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G1 Espaços com produto interno Aula 24

Seja H um e.v. sobre K. Um produto escalar (ou produto interno) em
H é uma função (·, ·) : H ×H → K tal que

(a) (x, y) = (y, x) para todo x, y ∈ H.

(b) (ax+ bx′, y) = a (x, y) + b (x′, y) para todo x, x′, y ∈ H, a, b ∈ K.

(c) (x, x) ≥ 0, e (x, x) = 0 se e somente se x = 0.

G1.1 Propriedades elementares

• (x, ay + by′) = ā (x, y) + b̄ (x, y′) para todo x, y, y′ ∈ H, a, b ∈ K.

Segue de (a)+(b).

- produto interno real é linear
- produto interno complexo é sesquilinear

• desigualdade de Cauchy-Schwarz

| (x, y) | ≤ (x, x)
1
2 (y, y)

1
2 . (G1.1)

(a igualdade vale se e só se x e y são linearmente dependentes)

(c): (x− ty, x− ty) ≥ 0, ∀t ∈ K, x, y ∈ H

(x, x)− t̄ (x, y)− t (y, x) + |t|2 (y, y) ≥ 0
t= (x ,y)

(y,y) , y=0,ok
=⇒

(x, x) −(x, y)

(y, y)
(x, y)− (x, y)

(y, y)
(y, x) +

| (x, y) |2

(y, y)2 (y, y) ≥ 0
simplificando⇐⇒

(x, x) −| (x, y) |2

(y, y)
≥ 0 (∗)

a igualdade em (*) vale se só se (x− ty, x− ty) = 0
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• A função ‖ · ‖ : H → R definida por ‖u‖ = (u, u)
1
2 é uma norma.

Um espaço com produto interno (H, (·, ·)) é um e.v.n. .

‖x+ y‖2 = (x+ y, x+ y) = (x, x) + 2<e (x, y) + (y, y)

<ez≤|<e(z)|≤|z|
≤ (x, x) + 2| (x, y) |+ (y, y)
C−S
≤ (x, x) + 2

(
(x, x)

1
2 (y, y)

1
2

)
+ (y, y)

= (‖x‖+ ‖y‖)2

• identidade do paralelogramo

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2), ∀x, y ∈ H. (G1.2)

Propriedade geométrica diz: a soma dos quadrados dos comprimentos dos
lados de um paralelogramo é igual à soma dos quadrados dos comprimentos
das suas duas diagonais.

A identidade do paralelogramo caracteriza as normas que são induzidas por
produto interno (ver também a Proposição G1.1).

• Teorema de Pitágoras: se (x, y) = 0 (escrevemos x ⊥ y: x, y são ortogonais)
então

‖x+ y‖2 = ‖x‖2 + ‖y‖2. (G1.3)

Mais geralmente, se x1, · · · , xn são vetores dois a dois ortogonais então

‖
n∑
i=1

xi‖2 =
n∑
i=1

‖xi‖2.
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• Fórmula de polarização

(x, y) =
‖x+ y‖2 − ‖x− y‖2

4

[
+i
‖x+ iy‖2 − ‖x− iy‖2

4

]
. (G1.4)

‖x+ y‖2 − ‖x− y‖2 = 4<e (x, y)

‖x+ iy‖2 − ‖x− iy‖2 = 4<e ī (x, y) = 4=m (x, y)

Proposição G1.1. Seja (E, ‖·‖) um e.v.n. real [complexo] cuja norma ve-
rifica a lei do paralelogramo. Então a fórmula de polarização define um produto
interno em E que induz a normal original. �

Demonstração.

Af. 1. 〈x, y〉 := ‖x+y‖2−‖x−y‖2
4

[
+i ‖x+iy‖2−‖x−iy‖2

4

]
induz a norma original, i.e.,

‖x‖ = 〈x, x〉1/2

〈x, x〉 =
‖x+ x‖2 − ‖x− x‖2

4

[
+i
‖x+ ix‖2 − ‖x− ix‖2

4

]

= ‖x‖2

+i
|1 + i| ‖x‖2 − |1− i| ‖x‖2

4︸ ︷︷ ︸
0

 = ‖x‖2

Af. 2. 〈·, ·〉 é um produto interno em E [Fri70, p. 203]
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G2 Espaços de Hilbert

Definição G2.1. Um espaço de Hilbert é um espaço com produto interno
que é completo com a norma induzida pelo produto interno. F

Exemplos:

• KN com o produto interno

(x, y) =
N∑
1

xiyi

é um espaço de Hilbert.

• `2 com o produto interno

(x, y) =
∞∑
1

xiyi

é um espaço de Hilbert.

• L2(Ω) com o produto interno

(f, g) =

ˆ
Ω

fḡ

é um espaço de Hilbert.

Não são espaços de Hilbert:

– c00: pode ser munido do mesmo produto escalar de `2, mas não é com-
pleto com a norma induzida; (Ex. A3.17)

– (C([0, 1]), ‖ ‖2): pode ser munido do mesmo produto escalar de L2, mas
não é completo;
– Lp se p 6= 2: a norma de Lp não pode ser induzida por um produto
escalar;
– (C([0, 1]), ‖ ‖∞): a norma ‖ ‖∞ não pode ser induzida por um produto
escalar.
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Exerćıcios

Exerćıcio G2.2. (C([0, 1]), ‖ ‖2) não é completo. F

Exerćıcio G2.3. Faça o exerćıcio 5.2 (p. 147) do [Bre11] : Lp não é
Hilbert para p 6= 2. F

Exerćıcio G2.4. Verifique que a norma do sup no espaço das funções
cont́ınuas C([a, b],K) não provém de um produto interno. F

Proposição G2.5. Todo espaço de Hilbert é uniformemente convexo
e portanto reflexivo. �

Demonstração.

