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Abstract. We investigate the traceability of positive integral operators on
L2(X,µ) when X is a Hausdorff locally compact second countable space and
µ is a non-degenerate, σ-finite and locally finite Borel measure. This setting
includes other cases proved in the literature, for instance the one in which X
is a compact metric space and µ is a special finite measure. The results apply
to spheres, tori and other relevant subsets of the usual space Rm.

1. Introduction and preliminaries

Let X be a Hausdorff locally compact and second countable topological space
endowed with a non-degenerate, σ-finite and locally finite Borel measure µ. In this
paper, we shall investigate the traceability of integral operators K : L2(X,µ) →
L2(X,µ) generated by a suitable kernel K : X ×X → C from L2(X ×X,µ× µ).
The title of the paper refers to the fact that the space X carries a topological
structure rather than a metric one. The setting just described allows the space
L2(X,µ) to have a countable complete orthonormal subset ([7, p.92]) while the
operator K, which is given by the formula

K(f) :=

∫
X

K(·, y)f(y) dµ(y), f ∈ L2(X,µ),
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becomes compact. As so, the spectral theorem for compact operators is applicable
and K can be represented in the form

K(f) =
∞∑
n=1

λn〈f, fn〉fn, f ∈ L2(X,µ),

in which {λn} is a sequence of real numbers (possibly finite) converging to 0 and
{fn} is a complete orthonormal sequence in L2(X,µ). The symbol 〈·, ·〉 will stand
for the usual inner product of L2(X,µ).

The basic requirement on the kernel K will be its positive definiteness. A kernel
K from L2(X × X,µ × µ) is L2(X,µ)-positive definite when the corresponding
integral operator K, is positive:

〈K(f), f〉 ≥ 0, f ∈ L2(X,µ).

Fubini’s theorem is all that is need in order to show that a L2(X,µ)-positive defi-
nite kernel is hermitian µ×µ-a.e.. As so, the integral operator K is automatically
self-adjoint with respect to 〈·, ·〉. In particular, the sequence {λn} mentioned in
the previous paragraph needs to be entirely composed of nonnegative numbers.
In the present paper, we shall assume they are listed in a decreasing order, with
repetitions to account for multiplicities.

Under the conditions established above, the specific aim of this paper is to
establish additional conditions on K in order that K be trace-class, that is,∑

f∈B

〈K∗K(f), f〉1/2 <∞

for every orthonormal basis B of L2(X,µ). In the formula above, K∗ is the ad-
joint of K. We refer the reader to [5, 10, 11] for more information on trace-class
operators.

The main result in this paper can be seen as a generalization of another one
originally proved in [11] for the case X = [a, b]. The proof there used in a key man-
ner the so-called Steklov’s smoothing operator to construct an averaging process
to generate a convenient approximation to K. The upgrade to the case in which
X is a subspace of Rn was discussed in [8] and references therein. By assuming
that the Lebesgue measure of nonempty intersections of X with open balls of Rn

was positive and using auxiliary approximation integral operators generated by
an averaging process constructed via the Hardy-Littlewood theory, the main re-
sult in [8] described necessary and sufficient conditions for the traceability of the
integral operator, under the assumption of positive definiteness of the kernel. The
process used in [8] and other references as well provides a way to deal with the
generating kernel on the diagonal of X ×X and it is convenient when the kernel
is not continuous. Despite using a similar average process, another achievement
in the present paper is the inclusion of a setting in which the measure does not
need to be finite.

Since our spaces are no longer metric, the Hardy-Littlewood theory in the aver-
age arguments needs to be replaced or adapted. We will use techniques involving
the construction of auxiliary integral operators based on martingales constructed
from special partitions of X, following very closely the development of Brislawn
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in [2]. A similar construction have appeared in [6] in an attempt to generalize
Brislawn results to Lp spaces. The main difference between the construction to
be delineated here and those in [2] and [6] is that, in the present one, we need
to guarantee that the elements in the partitions belong to the topology of X.
This is the exact point where the assumption of local compactness will play an
important role.

For the sake of completeness we mention references [1, 14] where other charac-
terizations for traceability were obtained.

An outline of the paper is as follows. Section 2 contains the basic information
on martingales used in the paper, along with the key construction we will need
in order to introduce approximating auxiliary operators in Section 3. There, the
main technical results are established and proved. Section 4 contains the main
results of the paper, including a convenient equivalence for traceability.

