
AF-H 2 de dezembro de 2025

Conteúdo

H1Operadores compactos Aula 26 H2
H1.1 Propriedades básicas . . . . . . . . . . . . . . . . . . . . . . . . H3
H1.2 Demonstrações das propriedades básicas . . . . . . . . . . . . . H4

H2A Teoria de Riesz-Fredhohm H12

Aula 27 H16

H3Espectro de Um Operador H22
H3.1 Espectro do operador compacto . . . . . . . . . . . . . . . . . . H26
H3.2 Operadores auto-adjuntos e seu espectro . . . . . . . . . . . . . H33

Aula 28 H40

H4Decomposição Espectral de Operadores Compactos e Auto-
Adjuntos H41

H1



AF-H 2 de dezembro de 2025

H1 Operadores compactos Aula 26

Lembrete: [Fol99, p.15-16]

Um conjunto E num espaço métrico (X, ρ), é dito totalmente limitado
se, para cada ε > 0, E pode ser coberto por um número finito de bolas de
raio ε.

E totalmente limitado =⇒
:
E limitado

E totalmente limitado ⇐⇒ Ē totalmente limitado

Teorema H1.1. Se E é um subconjunto de um espaço métrico (X, ρ),
as seguintes afirmativas são equivalentes:

(a) E é completo e totalmente limitado

(b) (A propriedade de Bolzano-Weierstrass) Toda sequência em E

tem uma subsequência que converge para um ponto de E

(c) (A propriedade de Heine-Borel) Se {Vα}α∈A é uma cobertura de
E por abertos de (X, ρ), existe um conjunto finito F ⊂ A tal que
{Vα}α∈F cobre E.

�

Um conjunto E num espaço métrico (X, d), é compacto se satisfaz as
propriedades (a)-(c) do Teorema H1.1

compacto =⇒
: dim=∞

fechado e limitado

X e Y e.v.n. de Banach
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Definição H1.2. Sejam X e Y espaços de Banach e T ∈ L(X, Y ).

• T é dito de posto finito se sua imagem tem dimensão finita.

• T é dito compacto se T (BX) é precompacto, i.e., T (BX) é compacto (na
topologia forte).

Exerćıcio A3.14. s.e.v. fechado de espaço completo é completo.

T (BX) é compacto equivale (sendo em espaços métricos) a: (T. H1.1)
- se {xn} ⊂ X é seq. limitada, então {Txn} possui uma subsequência
convergente.

- T (BX) pode ser coberto por num. finito de bolas de raio ε dado
(i.e., T (BX) é totalmente limitado)

Denotamos por K(X, Y ) e Lf(X, Y ) , resp., os conjuntos dos operadores

compactos e de posto finito, de X em Y .1 F

Observação H1.3. Lf(X, Y ) ⊂ K(X, Y ) F

T (BX) ⊂ Im(T ) é fechado e limitado (|T (x)| ≤ ‖T‖), em dimensão finita, compacto

H1.1 Propriedades básicas

Proposição H1.4. K(X, Y ) é um subespaço vetorial fechado de
L(X, Y ). �

Corolário H1.5. Se {Tn} ⊆ Lf(X, Y ) e T ∈ L(X, Y ) são tais que
Tn → T em L(X, Y ), então T ∈ K(X, Y ). �

Proposição H1.6. Se T ∈ K(X, Y ) e Y é um espaço de Hilbert, então
existe uma sequência {Tn} ⊆ Lf(X, Y ) tal que Tn → T em L(X, Y ). a �

aMais em geral, a afirmação vale se Y é de Banach e possui uma base de Schauder

1Escrevemos K(X) = K(X,X).
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Exemplo H1.7. (1 ≤ p ≤ ∞)

• T : `p → `p : x = (xi) 7→ Tx = (xi/i) é compacto (veja ex 6.1 do [Bre11])

F

para cada k ∈ N,

Tk : `p → `p : x = (xi) 7→ Tk(x) := (yki )i, onde yki =

{
xi/i, i ≤ k

0, i > k

Tk é linear, limitado de posto finito

Im(Tk) ⊂ [e1, . . . , ek]

‖Tkx‖pp =
∞∑
i=1

|yki |p =
k∑
i=1

|xi|p

ip
≤

∞∑
i=1

|xi|p = ‖x‖pp

Tk → T em L(`p, `p)

‖Tkx− Tx‖pp =
∞∑

i=k+1

|xi|p

ip
≤ 1

(k + 1)p
‖x‖pp

‖Tk − T‖pp ≤
1

(k + 1)p
k→∞−→ 0

∴ T é compacto (Cor. H1.5)

H1.2 Demonstrações das propriedades básicas

Prova da Proposição H1.4. K(X, Y ) é um s.e.v. fechado de L(X, Y ).

• K(X, Y ) é um s.e.v.: T, S ∈ K(X, Y ), λ ∈ K =⇒ T + S, λT ∈ K(X, Y )

Af. K(X, Y ) é fechado

• {Tn} ⊂ K(X, Y ) convergente, Tn → T em L(X, Y )

Queremos T ∈ K(X, Y ), i.e., T (BX) pode ser coberto por num.
finito de bolas de raio ε dado
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• ε > 0

• ∃ n0; ‖Tn − T‖ = sup
‖x‖≤1

‖Tn(x)− T (x)‖ <
ε

2
, n ≥ n0

• Tn0 (BX) ⊂
⋃
finita

Bε/2 (yi)

Af. T (BX) ⊂
⋃
finita

Bε(yi)

• x ∈ BX

‖T (x)− yi‖ < ε para algum yi?

• Tn0(x) ∈ Bε/2 (yi) para algum yi, i.e.,

‖Tn0(x)− yi‖ < ε
2

• ‖Tn0(x)− T (x)‖ ≤ ‖Tn0 − T‖ ‖x‖ < ε
2

∴ ‖T (x)− yi‖ ≤ ‖T (x)− Tn0(x)‖+ ‖Tn0(x)− yi‖ <
ε

2
+
ε

2
= ε

Prova do Corolário H1.5. Se {Tn} ⊆ Lf(X, Y ) e T ∈ L(X, Y ); Tn → T em
L(X, Y ), então T ∈ K(X, Y ).

• Tn de posto finito é compacto (Obs. H1.3 )

• Tn → T

• K(X, Y ) fechado (Prop. H1.4)

• T ∈ K(X, Y )
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Prova da Proposição H1.6. Se T ∈ K(X, Y ) e Y é um espaço de Hilbert, então
existe uma sequência {Tn} ⊆ Lf(X, Y ) tal que Tn → T em L(X, Y ).

• ε = 1/n > 0, n ∈ N

• T (BX) ⊂
⋃
i∈In

B1/n(yi) (In finito) (T é compacto)

• Gn := [yi : i ∈ In] ⊂ Y é s.e.v. fechado (dimGn <∞) convexo

• Tn := PGn
◦ T

• Tn é linear e limitado e de posto finito

Teorema G3.9. Se H é um espaço de Hilbert e M é um subespaço vet.
fechado, então PM : X → M (projeção ortogonal) é um operador linear com
‖PM‖ = 1

Proposição G3.5. C 6= ∅ subconjunto fechado e convexo de um espaço de
Hilbert H

‖PCx1 − PCx2‖ ≤ ‖x1 − x2‖, ∀x1, x2 ∈ H,

Observação G3.3. Se x0 ∈ C, PCx0 = x0

Af. Tn → T em L(X, Y )

Queremos ‖Tn − T‖ = sup
‖x‖≤1

‖Tn(x)− T (x)‖→ 0

� x ∈ BX

� Tx ∈ B1/n(yi) para algum i ∈ In, i.e.,

‖Tx− yi‖ < 1
n

�

‖Tnx− Tx‖ ≤ ‖Tnx− yi‖+ ‖yi − Tx‖

def.Tn
=

∥∥∥PGn
Tx − yi

∥∥∥+ ‖yi − Tx‖

yi∈Gn
=

Obs.G3.3
‖PGn

Tx− PGn
yi‖+ ‖yi − Tx‖

Prop.G3.5

≤ ‖Tx− yi‖+ ‖yi − Tx‖ < 2 1
n , ∀n
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Resultado de Análise/Topologia:

Definição H1.8. Uma famı́lia F de funções é dita

• equicont́ınua em x se para todo ε > 0 existe uma vizinhança U de x
tal que |f(y)− f(x)| < ε para y ∈ U e f ∈ F ,

• equicont́ınua se for equicont́ınua em todo ponto

• pontualmente limitada se {f(x) : f ∈ F} é limitado para todo x. F

Teorema H1.9 [Arzelá-Ascoli]. [Fol99, p.137] Se K é um espaço com-
pacto e Hausdorff e F uma famı́lia equicont́ınua e pontualmente limitada
em (C(K), ‖ ‖∞), então F é totalmente limitada e seu fecho é compacto
(F relativamente compacto). �

Teorema H1.10. T ∈ K(X, Y ) se, e somente se, T ∗ ∈ K(Y ∗, X∗).
�

Demonstração.
(=⇒) T compacto implica T ∗ compacto
Basta mostrar que para toda seq. {gn} em BY ∗, a seq. {T ∗gn} em X∗ possui

subseq. convergente.
Queremos {T ∗gnk} ⊂ X∗ convergente
Basta {T ∗gnk} de Cauchy (X∗ é Banach)

Lembre: T ∗g(x) = g(Tx), x ∈ D(T ) = X, g ∈ D(T ∗) = Y ∗ (C2.1)

• {gn} ⊂ BY ∗ ⊂ Y ∗ : gn : Y → K; ‖gn‖Y ∗ ≤ 1

• K := T (BX)⊂ Y é compacto e Hausdorff (T é compacto, Y Ban.,métr.,Hausd.)

• F := {ϕn := gn|K : K → K; n ∈ N} ⊂ C(K)

Af.1 F é pontualmente limitada

Af.2 F é equicont́ınua

• F é compacto

• {ϕn} ⊂ F

H7
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(pag. A4) Em esp. métrico (X, d): C ⊆ X é compacto se e só se toda
sequência em C tem uma subsequência convergente a um ponto de C

• ∃{ϕnk} = {gnk|K} subseq. de {ϕn} que convergente a ϕ ∈ C(K)

• {ϕnk} é de Cauchy, i.e.,

‖ϕnk − ϕnl‖∞ = sup
y∈K=T (BX)

|ϕnk(y)− ϕnl(y)| → 0

Af.3 {T ∗gnk} de Cauchy

‖T ∗gnk − T ∗gnl‖X∗ = sup
x∈BX

|T ∗gnk(x)− T ∗gnl(x)|

= sup
x∈BX

|gnk(Tx)− gnl(Tx)|

Tx∈K
= sup

x∈BX

|ϕnk(Tx)− ϕnl(Tx)|

= sup
y∈T (BX)

|ϕnk(y)− ϕnl(y)|

≤ sup
y∈K=T (BX)

|ϕnk(y)− ϕnl(y)| → 0

Prova da Af. 1.: F é pontualmente limitada, de fato, equilimitada

F := {ϕn := gn|K : K → K; n ∈ N}
pontualmente limitada se {f(x) : f ∈ F} é limitado para todo x.

• para todo y ∈ K ⊂ Y (K é comp., ltdo)

|ϕn(y)| y∈K
= |gn(y)|

y∈K
≤ ‖gn‖Y ∗ ‖y‖ ≤ 1 ‖y‖ = ‖y‖ ≤ const., ∀n

H8
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Prova da Af. 2.: F é equicont́ınua

equicont́ınua em x se ∀ε > 0, ∃U 3 x; |f(y)− f(x)| < ε para y ∈ U e f ∈ F ,
equicont́ınua se for equicont́ınua em todo ponto

Queremos:

∀ε > 0,
?

∃δ; ‖y − y′‖ < δ =⇒ |ϕn(y)− ϕn(y′)| < ε, ∀y, y′ ∈ K, ∀n

|ϕn(y)− ϕn(y′)|
y,y′∈K

= |gn(y)− gn(y′)|
y,y′∈Y
≤ ‖gn‖Y ∗ ‖y − y

′‖ ≤ ‖y − y′‖

basta tomar δ = ε

(⇐=) T ∗ compacto implica T compacto

• T ∗∗ : X∗∗ → Y ∗∗ é compacto (T ∗ compacto, passo anterior)

• T ∗∗(BX∗∗) é compacto

T ∗∗(BX∗∗) pode ser coberto por num. finito de bolas de raio ε dado(Def.H1.2)

Queremos: T (BX ) compacto

JX : X → X∗∗, JY : Y → Y ∗∗ mergulhos canônicos (iso.isom.)

JX(BX) ⊂ BX∗∗ =⇒ T ∗∗(JX(BX)) ⊂ T ∗∗(BX∗∗) =⇒

T ∗∗(JX(BX)) ⊂ T ∗∗(BX∗∗)︸ ︷︷ ︸
compacto

=⇒

T ∗∗(JX(BX)) compacto

T ∗∗(JX(BX)) pode ser coberto por num. finito de bolas de raio ε dado

X
JX //

T ∗∗◦JX

88X∗∗ T ∗∗ // Y ∗∗ X T //

JY ◦T

99Y
JY // Y ∗∗

H9
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Basta mostrar: JY (T (BX)) = T ∗∗(JX(BX))

JY isometria =⇒ T (BX) compacto

X
JX //

T ∗∗◦JX

88X∗∗ T ∗∗ // Y ∗∗ X T //

JY ◦T

99Y
JY // Y ∗∗

• ϕ ∈ Y ∗:

(T ∗∗(JXx))(ϕ)
ppdd.adj.

= (JXx(T ∗))(ϕ) = JXx(T ∗(ϕ))

def.JX
=
x∈X

T ∗(ϕ)(x)

ppdd.adj
= ϕ(Tx)

def.JY
=

Tx∈Y
JY (Tx)(ϕ)

∴ T ∗∗(JXx) = JY (Tx),∀x ∈ X

∴ T ∗∗ ◦ JX ≡ JY ◦ T

Proposição H1.11. Se T ∈ L(X, Y ) então

• T compacto implica “xn ⇀ x implica Txn → Tx”

• se X é reflexivo e “xn ⇀ x implica Txn → Tx” então T é compacto

• T é de posto finito se e só se T é cont́ınuo de Xσ em Yτ . �

Demonstração. Exerćıcio (veja ex 6.7 do [Bre11]).

H10
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Exerćıcios

Exerćıcio H1.12. Mostre que T ◦ S é compacto sempre que T, S são
lineares e cont́ınuos e um deles é compacto F

Exerćıcio H1.13. Faça os exerćıcios
• 6.1, 6.2 (use o Teorema D3.9), em particular:
- T : `p → `p : (xi) 7→ (xi/i) é compacto

- T : C([0, 1])→ C([0, 1]) : f 7→
ˆ t

0

f é compacto

• 6.3, 6.4, 6.5, 6.6 (use o sistema de Rademacher, ex 5.32), em particular,
- se V = {x ∈ `2 :

∑
ix2
i < ∞} com a norma ‖x‖2

V =
∑
ix2
i então

T : V → `2 : x 7→ x é compacto.
Analogamente T : `2 → W : x 7→ x com W = {x seq. :

∑
x2
i/i <∞} com

a norma ‖x‖2
W =

∑
x2
i/i.

