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G1 Espacos com produto interno Aula 24

Seja H um e.v. sobre K. Um produto escalar (ou produto interno) em
H é uma fungao (-,) : H x H — K tal que

(a) (z,y) = (y, ) para todo z,y € H.
(b) (ax +bx',y) = a(z,y) + b(2',y) para todo x,z',y € H, a,b € K.

(¢) (x,z) >0, e (x,z) =0 se e somente se x = 0.

G1.1 Propriedades elementares
o (z,ay+by) =a(x,y)+b(z,y) para todo z,y,y € H, a,b € K.
Segue de (a)+(b).

- produto interno real € linear
- produto interno complexo € sesquilinear

e desigualdade de Cauchy-Schwarz

N[ =
(SIS

|(z,9)| < (z,2) (y,9)* . (G1.1)
(a igualdade vale se e s6 se x e y sdo linearmente dependentes)
(¢): (x —ty,x —ty) >0, VieKz,ye H
. ) =1 y=0.0k
(@, @) =t (2, y) —t(y, ) + [¢[" (y,y) 2 0 —
(:Ea y) (I’, y) | (3;7 y) |2 stmpli ficando
(z,2) — (z,y) — (W, 2) + ——5(y,y) 20 =
(v.v) (4, 9) (y.v)*
[ (=) |7
r,r) ————5— >0 *
(@2) (v, ) *)
a igualdade em (*) vale se s6 se (x — ty,x — ty) =0
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e A funcao || - || : H — R definida por ||u|| = (u,u)% ¢ uma norma.

Um espago com produto interno (H, (-,-)) € um e.v.n. .

|z + y||? = (z+y,z+y) = (z,2) +2Re (z,y) + (v, y)

Rez<|Re(2)|<|z]

< (z,2) + 2| (z,9) [ + (v, 9)
< @42 ((z.2)7 (. 9)*) + (w.w)
= ([l + lly1)*
e identidade do paralelogramo
lz+ ylI* + llz = yl* = 2(l=[I* + ly]I*),  Va,y € H. (G1.2)

=y

Propriedade geométrica diz: a soma dos quadrados dos comprimentos dos
lados de um paralelogramo é igual a soma dos quadrados dos comprimentos
das suas duas diagonais.

A identidade do paralelogramo caracteriza as normas que sao induzidas por
produto interno (ver também a Proposigao G1.1).

e Teorema de Pitagoras: se (x,y) = 0 (escrevemos x L y: x,y sdo ortogonais)

entao
2
2+ ylI* = ll=)* + ly]|*- (G1.3)

Mais geralmente, se z1,--- , x, sao vetores dois a dois ortogonais entao

n n
DY @il =)l
=1 =1

i+ T
: 7
U
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e Formula de polarizacao

2 2 - 12 .2
_ ety e =yl e iyl — e =yl
4 4 |

(2, y) (G1.4)

|z +ylI” — |z — y||* = 4Re (z, )

|z +iy[|* = |l = iy|* = 4Rei (v, y) = 43 (z,y)

Proposicao G1.1. Seja (E,|||) um e.v.n. real [complexo] cuja norma ve-
rifica a lei do paralelogramo. Entao a formula de polarizacao define um produto

interno em E que induz a normal original. <
Demonstracao.
Af. 1. (x,y) = ”HyHQ;”w_yHQ {—H’ ”Hiy”t”%iynz} induz a norma original, i.e.,
|zl = (w, z)'?
2 2 .12 . 12
rtox| —||lr—2x e+ x| — || —
sy = lotell o= [H b + il — o i
1| |Jz]|* = |1 =] [|=]?
\ 4 7
0
Fri70, p. 203

Af. 2. (-,-) 6 um produto interno em £ |
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G2 Espacos de Hilbert

Definicao G2.1. Um espacgo de Hilbert é um espaco com produto interno
que é completo com a norma induzida pelo produto interno. *

Exemplos:

e KV com o produto interno

N
1

é um espaco de Hilbert.

e /5 com o produto interno

00
1

¢ um espaco de Hilbert.

° LQ(Q) com o produto interno

(9)= | 19

é um espaco de Hilbert.