2. A special martingale

This section contains several results involving a special martingale on X. Some
of them are just refined versions of results described in Section 2 of [2]. However,
the reader is advised that the basic references we used for the concepts and results
either quoted or used here are [4, 15].

Let (X,M, σ) denote a σ-finite measure space and F a sub-σ-algebra ofM for
which (X,F , σ) is a σ-finite measure space too. If f : X → C is M-measurable,
Radon-Nikodyn’s theorem asserts that we can find a unique F -measurable func-
tion g : X → C so that ∫

A

f dσ =

∫
A

g dσ, A ∈ F .

The function g is called the conditional expectation of f relative to F and is
written g = E(f |F). If {Fn} is a family of sub-σ-algebras ofM, a sequence {fn}
of M-measurable functions on X is a martingale if every fn is Fn-measurable
and E(fn|Fm) = fm, m < n.

Next, we remind the reader about the basic setting we are assuming in the
paper: X is a Hausdorff, locally compact and second countable topological space
endowed with a non-degenerate, locally finite and σ-finite Borel measure µ. In
addition to that, we will write BX to denote the Borel σ-algebra of X.

Invoking the first countability axiom, we may infer that every point of X pos-
sesses an open neighborhood. Since X is Hausdorff and locally compact, these
neighborhoods can be assumed to be the interior of a compact set. Thus, due to
the local finiteness of (X,µ), we can assume, in addition, that the open neigh-
borhoods of elements of X have finite measure.

We intend to construct a special sequence of partitions of X from an open
covering {Ax}x∈X of it, composed of neighborhoods of the type just described,
and use them to define a particular martingale. If such a covering has been fixed,
Lindelöff’s theorem ([13, p.191]) implies that we can extract from it a countable
sub-collection {An}, still covering X. Such sub-collection can be used in the
construction of a first stage partition P0 of X, following these steps: the first two
elements in the partition are A0 and its frontier ∂A0. Observing that {An\A0} is
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an open and countable covering of X\A0, we pick A1\A0 and ∂A1\A0 to include
in the partition. The family {An\A0 ∪ A1} is an open and countable covering of
X\A0 ∪ A1. We proceed, including its elements A2\A0 ∪ A1 and ∂A2\A0 ∪ A1 in
the partition. Proceeding inductively, we complete the construction of P0, which
is countable and entirely composed of Borel sets of finite measure. Since Theorem
7.8 in [9] implies that µ is regular, all the sets of the form ∂An\A0 ∪ · · · ∪ An−1
in P0 have measure zero.

In the next step, we construct a sequence {Pn} of partitions of X from P0,
using as we can, a countable basis {Un} for the topology of X. For n = 0, 1, . . .,
we put

Pn+1 = {Un ∩ A : A ∈ Pn} ∪ {(X \ Un) ∩ A : A ∈ Pn} ∪ {∂Un ∩ A : A ∈ Pn}.

Clearly, Pn+1 refines Pn and the sequence {Fn} of the corresponding σ-algebras
generated by those partitions increases to BX . In addition, every (X,Fn, µ) is
σ-finite.

It is easy to see that for each x ∈ X and each positive n, there exists a unique
set On(x) ∈ Pn such that x ∈ On(x). We denote by N the subset of X containing
all x ∈ X for which µ(Om(x)) = 0, for some m ≥ 0. Since the sequence {On(x)}
is telescoping, the equality µ(Om(x)) = 0 implies µ(On(x)) = 0, n ≥ m. Being
each Pn countable, it is easily seen that µ(N) = 0.

The very same arguments used in [15, p.89] show that for every x ∈ X \N and
every positive n, the conditional expectation En(f) of f relative to Fn is given
by the formula

En(f)(x) =
1

µ(On(x))

∫
On(x)

f dµ.

The sequence {En(f)} defines a martingale generated by just one (measurable)
function, the martingale associated with f . Examples related to constructions
similar to the one above can be found in [15, p.88].

The section will be completed with a list of results involving the previous
formula and the maximal function Mf of the martingale associated with f , which
is defined by the formula

Mf(x) := sup{|En(f)(x)| : n = 1, 2, . . .}, x ∈ X.

Since the results are quite general and are not attached to the particular setting
introduced above, we will include sketches of the proofs for the convenience of
the reader.