H é u.c. se

∀ 0 < ε ≤ 2,
?
∃ δ > 0; ‖x‖ , ‖y‖ ≤ 1 , e ‖x− y‖ ≥ ε ?

=⇒
∥∥x+y

2

∥∥ ≤ 1− δ .

identidade do paralelogramo (G1.2):

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2), ∀x, y ∈ H.

∥∥∥∥x+ y

2

∥∥∥∥2

=
1

4

(
2‖x‖2 + 2‖y‖2 − ‖x− y‖2

)
≤ 1

4

(
4 − ε2

)
= 1− ε2

4
≤ (1 − δ)2

Teorema Milman-Pettis E3.3. Todo espaço de Banach uniformemente convexo
é reflexivo.
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G3 Projeção sobre convexos

Lema G3.1. 1 Se C 6= ∅ é um subconjunto fechado e convexo de um espaço
de Hilbert H e x0 ∈ H, existe um único y0 ∈ C tal que

‖x0 − y0‖ = inf
y∈C
‖x0 − y‖ =: d(x0, C). �

Definição G3.2. Escrevemos y0 = PCx0 e dizemos que PC é a projeção

sobre C (y0 é a projeção de x0 sobre C). F

Observação G3.3. Se x0 ∈ C, PCx0 = x0 F

Demonstração do Lema G3.1.
Existência:

• ∃ {yn} ⊂ C; limn→∞ ‖x0 − yn‖ = d(x0, C) =: d

Af. 1. {yn} é de Cauchy

• ∃ y0 ∈ H; yn → y0 (H Hilbert é completo)

• y0 ∈ C (C é fechado)

‖x0 − y0‖ = lim
n→∞
‖x0 − yn‖ = d(x0, C)

Prova Af. 1.:

Queremos ‖yn − ym‖ → 0, quando m,n→∞

identidade do paralelogramo (G1.2):

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2), ∀x, y ∈ H.

Sabemos ‖x0 − ym‖ → d

x = x0 − yn e y = x0 − ym

•

‖2x0 − yn − ym‖2+‖yn − ym‖2 = 2
(
‖x0 − yn‖2 + ‖x0 − ym‖2

)
1A conclusão continua válida se H é apenas um espaço de Banach u.c. (veja Ex. 3.32 de [Bre11] e prova

alternativa da existência usando teoria de espaços reflexivo e u.c. em [Bre11, p. 132]).
Uma vez mostrada a existência de y0 ∈ C, o ı́nfimo é de fato o mı́nimo.
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0 ≤ ‖yn − ym‖2 = 2
(
‖x0 − yn‖2 + ‖x0 − ym‖2

)
− 4

∥∥∥∥∥∥∥x0 −
yn + ym

2︸ ︷︷ ︸
∈C

∥∥∥∥∥∥∥
2

C conv.
≤

def.inf
2
(
‖x0 − yn‖2 + ‖x0 − ym‖2

)
− 4d2

m,n→∞→ 2
(
d2 + d2

)
− 4d2 = 0

Unicidade:

• Supor ∃ y1 ∈ C, y1 6= y0 ; ‖x0 − y1‖ = inf
y∈C
‖x0 − y‖ = d(x0, C) = d

identidade do paralelogramo (G1.2):

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2), ∀x, y ∈ H.

Sabemos ‖x0 − y0‖ = ‖x0 − y1‖ = d

x = x0 − y0 e y = x0 − y1

0 ≤ ‖y0 − y1‖2 = 2
(
‖x0 − y0‖2 + ‖x0 − y1‖2

)
− 4

∥∥∥∥∥∥∥x0 −
y0 + y1

2︸ ︷︷ ︸
∈C

∥∥∥∥∥∥∥
2

C conv.
≤

def.inf
2
(
‖x0 − y0‖2 + ‖x0 − y1‖2

)
− 4d2

= 2
(
d2 + d2

)
− 4d2 = 0

• ‖y0 − y1‖ = 0 ��
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Proposição G3.4. Nas condições do Lema G3.1, PCx0 é caracterizado por

PCx0 ∈ C e <e (x0 − PCx0, w − PCx0) ≤ 0, ∀w ∈ C. �

Demonstração. Queremos mostrar que para PCx0 = y0 ∈ C

‖x0 − y0‖ = inf
y∈C
‖x0 − y‖ ⇐⇒ <e (x0 − y0, w − y0) ≤ 0, ∀w ∈ C

(=⇒)

• (1− t)y0 + tw ∈ C, ∀ w ∈ C, ∀ t ∈ [0, 1] (C é convexo)

•

‖x0 − y0‖ = infy∈C ‖x0 − y‖ ≤ ‖x0 − ((1− t)y0 + tw)‖ = ‖x0 − y0 + t(y0 − w)‖

•

‖x0 − y0‖2 ≤
(
x0 − y0 + t(y0 − w), x0 − y0 + t(y0 − w)