Nao sao espacos de Hilbert:

— ¢gp: pode ser munido do mesmo produto escalar de /5, mas nao é com-
pleto com a norma induzida; (Ex. A3.17)
—(C([0,1]), || ll5): pode ser munido do mesmo produto escalar de L?, mas
nao é completo;

— L? se p # 2: a norma de LP nao pode ser induzida por um produto
escalar;

~(C([0,1]), ]| ll): a norma || ||, ndo pode ser induzida por um produto
escalar.
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Exercicio G2.2. (C([0,1]),]|| ||,) ndo é completo. *
Exercicio G2.3. Faca o exercicio 5.2 (p. 147) do [Brell] : L? nao é
Hilbert para p # 2. *

Exercicio G2.4. Verifique que a norma do sup no espaco das funcoes
continuas C'([a, b], K) ndo provém de um produto interno. *

Proposicao G2.5. Todo espaco de Hilbert é uniformemente convezxo
e portanto reflexivo. <

Demonstracao.

H éu.c. se
?
V0<e<2,36>0; |lall,llyl <1, e le—yll>e = |5 <1-4.

identidade do paralelogramo (G1.2):

lz + yll? + [l — ylI* = 2(|=[* + [ly]1?), Vz,y € H.

1 1 ;
= ClalP 2yl — -y < J(4-) =1-5 < (1)

Tr+vy 2
2

Teorema Milman-Pettis E3.3. Todo espaco de Banach uniformemente convexo
é reflexivo.
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G3 Projecao sobre convexos

Lema G3.1. ! Se C # () é um subconjunto fechado e convexo de um espaco
de Hilbert H e x( € H, existe um unico yy € C tal que

|zo — woll = inf |lzo — y[| =: d(z0, C). <
yel

Definicao G3.2. Escrevemos yyg = Pox( e dizemos que | Po | é a projecao

sobre C' (yo é a projecao de xy sobre C). *
Observacao G3.3. Se zy € C, Poxy = xy *

Demonstracao do Lema G3.1.
Existencia:

e I {y,} CC; im0 ||x0 — Y| = d(z0,C) =:4d
Af. 1. {y,} é de Cauchy

e Jyo€ H; y, — 4o (H Hilbert é completo)
o ypcC (C é fechado)
lzo =gl = lim |[zo —yal| = d(20,C)
n—00
Prova Af. 1.:

identidade do paralelogramo (G1.2):
lz+ ylI? + [l — I = 2(|=[1* + [ly*), Va,y € H.
Sabemos ||xo — ym|| — d

T=20 = Yn €Y =%0 — Ym

2 2 2 2
1220 — Yn — Y|l "+ Y0 — Y| :2<Hwo—yn|| +H$o—ymll>

LA conclusao continua vélida se H é apenas um espaco de Banach u.c. (veja Ex. 3.32 de [Brell] e prova
alternativa da existéncia usando teoria de espagos reflexivo e u.c. em [Brell, p. 132]).
Uma vez mostrada a existéncia de yy € C, o infimo é de fato o minimo.
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Yn T Y
0< v =wall® = 2(lleo =yl + llzo = yal*) = 4 1o - HZ2
—l—
eC
C conw.
< 2 (Jlmo =yl + Jlao — yull®) — 4
def.inf
MEE 2 (P4 ) —4d* =0
Unicidade:
o Supor Iy € C, yr £ yo; Nl —all = inf [lzo =yl = d(wo, ) = d
identidade do paralelogramo (G1.2):
lz +yl* + lz =yl = 2|z + [ly]*), Va,y € H.
Sabemos ||xo — yol| = [|zo — 1| = d
T=120—Yoey=z0— Y
2
Yo +y
0< o —wl® = 2(lleo—woll +llwo = snf*) — 4 o — L
—l
eC
C conv.
< 2 (flzo = oll” + Jlzo — ])*) — 4
def.inf
= 2(d+d)—4d =0
o lyo—wll =0 ==
[]
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Proposicao G3.4. Nas condicoes do Lema G3.1, Poxgy € caracterizado por

Poxge C e Re (xg — Poxg,w — Poxg) <0, YweC. <

cost = (xg — Yo, w — yo) <0

Demonstracao. Queremos mostrar que para Poxy =1y € C
lxo — ol = il}(ﬁ |lxo — y|| <= Re (xog —yo,w —yo) <0, YweCl
ye
(=)

o(l—t)y0+tw€C, V’UJGC,VtE[O,l] (C' é convexo)

lz0 = woll = infyec [lzo — yll < [lzo = (1 = H)yo + tw)|| = [lzo = yo + t{yo — w)]|