A classical result concerning the maximal function ([15, p.91]) implies that if
p ∈ (0,∞) then

‖Mf‖p ≤ cp‖f‖p, f ∈ Lp(X,µ),

where cp is a constant depending on p only and ‖ · ‖p denotes the usual norm
of Lp(X,µ). As for the conditional expectation, it transforms convergence in the
mean into convergence µ-a.e. Another basic result ([4, p.53] and [2, p.232]), com-
monly called Doob’s martingale convergence theorem, states that En(f) converges
to f µ-a.e., as long as f ∈ Lp(X,µ) and p ∈ [1,∞].
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Moving forward, the inequalities

|En(f)(x)| ≤Mf(x), x ∈ X \N, n ≥ 1, (2.1)

and

|f(x)| ≤ |f(x)− En(f)(x)|+Mf(x), x ∈ X \N, n ≥ 1,

are easily deducted. Combining the last one with Doob’s martingale convergence
theorem, we are led to the inequality |f | ≤ Mf , µ-a.e.. As for the conditional
expectation, we have the following result found in [15, p.90]: if p ∈ [1,∞] and
f ∈ Lp(X,µ) then ‖En(f)‖p ≤ ‖f‖p, n ≥ 1. As a consequence, the following
theorem holds.

Theorem 2.1. If p ∈ [1,∞] then the linear map En : Lp(X,µ) → Lp(X,µ) is
bounded. If p = 2, then the previous map is a self-adjoint operator.

We close the section with a result for convergence in the mean of the conditional
expectation.

Theorem 2.2. If f ∈ L2(X,µ) then Enf converges to f in the mean.

Proof. If gn := |f − En(f)|2, n ≥ 1, the previous theorem yields that {gn} ⊂
L1(X,µ). Now, inequality (2.1) leads to

|gn(x)| ≤ 2(|f(x)|2 + |En(f)(x)|2) ≤ 4|Mf(x)|2, x ∈ X \N, n ≥ 1.

Clearly, Mf ∈ L2(X,µ) while Doob’s convergence theorem gives us gn → 0 µ-a.e..
The dominated convergence theorem connects the final arguments. �

3. Approximating kernels

This section is entirely composed of technical results involving a family of
operators constructed from the martingale defined in Section 2.

Under the notation in Section 2, Theorem 7.20 in [9] informs that the product
measure µ×µ is a regular Borel measure on X ×X and the sequence {Pn×Pn}
of partitions of X ×X increases to the Borel σ-algebra BX×X of (X ×X,µ× µ).
In particular, if K ∈ L1

loc(X×X,µ×µ), the conditional expectation with respect
to the σ-algebra generated by the partition Pn ×Pn of X ×X can be defined by
the formula

En(K)(u, v) :=
1

σ(On(u))σ(On(v))

∫
On(u)

∫
On(v)

K(x, y) dµ(y)dµ(x).

Lemma 3.1 below provides information about a limit property regarding the
open sets On(x) previously defined. We will use the symbol χA to denote the
characteristic function of the subset A of X. We remind the reader that given
x ∈ X and n ≥ 1, the construction introduced in the previous section shows that
there exists a unique On(x) ⊂ Pn so that x ∈ On(x).

Lemma 3.1. If x ∈ X and n ≥ 1 then

lim
u→u0

χOn(u)(x) = χOn(u0)(x), u0 ∈ X \N.
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Proof. Fix x ∈ X and n ≥ 1. If u ∈ X then x ∈ On(u) if and only if u ∈ On(x).
Since χOn(x)(u) = χOn(u)(x), we can write

|χOn(u)(x)− χOn(u0)(x)| = |χOn(x)(u)− χOn(x)(u0)|, u0 ∈ X.
Next, if u0 ∈ X \ N, the fact that On(u0) is open, leaves us with two cases: if
x ∈ On(u0) then u0 ∈ On(x) and, at the limit, we can assume u ∈ On(u0) = On(x)
so that

lim
u→u0

|χOn(x)(u)− χOn(x)(u0)| = |1− 1| = 0.

If x 6∈ On(u0) then u0 6∈ On(x), and assuming u ∈ On(u0) as we can, we conclude
that

lim
u→u0

|χOn(x)(u)− χOn(x)(u0)| = |0− 0| = 0.

The proof is complete. �

It is now reasonable that the following result holds.

Lemma 3.2. If u0 ∈ X \N then limu→u0 µ(On(u)) = µ(On(u0)), n = 1, 2, . . . .

