funcionar integrar por partes:
$$\int \sqrt{4+x^2} \, dx = x\sqrt{4+x^2} - \int x \frac{x}{\sqrt{4+x^2}} \, dx = x\sqrt{4+x^2} - \int \frac{4+x^2}{\sqrt{4+x^2}} \, dx + \int \frac{4}{\sqrt{4+x^2}} \, dx$$
 agora a primeira integral é igual ao lado esquerdo, a segunda é imediata $(SetSh)$

- Caso $\int x^n \left(\sqrt{\pm a^2 \pm x^2}\right)^{\pm 1}$
 - \blacksquare Se n é par use a substituição trigonométrica ou hiperbólica acima.
 - Se n é impar, também as substituições $y=\pm a^2\pm x^2$ ou $z=\sqrt{\pm a^2\pm x^2}$ podem funcionar.

Exemplo:

C.41.2 Casos que podem ser reduzidos a funções racionais

Seja R[a,b,...] uma função racional nas variáveis a,b,...

• $\int \mathbf{R}[\sin(\mathbf{x})] \cos(\mathbf{x}) d\mathbf{x} = \int R(t) dt \ pondo \ t = \sin(x)$. O mesmo funciona para $R[\cos(x)] \sin(x) dx$ e análogos hiperbólicos. também os casos $R[\sin(x), \cos(x)^2] \cos(x)$ e análogos encaixam pois pode ver como $R[\sin(x), 1 - \sin(x)^2] \cos(x)$

Exemplo:

$$\int \frac{\sin(x)^2 - 3\sin(x)}{1 - \sin(x) + \cos^2(x)} \cos(x) \, dx = \int \frac{t^2 - 3t}{1 - t + 1 - t^2} \, dt$$

• $\int R[\sin(x), \cos(x)] dx$ sempre pode ser tratada da maneira seguinte (mas deixar como última tentativa, pois as contas sao feias!) ponha $t = \tan(x/2)$, assim $\sin(x) = 2t/(1+t^2)$, $\cos(x) = (1-t^2)/(1+t^2)$ e $dx = 2dt/(1+t^2)$. Para o caso $\int R[Sh(x), Ch(x)] dx$ ponha t = Th(x/2), assim $Sh(x) = 2t/(1-t^2)$, $Ch(x) = (1+t^2)/(1-t^2)$ e $dx = 2dt/(1-t^2)$.

Exemplo:

$$\int \frac{\sin(x)^2 - 3\cos(x)}{1 - \sin(x) + \cos(x)} dx = \int \frac{4t^2/(1 + t^2) - 3(1 - t^2)}{1 - 2t + (1 - t^2)} \frac{2 dt}{1 + t^2}$$

- $\int \sin^n(x) \cos^k(x) dx$, $(n, k \in \mathbb{Z})$:
 - se n ou k é ímpar, substitua a outra:

Exemplo:

```
\int \sin^8(x) \cos^7(x) \, dx = (t = \sin(x), \, dt = \cos(x) \, dx)\int t^8 (1 - t^2)^3 \, dt = \dots
```

■ se ambas são par, use as fórmulas de duplicação para baixar o grau:

Exemplo:

$$\int \sin^2(x) \cos^2(x) dx = \int (1 - \cos(2x))/2 \cdot (1 + \cos(2x))/2 dx = \int (1 - \cos^2(2x))/4 dx = \dots$$

• $\int \sin(nx)\cos(kx) dx$ ou $\int \sin(nx)\sin(kx) dx$ ou $\int \cos(nx)\cos(kx) dx$: use fórmulas trigonométricas

Exemplo:

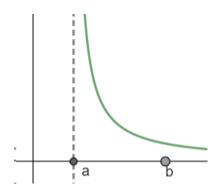
$$\int \sin(nx)\cos(kx) dx = \int (\sin(nx - kx) + \sin(nx + kx))/2 dx =$$
= ...

C.42 Caso (II): Integrais impróprias

C.42.1 Intervalo I não fechado limitado e f não limitada em I

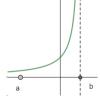
Seja $f:(a,b]\to\mathbb{R}$ tal que para todo $\delta>0$, a função $f|_{[a+\delta,b]}$ seja limitada e integrável em $[a+\delta,b]$.

- se existir $\lim_{\delta \to 0^+} \int_{\mathbf{a} + \delta}^{\mathbf{b}} \mathbf{f} = \mathbf{L} \in \mathbb{R}$ então dizemos
 - f é (Riemann) integrável em [a,b] em sentido generalizado (s.g.) (ou impróprio). (A integral converge).
 - L é a integral em sentido generalizado (ou a integral imprópria) de f em [a,b]: (notação $\int_a^b \mathbf{f}$).
- se o limite não existir ou for infinito então dizemos f não é integrável em [a,b] em sentido generalizado (ou impróprio). (A integral imprópria não converge, ou ainda, diverge).



Analogamente, seja $f:[a,b)\to\mathbb{R}$ tal que para todo $\delta>0$, a função $f|_{[a,b-\delta]}$ seja limitada e integrável em $[a,b-\delta]$.

 $\bullet \mbox{ se existir } \lim_{\delta \to 0^+} \int_a^{b-\delta} f = L \in \mathbb{R}$ então dizemos



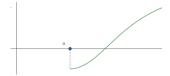
- \blacksquare f é (Riemann) integrável em [a,b] em sentido generalizado (ou impróprio). (A integral converge).
- L é a integral em sentido generalizado (ou impróprio) de f em [a,b]: (notação $\int_a^b f$).
- se o limite não existir ou for infinito então dizemos f não é integrável em [a, b] em sentido generalizado (ou impróprio). (A integral imprópria não converge ou, diverge).

Exemplo 36. Exercícios 85 a 86 em Slides de Exercícios.

C.42.2 Intervalo não limitado

Seja $f:[a,\infty)\to\mathbb{R}$ tal que para todo M>a, a função $f|_{[a,M]}$ seja limitada e integrável em [a,M].

 \bullet se existir $\lim_{M\to +\infty}\int_{\mathbf{a}}^{M}\mathbf{f}=\mathbf{L}\in\mathbb{R}$ então dizemos

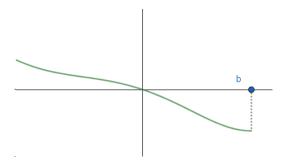


- $f \in (\mathbf{Riemann})$ integrável em $[a, \infty)$ em sentido generalizado (ou impróprio). (A integral converge).
- L é a integral em sentido generalizado (ou impróprio) de f em $[a, \infty)$: (notação $\int_{\mathbf{a}}^{+\infty} \mathbf{f}$).

se o limite não existir ou for infinito então dizemos f não é integrável em [a,∞)
 em sentido generalizado (ou impróprio). (A integral imprópria não converge — ou, diverge).

Analogamente, seja $f:(-\infty,b]\to\mathbb{R}$ tal que para todo M< b, a função $f|_{[M,b]}$ seja limitada e integrável em [M,b].

- \bullet se existir $\lim_{M\to -\infty} \int_M^b f = L \in \mathbb{R}$ então dizemos
 - f é (Riemann) integrável em $(-\infty, b]$ em sentido generalizado (ou impróprio). (A integral converge).
 - L é a integral em sentido generalizado (ou impróprio) de f em $(-\infty, b]$: (notação $\int_{-\infty}^{b} f$).
- se o limite não existir ou for infinito então dizemos f não é integrável em $(-\infty, b]$ em sentido generalizado (ou impróprio). (A integral imprópria não converge ou, diverge).



Exemplo 37. Exercícios 87 a 88 e 89^5 em Slides de Exercícios.

 $^{^5}$ Caso geral

C.42.3 Caso geral

Seja $f: D_f \to \mathbb{R}$ e $A \subseteq D_f$

- se A pode ser decomposto em um número finito de intervalos como os acima tais que f seja integrável em sentido generalizado em TODOS ELES, então dizemos que f é (Riemann) integrável em A em sentido generalizado (ou impróprio). (A integral imprópria converge). Dizemos então que a integral generalizada de f em A é a soma das integrais em cada intervalo
- caso contrário, dizemos que f não é integrável em A em sentido generalizado (ou impróprio). (A integral imprópria não converge).

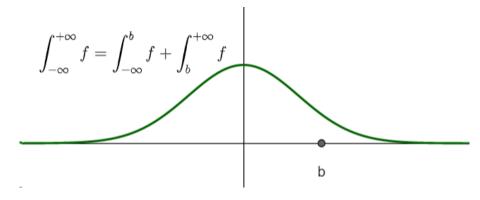


Figura 5: $\int_{-\infty}^{+\infty} f$ é convergente quando ambas integrais $\int_{-\infty}^{b} f$ e $\int_{b}^{+\infty} f$ são convergentes

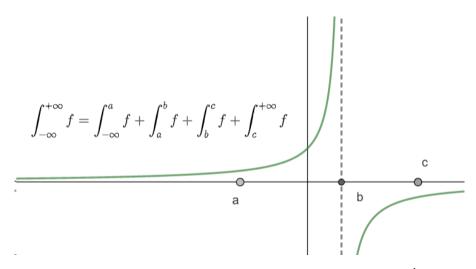


Figura 6: $\int_{-\infty}^{+\infty} f$ é convergente quando TODAS as 4 integrais: $\int_{-\infty}^a f e \int_a^b f e \int_b^c f e \int_c^{+\infty} f$ são convergentes

C.43 Teoremas de comparação

C.43.1 Teorema do Confronto

Teorema (Teorema do confronto para integrais impróprias). Sejam $f, g: (a, b] \to \mathbb{R}$ tais que para todo $\delta > 0$, as funções $f, g|_{[a+\delta,b]}$ sejam limitadas e integráveis em $[a+\delta,b]$. Se $0 \le f \le g$ em (a,b] então:

• se g é integrável em s.g. em [a,b] então f também é integrável em s.g. em [a,b], e vale

$$0 \le \int_a^b f \le \int_a^b g$$

ullet se f não é integrável em s.g. em [a,b] então g também não o é.