)
= ‖x0 − y0‖2 + 2t <e (x0 − y0, y0 − w) + t2 ‖y0 − w‖2

= ‖x0 − y0‖2 − 2t<e (x0 − y0, w − y0) + t2 ‖y0 − w‖2

•

2<e (x0 − y0, w − y0) ≤ t ‖y0 − w‖2 ∀ w ∈ C, ∀ t ∈ (0, 1]

• <e (x0 − y0, w − y0) ≤ 0, ∀ w ∈ C (t→ 0+)
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(⇐=)

•

‖x0 − y‖2 = ‖x0 − y0 − (y − y0)‖2 =
(
x0 − y0 − (y − y0), x0 − y0 − (y − y0)

)
= ‖x0 − y0‖2 − 2 <e (x0 − y0, y − y0)︸ ︷︷ ︸

≤0

+ ‖y − y0‖2︸ ︷︷ ︸
≥0

≥ ‖x0 − y0‖2 , ∀y ∈ C

• ‖x0 − y0‖ ≤ ‖x0 − y‖ , ∀y ∈ C

• ‖x0 − y0‖ = inf
y∈C
‖x0 − y‖

Proposição G3.5. Nas condições do Lema G3.1,

‖PCx1 − PCx2‖ ≤ ‖x1 − x2‖, ∀x1, x2 ∈ H,

logo PC é cont́ınua. �

Demonstração.

Proposição G3.4. y = PCx ∈ C e <e (x− y, w − y) ≤ 0, ∀ w ∈ C

w = PCx2 e w = PCx1

• <e (x1 − PCx1, PCx2 − PCx1) ≤ 0 ⇒ <e (PCx1 − x1, PCx1 − PCx2) ≤ 0

• <e (x2 − PCx2, PCx1 − PCx2) ≤ 0

• (<e(z) + <e(w) = <e(z + w) e linearidd p.i.)

<e
(
PCx1 −x1 + x2 −PCx2 , PCx1 − PCx2

)
≤ 0

<e
(
−x1 + x2 , PCx1 − PCx2

)
+ <e

(
PCx1 − PCx2 , PCx1 − PCx2

)
≤ 0

G10
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<e (PCx1 − PCx2, PCx1 − PCx2)︸ ︷︷ ︸
∈R

≤ <e (x1 − x2, PCx1 − PCx2)

∴ ‖PCx1 − PCx2‖2 ≤ <e (x1 − x2, PCx1 − PCx2)

<ez≤|z|
≤ | (x1 − x2, PCx1 − PCx2) |

C−S
≤ ‖x1 − x2‖ ‖PCx1 − PCx2‖ (G3.1)

Desigualdade Cauchy-Schwarz G1.1. | (x, y) | ≤ (x, x)
1
2 (y, y)

1
2

• se ‖PCx1 − PCx2‖ 6= 0, de G3.1,

‖PCx1 − PCx2‖ ≤ ‖x1 − x2‖ ∀x1, x2 ∈ H

• se ‖PCx1 − PCx2‖ = 0,

‖PCx1 − PCx2‖ ≤ ‖x1 − x2‖ ∀x1, x2 ∈ H

Observação G3.6. Manipulando as fórmulas, podemos ver também que

y0 minimiza em C a função
1

2
‖y‖2 −<e (y, x0)

<e (y0, w − y0) ≥ <e (x0, w − y0), ∀w ∈ C. F

y0 minimiza em C a função ‖x0 − y‖ (‖x0 − y0‖ = miny∈C ‖x0 − y‖)

‖y − x0‖2 = (y − x0, y − x0) = ‖y‖2 − 2<e (x0, y) + ‖x0‖2

y0 minimiza em C a função ‖y‖2 − 2<e (x0, y) +

const.︷ ︸︸ ︷
‖x0‖2

y0 minimiza em C a função ‖y‖2 − 2<e (x0, y)

G11



AF-G 14 de novembro de 2025

Exerćıcios

Exerćıcio G3.7. Faça os exerćıcios 5.6 e 5.8 (p. 148) do [Bre11] F

Definição G3.8. Sejam H um espaço de Hilbert e A ⊆ H. Definimos o
ortogonal de A

A⊥ = {x ∈ H : (x, a) = 0, ∀a ∈ A} :

A⊥ é sempre um subespaço vetorial fechado. F

Teorema G3.9. Se H é um espaço de Hilbert e M é um subespaço vet.
fechado, então PM é um operador linear com ‖PM‖ = 1 (exceto no caso M =
{0}) e é caracterizado por

PMx0 ∈M e (x0 − PMx0, w) = 0, ∀w ∈M, (G3.2)

ou seja, x0 − PMx0 ∈M⊥. �

Definição G3.10. PM é dita projeção ortogonal sobre M . F

Demonstração.

Af. 1 PM é caracterizado por (G3.2)

Af. 2 PM é linear

Af. 3 ‖PM‖ = 1

• M é não vazio, convexo e fechado (M é s.e.v. fechado)

• PMx0 ∈M , e <e (x0 − PMx0, w − PMx0) ≤ 0, ∀w ∈M (Prop. G3.4)

Af. 1 <e (x0 − PMx0, w − PMx0) ≤ 0 ⇐⇒ (x0 − PMx0, w) = 0 (∀w ∈M)

(=⇒)

Queremos <e (x0 − PMx0, w) = =m (x0 − PMx0, w) = 0

(x0 − PMx0, w) = (x0 − PMx0, w − PMx0) + (x0 − PMx0, PMx0)

• w := 2PMx0 ∈M : (M é s.e.v. + hip.)