Proof. Since

µ(On(u)) =

∫
X

χOn(u)(x) dµ(x), u ∈ X,

it follows that

|µ(On(u))− µ(On(u0))| ≤
∫
X

|χOn(u)(x)− χOn(u0)(x)| dµ(x), u ∈ X.

As so, the assertion of the lemma will be proved if we can show that

lim
u→u0

∫
X

|χOn(u)(x)− χOn(u0)(x)| dµ(x) = 0, u0 ∈ X \N.

Hence, in view of the previous lemma, it suffices to show that the integral and
the limit in the previous equation commute. The family {gu} defined by

gu(x) = |χOn(u)(x)− χOn(u0)(x)|, u, x ∈ X,

and the function g = χOn(u0) belong to L1(X,µ). Since |gu| ≤ g, µ-a.e., when
u→ u0, the desired commuting property follows from the dominated convergence
theorem. �

We now turn to kernels of the form

Dn(u, x) =
1

µ(On(u))
χOn(u)(x), u, x ∈ X, n = 1, 2, . . . .

and the corresponding integral operators Dn generated by Dn. For use ahead, we
mention the immediate formula

En(χOn(u) f) = Dn(f), u ∈ X \N, f ∈ L2(X,µ). (3.1)

Initially, we will use the above kernels to prove the following result.

Theorem 3.3. If K ∈ L2(X × X,µ × µ) and n ≥ 1 then En(K) is continuous
µ× µ-a.e..
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Proof. It suffices to show that En(K) is continuous in the set (X \N)× (X \N).
Let u0, v0 ∈ X \N. It is not hard to see that

En(K)(u, v) =

∫
X

∫
X

Dn(u, x)K(x, y)Dn(v, y) dµ(y)dµ(x), u, v ∈ X,

and that we can use Lemma 3.1 and Lemma 3.2 to deduce that

lim
(u,v)→(u0,v0)

Dn(u, x)K(x, y)Dn(v, y) = Dn(u0, x)K(x, y)Dn(v0, y),

for x, y ∈ X a.e.. If (u, v) ∈ On(u0)×On(v0), we have

|Dn(u, x)K(x, y)Dn(v, y)| ≤ 1

µ(On(u0))µ(On(v0))
|K(x, y)|,

for x, y ∈ X a.e.. So, the continuity at (u0, v0) now follows from the dominated
convergence theorem. �

Next, we will state and prove a list of technical results that will lead to the
following conclusion: DnKDn coincides with the integral operator generated by
En(K).

The sequence of partitions {Pn} was constructed in such a way that each one
of them has the following feature: every element of {Ai} is a subset of at most
finitely many On(x). That been said, if n and i are fixed, we can write

Ai ⊂

m(n,i)⋃
j=1

On(xj)

⋃N(n, i),

in which µ(N(n, i)) = 0 and 0 < µ(On(xj)) < ∞, j = 1, 2, . . . ,m(n, i). The set
N(n, i) is nothing but the union of all elements of Pn for which the intersection
with Ai has measure zero.

In the next results, we will deal with a continuous function f : X → C with
compact support Xf . Since Xf can be covered by finitely many Ai, after re-
ordering if necessary, we can find an index l so that

Xf ⊂

 l⋃
k=1

m(n,k)⋃
j=1

On(xj)

⋃(
l⋃

k=1

N(n, k)

)
,

with µ(∪lk=1N(n, k)) = 0. In that case, we will write

Yf =
l⋃

k=1

m(n,k)⋃
j=1

On(xj). (3.2)

Lemma 3.4. Let f : X → C be a continuous function with compact support Xf

and K an element of L1
loc(X ×X,µ× µ). Then∫

X×X

∫
X

Dn(u, x)K(x, y)Dn(y, z)f(z) dµ(z) d(µ× µ)(x, y)

=

∫
X

∫
X×X

Dn(u, x)K(x, y)Dn(y, z)f(z) d(µ× µ)(x, y) dµ(z).
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Proof. Pick M > 0 so that |f(x)| ≤M , x ∈ X. We have∫
X×X

∫
X

|Dn(u, x)K(x, y)Dn(y, z)f(z)| dµ(z) d(µ× µ)(x, y)

≤ M

µ(On(u))

∫
On(u)×X

|K(x, y)|
µ(On(y))

∫
Xf

χOn(y)(z) dµ(z) d(µ× µ)(x, y).

