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H1 Operadores compactos Aula 26

Fol99

Um conjunto E num espago métrico (X, p), é dito totalmente limitado
se, para cada € > 0, E pode ser coberto por um nimero finito de bolas de
raio €.

FE totalmente limitado = F limitado
<

E totalmente limitado <= E totalmente limitado

Teorema H1.1. Se E € um subconjunto de um espag¢o métrico (X, p),
as sequintes afirmativas sao equivalentes:

(a) E € completo e totalmente limitado

(b) (A propriedade de Bolzano-Weierstrass) Toda sequéncia em E
tem uma subsequéncia que converge para um ponto de E

(¢) (A propriedade de Heine-Borel) Se {V,},ca € uma cobertura de
E por abertos de (X, p), existe um conjunto finito F C A tal que
{Va}taer cobre E.

<
Um conjunto £ num espago métrico (X,d), é compacto se satisfaz as

propriedades (a)-(c) do Teorema H1.1

compacto =  fechado e limitado

< dim=o00

X e Y e.v.n. de Banach
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Definicao H1.2. Sejam X e Y espacos de Banach e T' € L(X,Y).

e T ¢ dito de posto finito se sua imagem tem dimensao finita.

e T ¢ dito compacto se T(Bx) é precompacto, i.e., T(Bx) é compacto (na
topologia forte).

Exercicio A3.14. s.e.v. fechado de espago completo é completo.

T(Bx) é compacto equivale (sendo em espacos métricos) a: (T. HI1.1)
- se {zp} C X é seq. limitada, entdo {Tx,} possui uma subsequéncia
convergente.

- T(Bx) pode ser coberto por num. finito de bolas de raio e dado
(i.e., T(Bx) é totalmente limitado)

Denotamos por | K(X,Y)|e | Ls(X,Y)| resp., os conjuntos dos operadores
compactos e de posto finito, de X em Y.! *

Observacao H1.3. L¢(X,Y) C K(X,Y) *

T(Bx) C Im(T) é fechado e limitado (|T'(z)| < ||T|), em dimensao finita, compacto

H1.1 Propriedades basicas

Proposicao H1.4. K(X,Y) € um subespago wvetorial fechado de

L(X,Y). g
Corolario H1.5. Se {T,} C Ly(X,Y) e T € L(X,Y) sao tais que
T,—T em L(X,Y), entao T € K(X,Y). g

Proposicao H1.6. SeT € K(X,Y) eY ¢é um espago de Hilbert, entdio
existe uma sequéncia {1} C Ly(X,Y) tal que T, = T em L(X,Y). ¢ <

“Mais em geral, a afirmacao vale se Y é de Banach e possui uma base de Schauder

Escrevemos K (X) = K(X, X).
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Exemplo H1.7. (1 <p < 0)
oI :ly,—L,:x=(x;)— Tx = (x;/i) é compacto (veja ex 6.1 do [Brell])
*

para cada k € N,
i/t, 1<k
Toily— by w = (2) = Tu(x) = (y), onde yF={" i i<
07 1>k
T}, é linear, limitado de posto finito
Im<Tk:) C [61, N €k]

| -
| Tl = Zlyz|p Z Z\x\p (e
=1

Ty — T em L({y,0,)

s |p 1
Twx — Tx||f = il < p
i = Toly = 32 5 < g e
1 k—o00
T. — TP < ¥ 0
H k H = (l{?—l—l)p
(Cor. H1.5)

. T é compacto

H1.2 Demonstracoes das propriedades basicas

Prova da Proposi¢ao H1.4. K(X,Y) é um s.e.v. fechado de L(X,Y).
e K(X,)Y)éumsev.: T, K(X,)Y), A e K= T+ S5\ K(X,Y)

Af. K(X,Y) é fechado
e {1} C K(X,Y) convergente, T}, - T em L(X,Y)

Queremos T € K(X,Y), i.e., T(Bx) pode ser coberto por num.

finito de bolas de raio ¢ dado
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e c>10

e Ing; |Th=T| = swp |To(e) ~T()]| < —, n > ny
|z]|<1 2

e T, (Bx) C U By (yi)

finita

Af. T(Bx) c | B.(w)

finita

e I C B_X
|T(x) — yi|| < € para algum y;?

o T,,(x) € B.y.(y) para algum y, i.c.

T () — will < 5

o |T(z) =T ()| <ITw —Tll=zll < <

-
]

Prova do Coroldrio H1.5. Se {T,,} C Ly(X,Y)eT € L(X,Y); T, - T em
L(X,Y),entao T € K(X,Y).

1T () = yill < NT (@) = Ty (@) + [Ty () — vl < % +

€

2

e T}, de posto finito é compacto (Obs. H1.3)
o[, =T
e K(X,Y) fechado (Prop. H1.4)
e T'ec K(X,Y)

O
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Prova da Proposi¢cio H1.6. Se T € K(X,Y) e Y é um espago de Hilbert, entao
existe uma sequéncia {7,,} C L;(X,Y) tal que 7, = T em L(X,Y).

ec=1/n>0,neN

° T(B_)d C U Bl/n(yi) ([n ﬁnito) (T é compacto)

i€l,

o G, =[yi:i€l,)] CY ésev. fechado (dimG, < 00) convexo
o I, =Fg oT

e |1, é linear e limitado e de posto finito

Teorema G3.9. Se H é um espaco de Hilbert e M é um subespaco vet.

fechado, entao Py : X — M (projegao ortogonal) é um operador linear com
[ Par] =1

Proposigao G3.5. C # () subconjunto fechado e convexo de um espago de
Hilbert H

|Pox1 — Poxol| < ||z1 — 22|, Va1,22 € H,

Observagao G3.3. Se xg € C, Poxg = xg

Af. T, - T em L(X,Y)

Queremos ||T), — T'|| = sup ||T,(z) — T(z)| — 0
llzll<1

BT C B_X
m Tz € By/y(y;) para algum i € I, i.e.,

Tz —yill <&

[Toz =Tl < |Twr —will + llyi — Tx|

def.T,
L || Pe,Tw — | + s — T
" || Pg, Ta = Po,uill + lly: — T
Obs.G3.3 " "
Prop.G3.5

S Tr il + g - Tal < 28, W0 OO
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Definicao H1.8. Uma familia F de funcoes é dita

e equicontinua em x se para todo € > 0 existe uma vizinhanca U de x
tal que |f(y) — f(z)| <eparayeUe f € F,

e equicontinua se for equicontinua em todo ponto

e pontualmente limitada se { f(x) : f € F} é limitado para todo z.