Um resultado análogo vale nos outros 3 casos.

Observe que se $f \geq 0$, então a função

$$G(\delta) = \int_{a+\delta}^b f$$

é não negativa monótona crescente e

$$\int_{a}^{b} f = \lim_{\delta \to 0^{+}} \int_{a+\delta}^{b} f = \begin{cases} L \ge 0 \\ ou \\ +\infty, \end{cases}$$

ou seja, o limite **não pode** não existir.

C.43.2 Teorema do Confronto com Limite

Teorema. Sejam $f, g: (a, b] \to \mathbb{R}$ tais que para todo $\delta > 0$, as funções $f, g|_{[a+\delta,b]}$ sejam limitadas e integráveis em $[a+\delta,b]$. Sejam $f, g \ge 0$ em (a,b] e

$$\lim_{\mathbf{x} \to \mathbf{a}^+} \frac{f(x)}{g(x)} = L.$$

Então,

• $L \in \mathbb{R} \setminus \{0\} \Longrightarrow \int_a^b f$ e $\int_a^b g$ têm o mesmo caráter: ambas convergem ou ambas divergem.

.....

•
$$L = 0$$
 e
$$\begin{cases} \int_a^b g \ \mathbf{c}onverge \Longrightarrow \int_a^b f \ \mathbf{c}onverge \end{cases}$$
• $L = 0$ e
$$\begin{cases} \int_a^b f \ \mathbf{d}iverge \Longrightarrow \int_a^b g \ \mathbf{d}iverge \end{cases}$$
• $L = +\infty$ e
$$\begin{cases} \int_a^b f \ \mathbf{c}onverge \Longrightarrow \int_a^b g \ \mathbf{c}onverge \end{cases}$$

......

Um resultado análogo vale nos outros 3 casos, avaliando os limites para $x \to b^-$, $x \to +\infty$, $x \to -\infty$, respectivamente.

C.43.3 Função absolutamente integrável

Teorema. Seja $f:(a,b]\to\mathbb{R}$ tal que para todo $\delta>0$, a função $f|_{[a+\delta,b]}$ seja limitada e integrável em $[a+\delta,b]$.

• Se |f| é integrável em s.g. em [a,b] então f também é integrável em s.g. em [a,b], e vale

$$\left| \int_{a}^{b} f \right| \le \int_{a}^{b} |f|$$

Um resultado análogo vale nos outros 3 casos.

Se |f| é integrável em s.g. dizemos que f é absolutamente integrável em s.g. (absolutamente convergente).

Exemplo 38. Exercícios 90 a 94 em Slides de Exercícios.

C.43.4 Algumas integrais úteis para confrontar

$$\int_{a}^{\infty} \frac{1}{x^{p}} dx \stackrel{(a>0)}{=} \begin{cases} \lim_{M \to \infty} \left[\frac{x^{1-p}}{1-p} \right]_{a}^{M} = \lim_{M \to \infty} \frac{1}{1-p} \left[M^{1-p} - a^{1-p} \right] = +\infty & se \ p < 1 \\ \lim_{M \to \infty} \left[\ln(x) \right]_{a}^{M} = \lim_{M \to \infty} \left[\ln(M) - \ln(a) \right] = +\infty & se \ p = 1 \end{cases}$$

$$\lim_{M \to \infty} \left[\frac{x^{1-p}}{1-p} \right]_{a}^{M} = \lim_{M \to \infty} \frac{1}{1-p} \left[\frac{1}{M^{p-1}} - a^{1-p} \right] = \frac{a^{1-p}}{p-1} \quad se \ p > 1$$

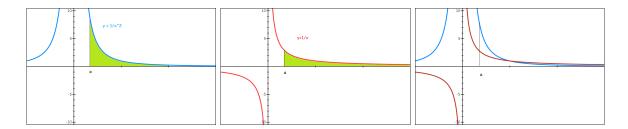


Figura 7: p > 0

$$\int_{0}^{a} \frac{1}{x^{p}} dx \stackrel{(a>0)}{=} \begin{cases} \lim_{\delta \to 0^{+}} \left[\frac{x^{1-p}}{1-p} \right]_{\delta}^{a} = \lim_{\delta \to 0^{+}} \frac{1}{1-p} \left[a^{1-p} - \delta^{1-p} \right] = \frac{a^{1-p}}{1-p} & se \ p < 1 \end{cases}$$

$$\lim_{\delta \to 0^{+}} \left[\ln(x) \right]_{\delta}^{a} = \lim_{\delta \to 0^{+}} \left(\ln(a) - \ln(\delta) \right) = +\infty \qquad se \ p = 1$$

$$\lim_{\delta \to 0^{+}} \left[\frac{x^{1-p}}{1-p} \right]_{\delta}^{a} = \lim_{\delta \to 0^{+}} \frac{1}{1-p} \left[a^{1-p} - \frac{1}{\delta^{p-1}} \right] = +\infty \quad se \ p > 1$$

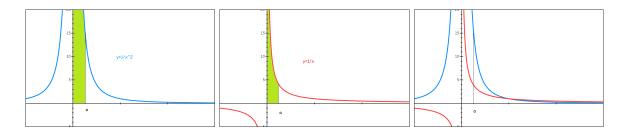


Figura 8: p > 0

$$\int_{a}^{\infty} e^{kx} dx = \lim_{M \to \infty} \left[\frac{1}{k} e^{kx} \right]_{a}^{M} = \lim_{M \to \infty} \left[\frac{1}{k} e^{kM} - \frac{1}{k} e^{ka} \right] = \begin{cases} \frac{1}{k} e^{ka} & \text{se } k < 0 \\ +\infty & \text{se } k < 0 \end{cases}$$
 $(a \in \mathbb{R})$

$$\int_0^1 \ln(x) \, dx = \lim_{\delta \to 0^+} \left[x \ln(x) - x \right]_\delta^1 = \lim_{\delta \to 0^+} \left[-1 - \delta \ln \delta + \delta \right] = -1$$

Resumindo:

$$\int_{a}^{\infty} \frac{1}{x^{p}} dx \quad \acute{\text{e}} \quad \begin{cases} \text{DIVERGENTE} & \text{se } p \leq 1\\ \text{CONVERGENTE} & \text{se } p > 1 \end{cases}$$
 $(a > 0)$

$$\int_0^a \frac{1}{x^p} dx \quad \acute{\text{e}} \quad \begin{cases} \text{CONVERGENTE} & se \ p \in (0,1) \\ \text{DIVERGENTE} & se \ p \geq 1 \end{cases} \qquad (a > 0)$$

$$\int_{a}^{\infty} e^{kx} dx \quad \acute{\text{e}} \quad \begin{cases} \text{CONVERGENTE} & \text{se } k < 0 \\ \text{DIVERGENTE} & \text{se } k \geq 0 \end{cases} \qquad (a \in \mathbb{R})$$

$$\int_0^1 \ln(x) dx$$
 é CONVERGENTE

C.44 Volume por Seção Transversal

Seja S um sólido limitado pelos planos x = a e x = b (a < b).

 $^{^6\}mathrm{As}$ figuras deste e
e foram retiradas do livro Cálculo, vol. 1 , G. B. Thomas, exceto quando dito o contrário

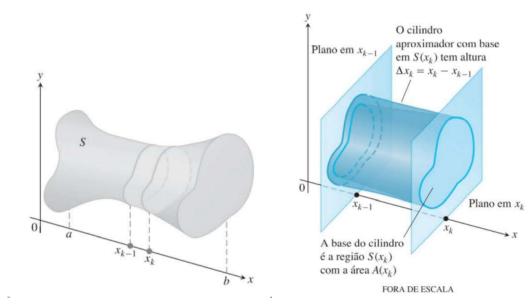


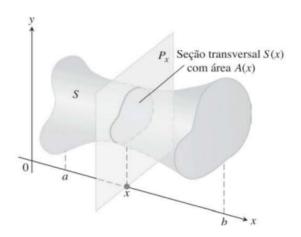
Figura 9: $V(S) \approx \sum_{k=1}^{n} A(x_k) \Delta_k x$ (soma de Riemann)

- $\mathcal{P}: a = x_0 < x_1 < \ldots < x_n = b$ partição de [a, b]
- P_{x_k} = plano perpendicular ao eixo-x passando por x_k
- $S(x_k) = S \cap P_{x_k} =$ região da seção transversal
- $A(x_k)$ = área da seção transversal $S(x_k)$
- S_k = cilindro **reto** com base $S(x_k)$ e altura $\Delta_k x = x_k x_{k-1}$
- $V(S_k) = A(x_k)\Delta_k x$
- $\bullet\,$ volume V_k da k-ésima fatia de $S\approx V(S_k)$
- $V(S) = \sum_{k=1}^{n} V_k \approx \sum_{k=1}^{n} V(S_k) = \sum_{k=1}^{n} A(x_k) \Delta_k x$ (soma de Riemann)
- Se A é uma função integrável em [a, b],

$$\lim_{\|\mathcal{P}\| \to 0} \sum_{k=1}^{n} A(x_k) \Delta_k x = \int_a^b A(x) dx$$

Se A(x) é a área da região obtida pela intersecção do sólido S com o plano P_x perpendicular ao eixo-x em $x \in [a,b]$ e A é uma função integrável em [a,b], então o **volume do sólido** S é dado por

$$V(S) := \int_a^b A(x) \, dx.$$



Em particular: se $f:[a,b]\to\mathbb{R}$ é contínua, com $f\geq 0$ e

$$R = \{(x, y) \in \mathbb{R}^2 : x \in [a, b], 0 \le y \le f(x)\},\$$

então o volume do **sólido de revolução** S obtido pela rotação da região R ao redor do **eixo-**x

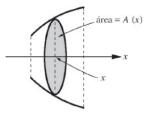


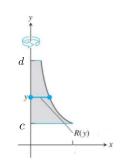
Figura retirada do livro Cálculo, vol. 1, Guidorizzi.

$$V(S) = \int_a^b \pi(f(x))^2 dx$$

Analogamente:

• se a seção transversal é perpendicular ao eixo-y:

$$V := \int_{c}^{d} A(y) \, dy$$



• se a região

$$R = \{(x, y) \in \mathbb{R}^2 : y \in [c, d], 0 \le x \le R(y)\},\$$

é rotacionada ao redor do eixo-y:

$$V = \int_{c}^{d} \pi(R(y))^{2} dy$$

Exemplo 39. Exercício 95 em Slides de Exercícios.