If y 6∈ Yf then y 6∈ Xf and, consequently, On(y)∩Xf = ∅. Thus χOn(y) = 0 in Xf

and we can take the above integral on On(u)× Yf . Now, if u ∈ X \N, the local
integrability of K implies that∫
On(u)×Yf

|K(x, y)|
µ(On(y))

∫
Xf

χOn(y)(z) dµ(z) d(µ× µ)(x, y)

=

∫
On(u)×Yf

|K(x, y)|
µ(On(y))

µ(On(y) ∩Xf )d(µ× µ)(x, y)

≤
∫
On(u)×Yf

|K(x, y)| d(µ× µ)(x, y) <∞.

Fubini’s theorem ([12, p.386]) completes the proof. �

Lemma 3.5. Let f : X → C be a continuous function with compact support Xf

and K an element of L1
loc(X ×X,µ× µ). If u ∈ X \N then∫

On(u)×Yf

K(x, y)Dn(y, z)d(µ× µ)(x, y) =

∫
On(u)

∫
Yf

K(x, y)Dn(y, z)dµ(y)dµ(x)

=

∫
Yf

∫
On(u)

K(x, y)Dn(y, z)dµ(x)dµ(y),

with Yf as defined in (3.2).

Proof. If u ∈ X \N and z ∈ X then∫
On(u)

∫
Yf

|K(x, y)Dn(y, z)| dµ(y) dµ(x) ≤
∫
On(u)

∫
Yf

|K(x, y)|
µ(On(y))

dµ(y) dµ(x).

Introducing the decomposition (3.2) in the last expression above and recalling
the uniqueness property of the On(x), we deduce that∫

On(u)

∫
Yf

|K(x, y)|
µ(On(y))

dµ(y) dµ(x) =

∫
On(u)

l∑
k=1

m(n,k)∑
j=1

∫
On(yj)

|K(x, y)|
µ(On(y))

dµ(y) dµ(x)

=

∫
On(u)

l∑
k=1

m(n,k)∑
j=1

1

µ(On(yj))

∫
On(yj)

|K(x, y)| dµ(y) dµ(x)

≤ max
1 ≤ k ≤ l

1 ≤ j ≤ m(n, k)

{
1

µ(On(yj))

}
‖K‖L1(On(u)×Yf ) <∞.

Once again, Fubini’s theorem leads to the concluding statement. �
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Lemma 3.6. Let f : X → C be a continuous function with compact support Xf

and K an element of L1
loc(X ×X,µ× µ). Then∫

X

∫
X

∫
X

Dn(u, x)K(x, y)Dn(y, z)f(z) dµ(z) dµ(y) dµ(x)

=

∫
X×X

∫
X

Dn(u, x)K(x, y)Dn(y, z)f(z) dµ(z) d(µ× µ)(y, x).

Proof. If u ∈ X \N and M > 0 is a bound for f in X then it is easily seen that∫
X

∫
X

|
∫
X

Dn(u, x)K(x, y)Dn(y, z)f(z) dµ(z)| dµ(y) dµ(x)

≤ M

µ(On(u))

∫
On(u)

∫
Yf

|K(x, y)|
µ(On(y))

µ(On(y) ∩Xf ) dµ(x) dµ(y)

≤ M

µ(On(u))

∫
On(u)

∫
Yf

|K(x, y)| dµ(x) dµ(y) <∞.

So, the result follows from Fubini’s theorem once again. �

The proof of the next lemma is analogous and will be omitted.

Lemma 3.7. Let f : X → C be a continuous function with compact support and
K and element in L1

loc(X ×X,µ× µ). Then∫
X

∫
X

∫
X

Dn(u, x)K(x, y)Dn(y, z)f(z) dµ(z) dµ(y) dµ(x)

=

∫
X

∫
X

∫
X

Dn(u, x)K(x, y)Dn(y, z)f(z) dµ(x) dµ(y) dµ(z).

Recalling that if y, z ∈ X then z ∈ On(y) if and only if y ∈ On(z), the following
lemma becomes obvious.

Lemma 3.8. If n ≥ 1 then Dn(y, z) = Dn(z, y), y, z ∈ X \N.

Below, EnK will denote the integral operator generated by En(K).

Theorem 3.9. If K ∈ L2(X×X,µ×µ) then DnKDn(f) = EnK(f), f ∈ L2(X,µ).