<e (x0 − PMx0, PMx0) ≤ 0

G12
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• w ∈M :

<e (x0 − PMx0, w) = <e (x0 − PMx0, w − PMx0)+<e (x0 − PMx0, PMx0) ≤ 0

<e (x0 − PMx0,−w)
−w∈M
≤ 0 =⇒ <e (x0 − PMx0, w) ≥ 0

∴ <e (x0 − PMx0, w) = 0

• w ∈M =⇒ ±iw ∈M :

0 = <e (x0 − PMx0, ±iw) = ∓i <e (x0 − PMx0, w) = ±=m (x0 − PMx0, w)

• (x0 − PMx0, w) = 0

(⇐=) <e (x0 − PMx0, w − PMx0) ≤ 0⇐= (x0 − PMx0, w) = 0 (∀w ∈M)

• w ∈M =⇒ w − PMx0 ∈M e (x0 − PMx0, w − PMx0) = 0 (M é s.e.v. + hip.)

• <e (x0 − PMx0, w − PMx0) ≤ 0

Af. 2 PM : H → H é linear

(x0 − PMx0, w) = 0

(x1 − PMx1, w) = 0

}
=⇒

x0 + x1 − (PMx0 + PMx1︸ ︷︷ ︸
∈M

), w

 = 0

=⇒ PM(x0 + x1) = PMx0 + PMx1

Af. 3 ‖PM‖ = 1

‖PM‖ = sup
x∈H,‖x‖≤1

‖PMx‖

‖PMx‖ = ‖PMx− PM0‖ ≤ ‖x‖ , ∀x ∈ H (Prop. G3.5: proj. cont.)∥∥∥PM ( x
‖x‖

)∥∥∥ = 1, ∀x ∈M \ {0} (Obs. G3.3:PMx = x, x ∈M)

G13
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Teorema G3.11. Seja H um espaço de Hilbert e M um subespaço fechado,
então vale:

• H = M ⊕M⊥; isto é, cada x ∈ H pode ser expresso unicamente como
x = m+m′ onde m ∈M e m′ ∈M⊥;

∃!m = PMx ∈M ; (x−m,w) = 0, ∀w ∈M

x−m ∈M⊥

x = m︸︷︷︸
∈M

+ (x−m)︸ ︷︷ ︸
∈M⊥

• na decomposição acima, m = PMx e m′ = PM⊥x = (I − PM)x;

• PM = P 2
M e PM ◦ PM⊥ = PM⊥ ◦ PM = 0. �

Corolário G3.12. Sejam H esp. Hilbert e M subespaço próprio fechado,
então existe w ∈M⊥ \ {0}, i.e, w ∈ H \ {0} tal que (w,m) = 0, m ∈M. �

Demonstração.

• x ∈ H \M

• x = m+ w com m ∈M e w ∈M⊥ (Teorema G3.11)

• w 6= 0 (x /∈M)

Exerćıcios

Exerćıcio G3.13. Prove o Teorema G3.11. F

Exerćıcio G3.14. Prove diretamente (usando o Teorema acima) a se-
guinte consequencia do Teorema de Hahn-Banach: Seja H um espaço de
Hilbert, M um subespaço fechado e φ ∈M ∗. Então existe φ̃ ∈ H∗ tal que

φ̃|M = φ e
∥∥∥φ̃∥∥∥ = ‖φ‖

F

G14
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G4 O dual de um espaço de Hilbert Aula 25

Teorema G4.1 [Teorema de Representação de Riesz-Frechet].
Se f ∈ H∗, existe um único y ∈ H tal que

f(x) = (x, y) para todo x ∈ H.

Além disso, ‖f‖H∗ = ‖y‖H . �

Isto permite identificar H e H∗.
Logo podemos também identificar H e H∗∗ (e obter a reflexivi-
dade)a.

acom o devido cuidado de verificar que o isomorfismo é o mergulho canônico

Demonstração. Considere a aplicação linear

T : H → H∗ : y ∈ H 7→ Ty = f : H → K : x 7→ Ty(x) = f(x) := (x, y)

Queremos mostrar que T é bijetora:
∀ f ∈ H∗,∃! y ∈ H; Ty = f, i.e., (x, y) = Ty(x) = f(x),∀x
Ainda com isso, ‖f‖ = ‖Ty‖ = ‖y‖ SE T é isometria !!

Af. 1. T é isometria (portanto, injetora)

Af. 2. T é sobrejetora

Prova Af. 1.: T é isometria

‖Ty‖ = sup
x∈H,‖x‖≤1

|Ty(x)|

• |Ty(x)| = | (x, y) | ≤ ‖x‖ ‖y‖ =⇒ ‖Ty‖ ≤ ‖y‖

Desigualdade Cauchy-Schwarz G1.1. | (x, y) | ≤ (x, x)
1
2 (y, y)

1
2

• Ty
(

y
‖y‖

)
=
(

y
‖y‖ , y

)
= ‖y‖2
‖y‖ = ‖y‖ , ∀y ∈ H \ {0}

• ‖Ty‖ = ‖y‖

G15
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Prova Af. 2.: T : H → H∗ é sobrejetora

• T (H) é s.e.v. fechado em H∗

Ex. F3.11: Se T : X → Y é uma isometria linear e X é Banach, então T (X) é
um s.e.v. fechado. (ver p. E9: prova de dual refl. implica esp. refl.)