Neste caso dizemos que V ⊆ `2 ⊆ W com inclusão compacta
- a inclusão de `p em `q (p < q) não é compacta (apenas cont́ınua)
- a inclusão de Lp(0, 1) em Lq(0, 1) (p > q) não é compacta (apenas
cont́ınua).
• 6.7(pontos 1,2,4) e 6.8 (p. 170...) do [Bre11]. F

Exerćıcio H1.14. Faça os exerćıcios 6.12 e 6.13 (p. 173...) do [Bre11].
F

Exerćıcio H1.15. (!) Considere o operador integral

T : L2[0, 1]→ L2[0, 1] : f 7→ g(x) =

ˆ 1

0

h(x, y)f(y) dy

onde h ∈ L2([0, 1]2). Mostre que o operador é bem definido e compacto.
Encontre núcleos h em que T tem e não tem posto finito. F

H11
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H2 A Teoria de Riesz-Fredhohm

Para um funcional T linear limitado em espaço de dimensão finita, é
conhecido que T é sobrejetor se só se T é injetor (alternativa c).

Um funcional linear limitado em espaço de dimensão infinita pode ser
injetor sem ser sobrejetor (e vice-versa):

T : `2 → `2 : (x1, x2, . . .) 7→ (0, x1, x2, . . .)

Para operadores compactos, tem-se resultados bastante similares com
aqueles de dimensão finita:

An×nx = b

detA 6= 0: existe única solução para todo b
detA = 0: n condições sobre b para possuir solução

Teorema H2.1 [Alternativa de Fredholm]. a Se X é um espaço de
Banach e T ∈ K(X), então b

a) dim(N(I − T )) <∞,

b) R(I − T ) é fechada e portanto R(I − T ) = N(I − T ∗)⊥,

c) N(I − T ) = {0} se, e somente se, R(I − T ) = X,

d) dim(N(I − T )) = dim(N(I − T ∗)). �

aTodas alternativas dizem que T não pertuba muito: N(I) = {0} e N(I −T ) tem no máximo finitos;
R(I) = X fechada e R(I − T ) também fechada

bDe fato, a Alternativa de Fredholm vale para λI − T , λ 6= 0

A “Alternativa” seria entre (mutuamente exclusivas)

(1) I−T é sobre, ou seja, a equação (I−T )x = y tem solução única para
todo y ∈ X (por c)

(2) I−T não é injetora, ou seja, a equação (I−T )x = 0 tem solução não
trivial

Além disso, no caso (2) y pertence a imagem se satisfaz n condições lineares
(por b, d: codimR(I − T ) = codimN(I − T ∗)⊥ = dimN(I − T ∗) = n) .

H12
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Demonstração.
(a) dimN(I − T ) <∞

• Y = N(I − T ) = {x ∈ X : (I − T )x = 0}
Queremos dimY <∞

Teorema de Riesz A5.7. Seja X um espaço vetorial normado sobre K tal
que B̄1(0) = {x ∈ X : ‖x‖ ≤ 1} é compacta. Então X tem dimensão finita.

Af.: BY é compacto, e logo dimY <∞
Note

BY = {x ∈ Y : ‖x‖ ≤ 1} = {x ∈ X : x = Tx e ‖x‖ ≤ 1}

∴ x ∈ BY =⇒ x ∈ BX e x = Tx ∈ T (BX)

∴ BY ⊂ T (BX)

• T (BX) é compacto (T compacto)

• BY é compacto

Exerćıcios D5 se F ⊆ K com F fechado e K compacto então F é compacto

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) R(I − T ) é fechada e portanto R(I − T ) = N(I − T ∗)⊥ 2

Teorema C3.7. Se T ∈ L(X,Y ) (espaços de Banach) então (veja seção C3)

(a) N(T ∗) = R(T )⊥, N(T ∗)⊥∗ = R(T )

(b) N(T ) = R(T ∗)⊥∗, N(T )⊥ ⊇ R(T ∗)

(c) são equivalentes:

i) R(T ) é fechada

ii) R(T ∗) é fechada

Basta mostrar que R(I − T ) é fechada
2(I − T )∗ = (I − T ∗)

H13
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• yn ∈ R(I − T ): yn = xn − Txn, com xn ∈ X

• yn → y

Queremos mostrar que y ∈ R(I − T )

• dn := d(xn, N(I − T )) = inf
z∈N(I−T )

‖xn − z‖

• ∃ zn ∈ N(I − T ); dn = ‖xn − zn‖ (pois por a), dimN(I − T ) <∞) verifique!

Af.1 ‖xn − zn‖ é limitada, logo {xn − zn} é limitada

• ∃ {xnk − znk} tal que T (xnk − znk)→ l (T compacto)

T (BX) é compacto equivale
-se {xn} ⊂ X é seq. limitada, então {Txn} possui uma subsequência conver-
gente. (Def.H1.2)

• para todo n,

yn = xn − Txn = xn − Txn − (zn − Tzn) = (xn − zn)− (Txn − Tzn)

•
(xnk − znk) = (Txnk − Tznk) + ynk → l + y

•

y = lim ynk = lim[(xnk − znk)−T (xnk−znk)]
T cont

= l + y−T (l+y) = (I−T )(l+y)

• y ∈ R(I − T )

Prova da Af.1: ‖xn − zn‖ é limitada

• supor ‖xn − zn‖ não é limitada

• ∃ ‖xnk − znk‖ → ∞

• wnk :=
xnk − znk
‖xnk − znk‖

• ‖wnk‖ = 1

H14
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• ∃ {wnkj} tal que T (wnkj )→ p (T compacto)

•

wnk − Twnk =
1

‖xnk − znk‖

(
xnk − znk − T (xnk − znk)

)
=

1

‖xnk − znk‖︸ ︷︷ ︸
→ 0

ynk︸︷︷︸
→ y

→ 0

•
wnkj = wnkj − Twnkj + Twnkj → 0 + p = p

• p ∈ N(I − T )

(I − T )(p) = lim(I − T )(wnkj ) = 0

• d(p,N(I − T )) = 0

•

d(wnkj , N(I − T )) = d

 xnkj − znkj∥∥∥xnkj − znkj∥∥∥ , N(I − T )


= inf


∥∥∥∥∥∥ xnkj − znkj∥∥∥xnkj − znkj∥∥∥ − u

∥∥∥∥∥∥ : u ∈ N(I − T )


znkj

∈ N(I − T )

=
1∥∥∥xnkj − znkj∥∥∥ inf

{∥∥∥xnkj − v∥∥∥ : v ∈ N(I − T )
}

=
1∥∥∥xnkj − znkj∥∥∥ d(xnkj , N(I − T ))

=
1∥∥∥xnkj − znkj∥∥∥

∥∥∥xnkj − znkj∥∥∥ = 1

• fazendo k →∞, d(p,N(I − T )) = 1 ��

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Aula 27

(c) N(I − T ) = {0} se, e somente se, R(I − T ) = X,

(=⇒)

• X1 := R(I − T ) ⊂ X

• supor X1 6= X : X1  X

• X1 é s.e.v. fechado (T ∈ K(X) + alternativa (b))

• X1 é Banach (X Banach)

• T (X1) ⊂ X1

� y ∈ T (X1) : y = Tx, x ∈ X1 = R(I − T )

� ∃ a ∈ X; x = (I − T )(a)

y = Tx = T (a−Ta) = Ta−T (Ta) = (I−T )(Ta) ∈ R(I−T ) = X1

• T |X1
: X1 → X1 é compacto (T ∈ K(X))

• X2 := R(I − T |X1
)  X1

� ∃ y ∈ X \X1

� z := (I − T )(y) ∈ R(I − T ) = X1

� supor X2 = X1

� z ∈ X2

� ∃ w ∈ X1 ; z = (I − T |X1
)(w) = (I − T )(w)

� (I−T )(w) = z = (I−T )(y) =⇒ w−y ∈ N(I−T ) = {0}
(N(I − T ) = {0})

� X1 3 w = y /∈ X1 ��
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• X2 é s.e.v. fechado (T |X1 ∈ K(X1) + alternativa (b))

• seq. est. dec. de subespaços fechados de X:

. . .  Xn+1  Xn  . . . X2  X1  X

• ∃ yn ∈ Xn; ‖yn‖ = 1 e d(yn, Xn+1) ≥ 1
2

Lemma de Riesz A5.6. Seja X um espaço vetorial normado sobre K e
M= Xn+1 ( X= Xn um subespaço vetorial fechado. Então, para cada θ ∈ (0, 1),
existe y ∈ X tal que

‖y‖ = 1 e dist(y,M) := inf
x∈M
‖y − x‖ ≥ θ.