C.45 Volume por Cascas Cilíndricas

Sejam S o sólido de revolução obtido pela rotação da região R ao redor do eixo-y, onde

$$R = \left\{ (x, y) \in \mathbb{R}^2 : x \in [a, b], \quad 0 \le y \le f(x) \right\} \qquad (assuma \ a \ge 0).$$

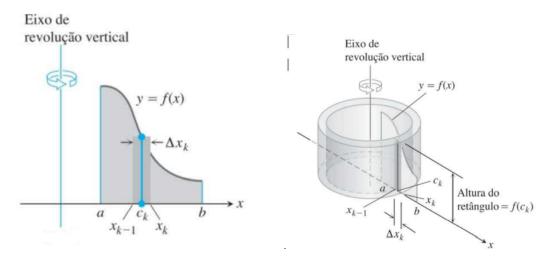


Figura 10: $V(S) \approx \sum_{k=1}^{n} 2\pi c_k f(c_k) \Delta_k x$ (soma de Riemann)

- $\mathcal{P}: a = x_0 < x_1 < \ldots < x_n = b$ partição de [a, b]
- R_k = retângulo típico de base $\Delta_k x$ e altura $f(c_k)$ $(c_k \in [x_{k-1}, x_k])$
- \bullet $C_k =$ casca cilíndrica obtida pela rotação de R_k
 - \blacksquare Volume de uma casca cilíndrica de altura h, raio interno r e raio externo R:

$$V = \pi R^2 h - \pi r^2 h = 2\pi h \left(\frac{R+r}{2}\right) (R-r)$$

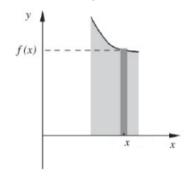
- $c_k = \frac{x_k + x_{k-1}}{2}$ (ponto médio)
- $V(C_k) = 2\pi f(c_k)c_k\Delta_k x$
- $V(S) \approx \sum_{k=1}^{n} V(C_k) = \sum_{k=1}^{n} 2\pi c_k f(c_k) \Delta_k x$ (soma de Riemann)
- Se f é uma função contínua em [a, b],

$$\lim_{\|\mathcal{P}\| \to 0} \sum_{k=1}^{n} 2\pi \underbrace{c_k}_{raio} \underbrace{f(c_k)}_{altura} \Delta_k x = \int_a^b 2\pi x f(x) dx$$

Seja f uma função contínua em [a,b]. O Volume do **sólido de revolução** S obtido pela rotação da região

$$R = \{(x, y) \in \mathbb{R}^2 : x \in [a, b], \quad 0 \le y \le f(x)\} \qquad (assuma \ a \ge 0)$$

ao redor do eixo-y é



$$V(S) := \int_{a}^{b} 2\pi x f(x) \, dx$$

$$V(S) = \int_a^b 2\pi \binom{\mathrm{raio}}{\mathrm{cilindro\ típico}} \binom{\mathrm{altura}}{\mathrm{cilindro\ típico}} dx$$

Figura retirada do livro Cálculo, vol. 1, Guidorizzi.

Analogamente, o volume do sólido de revolução S obtido pela rotação da região

$$B = \{(x,y) \in \mathbb{R}^2 : y \in [c,d], \quad 0 \le x \le g(y)\} \qquad (assuma \ c \ge 0)$$

ao redor do eixo-x é

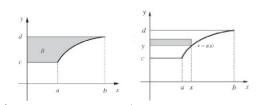
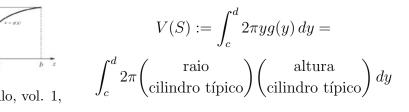


Figura retirada do livro Cálculo, vol. 1, Guidorizzi.



Exemplo 40. Exercícios 96 a 98 em Slides de Exercícios.

C.46 Comprimento de Curva

Sejam $f:[a,b]\to\mathbb{R}$ contínua, com derivada contínua e γ a curva dada pelo gráfico de f.

O comprimento de γ é

$$c := \int_{a}^{b} \sqrt{1 + (f'(x))^2} \, dx.$$

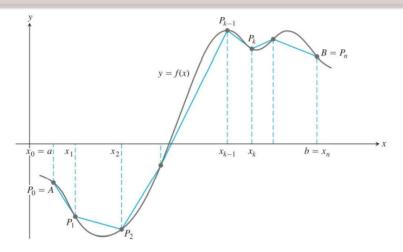


FIGURA 6.22 O comprimento do traçado poligonal $P_0P_1P_2\cdots P_n$ aproxima o comprimento da curva y = f(x) do ponto A ao ponto B.

$$a = x_0 < \ldots < x_n = b; \quad P_i = (x_i, f(x_i))$$

$$|\overline{P_{i}P_{i-1}}| = \sqrt{(\Delta_{i}x)^{2} + (f(x_{i}) - f(x_{i-1}))^{2}}$$

$$= \sqrt{(\Delta_{i}x)^{2} + (f'(\xi_{i})\Delta_{i}x)^{2}}$$

$$= \sqrt{1 + (f'(\xi_{i}))^{2}} \Delta_{i}x, \quad \xi_{i} \in (x_{i-1}, x_{i})$$

Portanto,

$$c \approx \sum_{i=1}^{n} \sqrt{1 + (f'(\xi_i))^2} \, \Delta_i x, \quad \xi_i \in (x_{i-1}, x_i).$$

C.47 Área de Superfície

Sejam $f:[a,b]\to\mathbb{R}$ contínua, com derivada contínua, $f\geq 0$ e γ a curva dada pelo gráfico de f.

A área da superfície de rotação obtida quando γ roda ao redor do eixo-x é

$$A_S := \int_a^b 2\pi f(x) \sqrt{1 + (f'(x))^2} \, dx.$$

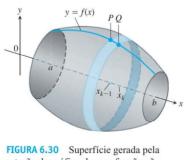


FIGURA 6.30 Superfície gerada pela rotação do gráfico de uma função não negativa y = f(x), $a \le x \le b$ em torno do eixo x. A superfície é um conjunto de faixas como a gerada pelo arco PQ.

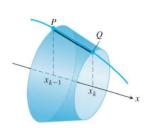


FIGURA 6.31 O segmento de reta que une *P* e *Q* gera um tronco de um cone.

Área da superfície de um **tronco de con**e de geratriz $\overline{PQ} := \overline{P_i P_{i-1}}$ e de raios $f(x_i)$ e $f(x_{i-1})$ é:

$$2\pi \underbrace{\frac{f(x_i) + f(x_{i-1})}{2}}^{\text{raio médio}} \underbrace{\overbrace{|\overline{P_i P_{i-1}}|}^{\text{compr. geratriz}}}_{|\overline{P_i P_{i-1}}|} \approx \\ \approx 2\pi f(\xi_i) \sqrt{1 + (f'(\xi_i))^2} \Delta_i x, \quad \xi_i \in (x_{i-1}, x_i)$$

Portanto,

$$A_s \approx \sum_{i=1}^n 2\pi f(\xi_i) \sqrt{1 + (f'(\xi_i))^2} \, \Delta_i x, \quad \xi_i \in (x_{i-1}, x_i).$$

Exemplo 41. Exercício 99 em Slides de Exercícios.

C.48 Aplicação de Soma de Riemann em ciências biológicas

C.48.1 Total de pessoas acometidas por uma epidemia

Uma epidemia está se alastrando a partir de um centro (coloque-o na origem do sistema de coordenadas). Segundo os dados recolhidos em pesquisas de campo, o modelo matemático que representa a densidade dos acometidos y a x quilômetros a partir da origem é

$$y = f(x), \quad 0 \le x \le a,$$

ou seja, y representa o número de pessoas que contraíram a doença por quilômetro quadrado. Quantas pessoas ficaram doentes dentro desta região?

Observe que no epicentro da epidemia, a densidade é de f(0) doentes/km² e que para x > a supõe-se que não existem mais doentes.

Divida o intervalo [0, a] em n sub-intervalos, $x_0 = 0 < x_1 < \cdots < x_n = a$ e escreva $\Delta_i x = x_i - x_{i-1}$.

Então, o número de pessoas N_i que contraíram a doença dentro do anel A_i delimitado pelos raios x_{i-1} e x_i é aproximadamente

$$N_i \approx \operatorname{Area}(A_i) f(\overline{x}_i) = (\pi x_i^2 - \pi x_{i-1}^2) f(\overline{x}_i) = \pi (x_i + x_{i-1}) (x_i - x_{i-1}) f(\overline{x}_i),$$

Se

$$\overline{x}_i = \frac{x_i + x_{i-1}}{2},$$

então

$$N_i \approx 2\pi \overline{x}_i f(\overline{x}_i) \Delta_i x.$$

Portanto, o número total de pessoas infectadas é aproximadamente

$$\sum_{i=1}^{n} N_i = \sum_{i=1}^{n} 2\pi \overline{x}_i f(\overline{x}_i) \Delta_i x.$$

Notando que a precisão desses números aumenta quando n tende a infinito, obtemos que o número exato de pessoas infectadas será

$$\lim_{n \to \infty} \sum_{i=1}^{n} 2\pi \overline{x}_i f(\overline{x}_i) \Delta_i x = \int_0^a 2\pi x f(x) \ dx.$$

C.48.2 Volume de sangue fluindo por segundo através de uma secção transversal de um vaso sanguíneo