Basta mostrar que T (H) é denso em H∗, pois dáı

T (H) = T (H) = H∗

Ex. B2.6. Um subespaço M de em e.v.n. X é denso se e só se vale que

∀φ ∈ X∗ t.q. φ|M = 0, vale φ ≡ 0

• h ∈ H∗∗; h(Ty) = 0, ∀y ∈ H
Queremos h = 0

• H é reflexivo (Proposição G2.5)

Proposição G2.5. Todo espaço de Hilbert é uniformemente convexo e por-
tanto reflexivo.

• J : H → H∗∗ o mergulho canônico é sobrejetor

• ∃ x ∈ H ; Jx = h

0 = h(Ty) = Jx(Ty)
def.J
= Ty(x)

def.T
= (x, y) , ∀y ∈ H

• para y = x ∈ H : (x, x) = 0 =⇒ x = 0

• h = Jx = J0 = 0

Exerćıcios

Exerćıcio G4.2. Faça os exerćıcios 5.16, 5.17, 5.19 (p. 150..) do
[Bre11] (leia primeiro o remark 3 na p.136). F
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Definição G4.3. Uma forma sesqui-linear2 a(·, ·) : H ×H → K é dita

• cont́ınua se existe C tal que |a(x, y)| ≤ C‖x‖‖y‖, ∀x, y ∈ H,

• coerciva se existe α > 0 tal que <e a(x, x) ≥ α‖x‖2, ∀x ∈ H,

• sesquisimétrica (ou hermitiana) se a(x, y) = a(y, x) ∀x, y ∈ H. F

Lema G4.4. Sejam H um espaço de Hilbert e a : H ×H → K uma forma
sesqui-linear cont́ınua e coerciva. Então, existe A ∈ L(H,H) tal que

a(w, z) = (w,Az).

Ainda, A é um isomorfismo e existem α,C > 0; vale α ‖z‖ ≤ ‖Az‖ ≤ C ‖z‖,
para todo z ∈ H. �

Demonstração.

• z ∈ H

• a(·, z) : H → K é linear cont́ınua, i.e., a(·, z) ∈ H∗

Teorema de Representação de Riesz-Frechet G4.1. Se f ∈ H∗, existe
um único y ∈ H tal que f(x) = (x, y) para todo x ∈ H.

• ∃!y ∈ H; a(w, z) = (w, y) ∀ w ∈ H
y depende de z

• A : H → H : z 7→ Az := y , onde (w, y) = a(w, z), ∀ w ∈ H

Af. 1. A é linear

Af. 2. A é limitada, i.e., ‖Az‖ ≤ C ‖z‖, para algum C > 0

Af. 3. α ‖z‖ ≤ ‖Az‖, para algum α > 0

Af. 4. A é injetora

Af. 5. A é sobrejetora

2linear ma primeira entrada e linear no conjugado da segunda entrada
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Prova Af. 1.: A é linear

(w, A(z +m)− (Az + Am)) = 0, ∀w ∈ H =⇒ A(z +m)− (Az + Am) ∈ H⊥ = {0}

(w, A(z +m)− (Az + Am)) = 0⇐⇒ (w, A(z +m)) = (w, Az + Am)

(w, A(z +m)) = a(w, z +m)
a sesq−linear

= a(w, z) + a(w,m)

= (w, Az) + (w, Am)

= (w, Az + Am)

Prova Af. 2.: A é limitada

0 ≤ ‖Az‖2 = (Az, Az) = a(Az, z)

= |a(Az, z)|
a cont.
≤
∃ C>0

C ‖Az‖ ‖z‖

∴ ‖Az‖ ≤ C ‖z‖

Prova Af. 3.: α ‖z‖ ≤ ‖Az‖, para algum α > 0

α‖z‖2
a coerc.
≤
∃ α>0

<e a(z, z) = <e(z, Az)

≤ | (z, Az) |
C−S
≤ ‖z‖ ‖Az‖

∴ α ‖z‖ ≤ ‖Az‖

Prova Af. 4.: A é injetora

Az = Am =⇒ ‖z −m‖
Af.3

≤ α−1 ‖Az − Am‖ = 0 =⇒ z = m
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Prova Af. 5.: A é sobrejetora

• A(H) é fechado

• A(H) = H

� A(H) 6= H

Corolário G3.12. Sejam H esp. Hilbert e M subespaço
próprio fechado, então existe w ∈ M⊥ \ {0}, i.e, w ∈
H \ {0} tal que (w,m) = 0, m ∈M.

� ∃ w ∈ H \ {0}; (w,Az) = 0, z ∈ H.

