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F1 Medida e integração em três páginas Aula 20

Tarefa

Leia a introdução do caṕıtulo 4 e seção 4.1 (pag.89..91) do [Bre11].

Dado um conjunto Ω,

• uma σ-álgebra em Ω é uma famı́lia não vazia M de subconjuntos de Ω,
fechada por complementação e por reunião enumerável (logo contém ∅, Ω
e é fechada por interseções enum.).

(a) ∅ ∈ M

(b) A ∈M =⇒ X \A ∈M

(c) An ∈M, n ∈ N =⇒
⋃∞
n=1An ∈M

� os elementos de M são chamados de conjuntos mensuráveis

� Se X é um espaço topológico, a σ−álgebra BX gerada pelos conjuntos
abertos em X é chamada σ−álgebra de Borel em X.

• uma medida é uma função µ :M→ [0,∞] tal que

i) µ(∅) = 0

ii1) µ

( ∞∐
j=1

Ej

)
=

∞∑
j=1

µ(Ej).

� a medida é

∗ completa, se E ⊆ F ∈M com µ(F ) = 0 implica E ∈M
∗ finita se µ(Ω) <∞
∗ σ-finita se Ω é reun. enum. de conjuntos de medida finita

� A medida de Lebesgue em RN é constrúıda de forma que seja completa
e que a medida dos (multi)retângulos seja sua (multi)área.

• (Ω,M) é um espaço mensurável, e (Ω,M, µ) é um espaço de medida

1União de uma famı́lia {Ej}∞j=1 de conjuntos disjuntos em M
1Como consequência vale µ

(⋃∞
j=1Ej

)
≤
∑∞

j=1 µ(Ej) e também A ⊆ B =⇒ µ(A) ≤ µ(B).
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• Sejam (X,M) e (Y,N ) espaços mensuráveis. Uma função f : X → Y é
mensurável se f−1(E) ∈M para todo E ∈ N .

� Se (Y,N ) é (R,BR), uma condição equivalente é f−1((a,∞)) ∈ M
para todo a ∈ R.

� mensurabilidade é preservada por soma, produto, supremo pontual,
limite pontual.

(a) f, g mensuráveis =⇒ f + g e fg são mensuráveis

(b) {fn}n∈N mensuráveis =⇒ sup
n
fn(x) e lim

n→∞
fn(x) são mensuráveis

• Seja (X,M) um espaço mensurável. Uma função simples (a valores reais)
é uma combinação linear finita de funções caracteŕısticas de elementos de
M:

φ : X → R : x 7→ φ(x) =
N∑
j=1

ajXEj
(x), x ∈ X, aj ∈ R, Ej ∈M .

Funções mensuráveis podem ser aproximadas por funções simples:

Proposição F1.1. Se f : X → [0,∞] é mensurável, existe uma sequên-
cia {φn} de funções simples tais que 0 ≤ φ1 ≤ φ2 ≤ · · · ≤ f , φn → f

pontualmente e φn → f uniformemente em qualquer subconjunto onde f é
limitada. �

Proposição. Se f : X → R é mensurável, existe uma sequência {φn}
funções simples tais que 0 ≤ |φ1| ≤ |φ2| ≤ · · · ≤ |f |, φn → f pontualmente
e φn → f uniformemente em qualquer subconjunto onde f é limitada. �

f = f+ − f−

Proposição F1.2. [Fol99, Th.2.10] Se f : X → C é mensurável, existe
uma sequência {φn} funções simples tais que 0 ≤ |φ1| ≤ |φ2| ≤ · · · ≤ |f |,
φn → f pontualmente e φn → f uniformemente em qualquer subconjunto
onde f é limitada. �
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Figura 1: f(x) = x2 + 0.2 sin(6x), x ∈ [0, 1]

EK
n := f−1

(
( k

2n
, k+1

2n
)
)
, Fn = f−1 ((n,∞))

φn(x) =
n2n−1∑
k=0

k

2n
XEKn (x) + nXFn(x) =


k

2n
, se

k

2n
≤ f(x) <

k + 1

2n
(k = 0, 1, . . . , n2n − 1),

n, se f(x) ≥ n.