Considere uma artéria de raio R. Pela Lei do Fluxo Laminar, a velocidade V do sangue depende da distância r em que o sangue se encontra do centro da artéria e é expressa por

$$V(r) = k(R^2 - r^2), \quad 0 \le r \le R,$$

onde k é uma constante positiva, relacionada à viscosidade do sangue e ao comprimento da artéria. Com esse modelo, podemos imaginar o sangue fluindo como se fosse constituído por camadas cilíndricas encaixantes (chamadas lâminas cilíndricas). A espessura de cada lâmina é $\Delta_i r$. Seja

$$\overline{r}_i = \frac{r_i + r_{i-1}}{2}.$$

Assim, a área da espessura da i-ésima lâmina é

$$A_i = \pi r_i^2 - \pi r_{i-1}^2 = \pi (r_i + r_{i-1})(r_i - r_{i-1}) = 2\pi \overline{r}_i \Delta_i r.$$

Além disso, podemos aproximar a velocidade que o sangue está fluindo na i-ésima lâmina por

$$V(\overline{r}_i) = k(R^2 - \overline{r}_i^2).$$

Como o volume de sangue V_i que passa na i-ésima lâmina por unidade de tempo é dado pelo produto da área da i-ésima lâmina pela velocidade que o sangue está fluindo nela, temos que o volume de sangue fluindo pela i-ésima lâmina é aproximadamente

$$V_i \approx A_i \mathbf{V}(\overline{\mathbf{r}_i}) = 2\pi \overline{r}_i \Delta_i r \mathbf{k} (\mathbf{R^2} - \overline{\mathbf{r}_i^2}) = 2\pi k (R^2 \overline{r}_i - \overline{r}_i^3) \Delta_i r.$$

Logo, o volume de sangue fluindo na secção transversal é aproximadamente

$$V \approx 2\pi k \sum_{i=1}^{n} (R^2 \overline{r}_i - \overline{r}_i^3) \Delta_i r.$$

Portanto, o volume de sangue fluindo na secção transversal é dado por (Lei do fluxo laminar ou Lei de Poiseuille)

$$V = 2\pi k \lim_{n \to \infty} \sum_{i=1}^{n} (R^{2} \overline{r}_{i} - \overline{r}_{i}^{3}) \Delta_{i} r = 2\pi k \int_{0}^{R} (R^{2} r - r^{3}) dr = \frac{\pi k R^{4}}{2}.$$

C.49 Exercícios:

Este arquivo contém alguns dos exercícios que foram resolvidos ou discutidos durante as aulas. Seus enunciados podem não estar completos e pode ser que durante as aulas importantes comentários sobre as resoluções tenham sido feitos.⁷

C.50 Números reais

1. Encontre o sup e inf em $\mathbb Q$ de:

(a)
$$A_1 = \{ q \in \mathbb{Q} : q^2 < 2 \};$$

(b)
$$A_2 = \{ q \in \mathbb{Q} : q < 0 \ e \ q^2 < 2 \};$$

(c)
$$A_3 = \{ q \in \mathbb{Q} : q < 2 \}.$$

Resp.: $\nexists \sup A_1$, $\inf A_1$; $\sup A_2 = 0$, $\nexists \inf A_2$ $(-\sqrt{2} \notin \mathbb{Q})$; $\sup A_3 = 2$, $\nexists \inf A_3$

2. Encontre o sup e inf em \mathbb{R} de:

(a)
$$A_1 = \{ q \in \mathbb{Q} : q^2 < 2 \};$$

(b)
$$A_2 = \{ q \in \mathbb{Q} : q < 0 \ e \ q^2 < 2 \};$$

(c)
$$A_3 = \{ q \in \mathbb{Q} : q < 2 \}.$$

Resp.: $\sup A_1 = \sqrt{2}$, $\inf A_1 = -\sqrt{2}$; $\sup A_2 = 0$, $\inf A_2 = -\sqrt{2}$; $\sup A_3 = 2$, $\#\inf A_3$

3. Determine o $\sup A$ e o $\inf A$ em \mathbb{R} , caso existam.

(a)
$$A = [1, 9]$$

(b)
$$A = (-2, 1)$$

(c)
$$A = (-\infty, 0)$$

(d)
$$A = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$$

Resp.: (a) $\sup A = 9$, $\inf A = 1$; (b) $\sup A = 1$, $\inf A = -2$; (c) $\sup A = 0$, $\nexists \inf A$; (d) $\sup A = 1$, $\inf A = 0$.

⁷Caso você encontre algum erro neste arquivo, por favor, reportá-lo para apperon@icmc.usp.br

4. Resolva em \mathbb{R} :

(a)
$$\frac{6x-1}{3-x} \ge 2$$

(b)
$$|5 - x| < 3$$

Resp.: (b)
$$\{x \in \mathbb{R}; \frac{7}{8} \le x < 3\}$$
; (b) $\{x \in \mathbb{R}; 2 < x < 8\}$

5. Sejam $\delta > 0$ e $a \in \mathbb{R}$. Elimine o módulo de $|x - a| < \delta$ e represente geometricamente.

Resp.:
$$\{x \in \mathbb{R} : a - \delta < x < a + \delta\} = (a - \delta, a + \delta)$$

6. Resolva em \mathbb{R} :

(a)
$$x^2 \ge 9$$

(b)
$$\frac{x^2-1}{x-2} < 0$$

(c)
$$|x^3 - 2x + 1| < 0$$

Resp.: (a)
$$\{x \in \mathbb{R}; x \geq 3 \text{ ou } x \leq -3\} = (-\infty, -3) \cup (3, \infty);$$

(b) $\{x \in \mathbb{R}; x < -1 \text{ ou } 1 < x < 2\} = (-\infty, -1) \cup (1, 2);$ (c) \emptyset

C.51 Funções

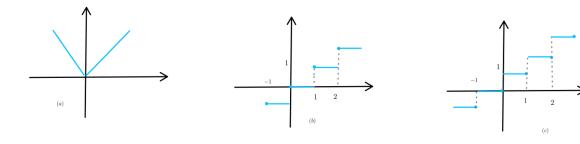
7. Encontre domínio, imagem e faça esboço do gráfico da função f dada por:

(a)
$$f(x) = |x|$$

(b)
$$f(x) = |x|$$
 ("chão": maior inteiro menor ou igual a x)

(c) (tarefa!)
$$f(x) = \lceil x \rceil$$
 ("teto": menor inteiro maior ou igual a x)

Resp.: (a)
$$D_f = \mathbb{R}$$
, $Im(f) = [0, \infty)$; (b,c) $D_f = \mathbb{R}$, $Im(f) = \mathbb{Z}$



8. Dadas $f(x) = \sqrt{x} e g(x) = x^2 - 1$, estude $f \circ f$, $g \circ g$, $f \circ g e g \circ f$.

Resp.:
$$D_{f \circ f} = [0, \infty) \text{ e } (f \circ f)(x) = \sqrt{\sqrt{x}};$$

 $D_{g \circ g} = \mathbb{R} \text{ e } (g \circ g)(x) = (x^2 - 1)^2 - 1;$

Para definir a função $f \circ g$ é necessário restringir o domínio de g de modo que a condição

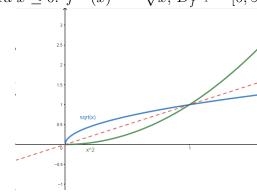
$$Im(g)\subset D_f$$
 fique satisfeita. Uma solução possível é:
$$D_{f\circ g}=[1,\infty)\ \mathrm{e}\ (f\circ g)(x)=\sqrt{x^2-1};$$
 Outra solução, a qual considera o "maior" domínio restrito de g possível é:
$$D_{f\circ g}=(-\infty,-1]\cup[1,\infty)\ \mathrm{e}\ (f\circ g)(x)=\sqrt{x^2-1};$$

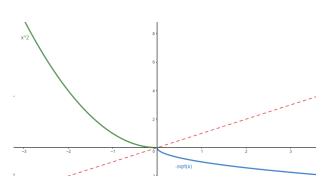
$$D_{g\circ f}=[0,\infty)\ \mathrm{e}\ (g\circ f)(x)=\sqrt{x-1}.$$

- 9. Restrinja o domínio/contradomínio, se necessário, da função dada de modo que f seja invertível e encontre sua inversa. Faça esboço dos gráficos.
 - (a) $f(x) = x^2$
 - (b) $f(x) = x^3$

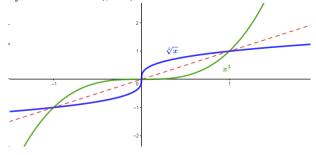
Resp.: (a)

para $x \ge 0$: $f^{-1}(x) = \sqrt{x}$, $D_{f^{-1}} = [0, \infty)$, $Im(f^{-1}) = [0, \infty)$; para $x \le 0$: $f^{-1}(x) = -\sqrt{x}$, $D_{f^{-1}} = [0, \infty)$, $Im(f^{-1}) = (-\infty, 0]$;





(b) $f^{-1}(x) = \sqrt[3]{x}$, $D_{f^{-1}} = \mathbb{R}$, $Im(f^{-1}) = \mathbb{R}$;



10. Verifique se as funções dadas são limitadas em D. Determine os pontos/valores de máximo e mínimo de f.

(a)
$$f(x) = \frac{x}{|x|}, D = D_f$$

(b)
$$f(x) = \frac{1}{x}$$
, $D = D_f$

(c)
$$f(x) = \frac{1}{x}$$
, $D = [-\infty, -5] \cup [5, \infty]$

(d)
$$f(x) = \frac{x}{x^2 + a}, a \ge 1, D = D_f$$

Resp.:

- (a) sim: $|f(x)| \le 1, \forall x \in D = \mathbb{R} \setminus \{0\};$
- (b) não: $\forall L > 0, \exists x_1 \in \mathbb{R} \setminus \{0\}, 0 < x_1 < \frac{1}{L}; f(x_1) > L e$

$$\forall M < 0, \exists x_2 \in \mathbb{R} \setminus \{0\}, \frac{1}{M} < x_2 < 0; f(x_2) < M;$$

(c) sim: $|f(x)| \le \frac{1}{5}, \forall x \in D = \mathbb{R};$

- (d) sim: $|f(x)| < 1, \forall x \in D = \mathbb{R}$.
- 11. Estude crescimento/decrescimento da função:
 - (a) $f(x) = x^2$
 - (b) $f(x) = x^3$ (tarefa!)