0 = (w,Aw) = a(w,w)

=⇒ 0 = <e a(w,w)
a coer.
≥ α ‖w‖2

=⇒ w = 0 ��

Prova A(H) é fechado

� y ∈ A(H)

� ∃ yn ∈ H; Ayn → y

� {Ayn} convergente, logo de Cauchy

‖yn − ym‖
Af.3

≤ α−1 ‖Ayn − Aym‖ → 0

� {yn} de Cauchy

� yn → z ∈ H (H completo)

� Ayn → Az (A cont́ınua, Af. 2)

� y = Az ∈ A(H)
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Teorema G4.5 [O Teorema de Lax-Milgram]. Nas condições do Lema
G4.4, para cada ϕ ∈ H∗, existe um único y0 ∈ H tal que

ϕ(w) = a(w, y0), ∀w ∈ H.

�

Demonstração.

• ϕ ∈ H∗

Teorema de Representação de Riesz-Frechet G4.1. Se f ∈ H∗, existe
um único y ∈ H tal que f(x) = (x, y) para todo x ∈ H.

• ∃! y ∈ H ; ϕ(w) = (w, y) ∀w ∈ H

• A : H → H : z 7→ Az := y , onde (w, y) = a(w, z), ∀ w ∈ H é bijetora
(Lema G4.4)

• ∃! y0 ∈ H ; Ay0 = y

ϕ(w) = (w, y) = (w,Ay0) = a(w, y0)

Exerćıcios

Exerćıcio G4.6. Faça o exerćıcio 5.20 (p. 151) do [Bre11] F
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G5 Bases ortonormais (de Hilbert)

Definição G5.1. Um conjunto em H é dito conjunto ortonormal se os
seus elementos são dois a dois ortogonais e todos são unitários. F

Propriedades: S ⊂ H ortonormal:

P1. S é l.i.;

P2. S⊥ = {0} (completo) se só se S não está contido em nenhum
outro conj. ortonormal (é maximal);

P3. se span(S) = H, então S⊥ = {0}.

Dada uma sequência {xn} l.i. podemos construir (processo de ortonorma-
lização de Gram-Schmidt) uma seq. ortonormal {en} tal que

span(x1, .., xk) = span(e1, .., ek) para todo k ∈ N.

e1 =
x1

‖x1‖
, en =

xn −
∑n−1

j=1 (xn, ej) ej∥∥∥xn −∑n−1
j=1 (xn, ej) ej

∥∥∥ , n ≥ 2

Exemplo G5.2. S é ortonormal[simples] emH e satisfaz S⊥ = {0}[1 e 2 simples]:

1. S = {e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1)} em Rn

2. S = {e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, . . .), e3 = (0, 0, 1, . . .), . . .} em `2

3. S =
{
u0 = 1√

2π
, un = 1√

π
cos(nt), vn = 1√

π
sin(nt) : n ∈ N

}
em L2([0, π],R)

4. S =
{
un = 1√

2π
eint : n ∈ Z

}
em L2([0, π],C)

F
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Teorema G5.3 [Desigualdade de Bessel]. Se {eα}α∈A é um conjunto
ortonormal em H, então para x ∈ H,∑

α∈A

| (x, eα) |2 ≤ ‖x‖2.

Ainda mais, Ax := {α ∈ A : (x, eα) 6= 0} é enumerável. �

De fato,
∑
α∈A

| (x, eα) |2 =
∑
α∈Ax

| (x, eα) |2 =
∞∑
i=1

| (x, ei) |2

onde a notação (ej)
∞
j=1 representa uma ordenação de {eα}α∈Ax

Demonstração.
Passo 1. Considere uma quantidade finita qualquer de eα∥∥∥∥∥x−

N∑
i=1

(x, eαi) eαi

∥∥∥∥∥
2

= ‖x‖2 − 2<e

(
x,

N∑
i=1

(x, eαi) eαi

)
+

∥∥∥∥∥
N∑
i=1

(x, eαi) eαi

∥∥∥∥∥
2

= ‖x‖2 − 2<e
N∑
i=1

(x, eαi) (x, eαi) +

∥∥∥∥∥
N∑
i=1

(x, eαi) eαi

∥∥∥∥∥
2

= ‖x‖2 − 2
N∑
i=1

| (x, eαi) |2 +

∥∥∥∥∥
N∑
i=1

(x, ei) eαi

∥∥∥∥∥
2

Pitag
=

eαi 2a2 ortog
‖x‖2 − 2

N∑
i=1

| (x, eαi) |2 +
N∑
i=1

‖(x, eαi) eαi‖
2

eαi orton= ‖x‖2 −
N∑
i=1

| (x, eαi) |2

Teorema de Pitágoras G1.3. ‖
n∑
i=1

xi‖2 =

n∑
i=1

‖xi‖2.

∴
N∑
i=1

| (x, eαi) |2 = ‖x‖2 −

∥∥∥∥∥x−
N∑
i=1

(x, eαi) eαi

∥∥∥∥∥
2

≤ ‖x‖2 (G5.1)

portanto (G5.1) vale para uma quantidade enumerável de eα: faça N →∞
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Af. 1. Ax := {α ∈ A : (x, eα) 6= 0} é enumerável

Ax =
⋃
n∈N

An, onde An :=

{
α ∈ A : | (x, eα) | > 1

n

}

� An é finito

∗ I ⊂ An finito

∗ (Passo 1)

‖x‖2 ≥
∑
α∈I

| (x, eα) |2 >
∑
i∈I

1

n2
=
|I|
n2

∗ |I| < n2 ‖x‖2

∗ |An| < n2 ‖x‖2
c.c., existiria subconj. finito I com cardinali-

dade maior ou igual n2 ‖x‖2

• Ax é enumerável (união enumer. de conjs. finitos/en. é enumer.)

