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F1 Medida e integracao em trés paginas Aula 20

Tarefa

Leia a introdugao do capitulo 4 e secao 4.1 (pag.89..91) do [Brell].

Dado um conjunto €2,

e uma o-algebra em () é uma familia nao vazia M de subconjuntos de (2,
fechada por complementacao e por reuniao enumeravel (logo contém (), €2
e é fechada por intersegoes enum.).

(a) D e M
(b) Ae M= X\ AeM
(c) ApeMneN=J 7 A, e M

m 0s elementos de M sao chamados de conjuntos mensuraveis

m Se X é um espacgo topoldgico, a o—algebra By gerada pelos conjuntos
abertos em X é chamada o—algebra de Borel em X.

e uma medida é uma fungao p : M — [0, 00} tal que

i) (D) = 0
i') 4 <H Ej) = > ulE).

m a medida é
* completa, se E C F € M com p(F) =0 implica £ € M
* finita se p(€2) < oo
x o-finita se € é reun. enum. de conjuntos de medida finita

» A medida de Lebesgue em R” é construida de forma que seja completa
e que a medida dos (multi)retangulos seja sua (multi)area.

e (2, M) é um espago mensuravel, e (2, M, 1) é um espago de medida

'Unido de uma familia {E;}32, de conjuntos disjuntos em M
LComo consequéncia vale p (Uj’;l Ej) < >0, (Ej) e também A C B = pu(A) < p(B).
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e Sejam (X, M) e (Y, N) espacos mensurdveis. Uma funcao f: X — Y é
mensuravel se f~!1(E) € M para todo F € N.

m Se (Y,N) é (R,Bg), uma condicio equivalente é f~*((a,o0)) € M
para todo a € R.

m mensurabilidade é preservada por soma, produto, supremo pontual,
limite pontual.

(a) f,g mensurdveis = f + g e fg sdo mensuraveis

(b) {fn}nen mensuraveis = sup f,(z) e li_>m fn(x) sdo mensuraveis
n n—00

e Seja (X, M) um espago mensuravel. Uma fungao simples (a valores reais)
é uma combinacao linear finita de funcoes caracteristicas de elementos de
M:

N
$: X o R : xd(x) =) a;Xp(z), z€X,a,€R, EeM.

J=1
Fungoes mensurdveis podem ser aproximadas por funcoes simples:

Proposicao F1.1. Se f: X — [0, 0] € mensurdvel, existe uma sequén-
cia {¢,} de funcoes simples tais que 0 < ¢1 < g < -+ < f, by — f

pontualmente e ¢, — f uniformemente em qualquer subconjunto onde f €
limitada. <

Proposigao. Se f: X — R € mensurdvel, existe uma sequéncia {¢,}
fungoes simples tais que 0 < |p1| < |po| < -+ < |f], & — f pontualmente
e ¢, — [ uniformemente em qualquer subconjunto onde f € limitada. <

f=fr=f
Proposicao F1.2. 0099 Th210] go f . X — C € mensurdvel, existe
uma sequéncia {¢,} funcoes simples tais que 0 < |p1] < |po] < -+ < | f],

On — f pontualmente e ¢, — f uniformemente em qualquer subconjunto
onde f € limitada. <
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Aproximacao por fungao simples (n=1) Aproximagao por fungao simples (n=2) Aproximacao por fungéo simples (n=4)
f(x) f(x) f(x)
phi_1 (simple) phi_2 (simple) phi_4 (simple)
0.8 0.8 0.8
0.6 0.6 0.6
5 8 5
] T ]
04 > 04 04
0.2 0.2 0.2
0.0 0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X X

Figura 1: f(z) = 22 4+ 0.2sin(6x),z € [0, 1]
B = 11 (. 50), B 17 (n,00)

2
n2n—1 k k E+1
k —, se — < f(x) < k=0,1,...,n2" — 1),
k=0 n, se f(z)>n

e Seja (2, M, i) um espago de medida. A integral (em §2) de uma fungao
mensuravel [ : 2 — R, com respeito a medida pu:

/Qfdu,

é definida? aproximando f por funcoes simples ¢ e definindo

N
/ ddu =Y a;u(E;).
0 o

fQ(f+g) du :fodM+ngdM [Fol99, Capitulo 2]

f<gas. = [of< /o9

s Importante: Fungoes Riemann-integrdveis (em sentido prdprio) sao
Lebesque-integrdveis e a integral coincide.?

fQ|f|<ooe,u(E):0:>fEf:0

2Precisa um pouco de cuidado: a definicdo é feita antes para funcdes ndo negativas, depois estendida a
funcdes reais ou complexas separando Re(f)* e 3., (f)F.

3 As impréprias absolutamente integraveis podem ser definidas diretamente como integrais Lebesgue; as nao
abs.int. ainda precisam ser definidas por limite
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F1.1 Resultados importantes

Definicao F1.3. Se f,g sao mensuraveis, dizemos que f = g quase toda
parte (q.t.p.) [almost everywhere: a.e.] [quase sempre: ¢.s.] se

nd{f #9}3) =0.

Analogamente dizemos que uma propriedade acontece q.t.p se acontece exceto
num conjunto de medida nula. *

Teorema F1.4 [da Convergéncia Monétonal. Se {f,} € uma sequéncia
de fungoes mensurdveis tal que 0 < f; < fj1 qt.p. para todo j, e
f= hm fn(=sup f;), entao

JEN
/fd,u: lim/fjdu.
n—oo

Proposicao F1.5. Se f >0 e mensurdvel, entao

° /fd,u =0 se e somente se f =0 q.t.p.

e se [ fdu < oo, entio {x : f(x) = oo} € um conjunto de medida nula
(f <oo qtp. )ef{x: f(x)>0} éo—finito.
<

Lema F1.6 [de Fatou]. Se{f,} € qualquer sequéncia de mensurdveis com
fn >0, entao

n—oo

/(hm inf f,) du < hm mf/fn dj.
<

Teorema F1.7 [da Convergéncia Dominada]. * Seja {f,} uma sequéncia
em L' (i) tal que

(a) fo = [ atp,
(b) existe g € L' (u ) tal que | fn] < g q.t.p. para todo n.

Entao f € LY (p

/fdu— im [ o e 1= Sl 0 <

4Vale para 1 < p < oo: {fn} C LP(p); fu — f atpe I g€ LP(u) com |f,| < g q.t.p. para todo n. Entao
feLr(p)ellfa—fl,—0.
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F1.2 Produtos de medidas. Tonelli e Fubini.

E também possivel definir produtos de medidas (no produto dos conjuntos) e
calcular integrais no produto como integrais iteradas:

Xxyfd(/l Xv) = /X [/Y f(x,y)dy(y)] dp()

:/Y [/Xf(x,y)du(x)] dv(y)
Em particular:

Teorema F1.8 [de Fubini-Tonelli]. %% P67 Suponha que (X, M, ) e
(Y, N, v) sdo espagos de medida o— finitos.

(F1.1)

a) (Tonelli) Se f X X Y — [0, oo] ¢ mensurdvel, entao as fungoes g(x) =
[y flz, y)dv(y = [y f(z,y)du(z) sdo mensurdveis e vale (F1.1).

b) (Fubini) Se f € Ll(X xY), entdo f(x,-) € LYY) para quase todo x € X,
f( ) € Ll(X) para quase tado y €Y, as funcoes definidas quase sempre

= [, f(z,y)dv(y = [ f(z,y)du(z) estao em L*(X) e L*(Y),
respectwamente e vale (Fl 1) <

F1.3 Algumas definigoes

Definicao F1.9. Definimos a funcao de truncamento

Tu(z) = ﬁmin{n, 2]}, neN;
z
Note que T, o f — f pontualmente e |T}, o f| < |f] *

Definicao F1.10. O suporte supp(f) de uma funcao f € C(£2) é o menor
fechado F' tal que f = O‘Q\F (equivalentemente, supp(f) = {z € Q: f(z) # 0}).
Dizemos que f tem suporte compacto em () se existe um compacto K C )
tal que f =0 em Q\ K.
O espaco das funcoes continuas a suporte compacto em (2 é indicado por

C.() *
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F2 Espacos L?