• {yn} é uma seq. limitada em X

Af. {Tyn} não possui subseq. convergente �� (T compacto)

Basta mostrar que {Tyn} não possui subseq. de Cauchy (X Banach)

•

Tyn − Tym = −(yn − Tyn) + (ym − Tym) + (yn − ym)

= [−(yn − Tyn) + (ym − Tym) + yn]︸ ︷︷ ︸
vn,m

− ym

• vm,n := − (I − T )( yn︸︷︷︸
Xn

)

︸ ︷︷ ︸
Xn+1 = R(I − T |Xn)

+ (I − T )( ym︸︷︷︸
Xm

)

︸ ︷︷ ︸
Xm+1 = R(I − T |Xm)

+ yn︸︷︷︸
Xn

• n > m

Xn+1  Xn ⊆ Xm+1

• vn,m ∈ Xm+1, n > m

• ‖Tyn − Tym‖ = ‖vn,m − ym‖
def.dist

≥ d(ym, Xm+1) ≥ 1
2 , ∀n > m

• {Tyn} não possui subseq. convergente
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(⇐=): N(I − T ) = {0} se, e somente se, R(I − T ) = X ,

Teorema C3.7. Se T ∈ L(X,Y ) (espaços de Banach) então (veja seção C3)

(a) N(T ∗) = R(T )⊥ , N(T ∗)⊥∗ = R(T )

(b) N(T ) = R(T ∗)⊥∗ , N(T )⊥ ⊇ R(T ∗)

• N(I − T ∗) = R(I − T )⊥ = X⊥ = {0} (hipótese)

• T ∗ compacto (T compacto + T. H1.10)

Teorema H1.10. T ∈ K(X,Y ) se, e somente se, T ∗ ∈ K(Y ∗, X∗).

• R(I − T ∗) = X∗ (“ida”aplicada em T ∗)

• N(I − T ) = R(I − T ∗)⊥∗ = (X∗)⊥∗ = {0}

(d) dim(N(I − T )) = dim(N(I − T ∗)):

• dim(N(I − T )) = n <∞ (por (a))

• dim(N(I − T ∗)) = n∗ <∞ (por (a))

Af. 1. n∗ ≤ n

Af. 2. n∗ = n:

� dim(N(I − T ∗∗)) ≤ dim(N(I − T ∗)) = n∗ ≤ n

(pela Af.1 para T ∗ e para T )

� N(I − T ) ⊂ N(I − T ∗∗)
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(I − T ∗∗)(Jx)(y∗) = (Jx)((I − T ∗)(y∗)) = ((I − T ∗)(y∗))(x)

= (y∗)((I − T )(x))

= J((I − T )(x))(y∗), ∀y∗

• x ∈ N(I − T )

(I − T ∗∗)(Jx) = J((I − T )(x)) = J(0) = 0

∴ x ∈ N(I − T ∗∗)

� n = dim(N(I − T ∗)) ≤ dim(N(I − T ∗∗)) = n∗ + Af. 1,
segue Af. 2

Prova da Af. 1. n∗ ≤ n

• supor n < n∗

• N(I − T ) admite completemento topológico W

Seja X um espaço de Banach e M um subespaço fechado. Um subespaço N
é dito complemento topológico de M se N é fechado, M ∩ N = {0} e
M +N = X.
• Subespaços de dimensão finita (ou fechados e de codimensão finita) sempre
possuem complemento topológico.[Bre11, prova:p.38] (ver Seção B6)

• X = N(I − T )⊕W , representação única:

x = y + w, y ∈ N(I − T ), w ∈ W

• P : X → N(I − T ) : x 7→ Px = y: projeção sobrejetora cont́ınua

• Im(I − T ) = N(I − T ∗)⊥ (alternativa (b))

• Im(I − T ) tem codimensão finita

• Im(I − T ) admite complemento topológico Y em X de dimensão n∗,

X = Im(I − T )⊕ Y
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• ∃ φ : N(I − T )→ Y linear injetora e não sobrejetora (n < n∗)

• S := T + (φ ◦ P )

• φ ◦ P é de posto finito (dimY <∞)

• S ∈ K(X) (T é compacto )

Af. 3 N(I − S) = {0}

• Im(I − S) = X (Alternativa (c))

• ∃ f ∈ Y ⊂ X; f /∈ Imφ (φ não sobrej.)

• u− Su = f não tem solução

u− Su = f =⇒ u− Tu− φ(Pu) = f

=⇒ f + φ(Pu) = u+ Tu ∈ Im(I − T ) ∩ Y = {0}

=⇒ f = −φ(Pu) ∈ Imφ ��

• n∗ ≤ n ��

Prova da Af. 3 N(I − S) = {0}

• u ∈ X = Im(I − T )⊕ Y ; (I − S)u = 0

u− Su = u− Tu︸ ︷︷ ︸
∈Im(I−T )

−φ(Pu)︸ ︷︷ ︸
∈Y

= 0 = 0 + 0

• u− Tu = 0 e φ(Pu) = 0

• u ∈ N(I − T )

• Pu = u (P proj. de X sobre N(I − T ))

• φ(u) = 0

• u = 0 (φ linear injetora)
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Exerćıcios

Exerćıcio H2.2 (EH1). (!) Considere o operador compacto K : `p →
`p : (xi) 7→ (λixi) com λi → 0
Verifique que ele satisfaz todas as afirmações do Teorema (encontre N(I−
T ), R(I − T ) e explicite suas dimensões)
Faça o mesmo com os dois operadores (compactos?) obtidos compondo K
com o operador de translação a direita e a esquerda, respectivamente. F

Exerćıcio H2.3 (EH2). Considere o operador compacto do exerćıcio
(6.2-3) do [Bre11]: encontre N(I − T ) e R(I − T ). F
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H3 Espectro de Um Operador

Definição H3.1. Seja X um espaço de Banach e T : D(T ) ⊂
s.e.v.

X → X

um operador linear fechado.

• o resolvente de T é o conjunto

ρ(T ) = {λ ∈ C : (λI − T ) : D(T )→ X é bijetora }

– Se λ ∈ ρ(T ) o operador (λI−T )−1 : X → D(T )⊂X é linear cont́ınuoa

e é dito operador resolvente de T em λ.

• o espectro de T é o conjunto σ(T ) = C\ρ(T ).

O espectro divide-se em:

a) O espetro pontual σp(T ) = {λ ∈ C : N(λI − T ) 6= {0}} b

Se λ ∈ σp(T ),

∗ λ é dito autovalor de T ,

∗ N(λI − T ) é dito autoespaço de T (correspondente a λ)

∗ x ∈ N(λI − T ) \ {0} é dito autovetor de T (correspondente
a λ)

b) O espectro cont́ınuo

σc(T ) =
{
λ ∈ C : N(λI − T ) = {0}, R(λI − T ) 6= R(λI − T ) = X

}
c) O espetro residual

σr(T ) =
{
λ ∈ C : N(λI − T ) = {0}, R(λI − T ) 6= X

}
F

aver Teorema da Aplicação Aberta para op. fechado, pag. C4
b[Bre11] denota σp por EV (eigenvalues).

Observação H3.2. Sempre vale σp(T ) ⊂ σ(T ). Se T ∈ L(X,X),

1. e dimX <∞, então σp(T ) = σ(T );

2. e dimX =∞, pode acontecer σp(T )  σ(T ).

T : `2 → `2 : x = (x1, x2, x3..) 7→ Tx = (0, x1, x2, ..)
0 ∈ σ(T ) (T não é sobrej.), 0 /∈ σp(T ) (T é inj..)
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F

Proposição H3.3. ρ(T ) é aberto e σ(T ) é fechado, em C.
Em particular, se T ∈ L(X,X), então σ(T ) é compacto e

σ(T ) ⊂ {λ ∈ C : |λ| ≤ ‖T‖}. �

Demonstração.