[ J
lzo — yoll* < (xo—yo+t(y0—w), $0—yo+t(y0—w))
= |lwo — yoll* + 2t Re (zo — yo, yo — w) +£* |lyo — ]|’
= [lmo — woll* — 2t Re (z0 — yo, w — yo) + £ lyo — w’
[ J
2Re (zo —yo,w —yo) < tlyo—w|° YweC, Vte(01]
o Re(zg—yo,w—1y) <0, Vwel (t—0%)
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(=)
[ ]
on - y||2 = Hﬂfo — Yo — (Z/ —?JO)H2 = (xo — Yo — (?J — yo), To — Yo — (?J — Z/o))
= [lzo — woll” — 2| Re (zo — o,y — v0) + |ly — ol

> oo —woll*, VyeC

o [lzo = woll < flzo —yll, VyeC

o llzo = woll = inf flog — y]|

Proposicao G3.5. Nas condicoes do Lema G3.1,
| Pozy — Pexs|| < |lz1 — 22f|,  Vai,29 € H,
logo Po € continua. <

Demonstracao.

Proposicao G3.4. y=Pox € Ce Re(x —y,w—y) <0, VweC

w = Poxo e w = Poxq

e Re(xy — Poxy, Poxy — Poxy) <0 = Re(Pexy — x1, Poxy — Pexs) <0

e Re(xy — Poxo, Poxy — Poxsg) <0

o (Re(z) + Re(w) = Re(z + w) e linearidd p.i.)
Re (ngl —x1 4+ 19 —Poxs, Poxy — chg) <0

§R6 (—%1 + 9, Pciljl — chg) + §R6 (P(jajl — Pciljg, chl — Pciljg) S 0
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%eSchl — Poxo, Poxy — PC’Z'Q)/ < Re (x1 — x9, Poxy — Poxs)

eR

o N Poxy — PC$2H2 <  Re(xy — x9, Poxy — Poxs)

Rez<|z|
< |(z1 — 2, Pox1— Poxs) |

Cc-S
S Hxl — $2H HPCxl — Pc.CCQH (G31)

D=
(SIS

Desigualdade Cauchy-Schwarz G1.1. | (z,y)| < (z,2)2 (y,y)

e se ||Poxy — Poxsl| # 0, de G3.1,
Hpcilj'l — Pcl'QH < H:z:1 — ZIZ’QH Va:l,a:g e H

e se ||Poxy — Poxs|| =0,

|Pex1 — Pexsl|| < ||v1 — 22| Vo, 20 € H

[]
Observacao (G3.6. Manipulando as férmulas, podemos ver também que
1
Yo minimiza em C' a funcao 3 yl|> — Re (y, zo)
Ke (y07w_y0) > Ke (x()aw _y0)7 Vw € C. *

Yo minimiza em C a fungao ||zg — y|| (llzo — yol| = minyec [|zo — yl|)

2 2 2
ly —zol” = (y — zo,y — 20) = [Jy||” — 2Re (z0,y) + [|zol|

const.

yo minimiza em C a funcio |jy||> — 2Re (zo, y) + ||zo?

yo minimiza em C a funcao ||y||* — 2Re (z0, y)
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Exercicio G3.7. Faga os exercicios 5.6 e 5.8 (p. 148) do [Brell] %

Definicao G3.8. Sejam H um espago de Hilbert e A C H. Definimos o
ortogonal de A

At ={rc H:(x,a) =0, Vac A} :

Al é sempre um subespaco vetorial fechado. *

Teorema G3.9. Se H ¢ um espaco de Hilbert e M ¢é um subespaco vet.
fechado, entdo Py € um operador linear com ||Pyl| = 1 (exceto no caso M =
{0}) e € caracterizado por

Pyzg € M e (xg — Pyxg,w) =0, Yw € M, (G3.2)

ou seja, g — Pyxg € M™. <

Definicao G3.10. | P, | é dita projecao ortogonal sobre M.