Proof. Clearly L2(X ×X,µ× µ) ⊂ L1
loc(X ×X,µ× µ). If K ∈ L2(X ×X,µ× µ)

and f : X → C is continuous with compact support then the previous lemmas
imply that

DnKDn(f)(u) =

∫
X

∫
X

∫
X

Dn(u, x)K(x, y)Dn(y, z)f(z) dµ(z) dµ(y) dµ(x)

=

∫
On(u)

∫
Yf

∫
Xf

Dn(u, x)K(x, y)Dn(y, z)f(z)dµ(z)dµ(y)dµ(x)

=

∫
X

∫
X

∫
X

Dn(u, x)K(x, y)Dn(z, y)f(z) dµ(x) dµ(y) dµ(z)

= EnK(f)(u), u ∈ X \N.
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Hence, the result in the statement of the theorem follows from the equality µ(X \
N) = 0 and from a basic approximation theorem from measure theory ([12,
p.197]). �

The last result of the section refers to the positive definiteness of En(K).

Theorem 3.10. If K is L2(X,µ)-positive definite then so is En(K).

Proof. If K is L2(X,µ)-positive definite then both, K and En(K), belong to the
space L2(X × X,µ × µ). On the other hand, Theorem 2.1 and (3.1) imply that
Dn(L2(X,µ)) ⊂ L2(X,µ). Thus, an application of Theorem 3.9 leads to

〈EnK(f), f〉2 = 〈KDn(f),Dn(f)〉2 ≥ 0, f ∈ L2(X,µ).

The proof is complete. �

4. Traceability

This section contains the main results of the paper. They can be interpreted
as generalizations of results obtained in [8] and other references quoted here. The
traceability results described here will be obtained via several known results on
trace-class operators and singular values of operators. We will quote some of them
and just mention others. The construction developed in Section 2 reveals that the
diagonal of X is, up to a set of measure zero, a subset of (X \ N) × (X \ N).
This remark justify why some of the integrals appearing below are not identically
zero. Given K ∈ L2(X ×X,µ × µ), we will consider EnK acting like an operator
on L2(X,µ). All other operators mentioned here are to be understood acting in
the same way.

The following lemma is a known consequence of Mercer’s theorem ([3]).

Lemma 4.1. If K is a continuous (µ× µ-a.e.) L2(X,µ)-positive definite kernel
and x ∈ X → K(x, x) is integrable then K is trace-class and

tr (K) =

∫
X

K(x, x) dµ(x).

Lemma 4.2. Let K be L2(X,µ)-positive definite. If

lim sup
n→∞

∫
X

En(K)(x, x) dµ(x) <∞, (4.1)

then lim supn→∞ tr (EnK) <∞.

Proof. If (4.1) holds then there exists n0 ∈ N such that x ∈ X → En(K)(x, x)
is integrable for n ≥ n0. Theorem 3.10 implies that En(K) is L2(X,µ)-positive
definite while Theorem 3.3 shows that En(K) is continuous µ× µ-a.e.. Applying
Lemma 4.1 we see that

tr (EnK) =

∫
X

En(K)(x, x) dµ(x), n ≥ n0.

The result follows. �
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Next, we recall some facts involving singular values of an operator. If T is a
compact operator on a Hilbert space, a singular value of T is an eigenvalue of
(T ∗T )1/2. We shall enumerate the nonzero singular values of T in decreasing order,
taking multiplicities into account: s1(T ) ≥ s2(T ) ≥ . . .. If the rank ρ of (T ∗T )1/2

is finite, obviously sj(T ) = 0, j ≥ ρ + 1. If the eigenvalues of T are ordered like
|l1(T )| ≥ |l2(T )| ≥ . . ., then a classical result from operator theory states that
sj(T ) = |lj(T )|, j = 1, 2, . . ., as long as T is either hermitian or normal. If S is
another compact operator of same type as T , and assuming the same ordering on
the singular values of S, the following inequality holds: |sn(T )−sn(S)| ≤ ‖T−S‖,
n = 1, 2 . . .. All of these results can be found with proofs in [10, 11].

In Theorem 4.4, a complement of Lemma 4.2, we also use the following non-
trivial result on convergence of operators ([8]).

Lemma 4.3. Let {Tn} be a countable set of bounded linear operators on a Hilbert
space H such that limn→∞ ‖Tn(f) − f‖H = 0, f ∈ H. If every Tn is self-adjoint
and T is a bounded compact operator on H then limn→∞ ‖TnTTn − T‖ = 0.