Teorema H1.9 [Arzela-Ascoli]. [Fol99, p-137] Se K ¢ um espaco com-
pacto e Hausdorff e F uma familia equicontinua e pontualmente limitada
em (C(K),|| ||l), entdo F € totalmente limitada e seu fecho € compacto
(F relativamente compacto). g

Teorema H1.10. T € K(X,Y) se, e somente se, T* € K(Y*, X*).
<

Demonstracao.

(=) T compacto implica T* compacto

Basta mostrar que para toda seq. {g,} em By, a seq. {T%g,} em X* possui
subseq. convergente.

Basta {T*g,, } de Cauchy (X* é Banach)

Lembre: T#g(x) = g(Tz), z€ D(T)=X, g D(T*)=Y"* (C2.1)

O{Qn}CB—y* CY*: g Y =K oy <1

Y*

o K = T(Bx) cCY ¢ compacto e Hausdorff (T' é compacto, Y Ban.,métr.,Hausd.)
o F ={pn:=gilx : K 2K, ne N} C C(K)

Af.1 F é pontualmente limitada
Af.2 F é equicontinua

e F é compacto

o {pn} CF
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(pag. A4) Em esp. métrico (X,d): C C X é compacto se e s6 se toda
sequéncia em C' tem uma subsequéncia convergente a um ponto de C

e .} ={gn|x} subseq. de {p,} que convergente a ¢ € C(K)
e {, } é de Cauchy, i.e.,

lone — @nlloe = sup  |on, (y) — ¢n,(y)| = 0
yeK=T(Bx)

Af3 {T*g,,} de Cauchy

1790, = T gullx- = sup |T"gn, () = T"gn ()]
reBx
reBx
TrxeK

=" sup |, (Tz) — ¢, (T)]
re€Bx

= sup [pn,(y) — on(y)]
yET(Bx)

< sup |<10nk (y) - Spm(y)‘ —0
ye K=T(Bx)

Prova da Af. 1.: F € pontualmente limitada, de fato, equilimitada

F ={pn =gulx : K = K; n €N}
pontualmente limitada se {f(z) : f € F} é limitado para todo x.

e paratodoye K CY (K é comp., ltdo)

yEK yGK
lon(W)] = o) < lgnl

v- Il < Lyl = llyll < const., ¥n
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Prova da Af. 2.: F € equicontinua

equicontinua em x se Ve >0, 3U 3 z; |f(y) — f(z)| <eparayecUe f € F,
equicontinua se for equicontinua em todo ponto

Queremos:
2

Ve > 0, 36; ly =4[ <0 = |eny) — en(V)| <€, Yy, € K,Vn

vy €K v,y ey
lon(y) —en@) "= o) — g W)l < lgnlly-

y—yll < lly—¥ll

basta tomar 6 = €

(<) T* compacto implica T" compacto

o [ X™ — Y™ é compacto (T™ compacto, passo anterior)

e T**(Byx«) é compacto

T**(Bx=+) pode ser coberto por num. finito de bolas de raio € dado(Def.H1.2)

Queremos: T(Bix) compacto

Jx X = X, Jy Y = Y™ mergulhos canonicos (iso.isom.)

J)((BX> C Bx+» — T**(Jx(B_X» C T**(BX**) —

T*(Jx(Bx)) € T**(Bx~) =

compacto

T*(Jx(Bx)) compacto

T**(Jx(Bx)) pode ser coberto por num. finito de bolas de raio ¢ dado

X Jx X T Y XLYLY**
\/ \/

T**OJX JyOT
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Basta mostrar: Jy (T (Bx)) = T"*(Jx(Bx))

Jy isometria = T(By) compacto

X Jx X** T Y** Xi)yi)y**
\_/ \_/

T*oJx JyoT

e pc Y™

(T (Jxa)) (@) "= (Jxa(T)) () = Jxa(T*(9))

def..]x *

= T

LY T(e)()
mEY p(Ta)
def_.Jy

Trey Jy (T'x)(p)

oo T (Jxx) = Jy(Tx), Ve € X

. T**OJXEJYOT

]
Proposicao H1.11. SeT € L(X,Y) entao
o T' compacto implica “x, — x implica T'x, — Tx”
o se X ¢ reflexivo e “x,, — x tmplica Tx, — Tx” entao T € compacto
o T' ¢ de posto finito se e s6 seT" € continuo de X, em Y. <

Demonstragao. Exercicio (veja ex 6.7 do [Brell]).
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Exercicio H1.12. Mostre que T' o S é compacto sempre que T',.5 sao
lineares e continuos e um deles é compacto *

Exercicio H1.13. Faca os exercicios
e 6.1, 6.2 (use o Teorema D3.9), em particular:
-T: 4, =, (z;) = (x;/i) é compacto

-T:C(]0,1]) = C([0,1]) : f /Otf é compacto

e 6.3, 6.4, 6.5, 6.6 (use o sistema de Rademacher, ex 5.32), em particular,
-se V = {z € fy : Yiz? < oo} com a norma ||z||j; = 3. iz? entdo
T:V — ly: x+— x é compacto.

Analogamente T : fo — W : 2 +— x com W = {x seq. : > x7/i < oo} com
a norma ||z|[5, = 3 22/i.

Neste caso dizemos que V' C £y C W com inclusao compacta

- a inclus@o de ¢, em ¢, (p < ¢) ndo é compacta (apenas continua)

- a inclusao de LP(0,1) em L%(0,1) (p > ¢) ndo é compacta (apenas
continua).

e 6.7(pontos 1,2,4) e 6.8 (p. 170...) do [Brell]. *
Exercicio H1.14. Faga os exercicios 6.12 ¢ 6.13 (p. 173...) do [Brell].
*

Exercicio H1.15. (!) Considere o operador integral

7 20,1 5 L2015 o g(o) = [ ha.) ) dy

onde h € L*([0,1]%). Mostre que o operador é bem definido e compacto.
Encontre ntucleos h em que T tem e nao tem posto finito. *

HI11
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H2 A Teoria de Riesz-Fredhohm

Para um funcional T linear limitado em espaco de dimensao finita, é
conhecido que T' é sobrejetor se s6 se T' é injetor (alternativa c).