Demonstracao.
Af. 1 Py é caracterizado por (G3.2)
Af. 2 Py é linear

Af. 3 ||Py| =1
e )M é nao vazio, convexo e fechado (M é s.e.v. fechado)
o Pyxg€ M, e Re(xg— Pyxo,w— Pyxg) <0, Ywe M (Prop. G3.4)

Af. 1 Re (zg — Pyxo,w — Pyxo) <0 <= (29 — Pyzo,w) =0 (Yw € M)

(=)

o w:=2Pyxy € M: (M és.ev. + hip.)

Re (xg — Pyzo, Prrxg) <0
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o we M:

Re (xg — Pyzo, w) = Re (xg — Pyxo, w — Pyrxg)+Re (xg — Pyxo, Pyxo) 0

—weM
Re (xg — Pyzo, —w) < 0= Re(xqg— Pyxo,w) >0

Re (rog — Pyxo,w) =0

o weM—tiweM:

E = Re (xg — Py, Liw) = Fi Re (xg — Pyxo, w) = £33y, (g — Pyzo, w)

o (g — Pyzo, w)=0

(<:) %6(3]() — PMJJ(),w—ijxo) < (0« (SIZ() —ijxo,w) =0 (Vw € M)

e weEM=— w—Pyxrge M e (xo —PMZU(),w—PMZU()) =0 (M és.ev. + hip.)

e Re(xg— Pyro,w — Pyxg) <0

Af. 2 Py : H — H é linear

(:170 — PMl‘o, w) =0

(x1 — Pyx w)—o}é xO"‘xl_(foo—l-PMxL),w =0
1— T, W) =

eM

—> Pu(xo + 21) = Py + Py

AL 3 [Pyl =1
[Pyl = sup ||Pyz|
xeH ||z||<1
HPMLEH = HPMCC — PMOH < ||LUH , Ve e H (Prop. G3.5: proj. cont.)
HPM (”i—”) H =1, VreM \ {0} (Obs. G3.3:Pyx =z, € M)
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Teorema G3.11. Seja H um espaco de Hilbert e M um subespaco fechado,
entao vale:

o H =M@ M*; isto é, cada v € H pode ser expresso unicamente como
r=m+m ondem M em' € M*;

Am = Pyx € M; (xt —m,w) =0, Yw e M
r—mée M+t

r=m+ (x —m)
M eM!

e na decomposicio acima, m = Pyx e m' = Pyix = (I — Py)x;

.PM:P]aepMOPMJ_:PMLOPM:O. <

Corolario G3.12. Sejam H esp. Hilbert e M subespaco proprio fechado,
entio existe w € M+ \ {0}, i.e, w € H\ {0} tal que (w,m) =0, me M. <

Demonstracao.
exc H\M
erx=m+wcomméeMewe M+ (Teorema G3.11)
o w#0 (x ¢ M)
]
Exercicio G3.13. Prove o Teorema G3.11. *

Exercicio G3.14. Prove diretamente (usando o Teorema acima) a se-
guinte consequencia do Teorema de Hahn-Banach: Seja H um espaco de
Hilbert, M um subespaco fechado e ¢ € M*. Entao existe ¢ € H* tal que
Bl = e ||d]| = el

*
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G4 O dual de um espaco de Hilbert Aula 25

Teorema G4.1 [Teorema de Representacao de Riesz-Frechet].
Se f € H*, existe um unico y € H tal que

f(x) = (z,y) para todo x € H.

Além disso, || f|

= yllg <

Isto permite identificar H e H*.
Logo podemos também identificar H e H** (e obter a reflexivi-
dade)”.

2com o devido cuidado de verificar que o isomorfismo é o mergulho canonico

Demonstracao. Considere a aplicacao linear

T:-H—-H :yeH—Ty=f:H—->K: x— Ty(x) = f(x) = (z,y)

Af. 1. T é isometria (portanto, )

Af. 2. T é sobrejetora

Prova Af. 1.: T € isometria

Tyl = sup |Ty(x)]

x€H,||z||<1

o [Ty(x)| = |(z,y)| < |l=|| llyl] = [Tyl <[yl

D=
(SIS

Desigualdade Cauchy-Schwarz G1.1. | (z,y)| < (z,2)? (y,y)

« Ty (1) = (i v) = ¥ = llvll, vy € H\ {0}

o [Tyl = llyll
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Prova Af. 2.: T : H— H* ¢ sobrejetora
e T'(H) és.e.v. fechado em H*

Ex. F3.11: Se T': X — Y é uma isometria linear e X é Banach, entao 7'(X) é
um s.e.v. fechado. (ver p. E9: prova de dual refl. implica esp. refl.)