A3.8

Dado espaco de medida (completa) (£2,3, 1) definimos

LP(Q, %X, n) =LP(Q) = {[f] D f 1 Q= Kmensuravel @ ||f]], < oo}

onde [f] é a classe de equivaléncia de f com respeito a relacdo de equi-

valéncia “f ~ g se f =g q.t.p”,

( 1/p
</ If\pdu) sep>1
0

1flloc := supess | f ()]

zef)

L1, = 9

¢ uma norma, onde

supess g(x) :=1inf{C e R: g < C q.t.p. em Q}.

re)
1 1
Lema F2.1 [Holder|. Sejamp,q>1: —+—-=1 (p=1,g=00 e v.v.).
p q
Se f € LP() e g € LI1(Q) entdo fg e LYQ) e

1Fglly < 11, gl <

Lema F2.2 [Minkowski|. Seja p € [1,00]|. Se f,g € LP(Q) entao
f+gelP(Q)e
LF+gll, < WA, + llgll, <

Observacao F2.3. Podemos definir LP também com 0 < p < 1: é um
espaco vetorial mas || || ) nao ¢ uma norma.
De fato vale, para a,b > 0,

a? + b < (a+b)P < 2071 (a? 4 bP), p € [1,00). (F2.1)
20 a? +P) < (a+b)P < (a? +0F),  pe(0,1) (F2.2)
com desigualdades estritas se a,b > 0. *

7



AF-F 28 de novembro de 2025

Observagao F2.4. K" e ¢, podem ser vistos como casos particulares de
LP(€2), em que §2 = N (ou menos) com P(N) sendo a o-algebra e com a medida p
de contagem: LY(N, P(N), 1) = £, ¢ L/(Q = {1,..., N}, P(Q), 1) = (RY, |,

Q) conjunto, P(2) é uma o-dlgebra e a medida de contagem
[ P(Q) — [0’ —|—OO] é dada, por(|A\ =cardinalidade de A)

A seA é finito
p(A) = {' |

400 se A é infinito

A medida de contagem é o-finita se s6 se ) é enumeravel. Ainda,
a medida de contagem ¢é completa.

FiN=[0,00) i n e f(1) = fu /NfdMIan *
=1

Observagao F2.5 (Algumas obs. simples).

e Se 1(2) < oo entao LP(Q) C LI(Q) paral < g < p < o0
(inclusdo continua: || f]], < p(Q)YV2 | f]).

e Se 1 é medida de contagem entdao LP(Q2) C L1(Q) para 1 < p<q < o©
(inclusao continua). *

Exercicio F2.6. Prove que || ||, ¢ mesmo uma norma.
Ainda, [(2)] < I, 5. ¥f € L~ *

Exercicio F2.7. Prove as desig. (F2.1)-(F2.2), calculando a imagem

da funcao (}Igp, x € [0,00). Conclua que LF(Q) é e.v. Vp € (0, 0] *

Exercicio F2.8. Se p € (0,1), entdo || ||, ndo é uma norma em L?(2),
sempre que exitam A, B € ¥ tais que AN B # () com medidas positivas,
finitas e distintas. *

Exercicio F2.9. Prove as afirmacoes da Obs. F2.5. Prove com exem-
plos a necessidade da condicao u(€2) < oo e que podem nao valer as in-
clusoes inversas. (X C Y com inclusao continua significa que existe C' > 0:
tal que |[-ly < C[lx)- *
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Prova da Desilgualdade de Hélder F2.1. p,q € [1,00] conjugados, f € LP(),
g € LUQ) = fg € L) e || fall, < IIfIl, lgll,
Casol: p=leqg=00

° 1Q
fGL()=>/Q|f|<OO

e g L*(Q) = |g9(z)| < gl a-s- em (Ex. F2.6)

ol <10 Lol s = [ 150l < ( / m) loll.. < oo

Crger@. e gl [ il < ( / m) gl = 171 gl

Caso 2: 1 <p< o0

o [f[[,=0=f=0qs. = fg=0aqs.
gl = [ 1£91=0= 111l sl

e andlogo se |g|, =0

o [l71, lgll, 7 O

1 1
Lema Hoélder (para soma) A2.5: Sejam p,q > 1: — + — = 1. Entao,
p q

1 1
vy < —af +-y?  Va,y>0
P q

f@)]  gl@)]
i, Tl

o I —

—_

folf@a| 1,1,

@) lg@)] _1If@)F  1]g()]f
Ll lgll, P g

< — , qt.xel)l—=
1A, lgll, = p IFIL  a llglly

]
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Prova da Desigualdade de Minkowski F2.2. p € [1,], f,g € LP(Q) —
fHgeP(Q)ellf+gll, <IfIl,+ gl

o f+geLlP(Q)Vp (I 6 e.v.)
Caso 1: p = 1 segue diretamente de

f(2) +g(2)] < [f(2)] + |g(x)]
Caso 2: p =0

o [f(x)+g(@)| < [f(@)] +lg(@) < [ fllc + gl a5 (Ex. F2.6)
C

If + 9l = inf{C € R |f(x) +g(x)] < C qtp. em Q} < ||fllo + gl

Caso 3: 1 < p < o0

If+glb = f+aP f+gl < [ |f+alP "t 1FL+ [ IfF+ 9P gl
P / /W?ﬂ’/ /

elLq

Holder ] -1
<N+ 1A+ N+ 9 gl

o= (firean) = (firear) ™= (firear) "]

gl < UG+l A, + Ngl)
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Teorema F2.10 [Fischer-Riesz]. [P ¢ um espago de Banach para

todo p € [1,q]. <
Demonstracao.
Caso 1: p =00

o {fn} é de Cauchy em L>(Q), ie., | fn— fullox =0, Ym,n

3 E, € ¥ com p(E,) =0; [f(z)] < ||flle, z€Q\E, (fn € L®(Q)

3 E,m € 2 com u(Ey,,,) =0; (frs fm € L=(Q))

[fu(@) = fn(@)| < ([0 = finlloe s 2 € QN Epm

B = (U B U (Ut Bun)
FEeXeukE)=0

[fo(@)] < fulle, z€Q\NE, Vn

(@) = fn@)| < fo = fullo, ®€Q\NE, VYn,m

folowe € B(Q2\ E) (conjunto das funcoes limitadas)

an'Q\E - fle\EH - Sgl\)E‘fn(x) - fm(x)l < an — meoo — 07 ‘v’m,n
re

o {fulo\g} ¢ de Cauchy em B(Q2\ £)

Exemplo [Espago das fungoes limitadas] A3.18: Sejam X um conjunto
nao vazio e B(X)={f: X — K: f é limitada}

(B(X), [Il),  onde | f]| := su;@(lf(a:)!, ¢ Banach
e
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o {fulo\g} ¢ convergente em B(Q\ E),ie., 3 fec B(Q\LE);

Ve > 0,3 nyg; ||fn’Q\E_fH <e, nz=2ng

e f é mensuravel (lim. de mensuréveis)

f(x), z€Q\FE

o 0: ) —-K:xz— glx)=
g g9(x) {0’ ve B

e g L>®(Q):

‘ 0()] = 1f@)] < cte, 5. = gl < cte

o |fu(z)—g(z)] <eqs. em Q, n>ng

‘ ’fn(x) - g(l’)’ IEE\E ’fn|Q\E(‘T) - f(x)| < an‘Q\E - fH g; n > mng, q.S.