Um funcional linear limitado em espaco de dimensao infinita pode ser
injetor sem ser sobrejetor (e vice-versa):

T2€2—>£2 : (5131,1'2,...) — (0,331,332,...)

Para operadores compactos, tem-se resultados bastante similares com
aqueles de dimensao finita:

Anxnx =0b

det A # 0: existe Unica solug¢ao para todo b
det A = 0: n condicoes sobre b para possuir solucao

Teorema H2.1 [Alternativa de Fredholm]. * Se X é um espaco de
Banach e T € K(X), entdo ®

a) dim(N(I — T)) < oo,

b) R(I —T) ¢ fechada e portanto R(I —T) = N(I — T*)*,

¢) N(I —T) = {0} se, e somente se, R(I - T) = X,

d) dim(N(I — T)) = dim(N(I — T*)). <

“Todas alternativas dizem que T' néo pertuba muito: N(I) = {0} e N(I —T) tem no mdximo finitos;
R(I) = X fechada e R(I — T') também fechada
De fato, a Alternativa de Fredholm vale para A\l — T, A # 0

A “Alternativa” seria entre (mutuamente exclusivas)
(1) I =T é sobre, ou seja, a equagao (I —T)z = y tem solucao tnica para
todoy € X (por c)
(2) I —T nao é injetora, ou seja, a equagao (I —T)z = 0 tem solu¢ao nao
trivial

Além disso, no caso (2) y pertence a imagem se satisfaz n condigoes lineares
(por b, d: codimR(I — T) = codimN (I — T*)* =dim N(I — T*) =n) .

H12
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Demonstracao.
(a) dim N(I —T) < o0

e Y=N(I-T)={zeX:(I-T)x=0}

Queremos dimY < oo

Teorema de Riesz A5.7. Seja X um espaco vetorial normado sobre K tal
que B1(0) = {x € X : ||z|| < 1} é compacta. Entao X tem dimensao finita.

Af.: By é compacto, e logo dimY < oo
Note

By={rcY :||z]|<1}={recX:z2=Tre ||| <1}

. 1€By =€ By ex=TxrcT(By)
. By C T(By)

e T(Bx) é compacto (T compacto)

e By é compacto

Exercicios D5 se F' C K com F fechado e K compacto entao F' é compacto

(b) R(I —T) é fechada e portanto R(I —T) = N(I —T*)*+ 2
Teorema C3.7. Se T' € L(X,Y) (espagos de Banach) entao (veja segao C3)

(a) N(T*)=R(T)*,  N(T*)*=R(T)

(b) N(T)=R(T*)*  N(T)* 2 R(T")
(c) s@o equivalentes:

i) R(T) é fechada
i1) R(T*) é fechada

Basta mostrar que R(I — T') é fechada

1) = (=T

H13
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ey, € RUI-T): y, =2, —Tx,, com x, € X

® Yn Y

Queremos mostrar que y € R(I —T)

o d, =d(z,,NI-T)) = Ze]\i]]?[f_T) |z, — 2|

e 12, € N(I — T); d, = Hwn — Zn” (pois por a), dim N(I —T') < oo) verifique!
Afl ||x, — z,|| é limitada, logo {z, — 2,} é limitada

o 3 {z,, — 2, } tal que T(z,, — 2,,) = (T compacto)

T(Bx) é compacto equivale
-se {z,} C X é seq. limitada, entao {T'z,} possui uma subsequéncia conver-
gente. (Def.H1.2)

e para todo n,

Yn =Tp — Ty =, —Txy — (20, — Tzn) = (2 — 2) — Tz, — T2y)

('rnk _ an) - (Txnk - Tznk) + Y, — L + Y

y = limy,, = lm[(z,, — 20,) —T (20, —2,)] 21+ y—T(I+y) = (I-T)(I+y)

e yc RI-T)

Prova da Af.1: ||x, — z,|| € limitada

e | supor ||z, — z,|| ndo é limitada

= Hxnk _ Z’nkH — 00

.’L'nk — an
e W =
" ”xnk _ an”
o |lwn| =1

H14



AF-H 2 de dezembro de 2025

o {wnkj} tal que T(wnkj) —p (T' compacto)

1
1
= ————— Yo, — 0
||xnk - an“ ~~
—_——
=0 -

wnkj:wnkj—Twnkj—l—Twnkj —>Q+£:p

epeNI-T)

(I = T)(p) = (I — T)(w,, ) = 0

o dp, NI—-T))=0

[ ]
d(wy, ,N(I —=T)) = d . L N(I-T)
’ Ty, — Zn,
(
xnk. - an,
= inf ¢ : — —ul||:ue N(I-T)
‘ Tny, = Zny,
2, € NI -T) 1
= inf{‘xnk, UH:UGN(I—T)}
Tny, = Zny, ’
1
= d(zp, ,N(I—-T))
Tny, = Zny, ’
1
— ’ xnk, an. — 1
Tny, = Zny, - -
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Aula 27
(¢) N(I =T)={0} se, e somente se, R(I —T) = X,

(=)
e s =RUI-T)CX
o |supor Xj # X | X; & X
e X; és.e.v. fechado (T € K(X) + alternativa (b))
e X, é Banach (X Banach)
e T'(X;) C Xy

myel(Xy): y=Tz, z€X;=R(I-T)

mdacX;x=U—-T)(a)

y=Tx=T(a—Ta) =Ta—T(Ta) = (I-T)(Ta) € R(I-T) = X;

e Ty, : X — Xj é compacto (T € K(X))

® XQ = R([—T|X1) g; X1

IHQEX\Xl

z2=I-T)y) €eRUI-T)=X,

m |supor Xo = X,

m 2 E Xy
mdwelXy; 2= —-T|x,)(w)=({1—-T)(w)
s ([-T)(w)=2z=I-T)(y) = w—ye NI-T)={0}

(N(I - T) = {0})

n Xiow = y¢ Xy e

H16
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e Xy és.ev. fechado (T|x, € K(X1) + alternativa (b))

e seq. est. dec. de subespacos fechados de X:

L C X C X, G X C [ XX

o Jy, € Xy [lunll =1 e dlyn, Xpi1) > %

Lemma de Riesz A5.6. Seja X um espaco vetorial normado sobre K e
M- x,., € X-x, um subespago vetorial fechado. Entao, para cada 6§ € (0,1),
existe y € X tal que

lyll=1 e dist(y, M) := inf |ly —z| > 6.
xeM

e {y,} é uma seq. limitada em X

Af. {Ty,} nao possui subseq. convergente »— «— (T compacto)
Basta mostrar que {7y, } nao possui subseq. de Cauchy (X Banach)
[ J
Tyn = TYym = —WUn —TYn) + Yn — TYm) + (Yn — Ym)
U:'m
e Upn:=— (I —=T)( yn -+ I =T ynm + Yn
, ( )( )y( ) ( ) z ) z

Xny1 =R -T|x,) Xm+1=R(I - Tlx,,)

en>m
Xn—|—1 C,Z Xn g Xm+1
® Upm € Xmg1, n>m
def.dist 1
o [Ty, — Tyn| = an,m Ul =AY, Xiny1) > R Vn > m
e {Ty,} nao possui subseq. convergente

H17
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(<): N(I —T) = {0} se, e somente se, R(I —T) =X,

Teorema C3.7. Se T € L(X,Y) (espacos de Banach) entao (veja segao C3)

(a) N(T*)=R(T)*,  N(I")*=R(T)

(b) N(T)=R(T*)*, ~ N(T)* 2 R(T")

° N(I — T*) = R(I — T)J‘ = Xt = {0} (hipétese)

e 1™ compacto (T compacto + T. H1.10)

Teorema H1.10. T € K(X,Y) se, e somente se, T* € K(Y*, X*).

° R(I — T*) =X (“ida”aplicada em T*)

o | NI—T)=R(I-T)* = (X*)*= {0}

(d) dim(N(I — T)) = dim(N(I — T%)):

o dim(N(I —T)) =n < oo (por (a)
o dim(N(I — T%)) = n* < 0 (por (a))

Af. 1.0 <n

Af. 2. n* = n:

a dim(N(I — 7)) < dim(N(I — T%)) = n* < n

(pela Af.1 para T™ e para T)

a N(I-T)C NI —T")

H18
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(I =T7)(Jz)(y") = (Jo)((I =T")(y") = (I =T")(y"))
= (W) =T)(z))
= J(U=T))y"), vy

e 1 N(I-T)

(I = T")(Ja) = J(I - T)(x)) = J(0) = 0

L xe N(I—T%)

mn=dim(N({ —T7%)) <dim(N(I —T*)) =n* + Af. 1,
segue Af. 2

Prova da Af. 1. n* <n

supor n < n*

e N(I —T) admite completemento topolégico W

Seja X um espaco de Banach e M um subespago fechado. Um subespaco N
¢ dito complemento topolégico de M se N é fechado, M N N = {0} e

M+ N=X.
e Subespagos de dimensao finita (ou fechados e de codimensao finita) sempre
possuem complemento topolégico.[BrC“’ prova:p.38] (ver Segao B6)

e X =N(I—T)& W, representagao tnica:

r=y+w, yeNI-T), weW

e P: X - N(I-T):z+— Px=y: projecao sobrejetora continua

o Im([ — T) = N(I — T*)L (alternativa (b))

e /m(l —T) tem codimensao finita

e Im(I —T) admite complemento topoldgico Y em X de dimensao n*,

X=Im(I-T)®Y
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e 3¢: N(I—T)— Y linear injetora e nao sobrejetora (n < n*)

e S: =T+ (¢poP)

e po P é de posto finito (dimY < o)

e Se K(X) (T é compacto )
Af. 3 N(I —S) = {0}

e Im(I—-S5)=X (Alternativa (c))

edfeYCX; f¢&Imo (¢ ndo sobrej.)

e u — Su = f nao tem solucao

u—Su=f = u—Tu—¢(Pu)=f

— fH+o(Pu)=u+Tue Im(I-T)NY = {0}

— f=—¢(Pu) € Im¢p

e <n o=

Prova da Af. 3 N(I —S) = {0}

ceucX=Im(I-T)aY; ([-S)u=0
u—Su=u—Tu —¢(Pu)y=0=0+0

ermli-T) &%
e u—Tu=0e¢(Pu)=0
euc NI-T)
e Pu=u (P proj. de X sobre N(I —1T))
e o(u) =0
e u=20 (¢ linear injetora)

]

H20



AF-H 2 de dezembro de 2025

Exercicio H2.2 (EH1). (!) Considere o operador compacto K : £, —
Uy (x;) = (Niz;) com \; — 0
Verifique que ele satisfaz todas as afirmagoes do Teorema (encontre N (I —
T), R(I —T) e explicite suas dimensdes)
Faga o mesmo com os dois operadores (compactos?) obtidos compondo K
com o operador de translacao a direita e a esquerda, respectivamente. ¢

Exercicio H2.3 (EH2). Considere o operador compacto do exercicio
(6.2-3) do [Brell]: encontre N(I —T) e R(I —1T). *
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H3 Espectro de Um Operador

Definicao H3.1. Seja X um espaco de BanacheT : D(T) € X — X

S.€.V.
um operador linear fechado.

e o resolvente de T' é o conjunto

p(T)|={Ae€C: (M —-T): D(T) — X é bijetora }

—Se X € p(T) o operador (A\I =T)~' : X — p()cX ¢ linear continuo®
e é dito operador resolvente de T em .

e 0 espectro de T é o conjunto | o(T) |= C\p(T).

O espectro divide-se em:

a) O espetro pontual |o,(T)[={ € C: N -T) # {0}} °
Se A € 0,(7),

x A é dito autovalor de T,

x N(A —T) é dito autoespaco de T (correspondente a \)
* € N(A —T)\ {0} é dito autovetor de 7" (correspondente
a M)
b) O espectro continuo

oo(T) = {)\ eC: N\ —T)={0}, R\ —T) % RN —T) = X}

c) O espetro residual
o (T) |= {A eC: N —T)={0}, R\ —T) # X} *

?yer Teorema da Aplicagdo Aberta para op. fechado, pag. C4
’[Brell] denota o, por EV (eigenvalues).

Observagao H3.2. Sempre vale 0,(T) C o(T). Se T € L(X, X),
1. e dim X < oo, entao 0,(T) = o(T);
2. e dim X = oo, pode acontecer 0,(T) & o(T).