Passo 2. Quantidade qualquer de eα

• Ax é enumerável

•
∑
α∈A

| (x, eα) |2 =
∑
α∈Ax

| (x, eα) |2
Passo1
≤ ‖x‖2
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Teorema G5.4. Se S = {eα}α∈A é um conjunto ortonormal em H, as
seguintes afirmativas são equivalentes:

a) (Completeza) Se (x, eα) = 0 para todo α ∈ A, então x = 0 (ie, S⊥ = {0}).

b) (Identidade de Parseval) ‖x‖2 =
∑

α∈A | (x, eα) |2 para todo x ∈ H.

c) Para cada x ∈ H, x =
∑

α∈A (x, eα) eα, onde a soma converge independen-
temente da ordem dos termos. �

Definição G5.5. Um conjunto em H é dito base de Hilbert (ou base orto-
normal) se é um conjunto ortonormal que satisfaz as propriedades equivalentes
do Teorema G5.4 F

Demonstração.
a) =⇒ c)

• Ax é enumerável (Desigualdade de Bessel G5.3 )

•
∑
α∈A

(x, eα) eα =
∑
α∈Ax

(x, eα) eα

• (ej)
∞
j=1 uma ordenação de {eα}α∈Ax

•
∑
α∈A

(x, eα) eα =
∞∑
j=1

(x, ej) ej

Af. 1. a série
∑∞

j=1 (x, ej) ej converge em H

Af. 2. x−
∑∞

j=1 (x, ej) ej = 0

Af. 3. a soma converge para o mesmo ponto independentemente da ordenação

Prova Af. 1.:

• sm :=
m∑
j=1

(x, ej) ej

‖sm − sn‖2 =

∥∥∥∥∥
m∑

j=n+1

(x, ej) ej

∥∥∥∥∥
2

Pitag
=

ei 2a2 ortog

m∑
j=n+1

| (x, ej) |2 → 0
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Desigualdade de Bessel G5.3.
∑

α∈Ax
| (x, eα) |2 ≤ ‖x‖2

∴
∑∞

j=1 | (x, ej) |2 é convergente: seq. das somas parciais é conv., logo de
Cauchy

• {sm} é de Cauchy em H, logo convergente em H: (H Hilbert, completo)

∞∑
j=1

(x, ej) ej <∞

Prova Af.2. x−
∑∞

j=1 (x, ej) ej = 0

Por a). S⊥ = {0}, basta mostrar que
(
x−

∑∞
j=1 (x, ej) ej, eα

)
= 0, ∀α ∈ A

• α ∈ Ax: para cada n fixado(
x−

m∑
j=1

(x, ej) ej, en

)
= (x, en)−

m∑
j=1

(x, ej) (ej, en)︸ ︷︷ ︸
1, j=n;
0, cc

= 0, ∀m ≥ n

• para cada n(
x−

∞∑
j=1

(x, ej) ej, en

)
= lim

m→∞

(
x−

m∑
j=1

(x, ej) ej, en

)
︸ ︷︷ ︸

definitiv.nula

= 0

• para α /∈ Ax := {α ∈ A : (x, eα) 6= 0}(
x−

∞∑
j=1

(x, ej) ej, eα

)
= (x, eα)−

∞∑
j=1

(x, ej) (ej, eα)︸ ︷︷ ︸
ej 6=eα

= 0

Prova Af. 3.: a soma converge para o mesmo ponto independentemente da
ordenação

• (fj)
∞
j=1 é outra ordenação de {eα}α∈Ax

• como na prova da Af. 1,
∑∞

j=1 (x, fj) fj <∞

• como na prova da Af. 2., x−
∑∞

j=1 (x, fj) fj = 0
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c) =⇒ b) : x =
∑

α∈A (x, eα) eα =⇒ ‖x‖2 =
∑

α∈A | (x, eα) |2

• Temos que (hip. c))∥∥∥∥∥x−
N∑
i=1

(x, ei) ei

∥∥∥∥∥
2

→ 0, N →∞

• (veja Passo 1 na prova da des. Bessel G5.3)

‖x‖2 −
N∑
i=1

| (x, ei) |2 =

∥∥∥∥∥x−
N∑
i=1

(x, ei) ei

∥∥∥∥∥
2

, N →∞

b) =⇒ a)
(
‖x‖2 =

∑
α∈A | (x, eα) |2,∀x ∈ H

)
=⇒ ( (x, eα) = 0, ∀α ∈ A⇒ x = 0)

• (x, eα) = 0 ∀α ∈ A =⇒ ‖x‖2 b)
=
∑

α∈A | (x, eα) |2 = 0 =⇒ x = 0

Exerćıcios

Exerćıcio G5.6. Mostre que

• (!) valem as propriedades P1, P2, P3 da pág. G21;

• em dimensão finita, uma base de Hilbert é uma base de Hamel;

Uma base de Hamel para um espaço vetorial X sobre o corpo K, é um
conjunto B ⊆ X cujos elementos são linearmente independentes e tal que
todo elemento de X é combinação linear (finita) de elementos de B.