Caso 2: 1 <p< o0 Aula 21

e {f,} é de Cauchy em LP(Q)), i.e.,
Ve > 0,3 no; an - mep <e, Vm,n > ng

Queremos mostrar que {f,} é convergente em L?({2)

Basta encontrar subsequéncia { f,, } convergente em L”(€)

Exercicio A2.2. Seja (X, d) um espaco métrico e (x,) C X uma sequéncia.
(b) se (xy,) é de Cauchy e alguma subsequéncia dela é convergente, entao a sequéncia
inteira é convergente.

e para cada k € N tome n; < ngiq; ank — fnkHHp < 2%

- escolha ny; || fn — finll, < %, Vm,n>mny  (.n=n;,m=ny)

1

- escolha ny > ny; || fn — mep < 3,

m,n > Ny (n=nz,m=n3)

1

- escolha ng > na; || fn — mep < 53,

Ym,n > ns
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Queremos mostrar que {f, } é convergente em LP({2), i.e.,
3 fe LP(); || fan — fll, = 0

Af. 1. {fn. ()} C K é de Cauchy q.t.p. x € Q

o {fn (z)} converge q.s. , i.e., ) (K completo)
dFE e€X com pu(E)=0; f(x) = f(z), Ve € Q\ E

_ {lim fo ()= flz), 2€Q\FE

k—o0

0, r el

o f(z)

o fu.(r) — f(x) q.s. em
Af. 2. 3 h e LP(Q); |ful < h, qs. em Q, V k

Teorema da Convergéncia Dominada F1.7. Seja {f,} C LP(u) tal que
(a) fu(z) = f(x) q.t.p. z € Q,

(b) existe h € LP(u) tal que |f,| < h q.t.p. para todo n. Entao f € LP(u) e
[ = fll, = 0.

e« JEL()ellfu—fll, =0

Considere g,, g : 2 — [0, co] definidas por
9(®) =Y | fas (&) = fu(2)]
k=1

g(z) = lim g,(z)

n—oo

® g, e g sao funcoes mensuraveis
Se /gp du < oo (g€ LP(Q)), entio gP < oo ¢.s. e portanto g < 00 ¢.s..

Proposicao F1.5. Se f > 0, mensurdvel e /fdu < 00, entdo {x : f(x) = oo} €

um conjunto de medida nula (f < oo q.t.p. )
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MAIS AINDA, isso implica que:

o0

a série Z | fopa (@) = fu(2)] converge g.s.,
k=1

ou seja,

a sequéncia das somas parciais g,(x) converge (e portanto é de Cauchy) g.s..

Das,
eVe>0,dng; m>n>ny = |gn(x) —gn(z)] <e, gq.s.

Prova da Af. 1.: {fs.(x)} CK € de Cauchy q.s.

e para m > n > ng temos

[ (2) = fr, (@) < (@) = frn (@) + o+ o (2) = f, (2))]

m—1

- Z | o (@) = fr (@) = |gm—1(x) — gu(2)] <€ g.s.

k=n

o /gpdu < 0, i.e., g € LP(Q)

/gpd,u:/ lim ¢f du ~ lim /gﬁd,u
n—oo n—oo

Teorema da Convergéncia Monétona F1.4.
Se {hn,} ¢ uma sequéncia de fungées mensurdveis
tal que 0 < h, < hps1 q.t.p. para todo n, e
h = lim h,, entao

n—oo
/hdﬂ‘:g&/hndﬂ-
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m 0<g, <gn1 qt.p. para todon
m0<g’<gh,, gtp. paratodon (1

- /gpd,u: lim /ggd,u = hmn—ongan
n—oo

Z ‘fnk—i-l - fnk‘

k=1

D.Minkowisk
<

p

k=1

. gP <00 Q.8 = g <00 Q.S

Prova da Af. 2.: 3 h e LP(Q); |fu] < h, ¢s. em Q,VEk

o 1fun(@) = fu @) < lgnr(@) — gela)] Vm.k, VaeQ

® M — OQ:

[f (@) = fu ()] < [g(2) = gr(@)] < [g(2)] + |gr(2)]

)
29(x),q.s. Yk

IA A

L f@)] < 29(2) + 1 (2)] g5 = f e L(Q)
6L79r(Q)

@) < () = o)+ [f(2)] < 29(2) + [f(@)], g5,

heLr(Q)

F'15
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Proposicao F2.11 [“Reciproca” da conv. dominada]. Sep € [1, ]
e fn — [ em LP(Q), entdo existe uma subsequéncia f, que converge q.t.p e é
dominada, ou seja, existe h € LP(Q) :

— fo. = [ qt.p.
- ‘fnk‘ < h qtp <

Demonstracio. Exercicio.[Prell, p-94-95] (usa a construgdo da prova do Teorema

de Fischer-Riez F2.10) O

Teorema da Convergéncia Dominada F1.7. Sejam p € [1,00) e {f,} C LP(u)
tal que

(a) fu(z) = f(z) a.t.p. = €9,

(b) existe h € LP(u) tal que |f,] < h q.t.p. para todo n. Entao f € LP(u) e
[fn = fll, = 0.

F3 Convexidade, reflexividade, representacao de Riesz

Teorema F3.1.
e [P ¢ unif. convexo e reflexivo para p € (1,00).
e L? nao é reflexivo parap =1 e p = oo (exceto casos “triviais” !5

<

Teorema F3.2.
o (LP)* ¢ isometricamente isomorfo a L¥, para p € (1, 00).

o (LY € isometricamente isomorfo a L™, desde que a medida seja
o—finita.

o (L>®)* contém um subespaco isometricamente isomorfo a L'. O su-
bespago € proprio (exceto casos “triviais”).
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Lema F3.3 [la des. de Clarkson]|. Sejam a,b € K e
2 <p<oo. Entao

a+b|" la—0bl" _l|alP + |b?
—_— < —_— F3.1
2 + 2 - 2 ( )
Logo, se f,g € LP(Q), 2 < p < o0, entdo

frall” | f—glf _1 1
+ <5 Il + 5 llgllzs- (¥3.2)

2 |, 2 |, 2
Corolario F3.4. L? é u.c. para p € [2,00). <

? -
Ve>0,38>0; fge BT, e |If—gl,ze = |52 <1-0.
p

p —_allP
|5 < 800+ 4 el — || 552, <1 - ber = o

Corolario F3.5. L? ¢é reflexivo para p € [2,00). <

T MPE3.3

LP Banach (T. FR F2.10) 4+ u.c (C. F3.5) " "="" LP reflexivo
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Lema F3.6. Sejam p e p’ conjugados.
T:Lp'—>(Lp)*:u|—>[Tu:qbu:feLqubu(f):/fu]
)
¢ uma isometria (linear) para p € (1,00).

O mesmo vale para p = 1 se a medida é o—finita e vale para
p = 00. <

Coroldrio F3.7. L¥ ¢ reflexivo para p' € (1,2]. <

e pE(2,00) CLL P reflexivo P%B(Lp)* reflexivo

Prop. E1.3. X reflexivo = X* ¢ reflexivo.

T é linear, isometria Ex':F:i'“T(Lp) é s.e.v. fechado de (LP)*

o T(LP) é reflexivo

Prop. E1.4 Se X é um espaco reflexivo (de
Banach), todo seu subespaco fechado é reflexivo.

T é linear, isometria = T isom. isom. entre L” e T(LP)

Lema E1.5 Se X e Y sao e.v.n isomorfos, entao
X é reflexivo se e 86 se Y é reflexivo.

/ 7 .
o [P ¢ reflexivo

Proposicao F3.8. T ¢ sobrejetora para p € (1,00).
O mesmo vale para p = 1 se a medida € o—finita mas nao vale
para p = oo (exceto casos “triviais”). <

Em particular, mostramos o Teorema F3.2 e o seguinte

F'18
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Teorema F3.9 [de Representacao de Riesz|. Sejam 1 < p < oo,
p e p conjugados e ¢ € (LP(Q))* (no caso p = 1 assumimos a medida
o— finita,).

Entio existe um tinico u € L (Q) tal que

6. 1) = 6(1) =/Quf, v fe /).

Além disso |[ull ) = |9/l (20 @) <
Isto permite identificar L7 (Q) e (LP(Q))*.

Lema F3.64 Proposicao F3.8:

T:Lp/—>(Lp)*:U|—>[Tu:gbu:fELpHgbu(f):/qu]

- p € (1,00): é isom. isom. sobrejetor
- p = 1: é isom. isom. sobrejetor se a medida é o-finita
- p = o00: ¢ isom. isom. sobre a imagem

Teorema F3.2
e (LP)* é isometricamente isomorfo a LY parap €
(1, 00).

e (L')* ¢ isometricamente isomorfo a L™, desde
que a medida seja o—finita.

e (L>)* contém um subespago isometricamente
isomorfo a L!. O subespaco é préprio (exceto
casos “triviais”).
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Observacao F3.10. Existe uma 2a desig. de Clarkson, que mostra que L?