T:ly —ly:x=(x1,22,23..) — Tx = (0,21, 2, ..)

0 € o(T) (T nao é sobrej.), 0¢ op(T) (T éinj..)
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*

Proposicao H3.3. p(T) ¢ aberto e o(T) € fechado, em C.
Em particular, se T € L(X, X), entao o(T) é compacto e

dT)c{heC: |\ <|TI}. <

Demonstracao.

fechado aberto

Af.: p(T) é aberto
e \ep(T)={Ae€C: (AN —-T):D(T)— X é bijetora }
Queremos: 37 > 0; |A— | <r = )\ € p(T)

ANep(T)<= (M —T): D(T) = X é bijetora

Vye X, dlec DIT); (M —=T)x =

M-Tr=y <= (Al -T)z=y+ (X — Nz

= =Nl =T)"'(y+ (Mo — M)
5,(2)
< Sy: X = D(T)cx tem um (tinico) ponto fixo

(X Banach)

Teorema o Ponto Fixo de Banach AZ2.15. Seja (X,d) um
espaco métrico completo e f: X — X uma contracdo. Entao existe e é tnico
um ponto fixo de f.

Basta mostrar que, dado y € X, S, é contracao:

?
AL <1 |IS,@) ~ Syl < Llw— 2] ¥y e X
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o Sy(x) == (Ml =T) 'y + (ho — N)z)

1Sy(2) = Sy(2)| Z |l =)™ (Ao — M)z — 2))

T g = Al (Mol = T)Ha — 2)]|

cont.
< IAo—}I [l =T) 7] [lz — =]

e ?
<r= /!
(. J/

~
=L< 17

1
[(Aol —T') 1]

e tome r =

o |\— )| <r=L<1= 5, contracao

Logo, o(T) = C\ p(T) € fechado

Af.: T e L(X): o(T) é limitado:
o(T)Cc{AeC:|A < T}

Logo, O(T) ¢ compacto (fechado e limitado em C)

Basta mostrar que: |A| > ||T]| = A € p(T)

pois dai:

A p(T) (e, A€ C\p(T) =o(T)) — A <|T]

e A e G A>T

Queremos mostrar que (A\/ —T) : X — X é bijetora

H24



AF-H 2 de dezembro de 2025

I,(x) - S,2)] = H%(Tx—Tz)

< 5 T e =2
N——
=L< 1

Proposicao H3.4. Sex € N(AI —T) e¢p € N(ul —T*) com X\ # p entao

(¢, z) = o(x) =0,
ou seja, NN —T) C N(ul —T*)t e NOXI —T*) C N(ul —T)*. g
Demonstracao.
po(w) “ET o) = o(Ta) TET o(aa) = Ae(a)

L pag. ( Cc11

N -=T)C N(ul—T7) { eX:¢(x)=0, Voe N(ul —T")}

N =T7) € N(ul =T)" ™= M ipe X p(x) =0, Yoe Nul—T)}
0
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Exercicio H3.5. Considere os operadores em /o
Sy (w1, 22, 23..) = (0,21, 29, ..)
Sy ¢ (561, X9, LU3..) — (332, X3, T4, )
mostre que 0 pertence, respectivamente, a o,, 0, 0. *

Exercicio H3.6. Faca o exercicio 6.14 (p. 174) do [Brell]
Mostre que se 0 € p(T') entdao o(T~1) = 1/0(T). *

Exercicio H3.7. Faca o exercicio 6.17, 6.18(exceto ponto 11) e 6.19
(p. 175...) do [Brell]

*

H3.1 Espectro do operador compacto

Teorema H3.8. Se X ¢ um espaco de Banach de dimensao infinita e
T € K(X), entdo

a) 0 € o(T),

b) o(T)\{0} = a,(T)\{0},
c) o(T)\{0} pode ser
1.0,
2. finito,

3. uma sequéncia que tende a 0.

d) os autoespagos correspondentes a autovalores nao nulos sao finitodi-
MEeNSILoNaLs

<

Lema H3.9. Nas condicoes do teorema HS3.8, se N\, — A
sendo {\,} C o(T)\ {0} e distintos, entao A =0. * <

“todo ponto de o(T') \ {0} é ponto isolado

Demonstracao.
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(a) 0 € o(T)

o |supor 0¢ o(7T)|=C\{AeC: (A -T): X — X é bijetora }

e T ¢ bijetora
o Tl e L(X) (T € L(X))

Teorema da Aplicagao Inversa B4.9. Sejam X e Y sao espagos de Banach.
Se T € L(X,Y) é bijetora, entao T~ € L(Y, X)

e [=ToT e K(X) (T € K(X))

Exercicio H1.12. T oS é compacto sempre que T, S sao lineares e continuos
e um deles é compacto

e Bx = I(Byx) é totalmente limitado (I € K(X)+def. op. comp. H1.2)
e By subconj. fechado de X, logo completo (X Banach)
e By compacto

o dim X < 00 r—ex (dim X = o)

Teorema de Riesz A5.7. Seja X um espaco vetorial normado sobre K tal
que B1(0) = {x € X : ||z|| < 1} é compacta. Entao X tem dimensao finita.

(b) o(T)\{0} = o, (T)\{0}

op(T)\{0} € o(T)\{0}

o \#0

e Neco,(T)={ eC: NN -T)+#{0}}
e A\ — T nao ¢ injetora

e ANco(T)=C\p(T)=C\{NeC: (M -T): X — X é bijetora }
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a(T)\{0} C a,(T)\{0}

e A\ — T ¢ injetora

A#0
Aeo(T)

supor A & ,(T)

={AeC: N -T)+#{0}}

e A\ — T é sobrejetora

Alternativa de Fredholm H2.1. Se X é um espago de Banach e T € K(X),
entao ? (¢) N(I —T) = {0} se, e somente se, R(I —T) = X,

%De fato, o resultado vale para AT — T, A # 0

(¢) a(T)\{0} pode ser

1. 0,
2. finito,

3. uma sequéncia que tende a 0.

o(T)\{0} =0 ( OK!' ) ou o(T)\{0} # 0
a(T)\{0} # 0 e é finito ( OK!)
a(T)\{0} # 0 e é infinito