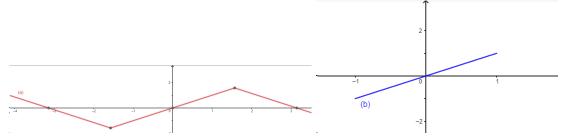
Resp.: (a) crescente em $[0, \infty)$; decrescente em $(-\infty, 0]$; (b) crescente em \mathbb{R}

- 12. Estude a paridade da função:
 - (a) $f(x) = x^2$
 - (b) $f(x) = x^3$
 - (c) $f(x) = x^2 2x$

Resp.: (a) par; (b) ímpar; (c) nem par nem ímpar

- 13. Esboce o gráfico das funções:
 - (a) $f(x) = \arcsin(\sin(x))$
 - (b) $f(x) = \sin(\arcsin(x))$

Resp.: (a) $D_f = \mathbb{R}$; (b) $D_f = [-1, 1]$



14. Usando translações, esboce o gráfico das funções:

(a)
$$f(x) = |x - 2| + 5$$

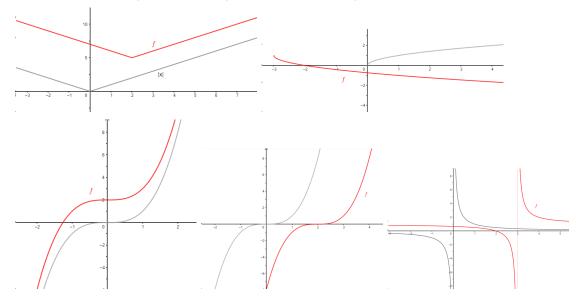
(d)
$$f(x) = (x-2)^3$$

(b)
$$f(x) = 1 - \sqrt{x+3}$$

(c)
$$f(x) = x^3 + 2$$

(e)
$$f(x) = \frac{1}{x-3} + 1$$

Resp.: (a, c, d) $D_f = \mathbb{R}$; (b) $D_f = [-3, \infty)$; (e) $D_f = \mathbb{R} \setminus \{3\}$



C.52 Limites e Continuidade

15. Determine o conjunto A' dos pontos de acumulação de A:

(a)
$$A = (1, 5]$$

(c)
$$A = (-\infty, 0) \cup \{1\}$$

(b)
$$A = (-\infty, 2) \cup (2, 3)$$

(d)
$$A = \mathbb{R}$$

Resp.: (a)
$$A' = [1, 5]$$
; (a) $A' = (-\infty, 3]$; (c) $A' = (-\infty, 0]$; (d) $A' = \mathbb{R}$

16. Verifique que para qualquer $p \in \mathbb{R}$, vale:

- (a) $\lim_{x\to p} k = k$, onde $k \in \mathbb{R}$
- (b) $\lim_{x\to p} x = p$

17. Determine os pontos em que f é contínua.

- (a) f(x) = k, onde $k \in \mathbb{R}$
- (b) f(x) = x
- (c) f(x) = |x|

Resp.: (a, b) e (c) contínuas em \mathbb{R}

18. Calcule:

(a)
$$\lim_{x \to -1} (5x - 4)$$

(b)
$$\lim_{x\to 2} \frac{x^2+x-6}{x^2-4}$$

Resp.: (a) -9; (b) $\frac{5}{4}$

19. Determine se f é contínua no ponto p dado:

(a)
$$f(x) = x^2 + 2x - 4$$
, $p = 3$

(b)
$$f(x) = \begin{cases} x+2, & x \neq -1 \\ 5, & x = -1 \end{cases}$$
, $p = -1$

Resp.: (a) contínua em p (\mathbb{R}); (b) não é contínua em p

20. Calcule:

(a)
$$\lim_{x \to -2} e^{-x^2}$$

(d)
$$\lim_{x \to 0} \frac{(x+2)^2 - 4}{x}$$

(b)
$$\lim_{x\to 1} \frac{x^3-6}{x-4}$$

(e)
$$\lim_{x \to 0} \frac{\sqrt{x^3 + 4} - 2}{x^3}$$

(c)
$$\lim_{x\to 0} \ln(x^2+1)$$

(f)
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x^2 - 1}$$

Resp.: (20a) e^{-4} ; (20b) $\frac{5}{3}$; (20c) 0; (20d) -2; (20e) $\frac{1}{4}$; (20f) $\frac{1}{4}$

21. Determine os pontos onde f é contínua:

(a)
$$f(x) = \frac{\ln(4-x) + e^{1/x}}{\sqrt{x-1} + 2x}$$

(b)
$$f(x) = \begin{cases} x^2 + 5x, & x \neq 1 \\ 2, & x = 1 \end{cases}$$

Resp.: (a) f é contínua em (1,4]; (b) f é contínua em $\mathbb{R} \setminus \{1\}$

C.52.1 Limites laterais

22. Calcule:

(a)
$$\lim_{x \to 0} |x|$$

(d)
$$\lim_{x \to 0^-} \frac{|x|}{x}$$

(b)
$$\lim_{x \to p} |x|, p \neq 0$$

(e)
$$\lim_{x\to 0} \frac{|x|}{x}$$

(c)
$$\lim_{x\to 0^+} \frac{|x|}{x}$$

(f)
$$\lim_{x\to 5^+} \frac{|5-x|}{5-x}$$

(g)
$$\lim_{x \to 5^{-}} \frac{|5 - x|}{5 - x}$$

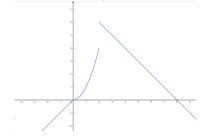
(h)
$$\lim_{x \to 5} \frac{|5 - x|}{5 - x}$$

Resp.: (a) 0; (b) |p|; (c) 1; (d) -1; (e) \nexists ; (f) -1; (g) 1; (h) \nexists

23. Determine os pontos de continuidade de $f(x) = \begin{cases} x, & x < 0 \\ x^2, & 0 < x \le 2 \\ 8 - x, & x > 2. \end{cases}$

Faça um esboço do gráfico de f.

Resp.: $D_f = \mathbb{R} \setminus \{0\}, f$ é contínua em $D_f \setminus \{2\} = \mathbb{R} \setminus \{0, 2\}$



C.52.2 Teoremas do Confronto e Anulamento

24. (Tarefa!) Verifique que

$$\lim_{x \to p} f(x) = 0 \Longleftrightarrow \lim_{x \to p} |f(x)| = 0.$$

25. Calcule:

(a)
$$\lim_{x\to 0} x \cos\left(\frac{1}{x}\right)$$

(b) $\lim_{x\to 0^+} \sqrt{x} e^{\sin(\frac{\pi}{x})}$ (Tarefa!)

Resp.: (a, b) 0

C.53 Limites infinitos e no infinito

26. (a) Verifique, usando a definição, que $({\rm tarefa!})$

i.
$$\lim_{x \to 0^+} \ln(x) = -\infty$$

iii.
$$\lim_{x\to +\infty}\frac{1}{x^r}=0, \ r\in \mathbb{Q},\, r>0$$

ii.
$$\lim_{x \to +\infty} e^x = +\infty$$

iv.
$$\lim_{x\to 0^+} \frac{1}{x^r} = +\infty, \ r\in \mathbb{Q}, \ r>0$$

Resp.: (i) $\delta=e^{-M}$; (ii) $H=\ln(M)$ (M>0); (iii) $H=\frac{1}{\varepsilon^r}$; (i) $\delta=\frac{1}{M^r}$

(b) Use o item anterior para verificar que

i.
$$\lim_{x \to +\infty} \ln(x) = +\infty$$
.

ii.
$$\lim_{x \to -\infty} e^x = 0$$

27. Calcule, caso existam, os limites abaixo. O que podemos dizer sobre assíntotas verticais dos gráficos das funções em cada item?

(a)
$$\lim_{x \to 5^{-}} \frac{6}{5 - x}$$

(c)
$$\lim_{x \to -2} \frac{x-1}{x^2(x+2)}$$

(b)
$$\lim_{x\to 0} \frac{x-1}{x^2(x+2)}$$

(d)
$$\lim_{x\to 0^+} \frac{x^2-3}{x^3+x^2}$$

Resp.: (a) $+\infty$ e x=5 é AV; (b) $-\infty$ e x=0 é AV; (c) \nexists e x=-2 é AV; (d) $-\infty$ e x=0 é AV

28. Calcule, caso existam, os limites abaixo. O que podemos dizer sobre assíntotas horizontais dos gráficos das funções em cada item?

(a)
$$\lim_{\substack{x \to +\infty \\ \mathbf{x} \to -\infty}} x$$

(e)
$$\lim_{x \to -\infty} \frac{2x^2 - 5x + 9}{x^2 - 2}$$

(b)
$$\lim_{\substack{x \to +\infty \\ \mathbf{x} \to -\infty}} (x^2 + 3x)$$

(f)
$$\lim_{\substack{x \to +\infty \\ \mathbf{x} \to -\infty}} \frac{\sqrt{9x^2 - 1}}{6x - 3}$$

(c)
$$\lim_{\substack{x \to -\infty \\ x \to +\infty}} (x^3 + 5x)$$

(g)
$$\lim_{\substack{x \to -\infty \\ x \to +\infty}} \frac{2x - 1}{\sqrt{4x^2 - x}}$$

(d)
$$\lim_{\substack{x \to +\infty \\ \mathbf{x} \to -\infty}} \frac{6}{5 - x}$$

(h)
$$\lim_{\substack{x \to +\infty \\ x \to -\infty}} \left(\sqrt{x^2 + 1} - x\right)$$

Resp.: (a) $+\infty$ ($-\infty$) e \nexists AH; (b) $+\infty$ ($+\infty$) e \nexists AH; (c) $-\infty$ ($+\infty$) e \nexists AH; (d) 0 (0) e y=0 é AH; (e) 2 (2) e y=2 é AH; (f) $\frac{1}{2}$ ($-\frac{1}{2}$) e $y=\frac{1}{2}$ e $y=-\frac{1}{2}$ são AH; (g) -1 (1) e y=-1 e y=1 são AH; (h) 0 (0) e y=0 é AH;

29. (Tarefa!) Encontre o erro no seguinte cálculo:

$$\lim_{x \to -\infty} \sqrt[3]{x^3 - x^2 + 2} - x = \lim_{x \to -\infty} x \sqrt[3]{1 - \frac{1}{x} + \frac{2}{x^3}} - x$$

$$= \lim_{x \to -\infty} x \sqrt[3]{1 - 0 + 0} - x$$

$$= \lim_{x \to -\infty} x - x$$

$$= 0.$$

Encontre o valor correto do limite acima!