Basta mostrar que T(H) é denso em H*, pois dai

Ex. B2.6. Um subespago M de em e.v.n. X é denso se e s6 se vale que

Vo € X* t.q. |y =0, vale p =0

e he H*, h(Ty)=0,Vye H

Queremos h = 0
e H ¢ reflexivo (Proposigao G2.5)

Proposicao G2.5. Todo espago de Hilbert é uniformemente convexo e por-
tanto reflexivo.

e J: H— H™ o mergulho canonico ¢é sobrejetor

de e H; Jr=h

def.J def. T
0 = h(Ty) = Jo(Ty) "L Ty@) “L" (2,y), wyeH

eprray=z€ H: (z,2)=0 = =0

e h=Jr =J0=0

Exercicios

Exercicio G4.2. Faga os exercicios 5.16, 5.17, 5.19 (p. 150..)

[Brell] (leia primeiro o remark 3 na p.136).
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Definicao G4.3. Uma forma sesqui-linear? a(-,-) : H x H — K é dita
e continua se existe C' tal que |a(x,y)| < Cllz|l||ly]|, Vz,y € H,
e coerciva se existe a > 0 tal que Rea(x,z) > o||z|?, V€ H,

e sesquisimétrica (ou hermitiana) se a(z,y) = a(y,z) Vz,y € H.

*

Lema G4.4. Sejam H um espago de Hilbert e a : H x H — K uma forma
sesqui-linear continua e coerciva. Entao, existe A € L(H, H) tal que

a(w, z) = (w, Az).

Ainda, A é um isomorfismo e existem a,C > 0; vale «||z]| < ||Az|| < C||7]],
para todo z € H.

Demonstracao.

Af.
Af.
Af.
Af.
Af.

e 2c H
e a(-,z) : H— K ¢ linear continua, i.e., a(-,2) € H*
Teorema de Representagao de Riesz-Frechet G4.1. Se f € H*, existe

um udnico y € H tal que f(z) = (z,y) para todo z € H.

e dlyc H;a(w,z) = (w,y) VweH
y depende de z

e A:H— H:z— Az :=y,onde (w,y) =a(w,z2),VweH
1. A é linear

2. A ¢é limitada, i.e., ||Az|| < C||z||, para algum C > 0

3. allz|| < [|Az]|, para algum a > 0

4. A é injetora

5. A é sobrejetora

2linear ma primeira entrada e linear no conjugado da segunda entrada

G17
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Prova Af. 1.: A € linear

(w, A(z+m) — (Az+ Am)) =0, Yw € H = A(z +m) — (Az + Am) € H* = {0}

(w, A(z+m) — (Az+ Am)) =0 = (w, A(z+m)) = (w, Az + Am)

a sesq—linear

(w, A(z4+m)) = a(w,z+m) = a(w, z) + a(w, m)
= (w, Az) + (w, Am)
= (w, Az+ Am)

Prova Af. 2.: A € limitada

0 < ||Az]? = (Az, A2) = a(Az,2)
|a(Az, z)|
C [|Az]| =]

a cont.

Q
QS

IA

3

Q

>0

o |[Az| < O]l

Prova Af. 3.: a||z|]| < ||Az||, para algum o > 0

o 2| ’ cogem Rea(z,z) = RNe(z, Az)

d a>0

c-S
< [z A2)] < I (A4

a2 < Az

Prova Af. 4.: A € injetora

Af3
Az=Am = ||z—m| < a!'||Az—Am||=0= 2z=m

G18
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Prova Af. 5.: A ¢ sobrejetora

e A(H) é fechado

e A(H)=H
wm A(H)#H

Corolario G3.12. Sejam H esp. Hilbert e M subespaco
préprio fechado, entdo existe w € ML\ {0}, ie, w €
H\ {0} tal que (w,m) =0, m € M.

m Jwe H\{0}; (w,A2) =0, z € H.

0= (w,Aw) = a(w,w)

a coer.