An::o(T)ﬁ{AE(C:|)\|2%}

oM\ {0} = J A

A,, é fechado

(o(T) é fechado: P. H3.3)
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Proposicao H3.3. p(T') é aberto e o(T") é fechado, em C.
Se T € L(X,X), entdao o(T) é compacto e o(T) C {\ e C: |A\| < ||T]}

o A, Co(T)

e A, é compacto (o(T) é compacto)
Af. A, é vazio ou finito
m A, =0 (OK!)ou A, #0

m A, # (e é finito ( OK!)

m [ A, # 0 e é infinito (possui infinitos pontos distintos)

m existe subseq. em A, (. em o(T) \ {0}) convergindo
para algum A € A, (-.em {A € C: |\ >1})

(A,, compacto)
B AF£0 e

Lema H3.9. Nas condicoes do teorema H3.8, se A, — A
sendo {\,} C o(T)\ {0} e distintos, entdao A = 0.

e o(T)\ {0} é enumeravel; o(T)\ {0} ={\.}
e pode-se reordenar de forma que A\, — 0

(d) os autoespagos correspondentes a autovalores nao nulos sao finitodimen-
sionais

Alternativa de Fredholm H2.1. Se X é um espaco de Banach e T € K(X),
entdao ¢ (a) dim(N(I —T)) < oo,

?De fato, o resultado vale para A\I — T, A # 0
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Prova do Lema H3.9. X Banach, T € K(X). Se A, — X sendo {\,} C
o(T)\ {0} e distintos, entao A = 0.
Justifique cada passagem!

e \ & p(T)
e )\,I — T nao ¢ bijetora
e )\,I — T nao é sobrejetora e nao € injetora
e para cada n, 3 x,, # 0;
(And = T)(zn) =0 (1)
o {x1,...,x,} é1Li
o X, :=[{z1,...,2,}]
o X, & Xuq1
o (Ml =T)(Xn) C Xy

o Hyn} C Xy;
1
HynH = 1a d(ynaXn—l) > 57 Vn > 2
e [supor A # 0
Yn | 4 4. .
= limitad
[ ) {)\n} € l1mitada
o {Ti—n} possui subseq. convergente
° (veja prova Alt.(c) Fredholm, pag.H17)
Yn Ym 1
T8 Il s Gy, X ) > =, n>m> 2

° {Ti—n} nao possui subseq. convergente

n
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Exercicio H3.10. Construa um exemplo de operador compacto nao
nulo com, respectivamente, 0, um numero finito e um numero infinito de
autovalores.

Construa um exemplo de operador compacto com, respectivamente, 0 €
op, 0 € 0, 0 € 0.
(Use sequéncias). *
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H3.2 Operadores auto-adjuntos e seu espectro

X,Y espacos de Banach e T' € L(X,Y). adjunto de 7: T* : Y* — X*

(T"¢)(x) = o(Tx), VoeY* zeX
Teorema C2.3. Se T € L(X,Y) entao T* € L(Y*, X*) e | T|| = |||
Teorema de Representacao de Riesz-Frechet G4.1. Se f € H*,
existe um unico y € H tal que

f(z) = (z,y) paratodoz € H.

Além disso, [1f]l- = 9]
Definicao H3.11. Sejam H um espaco de Hilbert, T' € L(H) e seu adjunto

T € L(H*).
Seja R: H — H* o operador de Riesz, definido como

Ry(z) = (Ry,z) == (z,y), w=,y€H.
O T. de Representacao de Riesz-Frechet garante que R é uma bijecdo isométrica.
Ainda,
R(z + \y) = Rz + ARy
Entao definimos o adjunto (Hilbertiano) de 7"
* *
T:H—H: z T (z):=R'T"R(x)

Assim T¢€ L(H) e vale

(T y,z) = (y,Tx) Vo,ye H.

deLR

(Ty,2) = (R'T"R(y),z) = (v, R-T"R(y)) R(R™'T*R(y))(x)

def.R

“LT RW))(Te) “E Ty) = (v, Ta)

= T*(R(y))(x)
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Definicao H3.12. T € L(H) é auto-adjunto se T= T'; isto é,

(Ty7 x) - (y7 Tx)? vx? y E H'

*

Observagao H3.13. Se T € L(H) é auto-adjunto, entao (T'z,x) € R. %

(x,Tx) ppdd-p.e. (Tx, z) autozadj (x,Tx)

Definicao H3.14. Se T € L(H), definimos a imagem numérica de T
por:

W(T)| :={(Tz,z): = € Sg}?

my = inf W(T), Myp =sup W(T).

*
Observacao. Se T' ¢é auto-adjunto,
e W(T)CR
e M\ — T ¢é auto-adjunto, para qualquer A € R
o I = sup (T o) logo [T = max{jms [My}. vt et pion
(Exercicio!)
*

3Sy={x e H:|z|| =1}
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Teorema H3.15.

(1) SejaT € L(H). Entao, o(T) C W(T).

(2) SeT ¢é também auto-adjunto, entdo W(T') C [mp, Mr] C R,.
Além disso,
(a) mp, My € O(T),
(b) autovetores correspondentes a autovalores distintos sdo ortogonais.
(c) H=N\ —T)® R\ —T), logo o,(T) = O {17770 »-218]

<
Demonstracao. (1)

e \c C\W(T)

Basta mostrar que A ¢ o(T) = C\ p(7), i.e.,

ANep(T)=4{ e C: (M —-T): H— H é bijetora }
e d:=dA\W(T)) = inf |A—2z>0

zeW(T)
W(T) ={(Tz,x): =€ Sy}

o |\— (Tx,z)|>d, VxeSy
exrcH

(M =T)z,2)| = | —Ta,2)| = [\, x) = (Ta,x)] = | A|* = (Tz,2) |

2
]

A— (Ti,i)| > ]2 d
ERE
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Af.1. A — T é injetora

rE€NAMN -T)<—= M -T)(x)=0

Iz d < [(M =Tz, 2)| =0EL 2 =0

e rc H

Cauchy—Sch H

lz)*d < (M =T)e,x)] < (M =T)z| ||z]

LM = T)z|| > d ]

NI

Desigualdade Cauchy-Schwarz G1.1. | (z,y)| < (x,x)% (y,vy)

Af2. R(M —T) é fechada [Atento!]

m Y, € RN =T); yo—y

m {y,} é de Cauchy
mdx, € Hyp= N —T)(x,)