é u.c. e logo reflexivo também no caso p € (1,2]. O resultado completo é o
seguinte: [Desigualdades de Clarkson] sejam u,v € LP(Q2), e p/ = Ll
p —_
Se 2 < p < oo, entao
u+ vl u—vlf 1 1
< = b+ = |vl|h,, F3.3
o T e M A (F3.3)

u+ vl u—vll’ 1 1 -l
> = ulf, + = [v|]F, : F3.4
Sz (g ) s

Se 1 < p <2, entao

u+vl|f 1 -l
: an Shl) L @)
P
B u+vl|lf u—v 1 1
2 (|3 : )z;wm Dl 030
Lp Lp
*

Exercicio F3.11. SeT : X — Y é uma isometria linear e X é Banach,

entdo T(X) é um s.e.v. fechado. (ver p. ES) *
Exercicio F3.12. Facga os exercicios 4.2, 4.3, 4.4, 4.5, 4.6, 4.7 (p.
118...) do [Brell]. *
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F3.1 Demonstracoes

F3.1.1 1a. Desigualdade de Clarkson

Prova da 1a des. de Clarkson: Sejam a,b € Ke 2 < p < oco. Entao

p _ p p p
a+b e b <]a\ +]b|.

F3.1
2 2 - 2 ( )
Logo, se f,g € LP(Q2), 2 < p < 00, entao

f+all” |If—g|]f _1 Lo

JT9 T2 < 2k, + = glE, . F3.2

(e R e (LA TR Y P (F3.2)

Demonstracao.
e Eq. (F3.2) segue da Eq. (F3.1)

considere a = f(x), b = g(z), a definigao de H||p enote que f,g, f+g, f—g € LP.
Portanto todas essas funcoes sao finitas q.s. e ainda suas integrais sob um
conjunto de medida nula valem zero: [, = fQ\E + [ = fQ\E (u(E) =0)

Af. 1. a? + P < (&® + B2, Ya,B>0

m 7=0: ok
m 0#0:
p 2 2\p/2 2 p/?
com st (952 (0] )
p/2

— <(%)2+1>
m fz) =@+ 1)P2—a2P —1, 2>0

Queremos f(r) >0,V x>0
m [ é crescente em [0, 00) (pois f' > 0) e f(0) =0

(g
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o2 52 p/2 1
f.2. (|—+4—= < —(af 4 pBP)°
Af. 2 (2+2> _2(a+5)

e tome o = |a7+b|, B = |aT_b| na Af. 1 e depois a = |a|,f = |b| na Af. 2 e
(F3.1) estd provado

]
F3.1.2 Demonstragiao T : L” — (LP)* é isom. isom. (sobrejetor) Aula 22
Prova do Lema F3.6: Sejam p e p’ conjugados.
T:LV = (IP) um [Tu=¢,: fell ¢f) :/fu]
9)
¢ uma isometria (linear) para p € (1, 00).
O mesmo vale para p = 1 se a medida é o—finita e vale para p = oc.
Demonstracao.
e T é linear (Vpell, o)

() Tue (L) Vue L’ e |[Tul. < |ul,VueLr (V p el o))
e Tu: P — K é linear

e T'u é limitado

Tu(f)] = [6u(F)] = ‘ | S <1l el
Lr LV

Desilgualdade de Holder F2.1. p,q € [1,00] conjugados, f €
LP(Q), g € LUQ) = fg € L'(Q) e || fall, < £l llgll,

S Tull gy = sup [Tu(f)] < ull,

ferp

1f1l,<1

5 2 1 p/2
usef(x)::xp+172(%+§) , >0
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(D) full, < Tl

_ [Tulfo)]

Basta mostrar que 3 fo € L?, fo # 0; ||ul|, = W
Ollp

/

. - o B ‘o2 (Tu(f )\
Jull) = fo b = foy bl fuf? = fi [ul 27w L (T2

Jo 77

e fo estd bem definida? estd em LP? || fol|, = 0, 0,=7 777

~ ~ . ~ / .
m para p = 1, ndo: p’ = oo e ndo faz sentido a expressdo |u|P ~2: mais
trabalho

m para p € (1,00): precisa ver o caso em que p' — 2 pode ser negativo e
arrumar a expressao para fazer sentido

B p=oo0: p' =1 e mesmo caso anterior com aten¢ao nas normas

P25(z) = |u(z leM u(x
) o [P ) = Wl S ) £ 0
0, u(z) =0

N

e fy estd bem definida para p € (1,00) e é mensurdvel

e foe L

U

[ul

ol
Q\{u=0}

laly = [1ar=[ |
Q0 O\ {u=0}

)

-~

p(p’ — 1)
—_——

ful 7

= [l [ =l < o
0\ {u=0} {u=0}

o [lfol,=0=llull, =0 = u=0qs. e (II) vale
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[ Tu(fo)]
1 foll,

o [[foll, 0 = |ull, = e (II) vale

Tu(fy) = / 2 0 = ult, =

e para p=oc: p =1,

0
1

fo= § lu@)] - Tu(fo) = |l ||fo|oo={

e parap=1:p = oo:

(1) lJull oo < 1 Tull(gry.
Passo 1: u(€)) < oo

Aci={x € Q: |u(z)| > || Tull 11y + ¢} (e >0)

Basta mostrar que p(A.) =0, Ve > 0 pois dai

ju(z)| < [Tull(fry-+e  qtp. €

e vale (II")

fola) = { Tulw)]

e fy estd bem definida e é mensuravel

F24

)
= [|ull

/
Tt el el e s
ol ol o~ el ™ = lll
Oy e |

/

p

e (IT) vale

lull o = inf{e : Ju(z)] < ¢ g.s. em Q} <||Tul| (). +e, Ve>0
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o fo € L'(?)

\fu—o} [u()]

[ foll, = n(Ac)

e qual propriedade |Tu( fo)| satisfaz 727

[Tu(fo)l < [[Tull gy [[folly = 17wl g1y p(Ae),

Tu(f) = / fou| =

- /|u<x>|
Ae

def.A.

> <\|Tu||(L1)*+e>/A |

€

_ (\|Tu||(L1)*+8> WA, Ye>0

/Q S (@)

o (ITullgy: +¢) w(A) < ITullgy. p(A2), Ve >0

e 1(A.) =0 paratodo e >0

se para algum € > 0, u(A:) #0

(1Tl gy +¢) S ITull gy s

F25
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Passo 2: Q) é o-finito
Basta mostrar que A. := {z € Q: [u(z)| > || Tul| ). + £} tem medida nula

¢ 30, e Q=] com p(Q) < (Q o-finito)

neN
d AE - UneN A??
AY = {w € Q: [u(@)] = | Tull ). + <}

° ,LL(A?) =0,Vn (Passo 1: p(f2,) < o)

Prova da Proposicao F3.8:
T:LV = (L) u— [Tu=¢,: f €L ¢ (f)= | fu
Q

é sobrejetora para p € (1,00).
O mesmo vale para p = 1 se a medida é o—finita mas nao vale para p = oo .

Demonstracao.
Caso 1 < p < o0

o T(Lp') é s.e.v. fechado em (LP)*

Ex. F3.11: Se T : X — Y é uma isometria linear e X é Banach, entao 7'(X) é
um s.e.v. fechado. (ver p. E8: prova de dual refl. implica esp. refl.)

Basta mostrar que T'(L*) é denso em (LP)*, pois dai

T(L") =T(LV) = (L")*

Ex. B2.6 Um subespaco M de em e.v.n. X é denso se e sé se vale que

Vo € X* t.q. |y =0, vale p =0
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o & (L) @y =0, ie, ®(T(u)=0,Yuel

o [P ¢ reflexivo (Corolérios F3.5 (p € [2,00])+F3.7(p € (1,2]))
e J:LP — (LP)™ o mergulho candnico é sobrejetor
e JfelP;quad Jf =P

Basta mostrar que f =0 (lembre: f=0¢€ LP? diz f =0 q.s.)