— 0 =Re a(w,w) > alw|

— w =0 1o

Prova A(H) € fechado

my € A(H)
wmdy, € H, Ay, —vy
m {Ay,} convergente, logo de Cauchy

afs
”yn_ymH < « HAyn_AymH — 0

m {y,} de Cauchy
my, >z2€H (H completo)
m Ay, — Az (A continua, Af. 2)
my=Az¢e A(H)
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Teorema G4.5 [O Teorema de Lax-Milgram|. Nas condi¢oes do Lema
G4.4, para cada ¢ € H*, existe um unico yo € H tal que

QO('UJ) - a(w7y0)7 Vw € H.

<
Demonstracao.
e pc H*
Teorema de Representacio de Riesz-Frechet G4.1. Se f € H*, existe
um udnico y € H tal que f(z) = (z,y) para todo z € H.
e dlyec H; p(w) =(w,y) Ywe H
e A:H— H:z— Az :=y,onde (w,y) =a(w,z),V w € H é bijetora
(Lema G4.4)
o lyye H; Ayy =y
p(w) = (w,y) = (w, Ayo) = a(w,yo)
U]

Exercicios

Exercicio G4.6. Faca o exercicio 5.20 (p. 151) do [Brell]

G20



AF-G 14 de novembro de 2025

G5 Bases ortonormais (de Hilbert)

Definicao G5.1. Um conjunto em H é dito conjunto ortonormal se os
seus elementos sao dois a dois ortogonais e todos sao unitarios. *

Propriedades: S C H ortonormal:
P1. §é1l.i;

P2. St = {0} (completo) se s6 se S nao esta contido em nenhum
outro conj. ortonormal (é maximal);

P3. se span(S) = H, entdao S+ = {0}.

Dada uma sequéncia {z,} 1.i. podemos construir (processo de ortonorma-
lizagao de Gram-Schmidt) uma seq. ortonormal {e,} tal que

span(xy, .., xy) = span(ey, ..,e;) para todo k € N.

n—1
Ty — . \Tp.€E5) €5
:Hxlu, Y SILIC S
I ‘

Ln — Zj:l (0, €5) €

€1

Exemplo G5.2. S éortonormal®™Pesl em [f e satisfaz S+ = {0} © 2 simples].
1. S={e; =(1,0,...,0),ea=(0,1,...,0),...,e, = (0,0,...,1)} em R"
2. S =1{e; =(1,0,0,...),ea=(0,1,0,...),e3 = (0,0,1,...),...} em £,

3. 8= {uo = \/%,un = \/Lgcos(nt),vn = \/%?sin(nt) ‘n € N} em L*([0, 7], R)

4. 8 = {Un = ﬁemt n € Z} em L?([0,7],C)
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Teorema G5.3 [Desigualdade de Bessel]. Se {e,}aca € um conjunto

ortonormal em H, entao para x € H,

> (@ea) P <l

acA
Ainda mais, Ay :={a € A: (z,e,) # 0} é enumerdvel. g
o0
De fato, Z | (2, €eq) Z | (z,e4) | = Z | (z, ;) |
acA acA, i=1

onde a notacao (37’)?21 representa uma ordena¢ao de {€y}aca,

Demonstracao.

Passo 1. Considere uma quantidade finita qualquer de e,
2

N N N
_ Z (7, €q,) €q, = x| — 2Re (x, Z (7, €q, eal) Z T, €q.) €q,
i=1 =1 =1
N N
= H93||2 _2%62(%60@) (2, €q,) + Z(x7eai) Cay;
i=1 i=1
N N 2
= Hx|| —22| T, eq,) >+ Z T, €;) €Eq,
=1
. N N
=02l =23 | (s en,) Z 7, ¢0,) ol
€q; 2a2 ortog P -

N

€q: orton
= el =) ea) P
=1

n n
Teorema de Pitagoras G1.3. | z::UZH2 = Z l|2z4 |2
i=1 =

N N
Yol@ea) P =z’ =z = > (wea)ea) < lal*| (G5
i=1 i=1

portanto (G5.1) vale para uma quantidade enumerdvel de e,: faca N — oo
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Af. 1. A, :={a € A: (z,e,) # 0} é enumeravel

1
A, = = . —
o U A,, onde A, {a cA:|(x,eq)]| > n}
neN
m A, é finito

x I C A, finito

* (Passo 1)

: L
o= S 1) P> 30— =1

acl el

R

* ‘An| < n? ||xH2 c.c., existiria subconj. finito I com cardinali-

dade maior ou igual n? ||z

e A, é enumeravel (unido enumer. de conjs. finitos/en. é enumer.)