1 1
|zn = 2l < SN =T)(@n = 2m)ll = = Y0 = yull = 0

m {z,} é de Cauchy, logo converge para x € H

(H completo)

(A=T)(z) = M=T)( lim 2,)" 2" lim (A\[=T)z, = lim y, =y
n—oo

n—oo n—o0

s yc R —T)

H35



AF-H 2 de dezembro de 2025

Af3. RIA—T)* = {0}
y€ RO -T) = (M -T)z,y) =0, Ve e H

= d|ylI’ < (M - T)y,y)| =0 =y =0

e R(AM —T) é denso

‘ ROM—T) =R\ -T)*“t = {0} = H

Exercicio G3.13. Para qualquer M C H, vale (M*)t = span(M). Em
particular, se M é um subespaco linear, entdao (M=+)+ = M.

e )\ — T é sobrejetora

‘ RN -T)=ROMN -T)=H

Atento!  De fato vale o sequinte resultado geral: Se H € um espaco de Hilbert

(ou, mais geralmente, um espago de Banach) e T : H — H € um operador linear
continuo tal que existe ¢ > 0 com

clef <|Txl,  VzeH,

entao T' € injetor e R(T) é um subespago fechado de H. Prove!

(2) Se T' é também auto-adjunto, entao W (T') C [myp, My] C R, onde

mp = inf W(T), My = sup W(T).
(a) mp, My € o(T),

(b) autovetores correspondentes a autovalores distintos sdo ortogonais,

(¢) H=N\ —T)@ R\ —T), logo o,(T) = 0. 70, »218] Exercicio!
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° W(T) C [mT, MT] CR (T" auto-adj + Obs. H3.13)

W(T) :={(Tx,z): €Sy} CR

(c) autovetores correspondentes a autovalores distintos sao ortogonais
e Tx=XxeTy=puy, comA\=#ypu
o (Trx,x)=(Az,x) =\ ||z ’eR
(Tz,z) = (Az,2) = A ||z|
€R\{0}
e\ ueRM

D.H3.12

(A=) (z,y) = Mz, y)—p(z,y) = v, y)— (2, py) = (T, y)— (2, Ty) 0

Tauto—ady

1" Autovalores de operador auto-adjunto sdo reais.

(a) mp, Mp € o(T) =C\p(T)=C\{\€ C: (\M[-T) : H— H ¢ bijetora }

e | supor My € p(T)

e MpI — T é bijetora
o (MyI—T) ' e L(H) (T € L(H))

Teorema da Aplicagao Inversa B4.9. Sejam X e Y s@o espagos de Banach.
Se T € L(X,Y) é bijetora, entdao T~! € L(Y, X)

o a(x,y) = (x,(MpI—T)y), z,y € H ¢éuma forma sesqui-linear continua

e a € sesquisimétrica

aut—adj
= ((

a(z,y) = (z,(MrI —T)y) Myl —-T)z,y) = (y, MrI —T)z) = a(y, )
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e a(r,z) >0 YVx e H

a(w,x) = (2, Myz—Tz) = Mr(w,x)— (2, Tx) > My ||z|* =Mz 2] = 0
*x (Tz,x) < Mp =supW(T), VzeSy—=—

ERIEd

(Ti L) < My VzeH\{0} =

T auto—adj (

(x,Tx) Tx,z) < Mrp|z|® VeeH

o la(z,y)| < la(z, )]V |a(y, y)|'?, Yo,y € H

segue das propriedades de sesquilinearidade, sesquisimetria e a(x,z) > 0
veja prova da Desigualdade de Cauchy-Schwarz, pag. G1

(@, (MrI =T)y)I* < |(z,(MrI = T)z)| |(y, (M — T)y)|

< lf] [[(Mpd =T)x|| [(y, (M2l —T)y)|

eL(H) 5
< |ll]” ML =T [(y, (Mgl =T)y)|, Va,yeH

e paraxz = (Mpl —T)y
[(MeT = Thyl* < |(MeT = Tyl |MeT =T (g, (MeT —Ty)|, ¥y € H

LML =Tyl < |[MrI =T |(y, (MrI = T)y)|

= ||MrI—T| |Mr(y,y) — (y,Ty)|, VyeH

o Yn € SH; (ymTyn) — My

Mp =supW(T) = sup (Tx,x)
z€ESH

o [|(MrI = T)yull® < |Mrl =T [Mr — (ya, Tya)| = 0
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oy, = (Mpl —T) " (Mpl —T)y, == 0 roe=< lynll = 1

o Mrp EO’(T)

my € o(T): aplique o mesmo argumento anterior para —7 no lugar de 7. [J

Aula 28

Corolario H3.16. Seja T € L(H) auto-adjunto tal que o(T) = {0}. Entao

T=0. <
Demonstracao.

e mp, My € o(T) = {0} T. H3.15-(2a)

e (Tx,zx)=0 VzxeH

*0=mp=infW(T) < (Tz,z) < Mp=supW(T)=0, VreSy

(Tﬁ,ﬁ) =0 VoeH\{0}

0 = (T+y),z+y) = Tz,z)+ Tz,y)+ Ty, z)+ (Ty,y)

T aut—adj

= (Tz,y) +(y,Tx) = (Tz,y) + (Tx,y)

= 2Re(Tx,y), Vr,y€ H
e paray =Tz,

(Tx,Tx) =Re(Tx, Tx) = 0, VreH

e )

e Tx =0, Ve H O

Exercicios

Exercicio H3.17. Faga o exerc. 6.24(1 e 2) do [Brell, p. 17§] *
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H4 Decomposicao Espectral de Operadores Compactos
e Auto-Adjuntos

Teorema H4.1.
um operador compacto e auto-adjunto. Entao H admite uma base Hilber-
tiana formada por autovetores de T.

Em particular, se {e;} € esta base e {\;j} os autovetores associados,

T (Z CLZ'BZ') = Z )\iaiei-

Sejam H um espacgo de Hilbert separdvel eT € L(H)

<

Observacao H4.2.
e O operador do ex 6.1 do [Brell]:

T : €2 — €2 : (ZUZ) — (Azxz)

com \; — 0 é o prototipo de todos os operadores compactos e autoadjuntos
em espagos de Hilbert separaveis (de dimensao infinita).

e Em

dimensao finita

, 0 Teorema H4.1 é o analogo do resultado que toda

matriz hermitiana é diagonalizavel. (Verifique!)
e Truncando a série Y \;a;e;, obtemos uma outra forma de aproximar 7'
por {T,,} C L¢(H).