• Seja (Ω,M, µ) um espaço de medida. A integral (em Ω) de uma função
mensurável f : Ω→ R, com respeito à medida µ:ˆ

Ω

f dµ ,

é definida2 aproximando f por funções simples φ e definindo

ˆ
Ω

φ dµ =
N∑
j=1

ajµ(Ej) .

´
Ω(f + g) dµ =

´
Ω f dµ+

´
Ω g dµ

[Fol99, Caṕıtulo 2]

f ≤ g q.s. =⇒
´

Ω f ≤
´

Ω g

� Importante: Funções Riemann-integráveis (em sentido próprio) são
Lebesgue-integráveis e a integral coincide.3

´
Ω |f | <∞ e µ(E) = 0 =⇒

´
E f = 0

2Precisa um pouco de cuidado: a definição é feita antes para funções não negativas, depois estendida a
funções reais ou complexas separando <e(f)± e =m(f)±.

3As impróprias absolutamente integráveis podem ser definidas diretamente como integrais Lebesgue; as não
abs.int. ainda precisam ser definidas por limite
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F1.1 Resultados importantes

Definição F1.3. Se f, g são mensuráveis, dizemos que f = g quase toda
parte (q.t.p.) [almost everywhere: a.e.] [quase sempre: q.s.] se

µ({f 6= g}) = 0.

Analogamente dizemos que uma propriedade acontece q.t.p se acontece exceto
num conjunto de medida nula. F

Teorema F1.4 [da Convergência Monótona]. Se {fn} é uma sequência
de funções mensuráveis tal que 0 ≤ fj ≤ fj+1 q.t.p. para todo j, e
f = lim

n→∞
fn(= sup

j∈N
fj), então

ˆ
f dµ = lim

n→∞

ˆ
fj dµ .

�

Proposição F1.5. Se f ≥ 0 e mensurável, então

•
ˆ
f dµ = 0 se e somente se f = 0 q.t.p.

• se

ˆ
f dµ < ∞, então {x : f(x) = ∞} é um conjunto de medida nula

(f <∞ q.t.p. ) e {x : f(x) > 0} é σ−finito.

�

Lema F1.6 [de Fatou]. Se {fn} é qualquer sequência de mensuráveis com
fn ≥ 0, então ˆ

(lim inf
n→∞

fn) dµ ≤ lim inf
n→∞

ˆ
fn dµ.

�

Teorema F1.7 [da Convergência Dominada]. 4 Seja {fn} uma sequência
em L1(µ) tal que
(a) fn → f q.t.p,
(b) existe g ∈ L1(µ) tal que |fn| ≤ g q.t.p. para todo n.

Então f ∈ L1(µ) eˆ
f dµ = lim

n→∞

ˆ
fn i.e., ‖fn − f‖1 → 0. �

4Vale para 1 ≤ p < ∞: {fn} ⊂ Lp(µ); fn → f q.t.p e ∃ g ∈ Lp(µ) com |fn| ≤ g q.t.p. para todo n. Então
f ∈ Lp(µ) e ‖fn − f‖p → 0.
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F1.2 Produtos de medidas. Tonelli e Fubini.

É também posśıvel definir produtos de medidas (no produto dos conjuntos) e
calcular integrais no produto como integrais iteradas:

ˆ
X×Y

f d(µ× ν) =

ˆ
X

[ˆ
Y

f(x, y)dν(y)

]
dµ(x)

=

ˆ
Y

[ˆ
X

f(x, y)dµ(x)

]
dν(y)

(F1.1)

Em particular:

Teorema F1.8 [de Fubini-Tonelli]. [Fol99, p.67] Suponha que (X,M, µ) e
(Y,N , ν) são espaços de medida σ−finitos.

a) (Tonelli) Se f : X × Y → [0,∞] é mensurável, então as funções g(x) =´
Y f(x, y)dν(y) e h(y) =

´
X f(x, y)dµ(x) são mensuráveis e vale (F1.1).

b) (Fubini) Se f ∈ L1(X × Y ), então f(x, ·) ∈ L1(Y ) para quase todo x ∈ X,
f(·, y) ∈ L1(X) para quase todo y ∈ Y , as funções definidas quase sempre
g(x) =

´
Y f(x, y)dν(y) e h(y) =

´
X f(x, y)dµ(x) estão em L1(X) e L1(Y ),

respectivamente, e vale (F1.1). �

F1.3 Algumas definições

Definição F1.9. Definimos a função de truncamento

Tn(z) =
z

|z|
min{n, |z|}, n ∈ N;

Note que Tn ◦ f → f pontualmente e |Tn ◦ f | ≤ |f | F

Definição F1.10. O suporte supp(f) de uma função f ∈ C(Ω) é o menor
fechado F tal que f ≡ 0|Ω\F (equivalentemente, supp(f) = {x ∈ Ω : f(x) 6= 0}).