Passo 2. Quantidade qualquer de e,

e A, é enumeravel

Passol
oD e =) e <z

acA a€A,
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Teorema G5.4. Se S = {ea}aca € um congunto ortonormal em H, as
sequintes afirmativas sao equivalentes:

a) (Completeza) Se (x,e,) = 0 para todo o € A, entdo x =0 (ie, ST = {0}).
b) (Identidade de Parseval) ||z|> = > 4| (%, €q) |* para todo x € H.

c) Para cadax € H, x =) .4 (x,€q) €q, onde a soma converge independen-
temente da ordem dos termos. <

Defini¢ao G5.5. Um conjunto em H ¢é dito base de Hilbert (ou base orto-
normal) se é um conjunto ortonormal que satisfaz as propriedades equivalentes

do Teorema G5.4 *
Demonstracao.
a) = ¢)
e A, é enumeravel (Desigualdade de Bessel G5.3 )
) Z(w,ea)ea = Z (7, eq) €q
acA acA,

* (¢;)72; uma ordenagao de {eq}aea,

(©.¢]
og T, €q) E (x,ej)e
J=1

Af. 1. asérie )7, (z,¢;) e; converge em
Af. 2.2 =377 (z,e5)e; =0
Af. 3. a soma converge para o mesmo ponto independentemente da ordenacao

Prova Af. 1.:

Z: T,e;)e
> (ree

Pitag

o §:|$€J
] . e; 2a2ortog
J=n+

Jj=n+1

[8m — SnH2 =

G24
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Desigualdade de Bessel G5.3. > 4 |(7,€q) 12 < ||=|?
> | (2,e5) |2 é convergente: seq. das somas parciais é conv., logo de
Cauchy

e {s,,} é de Cauchy em H, logo convergente em H: (H Hilbert, completo)

0
E xej e; < 00
Jj=1

Prova Af.2. v — 3 = (v,e5)e; =0
Pora). St = {0}, basta mostrar que <T — > o1 (z,e5) ey, e(Y) =0,Vae A
e o € A,: para cada n fixado

m m
(x — Z (z,€5) ej, en> (x, en) Z z,ej) (e, en) =0, VYm>n
7=1

]:]‘ 1, j=n;

0, cc

e para cada n
<x -

e paraa ¢ A, :={a€ A:(v,e,) # 0}

m
(x,€;)ej, en> = %%( E T, €5)€j, en> =0
J=1

7

1M

TV
definitiv.nula

(0. ¢] (0. ¢]
E T,€e;) e, €q (x, eq) (x,€j) (ej,eq) =0
J=1 J=1

ejF#€a

Prova Af. 3.: a soma converge para o mesmo ponto independentemente da
ordenacao

e (fj)32, ¢ outra ordenacio de {e,}aca,
e como na prova da Af. 1, Y77, (z, fj) f; < oo
e como na prova da Af. 2.,z — > (z, f;) fj = 0
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) = b) 12 =3 nen (@, €0) €a = [|2[* = Foeu | (2, €0) I

e Temos que (hip. ¢))

N 2
x—Z(x,ei)ei —0, N — o0
i=1

° (veja Passo 1 na prova da des. Bessel G5.3)

N N 2

I[P =D [(we)? = |lz=> (z,e)e

1=1 1=1

b) = a) (HxHQ = el (T,€eq) ?,Vz € H) — ((z,e4) =0, Va € A= 2 =0)

o (t,ea)=0Vae A= [z|> £ S (@ e)]? =0=2=0 n

Exercicio (G5.6. Mostre que

e (!) valem as propriedades P1, P2, P3 da pag. G21;
e em dimensao finita, uma base de Hilbert é uma base de Hamel;

Uma base de Hamel para um espaco vetorial X sobre o corpo K, é um
conjunto B C X cujos elementos sao linearmente independentes e tal que
todo elemento de X é combinagao linear (finita) de elementos de B.

e uma base de Hilbert enumeravel é também uma base de Schauder;

Seja X um espago de Banach com dimX = oo. Uma sequéncia {s,} C X
¢é dita base de Schauder para X se para cada elemento x € X existir

uma Unica sequéncia {a,} C K tal que z = °°

n=1 ansn

e as propriedades (a-b-c) do Teorema G5.4 também equivalem a

d) 5+ = {0}
e) nao existe um conjunto ortonormal que contenha propriamente S
f) H = span(S). *
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Proposicao G5.7. Todo espaco de Hilbert tem uma base ortonormal
(Hilbertiana,). <

Esboco da prova.
e X ={SCH: S éortonormal}
e C érelacao de ordem em X

Lema de Zorn Se X é um conjunto parcialmente ordenado e todo subconjunto
totalmente ordenado de X tem um limitante superior entao X tem um elemento
maximal.