• σ(T )︸︷︷︸
fechado

= C\ ρ(T )︸︷︷︸
aberto

Af.: ρ(T ) é aberto

• λ0 ∈ ρ(T ) = {λ ∈ C : (λI − T ) : D(T )→ X é bijetora }

Queremos:
?

∃ r > 0; |λ− λ0| < r =⇒ λ ∈ ρ(T )

λ ∈ ρ(T )⇐⇒ (λI − T ) : D(T )→ X é bijetora

∀y ∈ X, ∃!x ∈ D(T ); (λI − T )x = y

(λI − T )x = y ⇐⇒ (λ0I − T )x = y + (λ0 − λ)x

⇐⇒ x = (λ0I − T )−1(y + (λ0 − λ)x)︸ ︷︷ ︸
Sy(x )

⇐⇒ Sy : X → D(T )⊂X tem um (único) ponto fixo

(X Banach)

Teorema o Ponto Fixo de Banach A2.15. Seja (X, d) um
espaço métrico completo e f : X → X uma contração. Então existe e é único
um ponto fixo de f .

Basta mostrar que, dado y ∈ X, Sy é contração:

?

∃L < 1 : ‖Sy(x)− Sy(z)‖ ≤ L ‖x− z‖ ∀ x, y ∈ X
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• Sy(x) := (λ0I − T )−1(y + (λ0 − λ)x)

‖Sy(x)− Sy(z)‖ lin.
=

∥∥(λ0I − T )−1 ((λ0 − λ)(x− z))
∥∥

lin.
= |λ0 − λ|

∥∥(λ0I − T )−1(x− z)
∥∥

cont.
≤ |λ0 − λ|︸ ︷︷ ︸

<r= ?

∥∥(λ0I − T )−1
∥∥

︸ ︷︷ ︸
=L< 1?

‖x− z‖

• tome r =
1

‖(λ0I − T )−1‖

• |λ− λ0| < r =⇒ L < 1 =⇒ Sy contração

Logo, σ(T ) = C \ ρ(T ) é fechado

Af.: T ∈ L(X): σ(T ) é limitado:

σ(T ) ⊂ {λ ∈ C : |λ| ≤ ‖T‖}.

Logo, σ(T ) é compacto (fechado e limitado em C)

Basta mostrar que: |λ| > ‖T‖ =⇒ λ ∈ ρ(T )

pois dáı:

λ /∈ ρ(T ) (i.e., λ ∈ C \ ρ(T ) = σ(T ) ) =⇒ |λ| ≤ ‖T‖

• λ ∈ C; |λ| > ‖T‖
Queremos mostrar que (λI − T ) : X → X é bijetora
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∀y ∈ X, ∃!x ∈ X; (λI − T )x = y

(λI − T )x = y ⇐⇒ x =
1

λ
(y + Tx)︸ ︷︷ ︸

Sy(x )

⇐⇒ Sy : X → X tem um (único) ponto fixo

‖Sy(x)− Sy(z)‖ =

∥∥∥∥1

λ
(Tx− Tz)

∥∥∥∥
≤ 1

|λ|
‖T‖︸ ︷︷ ︸

=L< 1

‖x− z‖

Proposição H3.4. Se x ∈ N(λI − T ) e φ ∈ N(µI − T ∗) com λ 6= µ então

〈φ, x〉 = φ(x) = 0,

ou seja, N(λI − T ) ⊆ N(µI − T ∗)⊥ e N(λI − T ∗) ⊆ N(µI − T )⊥. �

Demonstração.

•
µφ(x)

φ∈N(µI−T ∗)
= T ∗φ(x) = φ(Tx)

x∈N(λI−T )
= φ(λx) = λφ(x)

•

N(λI−T ) ⊆ N(µI−T ∗)⊥ pag. C11
=

N⊂X∗
{x ∈ X : φ(x) = 0, ∀φ ∈ N(µI−T ∗)}

•

N(λI−T ∗) ⊆ N(µI−T )⊥
pag. C11

=
M⊂X

{φ ∈ X∗ : φ(x) = 0, ∀x ∈ N(µI−T )}
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Exerćıcios

Exerćıcio H3.5. Considere os operadores em `2

Sr : (x1, x2, x3..) 7→ (0, x1, x2, ..)
Sl : (x1, x2, x3..) 7→ (x2, x3, x4, ..)
T : (xi) 7→ (xi/i)
mostre que 0 pertence, respectivamente, a σr, σp, σc. F

Exerćıcio H3.6. Faça o exerćıcio 6.14 (p. 174) do [Bre11]
Mostre que se 0 ∈ ρ(T ) então σ(T−1) = 1/σ(T ). F

Exerćıcio H3.7. Faça o exerćıcio 6.17, 6.18(exceto ponto 11) e 6.19
(p. 175...) do [Bre11]

F

H3.1 Espectro do operador compacto

Teorema H3.8. Se X é um espaço de Banach de dimensão infinita e
T ∈ K(X), então

a) 0 ∈ σ(T ),

b) σ(T )\{0} = σp(T )\{0},

c) σ(T )\{0} pode ser

1. ∅,
2. finito,

3. uma sequência que tende a 0.

d) os autoespaços correspondentes a autovalores não nulos são finitodi-
mensionais

�

Lema H3.9. Nas condições do teorema H3.8, se λn → λ
sendo {λn} ⊆ σ(T ) \ {0} e distintos, então λ = 0. a �

atodo ponto de σ(T ) \ {0} é ponto isolado

Demonstração.
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(a) 0 ∈ σ(T )

• supor 0 /∈ σ(T ) = C \ {λ ∈ C : (λI − T ) : X → X é bijetora }

• T é bijetora

• T−1 ∈ L(X) (T ∈ L(X))

Teorema da Aplicação Inversa B4.9. SejamX e Y são espaços de Banach.

Se T ∈ L(X,Y ) é bijetora, então T−1 ∈ L(Y,X)

• I = T ◦ T−1 ∈ K(X) (T ∈ K(X))

Exerćıcio H1.12. T ◦S é compacto sempre que T, S são lineares e cont́ınuos
e um deles é compacto

• BX = I(BX) é totalmente limitado (I ∈ K(X)+def. op. comp. H1.2)

• BX subconj. fechado de X, logo completo (X Banach)

• BX compacto

• dimX <∞ �� (dimX =∞)

Teorema de Riesz A5.7. Seja X um espaço vetorial normado sobre K tal
que B̄1(0) = {x ∈ X : ‖x‖ ≤ 1} é compacta. Então X tem dimensão finita.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) σ(T )\{0} = σp(T )\{0}

σp(T )\{0} ⊂ σ(T )\{0}

• λ 6= 0

• λ ∈ σp(T ) = {λ ∈ C : N(λI − T ) 6= {0}}

• λI − T não é injetora

• λ ∈ σ(T ) = C\ρ(T ) = C \ {λ ∈ C : (λI − T ) : X → X é bijetora }
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σ(T )\{0} ⊂ σp(T )\{0}

• λ 6= 0

• λ ∈ σ(T )

• supor λ /∈ σp(T ) = {λ ∈ C : N(λI − T ) 6= {0}}

• λI − T é injetora

• λI − T é sobrejetora

Alternativa de Fredholm H2.1. Se X é um espaço de Banach e T ∈ K(X),
então a (c) N(I − T ) = {0} se, e somente se, R(I − T ) = X,

aDe fato, o resultado vale para λI − T , λ 6= 0

• λ ∈ ρ(T )

• λ /∈ σ(T ) ��

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) σ(T )\{0} pode ser

1. ∅,
2. finito,

3. uma sequência que tende a 0.