Teorema G5.8.

(Verifique!)

*

Um espaco de Hilbert H é separavel se e somente se tem uma

base ortonormal (Hilbertiana) enumerdvel.
Neste caso, toda base ortonormal de H é enumerdvel e (se dimH = oo) H é
isometricamente isomorfo a #o

Um conjunto em H é dito base de Hilbert (ou base ortonormal) se é um conjunto
ortonormal que satisfaz as propriedades equivalentes do Teorema G5.4

Teorema Gb5.4.

Se S = {ea}aca é um conjunto ortonormal em H, as seguintes

afirmativas sdo equivalentes:

a) (Completeza) Se (x,e,) = 0 para todo o € A, entdo x = 0 (ie, S = {0}).

c) H>x =73 (% ¢eq)eq, onde a soma converge ind. da ordem dos termos.

f) H = span(S).
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Demonstracao. Temos duas possibilidades:
(1) o(T) = {0}
e 1T'=0 (C. H4)

e qualquer x # 0 é autovetor associado ao autovalor 0

Tr =0 = 0x
e qualquer base Hilbertiana é formada por autovetores de T’

(2) o(T)\ {0} # 0

Teorema H3.8. Se X é um espago de Banach e 7" € K(X), entao
a) 0€o(T), se dim X = oo,
b) o(T)\{0} = op(T)\{0},
¢) o(T)\{0} pode ser

1. 0,
2. finito,
3. uma sequéncia que tende a 0.

d) os autoespagos correspondentes a autovalores nao nulos sao finitodimensionais
N (M — T)=autoespago de T'
N(A —T)\ {0} conj. dos autovetores de T associados a A
Todos autovalores sao reais (T auto-adj + pag. H38)

e {\,}nes sequencia estrit. decrescente dos autovalores de T

(J finito ou infinito)
e \y=0
e Ly=N(T), E,=NWX\JI-T)
e ) <dimkFE, < o0 (T. H3.8(d))
e 0 <dimFEy< o0

o {E,}nesufoy sdo dois a dois ortogonais

Teorema H3.15. Se T' € L(H) é auto-adjunto, entao
(c) autovetores correspondentes a autovalores distintos sdo ortogonais.
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o £y = N(T) é separavel e Hilbert

Ey C H, H separavel = Ej separavel

Prop. E2.3. Se X e.m. separavel, entao () # F C X & sep..

Ey é s.e.v. fechado, H Hilbert = E,, Hilbert

Prop. E1.4. Se X é reflexivo, todo seu subespaco fechado é

reflexivo.
e Fj possui base By Hilbertiana enumeravel (T. G5.8)
e [, possui base B,, Hilbertiana enumeravel (dim. finita)
e tais bases sao constituidas por autovetores de T
Se | |J E.|=H,
neJU{0}
° U B,, é uma Hilbertiana de H composta por autovetores de T’
neJU{0}
Um conjunto em H ¢ dito base de Hilbert (ou base ortonormal) se é um
conjunto ortonormal que satisfaz as propriedades equivalentes do Teorema
G5.4
Teorema G5.4. Se S = {ey}aca ¢ um conjunto ortonormal em H, as seguin-
tes afirmativas sao equivalentes:
a) (Completeza) Se (z,e,) = 0 para todo o € A, entdo z = 0 (ie, ST = {0}).
f) H = span(9).
o F:= U E, (S.e.V.) (comb. lin.finitas de elem. de E,)
neJU{0}
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Af. F é denso em H

Exercicio B2.6. Um subespago F' de um e.v.n. H é denso se e s6 se vale que

Vo € H* t.q. o|p =0, vale p =0

Teorema de Representacao de Riesz-Frechet G4.1. Se H é Hilbert e
¢ € H*, existe um tnico y € H tal que ¢(z) = (z,y) paratodo z € H.

pe H, yeH; ¢(x)=(x,y), Ve € H e
Plr=0 <= (z,y) =0, Vo € F<=yc F*
Se 't = {0}, entaoy=0¢e ¢ =0

logo F' é denso

Basta mostrar que F* = {0}

Se FL C F,entdo Ft = FAnr £ 0}

Ainda mais se F* C N(T) = Ey C F
Note:

FFrCN{T) <= Tr=0VacF-<T|p=0
Se o(T|p.) = {0}, onde T'|p. : F+ — F+ ¢ auto-adjunto (e

compacto), entdo T|pr =0

Coroldrio . Seja T € L(H) auto-adjunto tal que o(T") = {0}.
Entao T'=10

Basta mostrar:

1. T(FY) c F*
2. o(Tps) = {0}
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Prova de 1. T(F*) c F*

eycT(Ft)=y=Tz, x€F*+

e zc F:

T auto—adj
(yvz) - (TZIZ,Z) =" (

a= Y aef e F=T(a)= » aT(c})= Y (a;\})ej€F

j,finita j,finita J,finita

Prova de 2. o(T|pr) = {0}

o )\ - O’(T‘Fl)

e |supor A # 0

o 0(T|pr)\ {0} = 0p(T|pr) \ {0} (T|pr comp. + T. H3.8(b))

e )\ é autovalor de T'|p1, i.e.,

JrzeFt 2#0; Xx=T|p(r)=Tzx

e )\ é um autovalor de T'
e A=)\, paraalgumn e J,ie, Tr=\z

e xc £, =N(\JI—-T), para algum n € J

v € E,NF+* ¢ FNF+ = {0}
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Exercicio H4.3 (EH3). Considere o operador

T - L2[0,7] — L0, 7] : f v g(z) = / "z, y) ) dy

onde h € L*([0,7]?) (j4 vimos que é bem definido e compacto).
e Verifique que 7' é autoadjunto se h(x,y) = h(y,x).

Se k(z,y) = imin{z(r — y),y(m — z)} entdo g = T'f satisfaz (qtp) o
problema

{—g" =f  em (0,7,
9(0) = g(m).

Sabendo isso, encontre uma base de Hilbert para L?[0, 7] feita de autove-
tores de T

Note que T'f = Af implica (se A # 0)

{—f” = (Tf)'/A=1f em (0,7),
FO)=f(m). *
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