Def.J

0= &(T(w) = Jf(Tw) "L’ Tu(f) = / fu, VuelV

)

) o @) = P R @A
0, flx) =
0= [ru= [Af@re = e = g
e f=0q.s.
Casop=1

T:LOO—>(L1)*:u»—>[Tu:¢u:f€L1H¢u(f):/fu]

Q

Passo 1: p() < o

«pe (L)

e [2(Q) C LYQ) (p=14q=2)

¢€( 0.F2.5 )
[o(f)] \|¢|\L1 1l < clléllgy Iflle, ¥V feL

Obs. F2.5. Se u(2) < oo entdao L4(2) C LP(Q2) para 1 <p < ¢ < o0
(inclusdo continua: [|f|, < w(Q)/r=1/a I1£1l,)-
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L] ¢’L2 - (LQ)*

o T : L? — (L*)* é sobrejetor (Caso 1 < p < o)

e Juc L} Tu= ¢, ie., /fu:qb(f),Vf€L2
Q

Af. 1. uwe L™

Como na prova anterior:

A= e Qful@) > [l +2}, fola) =

mfy € Ll(Q)
o (I7ull gy + ) u(A) < Tl gy pl AL, Ve >0
m 1(A:) =0 para todo € > 0

Af. 2. Tu = ¢, i.e., /qu =o(f), V felL

Funcao de truncamento: T),(z) = é min{n, |z|}, n € N;

T, o f — f pontualmente e [T}, o f| < |f]

Imr\

s

f a valor real

f Ifl<n

Figura 2: T,,(f) = {
sg(f)n n<|f|
lsg(f)| =1 e T, f(x) altera o médulo sem alterar a diregao de f(z) (caso n < |f(z)|)

F'28

\ A1
. .
I a valor complexo

1)
Tof @)=

[T f (2)|=n<|f(x)

onde sg(f) = ﬁ No caso real, sg(f) = £1. No caso complexo,
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e scja f € Lt

e T,(f) funcao de truncamento é mensuravel

e Para cada n, [T, f| <n
e T(f)elr (Vpell o)
Tofl < |fl e Tf(z) = f(2)

(1(€2) < o0)

Teorema da Convergéncia Dominada F1.7. Seja {f,} C L'(u) tal que

(a) fo(z) = f(z) qt.p. 2 €9,

(b) existe h € L'(u) tal que |f,| < h q.t.p. para todo n. Entdao f € L'(u) e

[fn = flly = 0.

T.f = fem L!

(T f) = &(f) | em L

AT f) "EE (T, ) = / uT,f — / uf

w(@) T f(x) = w(@)T'f(z)

T f| < Julloo 1T ] < ull o 1]

o(f) = / uf = Tu(f)

Passo 2: Q) € o-finito Justifique as passagens!

oEIQnEE;Q:Hanom,u(Qn)<oo

neN

Sejam ¢ € (LY)* e f € LY(Q):
o Ju, € L2(); Tun(f) = &(f)
o u:=> " wu, estd bem definida e u € L>(Q)

n=1

F'29
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F4 Densidade, separabilidade Aula 23

Um espago métrico (X,d) é dito separavel se existir um subconjunto enumeravel
D C X que é denso em X.

e ([F0l99, Th.2.40]) Se E C RY ¢ Lebesgue mensurdvel, entdo sua me-
dida de Lebesgue satisfaz

u(E) =inf{u(A) : E C A aberto} = sup{u(K) : E O K compacto}

Além disso, se u(E) < oo, para cada € > 0 existe uma colecao finita
de retangulos disjuntos {Rj}gnzl cujos lados sao intervalos tais que

*EAR = (E\ R)U(R\ E), diferenga simétrica

Proposicao F4.1. [F0199, p.183.]

(a) Se 1 < p < 00, o conjunto das fungoes simples f = Zjvz1 anEj ¢ denso
em LP(QQ).

(b) Se 1 <p < oo, os E; podem ser tomados de medida finita.

(c) Se Q CRY e a medida é a de Lebesgue, os E; de medida finita podem ser
substituidos por (multi-)retangulos de extremos racionais. <

Demonstracao.

(a)

e felPeec>0

Proposicao F1.2. Se f: X — C é mensuravel, existe uma sequéncia {¢,}
funcoes simples tais que 0 < |¢1| < |p2| < -+ < |f|, én, — f pontualmente e
¢n — f uniformemente em qualquer subconjunto onde f ¢é limitada.
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Ny,
e 1¢, = ZaanEn_ com a,, #0 e E, NE, =0;
j=1

# 0< o] < g < - < |f]
m ¢, — [ pontualmente

m ¢, — f uniformemente em qualquer subconjunto onde f é limitada
1 <p<oo:
[on] < |f] € LF
Oon € LP, ¥V n
On(z) — f(x) em

Teorema da Convergéncia Dominada F1.7. Seja {f,} C LP(u) tal que
(a) fo(z) = f(z) q.t.p. z € Q,

(b) existe h € LP(u) tal que |f,| < h q.t.p. para todo n. Entao f € LP(u) e
[fn = £ll, = 0.

H¢n - f”p — 07 i'e'a Eana H¢n - pr < £, vn > Ny

tome ¢ = én,: |0 — fll, <€

p = OQ:

Exercicio F2.6: |f(x)] < ||fll a-s., Vf € L.

f é limitada q.s.

¢n, — f uniformemente q.s., i.e.,

Ing; n 2 ng = |on(z) — f(z)| <€, g

|on — flloo = inf{c: |pn(zx) — f(2)| < cgs. em Q} <e, n>ng

tome ¢ = én,: || — fll, <€
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(b) Se 1 <p < o0, os Ij podem ser tomados de medida finita

Af.: ,U(Enj) < 00, Vj (En; como em (a))
1 <p<oo:
° (En, NEy, =0 e ¢p € LP)

N, P
oy = [lor= [ X e, @)
j=1
Xp, (@)#0 N
maEx anico ] / Z |anj |pXEnj (I’)
oy wme e
N,
- Z|anj|p/XEnj (x)
j=1

Np
— Z|anj|p,u(Enj) < o0
j=1

o (k) < oo (an, #0)
Note que para p = oo:
Nn
[fnllo = inf{c: Z aanEnj ()] <cgq.s.em Q} =inf{c: ’(Ln].’ <cgq.s.em Q} <oo
j=1

mas nao envolve p(Ey;)
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(c) Se © C RY e a medida ¢ a de Lebesgue, os F; de medida finita podem
ser substituidos por (multi-)retangulos de extremos racionais.

N, .

e ¢ =20 an, Xy, o p(En) <005 lo—fll, <5 (item (a)+(b))

e para cada F,, existe uma colecao finita de retangulos disjuntos {ank};
,u(Enj A U Rn]k) < g

([Fol99, Th.2.40]) Se E C RY é Lebesgue mensuravel e u(E) < oo, para cada
€ > 0 existe uma colec¢ao finita de retangulos disjuntos { R; };":1 cujos lados sao
intervalos tais que p(EA UM R;) <e.