• σ(T )\{0} = ∅ ( OK! ) ou σ(T )\{0} 6= ∅

• σ(T )\{0} 6= ∅ e é finito ( OK! )

• σ(T )\{0} 6= ∅ e é infinito

• An := σ(T ) ∩
{
λ ∈ C : |λ| ≥ 1

n

}

• σ(T ) \ {0} =
∞⋃
n=1

An

• An é fechado (σ(T ) é fechado: P. H3.3)
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Proposição H3.3. ρ(T ) é aberto e σ(T ) é fechado, em C.
Se T ∈ L(X,X), então σ(T ) é compacto e σ(T ) ⊂ {λ ∈ C : |λ| ≤ ‖T‖}.

• An ⊂ σ(T )

• An é compacto (σ(T ) é compacto)

Af. An é vazio ou finito

� An = ∅ ( OK! ) ou An 6= ∅

� An 6= ∅ e é finito ( OK! )

� An 6= ∅ e é infinito (possui infinitos pontos distintos)

� existe subseq. em An (∴ em σ(T ) \ {0}) convergindo
para algum λ ∈ An (∴ em

{
λ ∈ C : |λ| ≥ 1

n

}
)

(An compacto)

� λ 6= 0 ��

Lema H3.9. Nas condições do teorema H3.8, se λn → λ
sendo {λn} ⊆ σ(T ) \ {0} e distintos, então λ = 0.

• σ(T ) \ {0} é enumerável; σ(T ) \ {0} = {λn}

• pode-se reordenar de forma que λn → 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(d) os autoespaços correspondentes a autovalores não nulos são finitodimen-
sionais

Alternativa de Fredholm H2.1. Se X é um espaço de Banach e T ∈ K(X),
então a (a) dim(N(I − T )) <∞,

aDe fato, o resultado vale para λI − T , λ 6= 0
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Prova do Lema H3.9. X Banach, T ∈ K(X). Se λn → λ sendo {λn} ⊆
σ(T ) \ {0} e distintos, então λ = 0.

Justifique cada passagem!

• λn /∈ ρ(T )

• λnI − T não é bijetora

• λnI − T não é sobrejetora e não é injetora

• para cada n, ∃ xn 6= 0;

(λnI − T )(xn) = 0 (1)

• {x1, . . . , xn} é l.i.

• Xn := [{x1, . . . , xn}]

• Xn  Xn+1

• (λnI − T )(Xn) ⊂ Xn−1

• ∃{yn} ⊂ Xn;

‖yn‖ = 1, d(yn, Xn−1) ≥
1

2
, ∀n ≥ 2

• supor λ 6= 0

•
{
yn
λn

}
é limitada

•
{
T
yn
λn

}
possui subseq. convergente

• (veja prova Alt.(c) Fredholm, pag.H17)∥∥∥∥T ynλn − T ymλm
∥∥∥∥ ≥ d(yn, Xn−1) ≥

1

2
, n > m ≥ 2

•
{
T
yn
λn

}
não possui subseq. convergente
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Exerćıcios

Exerćıcio H3.10. Construa um exemplo de operador compacto não
nulo com, respectivamente, 0, um numero finito e um numero infinito de
autovalores.
Construa um exemplo de operador compacto com, respectivamente, 0 ∈
σp, 0 ∈ σc, 0 ∈ σr.
(Use sequências). F
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H3.2 Operadores auto-adjuntos e seu espectro

Lembrete:

X, Y espaços de Banach e T ∈ L(X, Y ). adjunto de T : T ∗ : Y ∗ → X∗

(T ∗φ)(x) = φ(Tx), ∀φ ∈ Y ∗, x ∈ X

Teorema C2.3. Se T ∈ L(X, Y ) então T ∗ ∈ L(Y ∗, X∗) e ‖T‖ = ‖T ∗‖.

Teorema de Representação de Riesz-Frechet G4.1. Se f ∈ H∗,
existe um único y ∈ H tal que

f(x) = (x, y) para todo x ∈ H.

Além disso, ‖f‖H∗ = ‖y‖H .

Definição H3.11. Sejam H um espaço de Hilbert, T ∈ L(H) e seu adjunto
T ∗ ∈ L(H∗).
Seja R : H → H∗ o operador de Riesz, definido como

Ry(x) = 〈Ry, x〉 := (x, y), x, y ∈ H.

O T. de Representação de Riesz-Frechet garante que R é uma bijeção isométrica.
Ainda,

R(x + λy) = Rx + λRy

Então definimos o adjunto (Hilbertiano) de T :
∗
T : H → H : x 7→

∗
T (x) := R−1T ∗R(x)

Assim
∗
T∈ L(H) e vale

(
∗
T y, x) = (y, Tx) ∀x, y ∈ H .

(
∗
T y, x) = (R−1T ∗R(y), x) = (x,R−1T ∗R(y))

def.R
= R(R−1T ∗R(y))(x)

= T ∗(R(y))(x)
def.T ∗

= (R(y))(Tx)
def.R
= (Tx, y) = (y, Tx)

F
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Definição H3.12. T ∈ L(H) é auto-adjunto se
∗
T = T ; isto é,

(Ty, x) = (y, Tx), ∀x, y ∈ H.

F

Observação H3.13. Se T ∈ L(H) é auto-adjunto, então (Tx, x) ∈ R. F

(x, Tx)
ppdd.p.e.

= (Tx, x)
auto−adj

= (x, Tx)

Definição H3.14. Se T ∈ L(H), definimos a imagem numérica de T
por:

W (T ) := {(Tx, x) : x ∈ SH} 3

e
mT = inf W (T ), MT = supW (T ).

F

Observação. Se T é auto-adjunto,

• W (T ) ⊂ R

• λI − T é auto-adjunto, para qualquer λ ∈ R

• ‖T‖ = sup
x∈SH

|(Tx, x)|, logo ‖T‖ = max{|mT |, |MT |}. [Fri70, p.218] [Bre11, p.166]

(Exerćıcio!)

F

3SH = {x ∈ H : ‖x‖ = 1}
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Teorema H3.15.

(1) Seja T ∈ L(H). Então, σ(T ) ⊆ W (T ).

(2) Se T é também auto-adjunto, então W (T ) ⊆ [mT ,MT ] ⊆ R,.

Além disso,

(a) mT ,MT ∈ σ(T ),

(b) autovetores correspondentes a autovalores distintos são ortogonais.

(c) H = N(λI − T )⊕R(λI − T ), logo σr(T ) = ∅ [Fri70, p.218]

�

Demonstração. (1)

• λ ∈ C \W (T )

Basta mostrar que λ /∈ σ(T ) = C \ ρ(T ), i.e.,
λ ∈ ρ(T ) = {λ ∈ C : (λI − T ) : H → H é bijetora }

• d := d(λ,W (T )) = inf
z∈W (T )

|λ− z| > 0

W (T ) := {(Tx, x) : x ∈ SH}

• |λ− (Tx, x)| ≥ d, ∀x ∈ SH

• x ∈ H

|((λI − T )x, x)| = |(λx− Tx, x)| = |(λx, x)− (Tx, x)| = |λ ‖x‖2 − (Tx, x) |

= ‖x‖2

∣∣∣∣λ− (T x

‖x‖
,
x

‖x‖

)∣∣∣∣ ≥ ‖x‖2 d
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Af.1. λI − T é injetora

x ∈ N(λI − T )⇐⇒ (λI − T )(x) = 0

‖x‖2 d ≤ |((λI − T )x, x)| = 0
d>0⇐⇒ x = 0

• x ∈ H

‖x‖2 d ≤ |((λI − T )x, x)|
Cauchy−Sch
≤ ‖(λI − T )x‖ ‖x‖

∴ ‖(λI − T )x‖ ≥ d ‖x‖

Desigualdade Cauchy-Schwarz G1.1. | (x, y) | ≤ (x, x)
1
2 (y, y)

1
2

Af.2. R(λI − T ) é fechada [Atento!]