Resp.: $-\frac{1}{3}$

C.53.1 Primeiro limite fundamental

30. Calcule:

(a)
$$\lim_{x \to 0} \frac{\sin 5x}{x}$$

(d)
$$\lim_{x\to 0} x \sin\left(\frac{1}{x}\right)$$

(b)
$$\lim_{x \to 0} \frac{x^2}{\sin x}$$

(e)
$$\lim_{x \to \infty} x \sin\left(\frac{1}{x}\right)$$

(c)
$$\lim_{x\to 0} \frac{\tan 3x}{\sin 4x}$$

(f)
$$\lim_{x \to 1} \frac{\sin \pi x}{x - 1}$$

Resp.: (a) 5; (b) 0; (c) $\frac{3}{4}$; (d) 0; (e) 1; (f) $-\pi$

C.53.2 Segundo limite fundamental

31. Calcule:

(a)
$$\lim_{x \to +\infty} \left(1 + \frac{2}{x} \right)^{x+1}$$

(b)
$$\lim_{x\to 0} (1 + \sin x)^{1/2x}$$
 (tarefa!)

Resp.: (a) e^2 ; (b) \sqrt{e}

C.54 Derivada

32. Encontre a equação da reta tangente ao gráfico da função $f:\mathbb{R}\to\mathbb{R}:x\mapsto x^2$ no ponto (2,4).

Resp.: y = 4x - 4

33. Considere a função $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = \begin{cases} x^2, & x \ge 1 \\ 1, & x < 1. \end{cases}$

Calcule, se existir, f'(1).

Resp.: $\not\equiv f'(1)$

34. Considere a função $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = \begin{cases} x^2, & x \ge 1 \\ 2, & x < 1. \end{cases}$

Calcule, se existir, f'(1).

Resp.: $\nexists f'(1)$

35. Considere a função
$$f: \mathbb{R} \to \mathbb{R}$$
 dada por $f(x) = \begin{cases} 2x+1, & x \ge 1 \\ x^2+2, & x < 1. \end{cases}$

Calcule, se existir, f'(1).

Resp.: f'(1) = 2

36. Encontre a função derivada de:

(a)
$$f(x) = k$$
, onde $k \in \mathbb{R}$

(e)
$$f(x) = \sin(x)$$

(b)
$$f(x) = x$$

(f)
$$f(x) = \cos(x)$$

(c)
$$f(x) = x^n$$
, onde $n \in \mathbb{N}$

(g)
$$f(x) = e^x$$

(d)
$$f(x) = x^{1/n}$$
, onde $n \in \mathbb{N}$

(h)
$$f(x) = \ln(x)$$

Resp.: veja Tabelas no Slide 05: Derivada.

C.54.1 Regras de derivação

37. Encontre a função derivada de:

(a)
$$f(x) = x^n$$
, onde $n \in \mathbb{Z}$

(c)
$$f(x) = \sec(x)$$

(b)
$$f(x) = \tan(x)$$

(d)
$$f(x) = \sqrt[3]{x}\sin(x)$$

Resp.: veja Tabelas no Slide 05: Derivada.

(37d)
$$D_{f'} = \mathbb{R} \text{ e } f'(x) = \begin{cases} x^{1/3} \cos(x) + \frac{1}{3} x^{-2/3} \sin(x), & x \neq 0 \\ 0, & x = 0. \end{cases}$$

38. Encontre a função derivada de:

(a)
$$f(x) = x^{p/q}$$
, onde $p \in \mathbb{Z}, q \in \mathbb{N}$

(c)
$$f(x) = \sinh(x)$$

(b)
$$f(x) = x^a$$
, onde $a \in \mathbb{R}$

(d)
$$f(x) = \cosh(x)$$
 (tarefa!)

Resp.: veja Tabelas no Slide 05: Derivada.

39. Encontre a função derivada de:

(a)
$$f(x) = (x^2 + 2x)^{100}$$

(c)
$$f(x) = \cos(2x + \ln(x))$$

(b)
$$f(x) = \sqrt{4x^2 + 8}$$

Resp.: Todas as funções são deriváveis em todos os pontos de seus domínio e vale:

(a)
$$f'(x) = 100(2x+2)(x^2+2x)^{99}$$
; (b) $f'(x) = \frac{4x}{\sqrt{4x^2+8}}$;

(c)
$$f'(x) = -\sin(2x + \ln(x))(2 + \frac{1}{x})$$

40. Encontre a função derivada de:

(a)
$$f(x) = \arcsin(x)$$

(c)
$$f(x) = \sinh^{-1}(x)$$

(b)
$$f(x) = \arccos(x)$$
 (tarefa!)

(d)
$$f(x) = \cosh^{-1}(x)$$
 (tarefa!)

Resp.: veja Tabelas no Slide 05: Derivada.

41. Encontre a derivada de:

(a)
$$f(x) = \ln(-x)$$

(d)
$$f(x) = \sin(x^3)$$

(b)
$$f(x) = 2^x$$

(e)
$$f(x) = \sin^3(x)$$

(c)
$$f(x) = \tan(e^{2x})$$

(f)
$$f(x) = \arcsin(x^2 - 5x)$$

Resp.: (a)
$$f'(x) = \frac{1}{x}$$
; (b) $f'(x) = 2^x \ln 2$; (c) $f'(x) = 2e^{2x} \sec^2(e^{2x})$; (d) $f'(x) = 3x^2 \cos(x^3)$; (e) $f'(x) = 3\sin^2(x)\cos(x)$; (f) $f'(x) = \frac{2x-5}{\sqrt{1-(x^2-5x)^2}}$

42. Encontre a derivada de ordem pedida

(a)
$$f(x) = x^4 + 2x^2 + x$$
, $f^{(5)} = ?$ (c) $f(x) = e^x$, $f^{(k)} = ?$, $k \in \mathbb{N}$

(c)
$$f(x) = e^x$$
, $f^{(k)} = ?, k \in \mathbb{N}$

(b)
$$f(x) = x^2 \cos(x)$$
, $f'' = ?$

(d)
$$f(x) = \ln(x^2 + 1)$$
, $f'' = ?$

Resp.: (a)
$$f^{(5)}(x) = 0$$
; (b) $f''(x) = -2((x+1)\sin(x) + (x-1)\cos(x))$; (c) $f^{(k)} = e^x$; (d) $f''(x) = \frac{2-2x^2}{(x^2+1)^2}$

43. Sabendo que y = f(x), encontre y'.

(a)
$$y^2x + \cos(xy) = 2$$

(b)
$$x^2y^3 + e^{2xy} - \sqrt{x^2 + y^2}$$

Resp.: (a)
$$y' = \frac{y\sin(xy) - y^2}{2xy - x\sin(xy)}$$
; (b) $y' = \frac{x(x^2 + y^2)^{-1/2} - 2xy^3 - 2ye^{2xy}}{3x^2y^2 + 2xe^{2xy} - y(x^2 + y^2)^{-1/2}}$

C.55Máximos e mínimos

44. Estude máximos e mínimos de f em seu domínio natural

(a)
$$f(x) = x^2$$

(b)
$$f(x) = x^3$$

Resp.: (a) f(0) = 0 é vma de $f \in \mathbb{R}$ e f não tem máximos locais/absolutos; (b) f não tem máximos e mínimos locais/absolutos

45. Encontre valores absolutos de

(a)
$$f(x) = x^3 - 3x + 1$$
 em $[0, 3]$.

(b)
$$f(x) = \frac{x}{x+1}$$
 em [1,2].

Resp.: (a) f(1) = -2 é vma e f(3) = 19 é VMA; (a) $f(1) = \frac{1}{2}$ é vma e $f(2) = \frac{2}{3}$ é VMA (note que f não tem extremos locais/absolutos em \mathbb{R})

- 46. Considere $f(x)=\frac{1}{x}$ e g uma função tal que $g'(x)=-\frac{1}{x^2}$. Dê um exemplo da função g. Resp.: $g(x)=\begin{cases} \frac{1}{x}+1, & x>0\\ \frac{1}{x}-4, & x<0 \end{cases}$
- 47. Determine os pontos de extremos locais de

(a)
$$f(x) = 5 - 2x^2 + x^3$$

(b)
$$f(x) = x^2 e^x$$

Resp.: (a) x=0 é PML e $x=\frac{3}{4}$ é pml. Note que f não possui extremos absolutos. (b) x=0 é pml e x=-2 é PML

48. Faça um estudo da função e esboce seu gráfico.

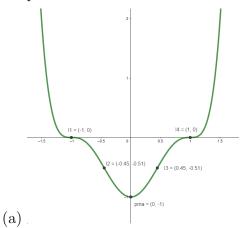
(a)
$$f(x) = (x^2 - 1)^3$$

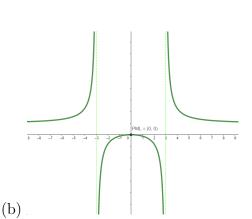
(c)
$$f(x) = \frac{x^3 - 1}{x^3 + 1}$$

(b)
$$f(x) = \frac{x^2}{x^2 - 9}$$

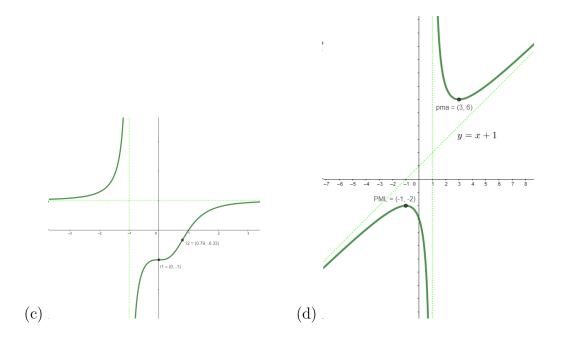
(d)
$$f(x) = \frac{x^2 + 3}{x - 1}$$

Resp.:





Massa & Peron



C.56 L'Hôpital

49. Calcule os limites

(a)
$$\lim_{x \to -2} \frac{x+2}{x^2+3x+2}$$
 (c) $\lim_{x \to +\infty} \frac{e^x}{x}$

(c)
$$\lim_{x \to +\infty} \frac{e^x}{x}$$

(e)
$$\lim_{x \to +\infty} \frac{\ln^3 x}{x^2}$$

(b)
$$\lim_{x \to 0} \frac{\sin x - x}{x^3}$$

(d)
$$\lim_{x \to -\infty} x^2 e^x$$

Resp.: (a) -1; (b) $-\frac{1}{6}$; (c) $+\infty$; (d) 0; (e) 0;

C.57Polinômio de Taylor

- 50. Calcule o valor aproximado para $\cos(0.01)$ e dê uma estimativa do erro cometido quando usado:
 - (a) polinômio de Taylor de ordem 1 no ponto 0: $T_{\cos,0}^1$
 - (b) polinômio de Taylor de ordem 2 no ponto 0: $T_{\cos,0}^2$

Resp.: (a) $T_{\cos,0}^1(x) = 1$, $\cos(0.01) \approx 1$ e $|E_0^2(0.01)| \le 10^{-4}$;

(b) $T_{\cos,0}^2(x) = T_{\cos,0}^3(x) = 1 - \frac{x^2}{2}$, $\cos(0.01) \approx 0.99995$ e $|E_0^2(0.01)| \le 10^{-6}$ e $|E_0^3(0.01)| \le 10^{-8}$. Segundo a calculadora $\cos(0.01) = 0.99995000041$: no item (a) o erro cometido foi por excesso e no item (b) por falta.

C.58 Aplicações

51. Um galpão deve ser construído tendo uma área retangular de 12.100m². A prefeitura exige que exista um espaço livre de 25m na frente, 20m atrás e 12m de cada lado do terreno. Encontre as dimensões do terreno que tenha área mínima na qual possa se construir este galpão.

Resp.: O terreno deve ter aproximadamente $20.409m^2$: 104.33m de comprimento por 195,62m de largura.

52. Um bote é puxado em direção ao ancoradouro por uma corda que está atada na proa do bote e que passa por uma polia sobre o ancoradouro (que está 1m mais alto do que a proa do bote). Se a corda for puxada a uma taxa de 1m/s, quão rápido está se aproximando o bote do ancoradouro quando ele estiver a 8m dele?

Resp.: se aproxima a uma taxa de 1,0077 m/s

Fonte: Stewart, Cálculo 1.

C.59 Revisão para P2

53. Calcule os limites (sem usar a Regra de L'Hopital):

- (a) Ex. 31b: $\lim_{x\to 0} (1+\sin x)^{1/2x}$
- (c) $\lim_{x \to 0} \frac{e^x 1}{x}$

(b) $\lim_{x\to 0} \frac{\ln(1+x)}{r}$

(d) $\lim_{x \to 0} \frac{(1+x)^p - 1}{x}$

Resp.: (a) \sqrt{e} ; (b) 1; (c) 1; (d) p

- 54. Determine: o domínio de f, a derivada de f e o domínio de f'.
 - (a) $f(x) = \cos(x \ln(2x^4 + 2x^2))$
 - (b) $f(x) = \frac{e^{\sin x} \tan 2x}{x^2 + 4}$;
 - (c) $f(x) = \sqrt[3]{x-1}\sin(x-1)$

Resp.: (a) $D_f = D_{f'} = \mathbb{R} - \{0\}$; (b) $D_f = D_{f'} = \mathbb{R} - \{\pi/4 + k\pi/2, k \in \mathbb{Z}\}$; (c) $D_f = D_{f'} = \mathbb{R}$.

55. Encontre
$$f'$$
 e seu domínio, onde $f(x) = \begin{cases} \frac{x^2 + 2x}{x^2}, & x \neq 0 \\ 1, & x = 0 \end{cases}$
Resp.: $f'(x) = -2/x^2, \quad D_{f'} = \mathbb{R} - \{0\}$

56. Determine, caso existam, as assíntotas verticais, horizontais e oblíquas do gráfico de

(a)
$$f(x) = (x-4)^{1/3} - 3;$$
 (c) $h(x) = \frac{x^3 - 1}{x^3 + 1};$

(b)
$$g(x) = \sqrt[3]{x^3 - x}$$
; (d) $f(x) = x + \ln x$.

Esboce o gráfico das funções acima.

Resp.: (a) não tem AV, AO, AH (b) não tem AV, AH, AO: y=x (c) não tem AO, AV: x=-1, AH: y=1 (d) AV: x=0 não tem AO, AH

57. Considere $f(x) = x + \ln x$.

- (a) Mostre que $f:(0,+\infty)\to\mathbb{R}$ admite função inversa g.
- (b) Mostre que g é derivável.
- (c) Verifique que $g'(x) = \frac{g(x)}{1 + g(x)}$.

Resp.: (a) verifique se f é estritamente crescente ou decrescente em $(0, \infty)$; (b) e (c): use o teorema da derivada da função inversa

58. Se $y = e^x \cos x$, verifique que y'' - 2y' + 2y = 0.

59. Se g é diferenciável em \mathbb{R} , g(1)=4, g'(1)=2 e $f(x)=xg(x^2)$, calcule f'(1). Resp.: f'(1)=8

60. Se y = f(x) é uma função derivável tal que $2y^2e^{2x} - \sin(x^3y^4) = 2\ln(xy)$, encontre y'. Resp.: $y' = \frac{\frac{2}{x} - 4y^2e^{2x} + 3x^2y^4\cos(x^3y^4)}{4ye^{2x} - 4x^3y^3\cos(x^3y^4) - \frac{2}{y}}$

61. Determine a equação da reta que é perpendicular à reta 2y + x = 3 e tangente ao gráfico de $f(x) = x^2 - 3x$.

Resp.: y = 2x - 25/4

62. Use o polinômio de Taylor de $f(x) = \ln(x)$ de ordem 1 em p = 1 para encontrar um valor aproximado de $\ln(1.2)$. Encontre uma estimativa do erro cometido nessa aproximação usando o Teorema do P.d.T. com resto de Lagrange.

Resp.: $T_{f,1}^1(x) = x - 1$; $|E_1^2(1.2)| < 10^{-1}$

C.60 Integral Definida

- 63. Encontre $a, b \in \mathbb{R}$ tais que $\int_0^1 e^{x^2} dx \in [a, b]$. Resp.: a = 1, b = e
- 64. Usando interpretação geométrica de integral definida, calcule $\int_0^1 \sqrt{1-x^2} dx$. Resp.: $\frac{\pi}{4}$
- 65. Verifique que:
 - (a) função constante é integrável em qualquer intervalo fechado $\left[a,b\right]$
 - (b) $f(x) = e^{x^2}$ é integrável em qualquer intervalo fechado [a, b]
 - (c) $f(x) = \sqrt{1 x^2}$ é integrável em [-1, 1]

Resp.: aplique o Teorema C.37.2 (de integrabilidade das contínuas).

66. Calcule

(a)
$$\int (5x - x^2) dx$$

(b)
$$\int \left(\frac{1}{x^2}\right) dx$$
.

(c)
$$\int \frac{1}{x} dx$$
.

Resp.: (a)
$$5\frac{x^2}{2} - \frac{x^3}{3} + c$$
; (b) $-\frac{1}{x} + c$; (c) $\ln|x| + c$

67. Calcule, mas antes verifique se a função é integrável no intervalo:

(a)
$$\int_{-2}^{-1} \left(\frac{1}{x^2} + \frac{1}{x} \right) dx$$
.

Resp.: $f(x) = \frac{1}{x^2} + \frac{1}{x}$ é contínua em $[-2, -1] \subset \mathbb{R} \setminus \{0\}$, portanto integrável em [-2, -1] e $\int_{-2}^{-1} f = \frac{1}{2} - \ln 2$

(b)
$$\int_{-1}^{2} |x - x^2| dx$$
.

Resp.: $f(x) = |x - x^2|$ é contínua em $[-1, 2] \subset \mathbb{R}$, portanto integrável em [-1, 2] e $\int_{-1}^2 f = \frac{11}{6}$

68. Encontre o domínio (considerando integral no sentido próprio) da função h e sua derivada h':

(a)
$$h(x) = \int_2^x \frac{\cos^2(t-1)}{\sqrt{t^2+1}} dt$$
. Resp.: $D = \mathbb{R}, h'(x) = \frac{\cos^2(x-1)}{\sqrt{x^2+1}}$

(b)
$$h(x) = \int_2^x \frac{1}{t^2} dt$$
. Resp.: $D = (0, \infty), h'(x) = \frac{1}{x^2}$

(c)
$$h(x) = \int_{1}^{x^2} \frac{1}{t} dt$$
. Resp.: $D = \mathbb{R} \setminus \{0\}, h'(x) = \frac{2}{x}$

(d)
$$h(x) = \int_{-1}^{x^2} \frac{1}{t} dt$$
. Resp.: $D = \emptyset$

69. Expresse a área da região R, limitada pelas curvas dadas, de duas formas: usando integração em x e integração em y. Calcule área usando uma das formas.

(a)
$$y = x^3$$
, $x = -1$, $x = 2$, eixo x . Resp.: $\frac{17}{4}$

(b)
$$y = x^2$$
, $y = 16 - x^2$. Resp.: $\frac{128\sqrt{2}}{3}$

(c)
$$y = x + 5$$
, $y = -1$, $y = 2$, $y^2 = x$. Resp.: $\frac{33}{2}$

C.61 Técnicas de integração

C.61.1 Substituição

70. Calcule e quando tratar de função determine seu domínio:

(a)
$$\int_0^1 x \cos(x^2 + 5) dx$$
.