*EAR = (E\ R)U(R\ E), diferenca simétrica

e existe uma colegao finita de retangulos {R,,, } com vértices em Q tais que
H(Enj A Uy ank) <0 (QN ¢ denso em RY)

.\_

/ Ry,

7 N,
¢« =0 X,

Queremos 0 adequado de modo que <

p

\SY[§)

QO — @

W <o +he-sl,<5+5 = 3

AL, Para § =77, vale |6~ 0| <3
p
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[ ]
Ny,
H¢ B QSHp - Z @n; (XUkR”jk B XE”J‘)
j=1 p
Minkowki N
< Z |anj| ’Xukank o XEnj
j=1 g
Ny,
p _
< max{la, [} Y ||, — X ||
J=1
[ J

‘ 1, ze€ (Ukank \ Enj) U (Enj \ Ukank) :EnjA Up ank

0, c.c

p

b / ‘Xukank (v) = &, (x)

J

Nn
< max{lan, [} D (p(En,A Uy Ry,)) P
7=1

< max{|a,, [P} N, 8"
J

7

-~

c=c(n,p)>0

e para 0 = (%)p vale HQNS— (pH <
p

]

A demonstracio anterior fornece: se @ C RV e a medida é a de Lebesgue, entio o

. ~ . N . ~ » .
conjunto das funcgoes simples [ = ZFI anRj, a; € R, R; multi-retdngulos com vértices
racionais, é denso em [LP({)). Como Q é denso em R, prove que

substituidos por b; € Q”. (Andalogo se a; € C)

a; € R podem ser

Logo, o conjunto das fungoes simples f = Zjvzl anRj, aj € Q (resp. Q+iQ), R; multi-

retangulos com vértices racionais, é enumeravel e denso em LP(Q).
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Corolério F4.2. Se Q C RY e a medida é a de Lebesgue, entio LP()
¢ separdvel para 1 < p < 0. <

Proposicao F4.3. L>(Q, M, ) nao € separdvel (exceto casos “trivi-
ais” <

Prova da Proposicao F.3 para o caso @ < RN, [Brell, p.103]

aberto

Proposicao E2.7. Se existe uma familia ndo enumeravel de abertos em X, nao
vazios e 2 a 2 disjuntos, entao X nao é separavel.

eacQ dr,>0; B,(a)CQ (@ c RY)
aberto
- 00 . 1
e Oui={fer=Q: F-%, .l <}}
e cada O, é nao vazio
_ . _ — 1
‘ HXBT{J,(U‘) ’oo o 1 € XBT(I(G‘) = Oa’ : HXBTQ(G) XBTG(G) oo 0 < 2
e cada O, ¢é aberto
Oa = B%(XBTa(a))
° {Oa}aeﬂ ¢ nao enumeravel (todo aberto nao vazio de RY é nao enumer.)
« 0,N0y =0, a+#b
f€e0,N0y =
X X < ||X X L 1_ 1
[ = oy < o =7+ = X0 <5+ 3 -
1, z€ By, (a)A By, (b)
—_————
|¥s,, 0 (@) =Xp, o) (2)] = 20 u>0 =7 HXBmw) ) - 1
0, c.c
—r < D
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Proposicao F4.4. Se Q C RY € aberto e a medida é a de Lebesgue,
entdo C.(S) € denso em LP(Q2) para 1 < p < 00. <

Demonstracao.
e felleec>0
o §:= {Zjvzl a; &, , p(Ej) < oo} é denso em LP(f2)

Proposicao F4.1. (a) Se 1 < p < oo, o conjunto das fungdes simples f =
Z;-V:l a; X, ¢é denso em LP(2). (b) Se 1 < p < 00, os E; podem ser tomados

de medida finita.

edopeS |If-9l,<5
Basta mostrar que para cada F € ¥ com u(E) < oo, 3 f € C.(Q);

HXE N pr < 200571515.
Jg=>"a;f; €Ce; |0 —gll, = HZ aj <XEj — fj> Hp < const.c

1f—gll, < IIf =6l + 6 —gll, <=

(ver pag. F35)

e £ €3 com pu(E) < oo

e IADFE (AC Q) abertoe K C E compacto; u(A\ K) <eP (€ ab.)

([Fol99, Th.2.40]) Se E C RY ¢ Lebesgue mensurdvel, entdo sua medida de

Lebesgue satisfaz

u(E) =inf {p(A) : E C A aberto} = sup{u(K) : E O K compacto}
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m ([Fol99, p. 122]) Sejam (X, d) um espago métrico,
A C X um aberto e K C A um compacto.
Entao, existe uma funcdo f € C(X,|0,1]) tal que
X, < f<X,. Asaber

 d(z X\ A)
1) = e X A+ de K

Ainda mais, f = 1l em K, f = 0em X \ A e
feC.(X,][0,1]).

;X < f < X, (KCAcCQ)

< X (K CECA)

(KCACQ)

X, — I < / X, — X = w(A\NK)? < e
9]
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Exercicio F4.5. LP(Q2, M, u) é separavel para 1 < p < oo se M é
gerada por uma familia enumeravel de seus elementos (espago de medida
separavel). Veja exemplo de espago de medida e comentarios em [Brell,

p. 98]. *

Exercicio F4.6. Procure exemplos de

o [P(Q, M, 1) nao separavel com p € (1,00).
(Dica: LP(R, P(R), i), 1 medida de contagem)

e sequéncia limitada em L'(]0, 1]) (medida de Lebesgue) que nao admite
subsequéncias fracamente convergentes.

e ¢ € (LY)* que nao pode ser representada por u € L™.

*
Exercicio F4.7. Mostre que (C(R,R), || ||.,) nao é separavel. *
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F5 Particularidades de L' e L™

Quando a medida é o—finita (por ser o dual de L), L tem as propriedades:

e a bola fechada é compacta na o* = o(L*>, Ll),

T. Banach-Alaoglu D5.2. Seja X um e.v.n. A bola fechada BX" = {f €
X* || f]] <1} é compacta na topologia fraca® o(X™*, X).

e quando L' é separdvel, a bola fechada é metrizavel e seq. limitadas tem
subseq conv. fraco*

T. E2.10 Seja X um e.v.n. X € separdvel, se e somente se, (BX™,o(X*, X))
¢ metrizavel.

C. E2.14. Se X é um e.v.n. separdvel e {f,} é uma sequéncia limitada de X*,
entao existe subsequéncia {f,,, } que converge em o(X*, X) (conv. fraca*).

e (L>)* contém um subespaco isometricamente isomorfo a L', que coincide
com a imagem da isometria Ty : L' — (L®)* : f — [¢f : u— [, fu]
Isto permite identificar L' e T1(L') C (L™)*.
Porém (exceto casos triviais quando L' é reflexivo), 77 nao é sobrejetora

(L. F3.6 + P. F3.8)

e Quando L' e L™ sao e.v.n. finito dimensionais (medida com apenas
finitos conjuntos de medida positiva, a menos de conjuntos nulos), vale
m eles sao reflexivos e separaveis,
m (L>®)* é isometricamente isomorfo a L' e (L')* é isometricamente iso-
morfo a L™

e em caso contrario

m L' e L™ nao sdo reflexivos e L™ ndo € separdvel.

m (L')* é isometricamente isomorfo a L™ se a medida é o-finita mas
(L>)* ndo € isometricamente isomorfo a L. (L. F3.6 + P. F3.8)

m se a medida nao é o—finita pode existir ¢ € (L')* ndo representado
por uma u € L™ (Ex. F4.6)
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Prova: LY(Q) ndo € reflexivo se bC RN e a medida ¢ a de Lebesque. [Bretl, p- 101]
aberto
e SPG.: 0
d N(Bl/n(o)) >0
o for=onX, €LYQ), o= p(Byy(0) (Ju = 0)

| fol = M(Bl/n(o))_lxjgl/n = pu(Bi/,(0)) 1=1
e I

o [full,=1
e {f.} éseq. limitada em L'(Q)
e Supor L'(Q) ¢ reflexivo

T. E2.15. Seja X um e.v.n reflexivo (de Banach) e {z,,} uma sequéncia limi-
tada em X . Entéo existe uma subsequéncia {z,, } que converge em o (X, X*)
(conv. fraca).

o I{fate3I fFELUQ); fo.—f
o O(fn,) = @(f) ¥ @€ (LY

P. D3.7. Seja {z,} uma sequéncia em X. Temos que:
(i) xp 2 <= P(xy) = o(z) V 9 X*

° / O fn, — / of V pe L™ (medida de Lebesgue é o-finita)
Q Q

T. de Representacao de Riesz]F3.9. Sejam 1 < p < oo, p e p’ conjugados
e ® € (LP(Q))* (no caso p = 1 assumimos a medida o—finita).
Entdo existe um tnico ¢ € L (Q) tal que

(@, ) = d(f) = /Qsof, v feIr(Q).