� yn ∈ R(λI − T ); yn → y

Queremos y ∈ R(λI − T )

� {yn} é de Cauchy

� ∃ xn ∈ H; yn = (λI − T )(xn)

�

‖xn − xm‖ ≤
1

d
‖(λI −T )(xn−xm)‖ =

1

d
‖yn− ym‖ → 0

� {xn} é de Cauchy, logo converge para x ∈ H
(H completo)

�

(λI−T )(x) = (λI−T )
(

lim
n→∞

xn
)T∈L(H)

= lim
n→∞

(λI−T )xn = lim
n→∞

yn = y

� y ∈ R(λI − T )
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Af.3. R(λI − T )⊥ = {0}

y ∈ R(λI − T )⊥ =⇒ ((λI − T )x, y) = 0, ∀x ∈ H

=⇒ d ‖y‖2 ≤ |((λI − T )y, y)| = 0 =⇒ y = 0

• R(λI − T ) é denso

R(λI − T ) = R(λI − T )⊥⊥ = {0}⊥ = H

Exerćıcio G3.13. Para qualquer M ⊂ H, vale (M⊥)⊥ = span(M). Em
particular, se M é um subespaço linear, então (M⊥)⊥ = M.

• λI − T é sobrejetora

R(λI − T ) = R(λI − T ) = H

Atento! De fato vale o seguinte resultado geral: Se H é um espaço de Hilbert
(ou, mais geralmente, um espaço de Banach) e T : H → H é um operador linear
cont́ınuo tal que existe c > 0 com

c‖x‖ ≤ ‖Tx‖, ∀x ∈ H,

então T é injetor e R(T ) é um subespaço fechado de H. Prove!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(2) Se T é também auto-adjunto, então W (T ) ⊆ [mT ,MT ] ⊆ R, onde

mT = inf W (T ), MT = supW (T ).

(a) mT ,MT ∈ σ(T ),

(b) autovetores correspondentes a autovalores distintos são ortogonais,

(c) H = N(λI − T )⊕R(λI − T ), logo σr(T ) = ∅. [Fri70, p.218] Exerćıcio!
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• W (T ) ⊆ [mT ,MT ] ⊆ R (T auto-adj + Obs. H3.13)

W (T ) := {(Tx, x) : x ∈ SH} ⊂ R

(c) autovetores correspondentes a autovalores distintos são ortogonais

• Tx = λx e Ty = µy, com λ 6= µ

• (Tx, x) = (λx, x) = λ ‖x‖2︸︷︷︸
∈R\{0}

∈ R

• λ, µ ∈ R [!!]

(λ−µ)(x, y) = λ(x, y)−µ(x, y) = (λx, y)−(x, µy) = (Tx, y)−(x, Ty)
D.H3.12

=
Tauto−adj

0

!! Autovalores de operador auto-adjunto são reais.

(a) mT ,MT ∈ σ(T ) = C\ρ(T ) = C\{λ ∈ C : (λI−T ) : H → H é bijetora }

• supor MT ∈ ρ(T )

• MT I − T é bijetora

• (MT I − T )−1 ∈ L(H) (T ∈ L(H))

Teorema da Aplicação Inversa B4.9. SejamX e Y são espaços de Banach.

Se T ∈ L(X,Y ) é bijetora, então T−1 ∈ L(Y,X)

• a(x, y) := (x, (MT I−T )y), x, y ∈ H é uma forma sesqui-linear cont́ınua

• a é sesquisimétrica

a(x, y) = (x, (MT I −T )y)
aut−adj

= ((MT I −T )x, y) = (y, (MT I − T )x) = a(y, x)
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• a(x, x) ≥ 0 ∀ x ∈ H

a(x, x) = (x,MTx−Tx) = MT (x, x)−(x, Tx) ≥MT ‖x‖2−MT ‖x‖2 = 0

? (Tx, x) ≤MT = supW (T ), ∀x ∈ SH =⇒(
T x
‖x‖ ,

x
‖x‖

)
≤MT ∀x ∈ H \ {0} =⇒

(x, Tx)
T auto−adj

= (Tx, x) ≤MT ‖x‖2 ∀x ∈ H

• |a(x, y)| ≤ |a(x, x)|1/2 |a(y, y)|1/2, ∀x, y ∈ H

segue das propriedades de sesquilinearidade, sesquisimetria e a(x, x) ≥ 0
veja prova da Desigualdade de Cauchy-Schwarz, pag. G1

|(x, (MT I − T )y)|2 ≤ |(x, (MT I − T )x)| |(y, (MT I − T )y)|

C−S
≤ ‖x‖ ‖(MT I − T )x‖ |(y, (MT I − T )y)|

∈L(H)

≤ ‖x‖2 ‖MT I − T‖ |(y, (MT I − T )y)|, ∀x, y ∈ H

• para x = (MT I − T )y

‖(MT I − T )y‖4 ≤ ‖(MT I − T )y‖2 ‖MT I − T‖ |(y, (MT I − T )y)|, ∀y ∈ H

∴ ‖(MT I − T )y‖2 ≤ ‖MT I − T‖ |(y, (MT I − T )y)|

= ‖MT I − T‖ |MT (y, y)− (y, Ty)|, ∀y ∈ H

• ∃ yn ∈ SH ; (yn, T yn)→MT

MT = supW (T ) = sup
x∈SH

(Tx, x)

• ‖(MT I − T )yn‖2 ≤ ‖MT I − T‖ |MT − (yn, T yn)| → 0
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• (MT I − T )yn → 0

• yn = (MT I − T )−1(MT I − T )yn
cont.−→ 0 �� ‖yn‖ = 1

• MT ∈ σ(T )

mT ∈ σ(T ): aplique o mesmo argumento anterior para−T no lugar de T .

Aula 28

Corolário H3.16. Seja T ∈ L(H) auto-adjunto tal que σ(T ) = {0}. Então
T = 0. �

Demonstração.

• mT ,MT ∈ σ(T ) = {0} T. H3.15-(2a)

• (Tx, x) = 0 ∀ x ∈ H

? 0 = mT = inf W (T ) ≤ (Tx, x) ≤ MT = supW (T ) = 0, ∀x ∈ SH(
T x
‖x‖ ,

x
‖x‖

)
= 0 ∀x ∈ H \ {0}

0 = (T (x+ y), x+ y) = (Tx, x) + (Tx, y) + (Ty, x) + (Ty, y)

T aut−adj
= (Tx, y) + (y, Tx) = (Tx, y) + (Tx, y)

= 2<e(Tx, y), ∀x, y ∈ H

• para y = Tx,

(Tx, Tx) = <e(Tx, Tx) = 0, ∀x ∈ H

• Tx = 0, ∀x ∈ H

Exerćıcios

Exerćıcio H3.17. Faça o exerc. 6.24(1 e 2) do [Bre11, p. 178] F
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H4 Decomposição Espectral de Operadores Compactos

e Auto-Adjuntos

Teorema H4.1. Sejam H um espaço de Hilbert separável e T ∈ L(H)
um operador compacto e auto-adjunto. Então H admite uma base Hilber-
tiana formada por autovetores de T .
Em particular, se {ej} é esta base e {λj} os autovetores associados,
T (
∑
aiei) =

∑
λiaiei. �

Observação H4.2.
• O operador do ex 6.1 do [Bre11]:

T : `2 → `2 : (xi) 7→ (λixi)

com λi → 0 é o protótipo de todos os operadores compactos e autoadjuntos
em espaços de Hilbert separáveis (de dimensão infinita).

• Em dimensão finita , o Teorema H4.1 é o análogo do resultado que toda
matriz hermitiana é diagonalizável. (Verifique!)

• Truncando a série
∑
λiaiei, obtemos uma outra forma de aproximar T

por {Tn} ⊆ Lf(H). (Verifique!)