Dizemos que f tem suporte compacto em Ω se existe um compacto K ⊂ Ω
tal que f ≡ 0 em Ω \K.

O espaço das funções cont́ınuas a suporte compacto em Ω é indicado por

Cc(Ω) F
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F2 Espaços Lp

Lembrete (veja exemplo A3.8)

Dado espaço de medida (completa) (Ω,Σ, µ) definimos

Lp(Ω,Σ, µ) = Lp(Ω) =
{

[f ] : f : Ω→ K mensuravel : ‖f‖p <∞
}

onde [f ] é a classe de equivalência de f com respeito à relação de equi-
valência “f ∼ g se f = g q.t.p”,

‖f‖p :=



(ˆ
Ω

|f |pdµ
)1/p

se p ≥ 1

‖f‖∞ := supess
x∈Ω

|f(x)|

é uma norma, onde

supess
x∈Ω

g(x) := inf{C ∈ R : g ≤ C q.t.p. em Ω}.

Lema F2.1 [Hölder]. Sejam p, q ≥ 1:
1

p
+

1

q
= 1 (p = 1, q =∞ e v.v.).

Se f ∈ Lp(Ω) e g ∈ Lq(Ω) então fg ∈ L1(Ω) e

‖fg‖1 ≤ ‖f‖p ‖g‖q �

Lema F2.2 [Minkowski]. Seja p ∈ [1,∞]. Se f, g ∈ Lp(Ω) então
f + g ∈ Lp(Ω) e

‖f + g‖p ≤ ‖f‖p + ‖g‖p �

Observação F2.3. Podemos definir Lp também com 0 < p < 1: é um
espaço vetorial mas ‖ ‖p não é uma norma.

De fato vale, para a, b ≥ 0,

ap + bp ≤ (a+ b)p ≤ 2p−1(ap + bp), p ∈ [1,∞). (F2.1)

2p−1(ap + bp) ≤ (a+ b)p ≤ (ap + bp), p ∈ (0, 1) (F2.2)

com desigualdades estritas se a, b > 0. F
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Observação F2.4. Kn e `p podem ser vistos como casos particulares de
Lp(Ω), em que Ω = N (ou menos) com P (N) sendo a σ-álgebra e com a medida µ
de contagem: Lp(N, P (N), µ) = `p e Lp(Ω = {1, . . . , N}, P (Ω), µ) = (RN , ‖·‖p)

Ω conjunto, P (Ω) é uma σ-álgebra e a medida de contagem
µ : P (Ω)→ [0,+∞] é dada por(|A| =cardinalidade de A)

µ(A) :=

{
|A| seA é finito

+∞ se A é infinito

A medida de contagem é σ-finita se só se Ω é enumerável. Ainda,
a medida de contagem é completa.

f : N→ [0,∞) : n 7→ f(n) = fn,

ˆ
N
fdµ =

∞∑
i=1

fn F

Observação F2.5 (Algumas obs. simples).

• Se µ(Ω) <∞ então Lp(Ω) ⊆ Lq(Ω) para 1 ≤ q < p ≤ ∞
(inclusão cont́ınua: ‖f‖q ≤ µ(Ω)1/q−1/p ‖f‖p).