L. F3.6 + P. F3.8: T : L” — (LP)* é bijetora
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Af. /gfnk =0 Vgel(2\{0}), V nysufic. grande
0

o g€ C(Q\{0}) = g€ L™

Dizemos que f tem suporte compacto em () se existe um compacto K C €2
tal que f=0em Q\ K.
*continua de suporte compacto é limitada*

. /gf =1im/gfnk 20, vgec\{o})
Q Q

o f=04q.s. em ()

m ([Fol99]) Seja 2 um aberto de RY e f definida em (2
tal que fX,. € L1(2), para todo K C §2 compacto.
Se

/ng = 07 vg € CC(Q)

entao f =0 q.s. em ().

e p=1€L>:

L= funll, = /ank—>/ﬂf:_0 .

Prova Af.: /gfnk =0 VgelC(Q\{0}), V n, sufic. grande
Q

e supp(g) C 2\ {0}
® By, (0) € supp(g) para ny sufic. grande

/gfnk:/goanBl/n :ozn/ g=20
Q Q b B

1/ng
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Prova: L*(Q2) nao € reflexivo .
e L! ¢ Banach (Teorema F2.10)
o (Ll)* ~ L (T. de Representagao de Riesz F3.9)
o 1°°(Q) reflexivo = (L")* reflexivo = L! reflexivo

P. E1.6. Se X é um espaco de Banach e X* é reflexivo, entao X é reflexivo.
L. E1.5. Se X e Y sao e.v.n isomorfos, entao X é reflexivo se e s6 se Y é
reflexivo.

Exercicio F5.1 (EF1). Faga o exercicio 4.13 (p. 121...) do [Brell].
*

Exercicio F5.2 (Espagos LP: B,S,R,U.C.). Preencha a seguinte tabela
com S (para sim) e N (para nao). Especifique, se necessario, o espago de
medida.

Ban. | Separ. | Refl. | U.C. | Dual | (2, %, p)

(L (), | - lloo)
(L), || - 1)
(LP(Q)a ” ) ”p)a pE (L OO)

Fim pA AuLa 23
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F6 Convolucao cont. Aula 28

Definicao F6.1.

e O suporte supp(f) de uma funcao f € C(£2) é o menor fechado F' tal que
f

O suporte de uma funcao (classe de eq.) f € LP(Q2) é a intersegao dos
fechados F' tais que f|re =0 q.t.p.

Vale que f =0 q.t.p. no complementar de supp(f)

FcEO.

e Dadas f, ¢ : RY — K definimos a convolucao de f com ¢ por:
(f*g)(z) = RNf@*—wgwﬁw- (F6.1)

e Se f:RY —» R, h € RY, definimos a translacao

(nf)(x) == f(z + h).

Proposicao F6.2. Se as integrais (FG6.1) correspondentes ezistem,

o fxg=gxf
o (fxg)xh=fx*(g*h)
o 7(fxg) = (mf)*g9=[*(m9)

o supp(f * g) C supp(f) + supp(g)-
Em particular, se os supp. de f,qg sao compactos entao o de f * g também

¢ compacto. <

Teorema F6.3. Se f € L'(RY) e g € LP(RY) com 1 < p < o0, entdo,

o f(x —y)g(y) € integrdvel emy (para q.t.x)
e fxgc LP(RY) ¢

1S+ glly < 171l Mlgllp- <

Demonstracao. Caso p = oo:

o l9)] < llgl as. em R
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o |flz—y)gW)| <|f(z—ylllgll as em RY

o yr— f(x—y)g(y) é integravel em RY (feLh

[(f * g)(7)] < /RN |fx =yl lgwldy <llgll Il

(mud. variav. e |J| =1)

o [I(f*9) (@)l < llgll £,

/RN|F(:U,9)\CZ:U = /RN|f(:L‘—y)\ lg(y)|dz = |g(y)|/RN|f(x_y>‘dx
= lg(y)| Hle <00, paraq.t.p.ye RN

(geLh)

Prop. F1.5. Se f > 0 é mensuravel e /fd,u < oo, entao {x : f(z) = oo} é

um conjunto de medida nula (f < oo q.t.p. )

[ v [ PG = [ laldy [ 1= lde = gl 7], < o

o F e LY(RY x RY)

Teorema de Tonelli. Sejam X e Y abertos de RY. Se F: X xY — R é
tal que [y |F(x,y)ldz < co q.t.p. y € Y e [, dy [ |F(z,y)ldr < co entdo
Fel' (X xY).
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e F(x,-) € LY(RY) para quase todo x € RY
Teorema Fubini. Sejam X e Y abertos de RY. Se F ¢ LY(X xY),
entdo F(x,-) € L'(Y) para quase todo » € X, F(-,y) € L'(X) para quase

todo y € Y, as fungdes definidas quase sempre g(x) = [y |F(z,y)|dy e
h(y) = [y |F(z,y)|dz estao em L'(X) e L'(Y), respectivamente, e vale

| irtasay= [ [ ireaas] ae= [ | [ 17w a

o yr f(xz—y)g(y) é integravel em y para q.t. z € RY (fe L")

gl = [ 17 9@l

< [ L e = ey as

Fidint /RN _/RN flz—y)| Ig(y)ldw_ dy

_ / oy / Af@=yldz = gl 171l

Caso 1 < p < oc:
egc P =g’ c !

o fel'!= flrcPoufYield

of*gp€L1 (casop =1)
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Geowr < ([ 1 ullawi)
- (/ HCE RO >1/Qdy)p
”fg“i’l:r”g” [/ e —u)llety \p@) (/ He—y dy>1/q]

= [ WslanE@) e |
= (If]* gl () [ F]12

. / (f % 9)(@)Pde = / (1] * g)(@)dz [ £ < oo
RN RN

(f*gP € L', caso p=1)

o (fxg)elr

1/p
Ireal, < [ [ (sl 17|
= IV N gl I

CCLSO 1
< AR AN Pl

/
= 1 (o)™ = 17l Tal,
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F6.1 Sequéncia regularizante

Na prova do Teorema de Frechét-Kolmogorov usaremos seq. requralizantes:

Definigao F6.4. Chamamos sequéncia regularizante (ou de molificado-
res) toda sequéncia (p,),>1 de fungdes tais que

pr € C2®).] [suwp(pn) < B 01| [ n=1.|[on 2 0 em BY.

*

Exemplo F6.5. Um exemplo pode ser construido assim: seja p : RY — R:
1
el=IP=1 x| <1

0, |z > 1.

Entdao p € C(RY), supp(p) C B1(0) e / p(x)dx > 0.
RN

o = ( /. p<x>dx)_1an<m:>

fornece uma sequéncia regularizante. *

Logo,

-05

Figura 3: Geogebra
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Sequéncias reqularizantes também sao usadas para provar que o espaco das
funcoes de classe C'° com suporte compacto é denso em LP:

Proposigao F6.6. Se f € C*RY) e g € L (RY) entdo ©

loc

fxgeCMRY) e D*(fxg)=(Df)*g, |af <k <

Proposicao F6.7. Seja p, uma sequéncia reqularizante.

e Se f € C(RY) entdo p, * f — f uniformemente em compactos de
RY .

e Se f € LP(RY), 1 <p < oo, entdo p, * f — f em LP(RY). <

Uma funcao continua em um compacto é uniformemente continua.

Ver Figuras na proxima pagina.

Corolario F6.8. Seja Q C RY um aberto qualquer. Entio C>°(Q) é
denso em LP(Q2) para 1 < p < 0. <

Corolério F6.9. Seja Q C RN um aberto qualquer e u € L} (Q) tal que

loc

[uf =0 para toda f € CX(Q). Entio uw=0 q.t.p. em Q. <

SCH(Q) = CH(Q) N C(9)
LY (Q) é o espaco das fungdes que sdo LP(K') para qualquer compacto K C
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Y

/ 1 \ >
A mollifier (top) in dimension one. At &
the bottom, in red is a function with a

corner (left) and sharp jump (right),
and in blue is its mollified version.

Figura 4: Wikipedia

v
4
3
2
1
An example of molification. A simple piecewise function f (x) : R — R has a noncontinuous and noisy bound. And
it was mollified by Gaussian kernel with different e. The details of the example can be found in appendix C .