F

Teorema G5.8. Um espaço de Hilbert H é separável se e somente se tem uma
base ortonormal (Hilbertiana) enumerável.
Neste caso, toda base ortonormal de H é enumerável e (se dimH = ∞) H é
isometricamente isomorfo a `2

Um conjunto em H é dito base de Hilbert (ou base ortonormal) se é um conjunto
ortonormal que satisfaz as propriedades equivalentes do Teorema G5.4

Teorema G5.4. Se S = {eα}α∈A é um conjunto ortonormal em H, as seguintes
afirmativas são equivalentes:

a) (Completeza) Se (x, eα) = 0 para todo α ∈ A, então x = 0 (ie, S⊥ = {0}).

c) H 3 x =
∑

α∈A (x, eα) eα, onde a soma converge ind. da ordem dos termos.

f) H = span(S).
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Demonstração. Temos duas possibilidades:
(1) σ(T ) = {0}

• T = 0 (C. H4)

• qualquer x 6= 0 é autovetor associado ao autovalor 0

Tx = 0 = 0x

• qualquer base Hilbertiana é formada por autovetores de T

(2) σ(T ) \ {0} 6= ∅

Teorema H3.8. Se X é um espaço de Banach e T ∈ K(X), então

a) 0 ∈ σ(T ), se dimX =∞,

b) σ(T )\{0} = σp(T )\{0},

c) σ(T )\{0} pode ser

1. ∅,
2. finito,

3. uma sequência que tende a 0.

d) os autoespaços correspondentes a autovalores não nulos são finitodimensionais

N(λI − T )=autoespaço de T
N(λI − T ) \ {0} conj. dos autovetores de T associados a λ
Todos autovalores são reais (T auto-adj + pag. H38)

• {λn}n∈J sequencia estrit. decrescente dos autovalores de T

(J finito ou infinito)

• λ0 = 0

• E0 = N(T ), En = N(λnI − T )

• 0 < dimEn <∞ (T. H3.8(d))

• 0 ≤ dimE0 ≤ ∞

• {En}n∈J∪{0} são dois a dois ortogonais

Teorema H3.15. Se T ∈ L(H) é auto-adjunto, então
(c) autovetores correspondentes a autovalores distintos são ortogonais.
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• E0 = N(T ) é separável e Hilbert

E0 ⊂ H, H separável =⇒ E0 separável

Prop. E2.3. Se X e.m. separável, então ∅ 6= F ⊂ X é sep..

E0 é s.e.v. fechado, H Hilbert =⇒ E0 Hilbert

Prop. E1.4. Se X é reflexivo, todo seu subespaço fechado é
reflexivo.

• E0 possui base B0 Hilbertiana enumerável (T. G5.8)

• En possui base Bn Hilbertiana enumerável (dim. finita)

• tais bases são constitúıdas por autovetores de T

Se

 ⋃
n∈J∪{0}

En

 = H ,

•
⋃

n∈J∪{0}

Bn é uma Hilbertiana de H composta por autovetores de T

Um conjunto em H é dito base de Hilbert (ou base ortonormal) se é um
conjunto ortonormal que satisfaz as propriedades equivalentes do Teorema
G5.4

Teorema G5.4. Se S = {eα}α∈A é um conjunto ortonormal em H, as seguin-
tes afirmativas são equivalentes:

a) (Completeza) Se (x, eα) = 0 para todo α ∈ A, então x = 0 (ie, S⊥ = {0}).

f) H = span(S).

• F :=

 ⋃
n∈J∪{0}

En

 (s.e.v.) (comb. lin.finitas de elem. de En)
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Af. F é denso em H

Exerćıcio B2.6. Um subespaço F de um e.v.n. H é denso se e só se vale que

∀φ ∈ H∗ t.q. φ|F = 0, vale φ ≡ 0

Teorema de Representação de Riesz-Frechet G4.1. Se H é Hilbert e
φ ∈ H∗, existe um único y ∈ H tal que φ(x) = (x, y) para todo x ∈ H.

φ ∈ H∗ , ∃! y ∈ H; φ(x) = (x, y), ∀x ∈ H e

φ|F = 0 ⇐⇒ (x, y) = 0, ∀ x ∈ F ⇐⇒ y ∈ F⊥

Se F⊥ = {0}, então y = 0 e φ ≡ 0

logo F é denso

Basta mostrar que F⊥ = {0}

Se F⊥ ⊂ F , então F⊥ = F⊥ ∩ F F
=
s.e.v

{0}

Ainda mais se F⊥ ⊂ N(T ) = E0 ⊂ F

Note:

F⊥ ⊂ N(T ) ⇐⇒ Tx = 0,∀ x ∈ F⊥ ⇐⇒ T |F⊥ = 0

Se σ(T |F⊥) = {0}, onde T |F⊥ : F⊥ → F⊥ é auto-adjunto (e

compacto), então T |F⊥ = 0

Corolário . Seja T ∈ L(H) auto-adjunto tal que σ(T ) = {0}.
Então T = 0

Basta mostrar:

1. T (F⊥) ⊂ F⊥

2. σ(T |F⊥) = {0}
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Prova de 1. T (F⊥) ⊂ F⊥

• y ∈ T (F⊥) =⇒ y = Tx, x ∈ F⊥

Queremos y ∈ F⊥, i.e., (y, z) = 0,∀z ∈ F

• z ∈ F :

(y, z) = (Tx, z)
T auto−adj

= (x, Tz)
x∈F⊥

=
T (F )⊂F

= 0

a =
∑

j,finita

aje
n
j ∈ F =⇒ T (a) =

∑
j,finita

ajT (enj ) =
∑

j,finita

(ajλ
n
j )enj ∈ F

Prova de 2. σ(T |F⊥) = {0}

• λ ∈ σ(T |F⊥)

• supor λ 6= 0

• σ(T |F⊥) \ {0} = σp(T |F⊥) \ {0} (T |F⊥ comp. + T. H3.8(b))

• λ é autovalor de T |F⊥, i.e.,

∃ x ∈ F⊥ , x 6= 0; λx = T |F⊥(x) = Tx

• λ é um autovalor de T

• λ = λn, para algum n ∈ J , i.e, Tx = λnx

• x ∈ En = N(λnI − T ), para algum n ∈ J

•
x ∈ En ∩ F⊥ ⊂ F ∩ F⊥ = {0}

• x = 0 ��
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Exerćıcios

Exerćıcio H4.3 (EH3). Considere o operador

T : L2[0, π]→ L2[0, π] : f 7→ g(x) =

ˆ π

0

h(x, y)f(y) dy

onde h ∈ L2([0, π]2) (já vimos que é bem definido e compacto).
• Verifique que T é autoadjunto se h(x, y) = h(y, x).

Se k(x, y) = 1
πmin{x(π − y), y(π − x)} então g = Tf satisfaz (qtp) o

problema {
−g′′ = f em (0, π) ,

g(0) = g(π) .

Sabendo isso, encontre uma base de Hilbert para L2[0, π] feita de autove-
tores de T .
Note que Tf = λf implica (se λ 6= 0){

−f ′′ =− (Tf)′′/λ= 1
λf em (0, π) ,

f(0) = f(π) . F
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Lista de Teoremas para saber provar - P2

Teorema D5.2 – Banach-Alaoglu (Assumindo Tychonoff)
Proposição E1.3 – (reflexividade E∗)
Teorema E1.10 – Kakutani (assumindo Lema E1.11 e Goldstine)
Teorema F2.10 – Fischer-Riesz
Teorema F3.9 – de Representação de Riesz (caso 1 < p <∞)
Prova da desigualdade de Cauchy-Schwarz da identidade do paralelogramo e do
Teorema de Pitágoras
Lema G3.1 – Proposição G3.4 – Projeção sobre convexos
Teorema G4.5 – O Teorema de Lax-Milgram
Teorema G5.4 – Base de Hilbert
Proposição H1.4 – Corolário H1.5 – Proposição H1.6 – op. compactos
Proposição H3.3 – propriedades básicas espectro
Teorema H3.8 – espectro do op. compacto
Teorema H3.15 – espectro do op. compacto autoadjunto
Teorema H4.1 – base de autovetores
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