(c)
$$\int \frac{\ln(x)}{x \ln^2(3x)} dx.$$

(b)
$$\int_0^1 x e^{x^2} dx$$
.

(d)
$$\int \frac{x}{1+x^4} dx.$$

Resp.:(a)
$$\frac{\sin 6 - \sin 5}{2}$$
; (b) $\frac{e - 1}{2}$; (c) $\frac{\ln(\ln 3x) + \frac{\ln 3}{\ln 3x} + c, \quad x \in (\frac{1}{3}, \infty)}{\ln(-\ln 3x) + \frac{\ln 3}{\ln 3x} + c, \quad x \in (0, \frac{1}{3})}$; (d) $\frac{\arctan(x^2)}{2} + c, x \in \mathbb{R}$

71. Sendo f integrável em [-a,a], calcule $\int_{-a}^{a} f(x)dx$ quando f é par e quando f é impar.

Resp.:
$$\begin{cases} 0, & \text{se } f \text{ \'e impar} \\ 2\int_0^a f, & \text{se } f \text{ \'e par} \end{cases}$$

72. Quanto vale $\int_{-2}^{-1} x^4 \sin(x^3) dx - \int_{-2}^{1} x^4 \sin(x^3) dx$? Resp.: 0

C.61.2 Integração por partes

73.
$$\int_{1}^{4} x \ln(x) dx.$$
 Resp.: $8 \ln 4 - \frac{15}{4}$; $(\int x \ln x \, dx = \frac{x^{2} \ln(x)}{2} - \frac{x^{2}}{4} + c, \quad x > 0)$

74.
$$\int \arctan(x) dx.$$
Resp.: $x \arctan(x) - \frac{\ln(x^2+1)}{2} + c, \quad x \in \mathbb{R}$

C.61.3 Integrais trigonométricas

75.
$$\int \cos^2(x) dx.$$
Resp.: $\frac{\sin(2x)+2x}{4} + c$, $x \in \mathbb{R}$

76.
$$\int \sin^2(x) \cos^3(x) dx.$$
Resp.:
$$\frac{\sin^3(x)}{3} - \frac{\sin^5(x)}{5} + c, \quad x \in \mathbb{R}$$

77.
$$\int \tan^{3}(x) \sec^{4}(x) dx.$$
Resp.:
$$\begin{cases} \frac{\tan^{6}(x)}{6} + \frac{\tan^{4}(x)}{4} + c, & x \in I \quad \text{I intervalo} \\ \frac{\sec^{6}(x)}{6} - \frac{\sec^{4}(x)}{4} + c, & x \in I \quad \text{$I \subset \mathbb{R} - \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$} \end{cases}$$

C.61.4 Substituição trigonométrica/hiperbólica

78.
$$\int \sqrt{1-x^2} \, dx$$
.
Resp.: $\frac{1}{2} \arcsin(x) + \frac{1}{2} x \sqrt{x^2 - 1} + c$, $x \in [-1, 1]$

79.
$$\int \frac{2}{\sqrt{1+4x^2}} dx.$$

Resp.: $\ln(2x+\sqrt{4x^2+1})+c, \quad x \in \mathbb{R}$

C.61.5 Frações Parciais

80.
$$\int \frac{2x^2 - 5x - 3}{(x+1)(x^2+1)} \, dx.$$

Resp.: $2 \ln |x+1| - 5 \arctan(x) + c$

81.
$$\int \frac{x^5 + 1}{x^4 - x^2} \, dx.$$

Resp.: $\frac{x^2}{2} + \frac{1}{x} + \ln|x - 1| + c$

82.
$$\int \frac{x^4 + 1}{x(x^2 + 1)^2} \, dx.$$

Resp.: $\ln |x| + \frac{1}{x^2+1} + c$

83.
$$\int \frac{x+1}{x^2 + 2x + 3} \, dx.$$

Resp.: $\frac{\ln(x^2 + 2x + 3)}{2} + c$

84. (!)
$$\int \frac{x+2}{x^2+2x+3} dx$$
.

Resp.: $\frac{1}{2}\ln((x+1)^2+2)+\frac{\sqrt{2}}{2}\arctan(\frac{x+1}{\sqrt{2}})+c$

C.62 Integrais Impróprias

85.
$$\int_0^1 \ln(x) dx$$
.

Resp.: -1 (convergente)

86.
$$\int_0^a \frac{1}{x^p} dx \ (a > 0).$$

Resp.: $\frac{a^{1-p}}{1-p}$ (convergente) se p<1; divergente se $p\geq 1$

87.
$$\int_{a}^{\infty} \frac{1}{x^p} dx \ (a > 0).$$

Resp.: $\frac{1}{a^{p-1}(p-1)}$ (convergente) se p>1; divergente se $p\leq 1$

88.
$$\int_{a}^{\infty} e^{kx} dx \ (a \in \mathbb{R}).$$

Resp.: $-\frac{e^{ka}}{k}$ (convergente) se k<0; divergente se $k\geq 0$

89.
$$\int_{-1}^{1} \frac{1}{x} \, dx.$$

Resp.: divergente

90.
$$\int_0^\infty e^{-x^2} dx$$
.

Resp.: convergente

91.
$$\int_{1}^{\infty} \frac{1 + e^{-x}}{x} dx$$
.

Resp.: divergente

92.
$$\int_0^\infty e^{-x} \sin^3(x) dx$$
.

Resp.: convergente

93.
$$\int_{1}^{\infty} \frac{\sin x}{x} dx$$
. Resp.: convergente

94.
$$\int_{1}^{\infty} \left| \frac{\sin x}{x} \right| dx$$
. Resp.: divergente

C.63 Aplicações de integral de Riemann

- 95. Encontre o volume do sólido obtido pela rotação ao redor do eixo x da região sob a curva $y=\sqrt{x}$ e acima do eixo-x de x=0 até x=1. Resp.: $\frac{\pi}{2}$
- 96. Encontre o volume do sólido obtido pela rotação ao redor do eixo y da região limitada por $y=2x^2-x^3,\,y=0,\,x=0$ e x=2. Resp.: $\frac{16\pi}{5}$
- 97. Encontre o volume do sólido obtido pela rotação ao redor do eixo y da região limitada por $y=x^3,\,y=8$ e x=0. Resp.: $\frac{96\pi}{5}$

- 98. Considere a região R limitada por y=x e $y=x^2$. Encontre o volume do sólido obtido pela rotação de R (tarefa)
 - (a) ao redor do eixo x;
 - (b) ao redor da reta y = 2.

Resp: (a) $\frac{2\pi}{15}$; (b) $\frac{8\pi}{15}$

99. Considere S a superfície obtida pela rotação da curva $y=\frac{1}{x},\ x\geq 1$, em torno do eixo-x (conhecida como trombeta de Gabriel) e B o sólido obtido pela rotação da região $R=\{(x,y): 0\leq y\leq \frac{1}{x}, x\geq 1\}$ em torno do eixo-x. Determine a área de superfície de S e o volume do sólido B.

Resp.: $A_S = \infty \text{ e } V(S) < \infty$

Figura 11: Wikipedia: Trombeta de Gabriel (Gabriel's horn) (leia sobre o "paradóxo do pintor")

C.64 Revisão para P3

- 100. Classifique as integrais abaixo como: família de funções, função ou número. Encontre o domínio quando se tratar de função (considere integral no sentido próprio).
 - (a) $\int_{-1}^{1} \sqrt[3]{x} \, dx$
- (b) $\int \sqrt[3]{x} \, dx$
- (c) $\int_{-1}^{x} \sqrt[3]{y} \, dy$
- 101. Encontre o domínio das funções integrais a seguir considerando a integral
 - (a) no sentido próprio;
 - (b) no sentido impróprio.
 - i. $h(x) = \int_1^{x^2} \frac{1}{\sqrt[3]{y^2}} \, dy$
- ii. $h(x) = \int_{-1}^{x^2} \frac{1}{\sqrt[3]{y^2}} dy$.

Resp.: (i)-(a) $D = \mathbb{R} \setminus \{0\}$, (i)-(b) $D = \mathbb{R}$; (ii)-(a) $D = \emptyset$, (ii)-(b) $D = \mathbb{R}$

- 102. Calcule e quando tratar de função indique o domínio (considere a integral no sentido próprio):
 - (a) $\int \frac{\ln^2 x}{x} dx$. Resp.: $\frac{\ln^3(x)}{3} + c, x > 0$
 - (b) $\int_{1}^{2} \frac{\ln(x^2)}{x^3} dx$. Resp.: $\frac{3-\ln 4}{8}$
 - (c) $\int \frac{x^2+3}{x^2(x^2+1)} dx$. Resp.: $-2 \arctan(x) \frac{3}{x} + c, x \in \mathbb{R} \setminus \{0\}$
 - (d) $\int \frac{1}{(x^2+9)^2} dx$. Resp.: $\frac{x}{18(x^2+9)} + \frac{\arctan(\frac{x}{3})}{54} + c, x \in \mathbb{R}$
- 103. Calcule ou discuta a convergência:
 - (a) $\int_{1}^{\infty} \frac{x^3}{x^4 + 3} dx$. Resp.: divergente
 - (b) $\int_{-\infty}^{\infty} \frac{1}{x^4 + x^2 + 1} dx$. Resp.: convergente
- 104. Faça um esboço da região limitada pelas curvas $y=e^{-x},\ y=-x-1,\ x=0$ e x=4 e escreva a sua área:
 - (a) usando integrais em x;

(b) usando integrais em y.

Resp.: (a)
$$A = \int_0^4 (e^{-x} + x + 1) dx$$
;
(b) $A = \int_{-5}^{-1} (4 + y + 1) dy + \int_{-1}^{e^{-4}} 4 dy + \int_{e^{-4}}^{1} (-\ln y) dy$

105. Exercício 98.

Fim do curso!