Theorem 4.4. Let K be L2(X,µ)-positive definite. If

lim sup
n→∞

∫
X

En(K)(x, x) dµ(x) <∞,

then K is trace-class.

Proof. Since {sj(EnK)} ⊂ (0,∞), it is quite clear that

k∑
j=1

sj(EnK) ≤ tr (EnK), k = 1, 2, . . . .

Theorem 3.9 and the inequality mentioned before Lemma 4.3 imply that

|sj(EnK)− sj(K)| ≤ ‖EnK −K‖ = ‖DnKDn −K‖, j = 1, 2, . . . . (4.2)

Since each Dn is self-adjoint, K is compact and

lim
n→∞

‖Dn(f)− f‖2 = 0, f ∈ L2(X,µ),

we are authorized to apply Lemma 4.3 to conclude, from (4.2), that

lim
n→∞

sj(EnK) = sj(K), j = 1, 2, . . . .

It is now clear that
k∑

j=1

sj(K) = lim sup
n→∞

k∑
j=1

sj(EnK) ≤ lim sup
n→∞

tr (EnK), k = 1, 2, . . . ,

and that concludes the proof. �

In order to deal with the converse of the previous result, we will need the
following result ([10, p.51]): if S1, S2 and T are bounded linear operators on a
Hilbert space and T is compact then so is the composition S1TS2 and sj(S1TS2) ≤
‖S1‖sj(T )‖S2‖, j = 1, 2, . . . .
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Lemma 4.5. Let p ∈ [1,∞) and K ∈ Lp(X ×X,µ× µ). If x ∈ X → K(x, x) is
integrable and µ(X) < ∞ then there is a positive integer n0 for which x ∈ X →
En(K)(x, x) is integrable when n ≥ n0.

Proof. Since

|En(K)(u, u)| ≤ |En(K)(u, u)−K(u, u)|+ |K(u, u)|, u ∈ X \N,
we can use Doob’s convergence theorem to select a positive integer n0 so that

|En(K)(u, u)| ≤ 1 + |K(u, u)|, u ∈ X \N, n ≥ n0.

Our assumptions on X and x ∈ X → K(x, x) imply the result. �

Theorem 4.6. Let K be L2(X,µ)-positive definite. If x ∈ X → K(x, x) is inte-
grable and µ(X) <∞ then there is n0 ∈ N so that EnK ∈ B1(L2(X)) and

tr (EnK) =

∫
X

En(K)(x, x) dµ(x), n ≥ n0.

Proof. The previous lemma reveals that x ∈ X → En(K)(x, x) is integrable for
n large. As so, the result follows from Theorem 3.3 and Lemma 4.1. �

Theorem 4.7. Let K ∈ L2(X × X,µ × µ). If K is trace-class then so is every
EnK. The number tr (K) is an upper bound for the sequence {tr (EnK)}.

Proof. Assume K is trace-class. Since each Dn is bounded, Theorem 3.10 and the
comments preceding Lemma 4.5 imply that

sj(EnK) = sj(DnKDn) ≤ ‖Dn‖sj(K)‖Dn‖, n = 1, 2, . . . .

Hence,
∞∑
j=1

sj(EnK) ≤ ‖Dn‖2
∞∑
j=1

sj(K),

and the two assertions of the lemma follow. �

The following result is very close to a converse of Theorem 4.4.

Theorem 4.8. Let K ∈ L2(X ×X,µ× µ). If K is trace-class then

lim
n→∞

tr (EnK) = tr (K).

Proof. A basic inequality for the trace ([10, p.54]) implies that

|tr (EnK)− tr (K)| ≤
∞∑
j=1

sj(EnK −K), n = 1, 2, . . . ,

as long as K is trace-class. On the other hand, since (see [10, p.89])

lim
n→∞

∞∑
j=1

sj(DnKDn −K) = 0,

Theorem 3.9 completes the proof. �

Next, we move to a proof of the converse of Theorem 4.4 in the case when
µ(X) <∞.
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Theorem 4.9. Let K be L2(X,µ)- positive definite. If K is trace-class and
µ(X) <∞ then

lim
n→∞

∫
X

En(K)(x, x) dµ(x) <∞.