• Se µ é medida de contagem então Lp(Ω) ⊆ Lq(Ω) para 1 ≤ p < q ≤ ∞
(inclusão cont́ınua). F

Exerćıcios

Exerćıcio F2.6. Prove que ‖ ‖∞ é mesmo uma norma.
Ainda, |f(x)| ≤ ‖f‖∞ q.s., ∀f ∈ L∞. F

Exerćıcio F2.7. Prove as desig. (F2.1)-(F2.2), calculando a imagem

da função (1+x)p

1+xp , x ∈ [0,∞). Conclua que Lp(Ω) é e.v. ∀p ∈ (0,∞] F

Exerćıcio F2.8. Se p ∈ (0, 1), então ‖ ‖p não é uma norma em Lp(Ω),
sempre que exitam A,B ∈ Σ tais que A ∩ B 6= ∅ com medidas positivas,
finitas e distintas. F

Exerćıcio F2.9. Prove as afirmações da Obs. F2.5. Prove com exem-
plos a necessidade da condição µ(Ω) < ∞ e que podem não valer as in-
clusões inversas. (X ⊆ Y com inclusão cont́ınua significa que existe C > 0:
tal que ‖·‖Y ≤ C ‖·‖X). F
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Prova da Desilgualdade de Hölder F2.1. p, q ∈ [1,∞] conjugados, f ∈ Lp(Ω),
g ∈ Lq(Ω) =⇒ fg ∈ L1(Ω) e ‖fg‖1 ≤ ‖f‖p ‖g‖q

Caso 1: p = 1 e q =∞

• f ∈ L1(Ω) =⇒
ˆ

Ω

|f | <∞

• g ∈ L∞(Ω) =⇒ |g(x)| ≤ ‖g‖∞ q.s. em Ω (Ex. F2.6)

|fg| ≤ |f | ‖g‖∞ q.s. =⇒
ˆ

Ω

|fg| ≤
(ˆ

Ω

|f |
)
‖g‖∞ <∞

∴ fg ∈ L1(Ω), e ‖fg‖1 =

ˆ
Ω

|fg| ≤
(ˆ

Ω

|f |
)
‖g‖∞ = ‖f‖1 ‖g‖∞

Caso 2: 1 < p <∞

• ‖f‖p = 0 =⇒ f = 0 q.s. =⇒ fg = 0 q.s.

‖fg‖1 =

ˆ
Ω

|fg| = 0 = ‖f‖1 ‖g‖∞

• análogo se ‖g‖p = 0

• ‖f‖p , ‖g‖p 6= 0

Lema Hölder (para soma) A2.5: Sejam p, q > 1:
1

p
+

1

q
= 1. Então,

xy ≤ 1

p
xp +

1

q
yq ∀x, y ≥ 0

• x =
|f(x)|
‖f‖p

e y =
|g(x)|
‖g‖q

:

|f(x)|
‖f‖p

|g(x)|
‖g‖q

≤ 1

p

|f(x)|p

‖f‖pp
+

1

q

|g(x)|q

‖g‖qq
, q.t. x ∈ Ω =⇒

´
Ω |f(x) g(x)|
‖f‖p ‖g‖q

≤ 1

p
+

1

q
= 1
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Prova da Desigualdade de Minkowski F2.2. p ∈ [1,∞], f, g ∈ Lp(Ω) =⇒
f + g ∈ Lp(Ω) e ‖f + g‖p ≤ ‖f‖p + ‖g‖p

• f + g ∈ Lp(Ω) ∀ p (Lp é e.v.)

Caso 1: p = 1 segue diretamente de

|f(x) + g(x)| ≤ |f(x)|+ |g(x)|

Caso 2: p =∞

• |f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ ‖f‖∞ + ‖g‖∞︸ ︷︷ ︸
C

, q.s. (Ex. F2.6)

‖f + g‖∞ = inf{C ∈ R : |f(x) + g(x)| ≤ C q.t.p. em Ω} ≤ ‖f‖∞ + ‖g‖∞

Caso 3: 1 < p <∞:

‖f + g‖pp =

ˆ
|f + g|p−1|f + g| ≤

ˆ
|f + g|p−1︸ ︷︷ ︸

∈Lq

|f |︸︷︷︸
∈Lp

+

ˆ
|f + g|p−1|g|

Holder
≤

∥∥(f + g)p−1
∥∥
q
‖f‖p +

∥∥(f + g)p−1
∥∥
q
‖g‖p

∥∥(f + g)p−1
∥∥
q

=

(ˆ
|f + g|(p−1)q

)1/q

=

(ˆ
|f + g|p

)1−1/p

=

[(ˆ
|f + g|p

)1/p
]p−1

∴ ‖f + g‖pp ≤ ‖(f + g)‖p−1
p (‖f‖p + ‖g‖p)
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Teorema F2.10 [Fischer-Riesz]. Lp é um espaço de Banach para
todo p ∈ [1,∞]. �

Demonstração.
Caso 1: p =∞

• {fn} é de Cauchy em L∞(Ω), i.e., ‖fn − fm‖∞ → 0, ∀m,n
Queremos: ∃ g ∈ L∞(Ω); ∀ε > 0, ‖fn − g‖∞ ≤ ε, n ≥ n0

⇐⇒ |fn(x)−g(x)| ≤ ε q.s. em Ω, n ≥ n0

• ∃ En ∈ Σ com µ(En) = 0; |f(x)| ≤ ‖f‖∞, x ∈ Ω \ En (fn ∈ L∞(Ω))

• ∃ En,m ∈ Σ com µ(En,m) = 0; (fn, fm ∈ L∞(Ω))

|fn(x)− fm(x)| ≤ ‖fn − fm‖∞ , x ∈ Ω \ En,m

• E := (
⋃∞
n=1En)

⋃(⋃∞
m,n=1En,m

)
• E ∈ Σ e µ(E) = 0

|fn(x)| ≤ ‖fn‖∞ , x ∈ Ω \ E, ∀n

|fn(x)− fm(x)| ≤ ‖fn − fm‖∞ , x ∈ Ω \ E, ∀n,m

• fn|Ω\E ∈ B(Ω \ E) (conjunto das funções limitadas)

• ∥∥fn|Ω\E − fm|Ω\E∥∥ = sup
x∈Ω\E

|fn(x)− fm(x)| ≤ ‖fn − fm‖∞ → 0, ∀m,n

• {fn|Ω\E} é de Cauchy em B(Ω \ E)

Exemplo [Espaço das funções limitadas] A3.18: Sejam X um conjunto
não vazio e B(X) = {f : X → K : f é limitada}

(B(X), ‖·‖), onde ‖f‖ := sup
x∈X
|f(x)|, é Banach

F11
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• {fn|Ω\E} é convergente em B(Ω \ E), i.e., ∃ f ∈ B(Ω \ E);

∀ ε > 0,∃ n0;
∥∥fn|Ω\E − f∥∥ ≤ ε, n ≥ n0

• f é mensurável (lim. de mensuráveis)

• g : Ω→ K : x 7→ g(x) =

{
f(x), x ∈ Ω \ E
0, x ∈ E

• g ∈ L∞(Ω):

|g(x)| = |f(x)| ≤ cte, q.s. =⇒ ‖g‖∞ ≤ cte

• |fn(x)− g(x)| ≤ ε q.s. em Ω, n ≥ n0

|fn(x)− g(x)| x∈Ω\E
= |fn|Ω\E(x)− f(x)| ≤

∥∥fn|Ω\E − f∥∥ ≤ ε, n ≥ n0, q.s.

Caso 2: 1 ≤ p <∞ Aula 21

• {fn} é de Cauchy em Lp(Ω), i.e.,
∀ε > 0,∃ n0; ‖fn − fm‖p ≤ ε, ∀m,n ≥ n0

Queremos mostrar que {fn} é convergente em Lp(Ω)

Basta encontrar subsequência {fnk} convergente em Lp(Ω)

Exerćıcio A2.2. Seja (X, d) um espaço métrico e (xn) ⊂ X uma sequência.
(b) se (xn) é de Cauchy e alguma subsequência dela é convergente, então a sequência
inteira é convergente.

• para cada k ∈ N tome nk < nk+1 ;
∥∥fnk − fnk+1

∥∥
p
≤ 1

2k

- escolha n1; ‖fn − fm‖p ≤ 1
2 , ∀m,n ≥ n1 (∴ n = n1,m = n2)

- escolha n2 > n1; ‖fn − fm‖p ≤ 1
22 , m, n ≥ n2 (n = n2,m = n3)

- escolha n3 > n2; ‖fn − fm‖p ≤ 1
23 , ∀m,n ≥ n3

F12
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Queremos mostrar que {fnk} é convergente em Lp(Ω), i.e.,
∃ f ∈ Lp(Ω); ‖fnk − f‖p → 0

Af. 1. {fnk(x)} ⊂ K é de Cauchy q.t.p. x ∈ Ω

• {fnk(x)} converge q.s. , i.e., (K completo)