• uma base de Hilbert enumerável é também uma base de Schauder;

Seja X um espaço de Banach com dimX =∞. Uma sequência {sn} ⊆ X
é dita base de Schauder para X se para cada elemento x ∈ X existir
uma única sequência {an} ⊆ K tal que x =

∑∞
n=1 ansn

• as propriedades (a-b-c) do Teorema G5.4 também equivalem a
d) S⊥ = {0};
e) não existe um conjunto ortonormal que contenha propriamente S
f) H = span(S). F
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Proposição G5.7. Todo espaço de Hilbert tem uma base ortonormal
(Hilbertiana). �

Esboço da prova.

• X = {S ⊂ H : S é ortonormal}

• ⊆ é relação de ordem em X

Lema de Zorn Se X é um conjunto parcialmente ordenado e todo subconjunto
totalmente ordenado deX tem um limitante superior entãoX tem um elemento
maximal.

Conjunto parcialmente ordenado: com uma relação de or-
dem ”�”(reflexiva, antisimétrica e transitiva)
(reflexiva x � x
antisimétrica x � y e y � x =⇒ x = y
transitiva x � y e y � z =⇒ x � z)
Conjunto totalmente ordenado: com uma relação de ordem
”�” tal que dados x, y quaisquer x � y ou y � x
Limitante superior de Y ⊆ X: l ∈ X t.q. y � l para todo
y ∈ Y .
m ∈ X é elemento maximal de X: x ∈ X e m � x =⇒
m = x.

• X tem um elemento maximal S

• S⊥ = {0} (P2, pag. G21)

• S é base de Hilbert
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Teorema G5.8. Um espaço de Hilbert H é separável se e somente se tem
uma base ortonormal (Hilbertiana) enumerável.
Neste caso, toda base ortonormal de H é enumerável e (se dimH = ∞) H é
isometricamente isomorfo a `2 �

Esboço da prova. justifique as passagens.
(=⇒)

• ∃ {vn}n∈N, com v1 6= 0, subconj. enumerável e denso em H (H separável)

• Fk := [v1, . . . , vk]

• H =
⋃
k∈N

Fk ({vn}n∈N = H)

• {e1} base ortonormal de F1 (e1 = v1/ ‖v1‖)

• pelo processo de Gram-Schimdt, obtém-se base ortonormal {e1, . . . , ek} de
Fk, k ≥ 2

• S := {en}n∈N é ortonormal e enumerável

• S é denso em H

• S⊥ = {0} (P3, pag. G21)

• S é base Hilbertiana

(⇐=)

• ∃ S = {en}n∈N orton. enum.; todo x ∈ H se escreve (b. Hilb. enum.)

x =
∑
n∈N

(x, en) en

Teorema G5.4. Se S = {eα}α∈A é um conjunto ortonormal em H,
c) Para cada x ∈ H, x =

∑
α∈A (x, eα) eα,

• F :=

{
k∑

n=1

(x, en) en : k ∈ N

}
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• podemos “substituir” (x, en) por um racional qn (qn + ipn) (Q2 é denso em K)

•

{
k∑

n=1

qnen : k ∈ N

}
é enumerável e denso em H

• H é separável

Se H de dimensão infinita é separável, H é isometricamente isomorfo a `2

• ∃ S := {en}n∈N base Hilbertiana enumerável de H

T : `2 → H : α = (αi)i∈N 7→ Tα =
∞∑
i=1

αiei

Af. 1 T está bem definida e é linear

sm :=
m∑
j=1

αiej

‖sm − sn‖2 =

∥∥∥∥∥
m∑

j=n+1

αiej

∥∥∥∥∥
2

Pitag
=

ei orton

m∑
j=n+1

|αi|2 → 0

{sm} é de Cauchy, logo convergente em H

Af. 2 T é isometria

‖Tα‖2 norm
=
cont.

lim

∥∥∥∥∥
m∑
i=1

αiei

∥∥∥∥∥
2

=
Pitag
=

orton.
lim

m∑
i=1

|αi|2 =
∞∑
i=1

|αi|2 = ‖α‖2

Af. 3 T é sobrejetora

dado x
c)
=
∑∞

i=1 (x, ei) ei ∈ H, tome α = ((x, ei))
a)
∈ `2

Teorema G5.4. b) ‖x‖2 =
∑

α∈A | (x, eα) |2 para todo x ∈ H
c) Para cada x ∈ H, x =

∑
α∈A (x, eα) eα
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Exerćıcios

Exerćıcio G5.9. Faça os exerćıcios 5.26, 5.27 e 5.28 (p. 154) do
[Bre11] F

Exerćıcio G5.10. Veja os sistemas descritos nos exerćıcios 5.31, 5.32
(base de Haar e sistema de Rademacher) (p. 155) do [Bre11]: fornecem
bases para L2(0, 1) F

Exemplo G5.11.

• A base canônica {en} em `2 é uma base de Hilbert.

• As funções 1√
2π
, 1√

π
sin(nx), 1√

π
cos(nx) formam uma base de Hilbert em

L2([0, 2π],R).
(Para mostrar que formam um conjunto completo ver [Muj, p. 72])

• As funções 1√
2π
einx (n ∈ Z) formam uma base de Hilbert em L2([0, 2π],C).

F
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