Proof. Assume K is trace-class. Since the function x ∈ X → K(x, x) is integrable
already, if µ(X) <∞, we can use Theorem 4.6 to find a positive integer n0 such
that

tr(EnK) =

∫
X

En(K)(x, x) dµ(x), n ≥ n0.

An application of Theorem 4.8 finishes the proof. �

At this point, it is very important to remind the reader that the results we
have obtained includes the case in which X is either a sphere or a torus.

Next, we intend to consider cases in which X has no finite measure. In order to
handle that, we use the cover {Am} of X constructed before to define a sequence
of subsets of X that increases to X. Precisely, defining Xj = ∪jm=1Am, j ≥ 1, we
immediately have the following two properties: X = ∪∞j=1Xj and if x ∈ X then
there exists j0 ≥ 0 such that x ∈ Xj, j ≥ j0. Using the sequence just defined,
we now take linear operators Pj : L2(X,µ) → L2(X,µ) defined by the formula
Pj(f) = fχXj

, f ∈ L2(X,µ). They are self-adjoint and the uniform boundedness
principle shows that the sequence {Pj} is bounded in the space of bounded linear
operators on L2(X,µ). Also, the dominated convergence theorem implies that
{Pj} converges pointwise to the identity operator on L2(X,µ). The following
technical lemma contains a critical information on the sequence {Pj}.

Lemma 4.10. If T : L2(X,µ) → L2(X,µ) is trace-class then each PjTPj is so
and the limit formula limj→∞ tr (PjTPj) = tr (T ) holds.

Proof. The first assertion is a consequence of the remark preceding Lemma 4.5.
As for the other, it follows from Theorem 11.3 in [10] . �

The converse of Theorem 4.4 reads as follows.

Theorem 4.11. Let K be L2(X,µ)-positive definite. If K is trace-class then the
limit

lim
n→∞

∫
X

En(K)(x, x) dµ(x)

exists and is finite.

Proof. The proof requires the double-indexed operator Qn
j given by the formula

Qn
j (f)(x) =

∫
Xj

En(K)(x, y)f(y) dµ(y), x ∈ Xj, f ∈ L2(Xj, µ).
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If f ∈ L2(Xj), let us write f̃ to denote a function on X that coincides with f on
Xj and is zero in X \Xj. It is now clear that∫

Xj

Qn
j (f)(x)f(x) dµ(x) =

∫
X

∫
X

En(K)(x, y)f̃(y)f̃(x) dµ(y) dµ(x)

=

∫
X

∫
X

En(K)(x, y)f̃(y) dµ(y)f̃(x) dµ(x)

=

∫
X

EnK(f̃)(x)f̃(x) dµ(x), f ∈ L2(Xj, µ).

Since K is L2(X,µ)-positive definite, Theorem 3.10 implies that Qn
j is L2(Xj, µ)-

positive definite. Also, the fact that K is trace-class guarantees that x ∈ X →
K(x, x) is integrable. Hence, due to Lemma 4.5, there exists n0 ≥ 0 such that
x ∈ Xj → En(K)(x, x) whenever n ≥ n0. Recalling Theorem 3.3 and applying
Lemma 4.1, we deduce that Qn

j is trace-class and

tr (Qn
j ) =

∫
Xj

En(K)(x, x) dµ(x),

as long as n ≥ n0. Let us keep the previous condition on n in force. If Vj is
the closed subspace L2(X,µ) encompassing the functions on X which are zero in
X \Xj and Rn

j : Vj → Vj is the operator given by

Rn
j (f)(x) = χXj

(x)

∫
X

En(K)(x, y)χXj
(y)f(y) dµ(y),

with x ∈ X, f ∈ Vj, then Rn
j and Qn

j possess the same eigenvalues. Having in
mind the previous lemma,

(PjEnKPj)(f)(x) =

∫
X

En(K)(x, y)χXj×Xj
(x, y)f(y) dµ(y),

for x ∈ X, f ∈ L2(X), and we can conclude now that Rn
j and PjEnKPj have the

same eigenvalues. Therefore,

tr (PjEnKPj) = tr (Rn
j ) = tr (Qn

j ) =

∫
Xj

En(K)(x, x) dµ(x). (4.3)

The monotone convergence theorem leads to

tr (EnK) =

∫
X

En(K)(x, x) dµ(x).

Finally, (4.3) and the observation made before Lemma 4.3 lead to the assertion
of the theorem. �
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