∃ E ∈ Σ com µ(E) = 0; fnk(x)→ f̃(x), ∀x ∈ Ω \ E

• f(x) :=

{
lim
k→∞

fnk(x) = f̃(x), x ∈ Ω \ E

0, x ∈ E

• fnk(x)→ f(x) q.s. em Ω

Af. 2. ∃ h ∈ Lp(Ω); |fnk| ≤ h, q.s. em Ω, ∀ k

Teorema da Convergência Dominada F1.7. Seja {fn} ⊂ Lp(µ) tal que
(a) fn(x)→ f(x) q.t.p. x ∈ Ω,
(b) existe h ∈ Lp(µ) tal que |fn| ≤ h q.t.p. para todo n. Então f ∈ Lp(µ) e
‖fn − f‖p → 0.

• f ∈ Lp(µ) e ‖fnk − f‖p → 0

Considere gn, g : Ω→ [0,∞] definidas por

gn(x) :=
n∑
k=1

|fnk+1
(x)− fnk(x)|

g(x) := lim
n→∞

gn(x)

• gn e g são funções mensuráveis

Se

ˆ
gp dµ <∞ (g ∈ Lp(Ω)), então gp <∞ q.s. e portanto g <∞ q.s..

Proposição F1.5. Se f ≥ 0, mensurável e

ˆ
f dµ < ∞, então {x : f(x) = ∞} é

um conjunto de medida nula (f <∞ q.t.p. )
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MAIS AINDA, isso implica que:

a série
∞∑
k=1

|fnk+1
(x)− fnk(x)| converge q.s.,

ou seja,

a sequência das somas parciais gn(x) converge (e portanto é de Cauchy) q.s..

Dai,

• ∀ε > 0,∃n0; m ≥ n ≥ n0 =⇒ |gm(x)− gn(x)| < ε, q.s.

Prova da Af. 1.: {fnk(x)} ⊂ K é de Cauchy q.s.

• para m > n ≥ n0 temos

|fnm(x)− fnn(x)| ≤ |fnm(x)− fnm−1(x)|+ . . .+ |fnn+1
(x)− fnn(x)|

=
m−1∑
k=n

|fnk+1
(x)− fnk(x)| = |gm−1(x)− gn(x)| < ε q.s.

•
ˆ
gp dµ <∞, i.e., g ∈ Lp(Ω)

ˆ
gp dµ =

ˆ
lim
n→∞

gpn dµ
?
= lim

n→∞

ˆ
gpn dµ

Teorema da Convergência Monótona F1.4.
Se {hn} é uma sequência de funções mensuráveis
tal que 0 ≤ hn ≤ hn+1 q.t.p. para todo n, e
h = lim

n→∞
hn, então

ˆ
h dµ = lim

n→∞

ˆ
hn dµ .
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� 0 ≤ gn ≤ gn+1 q.t.p. para todo n

� 0 ≤ gpn ≤ gpn+1 q.t.p. para todo n (1 ≤ p <∞)

�

ˆ
gp dµ = lim

n→∞

ˆ
gpn dµ = limn→∞ ‖gn‖pp (TCM)

‖gn‖p =

∥∥∥∥∥
n∑
k=1

|fnk+1
− fnk|

∥∥∥∥∥
p

D.Minkowisk
≤

≤
n∑
k=1

‖fnk+1
− fnk‖p ≤

n∑
k=1

1

2k
≤ 1

∴ gp <∞ q.s. =⇒ g <∞ q.s.

Prova da Af. 2.: ∃ h ∈ Lp(Ω); |fnk| ≤ h, q.s. em Ω, ∀ k

• |fnm(x)− fnk(x)| ≤ |gm−1(x)− gk(x)| ∀m, k, ∀ x ∈ Ω

• m→∞:

|f(x)− fnk(x)| ≤ |g(x)− gk(x)| ≤ |g(x)|+ |gk(x)|
≤ 2g(x), q.s. ∀ k

∴ |f(x)| ≤ 2g(x) + |fnk(x)|︸ ︷︷ ︸
∈Lp(Ω)

q.s. =⇒ f ∈ Lp(Ω)

∴ |fnk(x)| ≤ |fnk(x)− f(x)|+ |f(x)| ≤ 2g(x) + |f(x)|︸ ︷︷ ︸
h∈Lp(Ω)

