Professora: Ana Paula Peron

Nome: ____

N.º USP: _____

08/12/2006

Questão	Valor	Nota
1^a	2,0	
2^a	2,0	
3^a	2,0	
4^a	2,0	
5^a	2,0	

1. Calcule a integral de linha

$$\int_C x^2 y dx - xy^2 dy,$$

onde C é o círculo $x^2 + y^2 = 4$ orientado no sentido anti-horário.

- 2. Considere o campo vetorial $F(x,y)=(2x+y^2+3x^2y)\vec{i}+(2xy+x^3+3y^2)\vec{j}$. Calcule a integral de linha $\int_C F \cdot dr$ quando:
 - a) C é dada por y = x, y = 1 e x = 0;
 - b) C é o arco da curva $y = x \operatorname{sen} x$ de (0,0) a $(\pi,0)$.
- 3. Seja $F = \nabla f$, onde f(x, y) = sen(x 2y). Determine curvas C_1 e C_2 que não sejam fechadas e satisfaçam as equações:

$$\int_{C_1} F \cdot dr = 0, \qquad \qquad \int_{C_2} F \cdot dr = 1.$$

4. Use o Teorema de Stokes para calcular o trabalho realizado pelo campo de força

$$F(x, y, z) = x^2 \vec{i} + xy \vec{j} + z \vec{k}$$

quando uma partícula se move sob sua influência na fronteira da superfície $z = x^2 + y^2$ que está abaixo do plano z = 1, orientada para baixo.

- 5. a) Use o Teorema da Divergência (Gauss) para calcular a integral de superfície $\iint_S F \cdot dS$, onde $F(x,y) = (z\operatorname{arctg} y^2)\vec{i} + z^3\ln(1+x^2)\vec{j} + z\vec{k}$ e S é a superfície do sólido limitado pelo parabolóide $x^2 + y^2 + z = 2$ e pelo plano z = 1.
 - b) Expresse a integral de superfície do item anterior (sem usar o Teorema de Gauss! como integral de superfície) quando S está orientada positivamente.