Conjunto parcialmente ordenado: com uma relagao de or-
dem 7 <7 (reflexiva, antisimétrica e transitiva)

(reflexiva x < z

antisimétrica z Syey Sr =z =1y
transitiva r <yey <z = = = z2)

Conjunto totalmente ordenado: com uma relacao de ordem
7 <" tal que dados z,y quaisquer z < youy <

Limitante superior de Y C X: [ € X t.q. y <[ para todo
yey.

m € X é elemento maximal de X: x €¢ X em X v —
m=x.

e X tem um elemento maximal S
o St = {0} (P2, pag. G21)

e S é base de Hilbert
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Teorema G5.8. Um espaco de Hilbert H ¢é separdvel se e somente se tem
uma base ortonormal (Hilbertiana) enumerdvel.
Neste caso, toda base ortonormal de H é enumerdvel e (se dimH = oo) H €
isometricamente isomorfo a ly <

Esboco da prova. justifique as passagens.
(=)

e 3 {v,}nen, com v; # 0, subconj. enumeravel e denso em H (H separavel)

o« B o, v]
e« H=|JF ({ontnen = )
keN
e {e1} base ortonormal de F} (e = v1/ ||v1l)
e pelo processo de Gram-Schimdt, obtém-se base ortonormal {ey, ..., ex} de
Fy, k>2

e S :={e,}nen € ortonormal e enumeravel
e S édensoem H
o St ={0} (P3, pag. G21)

e S é base Hilbertiana

(<)
e 15 = {en}neN orton. enum.; todo x € H se escreve (b. Hilb. enum.)
T = Z (x,en) en
neN

Teorema G5.4. Se S = {e4}aca é um conjunto ortonormal em H,
c)Paracadax € H,x =) . (7, eq)eq,

k
o [':= {Z(m,en)en: kGN}

n=1
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e podemos “substituir” (x,e,) por um racional g, (¢, +ip,) (Q” é denso em K)

k
° Z Gnen : k € N » é enumeravel e denso em H

n=1

e H é separavel

Se H de dimensao infinita é separavel, H é isometricamente isomorfo a /s

e 3 5 := {e,}nen base Hilbertiana enumeravel de H

Tigg —H:a= (ai)ieNHToz:Zoziei
i=1
Af. 1 T estd bem definida e é linear

m
Sm — E €y
j=1
m

2
m
lsw = sall® = || D2 vyl "= D7 i =0

) ejorton
j=n+1 j=n+1

{sm} é de Cauchy, logo convergente em H

Af. 2 T é isometria

m 2 m o0
ITall* "2 tim || agerl| = "= 1im > e = faf?
cont. orton.
=1 =1 =1

Af. 3 T é sobrejetora

dado 2 Yo (xe)e; € H, tome a = ((x,€)) ae) Uy

Teorema G5.4. b) ||z|> =3, c4 | (z,eq) | para todo z € H
c)Paracadax c H,x =) ., (7,eq)eq

G29
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Exercicio G5.9. Faga os exercicios 5.26, 5.27 e 5.28 (p. 154) do
[Brell] *

Exercicio G5.10. Veja os sistemas descritos nos exercicios 5.31, 5.32
(base de Haar e sistema de Rademacher) (p. 155) do [Brell]: fornecem
bases para L*(0,1) *

Exemplo G5.11.
e A base canonica {e,} em ¢ é uma base de Hilbert.

e As fungodes \/LQTH L sin(nz), \/L% cos(nz) formam uma base de Hilbert em

r
L*([0, 27], R).
(Para mostrar que formam um conjunto completo ver [Muj, p. 72])

e As fungoes \/%76””5 (n € Z) formam uma base de Hilbert em L?([0, 27|, C).
*
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