Figura 5: em azul a fungao f, artigo Axiomatization of Gradient Smoothing in Neural Networks

- —— 8(x=xq)

Y o(x — Xo: £=0.100)
—— o(x=xp; £=0.022)

0.6 — 9lx—Xo; £=0.005)

—— olx—xp; €=0.001)

0.4
0.2 j

0.0

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

1.0 —— Bx=xp)

— olx—xo: £=0.100)
0.8 4

—— olx—xp; £=0.022)
0.6 —— olx—xo: £=0.005)

— o{x—Xxp; £=0.001)

0.4 4

021

0.0 q

-1.00 -0.75 —0.50 -0.25 0.00 0.25 0.50 0.75 100

Figura 6: verde: n = 200, artigo Non-Differentiable Functions in Machine Learning
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Compactos em C(K): Arzela-Ascoli

Um conjunto F num espago métrico (X, d), é dito totalmente
limitado se, para cada € > 0, E pode ser coberto por um nimero
finito de bolas de raio e.

Teorema F6.10. 70199 »15] conjunto E num espaco
métrico (X,d), € compacto se e sé se é completo e tot. limitado.
<

FE totalmente limitado = E limitado
“

E totalmente limitado <= FE totalmente limitado

Definicao F6.11. Uma familia F de funcoes ¢é dita

e cquicontinua em x se para todo € > 0 existe uma vizinhanca U de x tal
que |f(y) — f(z)| <eparayeUe f € F,

e cquicontinua se for equicontinua em todo ponto

e pontualmente limitada se {f(x) : f € F} é limitado para todo z. *

Teorema F6.12 [Arzela-Ascoli]. [Fol99, p-137] Ge [ € um espaco compacto e
Hausdorff e F uma familia equicontinua e pontualmente limitada em (C(K), || ||.),
entdo F ¢ totalmente limitada e seu fecho é compacto (F € relativamente com-
pacto). <
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F7 Compactos em L?: Fréchet-Kolmogorov

Teorema F7.1 [Fréchet-Kolmogorov]. SejaQ C RY um aberto, w CC Q
Tel<p<oo. SeFCLP) satisfaz:

o F ¢ limitado

° Ve>0, 30 >0, § <dist(w,00N) tal que
(F7.1)
170 f — fllrw) < € VR eRY com || <6 eVf e F.
Entao F |, € relativamente compacto em LP(w), i.e., F |, € compacto. <
Demonstracao.
o F ‘ » € completo (LP é completo)

Exerc. A2.12 Um subconj. fechado de um espago métrico completo é completo

Basta motrar que F |, ¢ totalmente limitado

e SPG: O limitado

wCQewC BL0)

Q = QN B,(0) é aberto, limitado e w CC Q

o feF
of:RN%R

= flx), €0
f(x)'{o, reRV\ Q

T wCC N significa que w é aberto e @ é um compacto contido em €.
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e F={f:feF}

Af. 1. F é limitado em LP(RY) e em L'(RY)

Af. 2. para cadan € N, (pn, uma seq. regularizante)
pox F={pux[:[eF}

é equicontinua e pontualmente limitada em C'(RY), logo

o= o0+ Plo
é equicontinua e pontualmente limitada em C()
e 1, é relativamente compacto em C(@) (@ compacto, T. Ascoli-Arzel4)
e H, é totalmente limitado em C(w)

o H, (e .. H,) é totalmente limitado em LP(w): I f',..., fI' € LP(w);

(1(2) < o0, Q ltdo)

l
H, C U Be/Q(fjn)

J=1

Ideia: queremos | f|, — f;|| < € para algum j

Hf|w - fjHLp(w) < l‘f’w B hnHLP(wl"i‘ th o fjHLp(w)

~"

77 okl
T = po % f
flo = flo @ Qfla = flo)
Af. 3. dada f € F|,, Hf— On * fHLp(w) <, sen>:

Af. 4. As convenientes bolas correspondentes de raio € cobrem F|,, em LP(w)

o ﬁ\w:.ﬂw

e Fl,C ngl Be(f}'), Flo ¢ totalmente limitado
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Prova da Af.1. F ¢é limitado em LP(RN) e em L'(RYN)

o [ s
o J[f@), zeQ
f(x)'_{o, zeRV\Q
° (1(2) < oo, limitado)
|7 [on= 103" Wb ([ 1) = W )
p®yy  Jen T Jo T T L@ Jg a L) ,th
e F ¢ limitado em LP(Q2) c.ovale Af.1.:
F < constante, Vf € F =1 1
Hf o) = constante, Vfe&F (para p ep#1)
(hipdtese)
Prova da Af.2. para cada n € N,
pnx F={pn*f:f €T}
€ equicontinua e pontualmente limitada em C(RY)
Passo 1: p, * F C C(RYN)
-fef,xl,xgeRN (dado € > 0 tome § = £-)
one o) =pur el <[ o =) = pulan =) F)ldy

VM /RN Vpu(2) - (21 —y — (22— 9))| | f(v)|dy

2€[r1—Yy,x2—Y]

< / IVl = aall 1) ldy

= Vel |7

Vv
const.C,,

. |21 — 2]

-

L'(R
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Passo 2: p, x F é equicontinuo

s F é limitado em L'(9) (Af. 1)

|/

o F(z) = p+ f@)| < [Vul ||7]

const.C,

<(C, VferF
L(RN)

L) |21 — 2o

< C.C |y — o, VfeF

Passo 3: py * F é pontualmente limitada (equilimitada)

s @) < [ loule =0l 1Fwldy < [l 7], CxC
Cn
Prova da Af. 8. dada f € F., Hf on * [ o <, sen>:

F=oue i), = [ 1o Pla) = Fo)aa
(oo x )~ F)] =2

Eq.(F6.1): (fx*g)(zx / flz—vy)

PF6.2: fxg=g=x*f

(Fea)@) = [ ol =)y
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s D@ —F@l = | Fa—npli s = f@)

A
I

_ . p 1/p
flx—y)— fy) Ipn(y)ldy)

X (/RN Ipn(y)ldy> "

o | i \pn<y>\[/w ~

(tnf)(x):=f(x+h) / | p
= o] |7=y f = flIT0i Ay
flo=t B.1(0) ! Lrw)

n

hipétese: Ve= 5 >0, 36 >0, ¢ < dist(w, 09) tal que
I70f = Fllv) <&, YA €RY com |h| <5 eVf e F.

hipdtese da Af. 3.: n > %
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oyl <y <9

Hf—pn*f

p
o Sl = () sen>]
P(w) B (0)

1
n

Prova Af. 4. As convenientes bolas correspondentes de raio € cobrem ]:"\w
em LP(w)

[ f€ﬁ|w
o fixe n0>%
* hno "= Png * .f S Hno - Ué':l BG/Q(fJnO)

® Ny = pny * fe Bejp(f;") para algum j = j(f)

[
F— o < _ F Lok f — 70
Hf /] Lr(w) Hf pno*f"Lp(w)+‘p°*f J; LP(w)
A£.3 € €
~ §+§—6
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Observagao F7.2. &), .1 em R satisfaz as hipoteses, mas nao possui sub-
sequéncia convergente. O mesmo com nXg 1/, em L'((0,1)).
Para concluir a compacidade em LP({2) precisa uma condi¢do a mais: *

Corolario F7.3. Seja Q C RY um aberto e 1 < p < oo.
Se F C LP(Q) € limitado, satisfaz (F7.1) para todo w CC Q) e além disso vale:

dado € > 0, existe w CC Q tal que sup || f|| zr\w) < € (F7.2)
feF

Entdo F € relativamente compacto em LP((2). <

Proposicao F7.4. Seja Q C RN um aberto e 1 < p < co. Se F € rela-
tivamente compacto em LP(SY), entdo satisfaz as condi¢oes do Coroldrio F'7.5.
<

Exercicio F7.5. Prove a Proposicao acima (ex. 4.34 do [Brell]). %

Um exemplo de compacto pode ser obtido da seguinte forma:

Corolério F7.6. Seja g € LYRY) uma funcdo fiza e B um subconjunto
limitado de LP(RY), 1 < p < 0o. Se

F=gxB:={g*b:be B},

entao F |, € relativamente compacto em LP(w) para todo w C RY aberto e
limitado. <
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