, q.s., ∀k
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Proposição F2.11 [“Reciproca” da conv. dominada]. Se p ∈ [1,∞]
e fn → f em Lp(Ω), então existe uma subsequência fnk que converge q.t.p e é
dominada, ou seja, existe h ∈ Lp(Ω) :
– fnk → f q.t.p.
– |fnk| ≤ h q.t.p. �

Demonstração. Exerćıcio.[Bre11, p.94-95] (usa a construção da prova do Teorema
de Fischer-Riez F2.10)

Teorema da Convergência Dominada F1.7. Sejam p ∈ [1,∞) e {fn} ⊂ Lp(µ)
tal que
(a) fn(x)→ f(x) q.t.p. x ∈ Ω,
(b) existe h ∈ Lp(µ) tal que |fn| ≤ h q.t.p. para todo n. Então f ∈ Lp(µ) e
‖fn − f‖p → 0.

F3 Convexidade, reflexividade, representação de Riesz

Teorema F3.1.

• Lp é unif. convexo e reflexivo para p ∈ (1,∞).

• Lp não é reflexivo para p = 1 e p =∞ (exceto casos “triviais”)[S.F5]

�

Teorema F3.2.

• (Lp)∗ é isometricamente isomorfo a Lp
′
, para p ∈ (1,∞).

• (L1)∗ é isometricamente isomorfo a L∞, desde que a medida seja
σ−finita.

• (L∞)∗ contém um subespaço isometricamente isomorfo a L1. O su-
bespaço é próprio (exceto casos “triviais”).

�
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Lema F3.3 [1a des. de Clarkson]. Sejam a, b ∈ K e
2 ≤ p <∞. Então∣∣∣∣a+ b

2

∣∣∣∣p +

∣∣∣∣a− b2

∣∣∣∣p ≤ |a|p + |b|p

2
. (F3.1)

Logo, se f, g ∈ Lp(Ω), 2 ≤ p <∞, então∥∥∥∥f + g

2

∥∥∥∥p
Lp

+

∥∥∥∥f − g2

∥∥∥∥p
Lp

≤ 1

2
‖f‖pLp +

1

2
‖g‖pLp . (F3.2)

�

Corolário F3.4. Lp é u.c. para p ∈ [2,∞). �

∀ ε > 0,
?
∃ δ > 0; f, g ∈ BLp , e ‖f − g‖p ≥ ε

?
=⇒

∥∥∥f+g
2

∥∥∥
p
≤ 1− δ .∥∥∥f+g

2

∥∥∥p
p
≤ 1

2 ‖f‖
p
Lp + 1

2 ‖g‖
p
Lp −

∥∥∥f−g2

∥∥∥p
Lp
≤ 1 − 1

2p ε
p =: (1− δ)p

Corolário F3.5. Lp é reflexivo para p ∈ [2,∞). �

Lp Banach (T. FR F2.10) + u.c (C. F3.5)
T.MPE3.3

=⇒ Lp reflexivo
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Lema F3.6. Sejam p e p′ conjugados.

T : Lp
′ → (Lp)∗ : u 7→ [Tu = φu : f ∈ Lp 7→ φu(f) =

ˆ
Ω

fu]

é uma isometria (linear) para p ∈ (1,∞).
O mesmo vale para p = 1 se a medida é σ−finita e vale para
p =∞. �

Corolário F3.7. Lp
′

é reflexivo para p′ ∈ (1, 2]. �

• p ∈ [2,∞)
C.F3.5
=⇒ Lp reflexivo

P.E1.3
=⇒ (Lp)∗ reflexivo

Prop. E1.3. X reflexivo =⇒ X∗ é reflexivo.

• T é linear, isometria
Ex.F3.11

=⇒ T (Lp) é s.e.v. fechado de (Lp)∗

• T (Lp) é reflexivo

Prop. E1.4 Se X é um espaço reflexivo (de
Banach), todo seu subespaço fechado é reflexivo.

• T é linear, isometria =⇒ T isom. isom. entre Lp
′

e T (Lp)

Lema E1.5 Se X e Y são e.v.n isomorfos, então
X é reflexivo se e só se Y é reflexivo.

• Lp
′

é reflexivo

Proposição F3.8. T é sobrejetora para p ∈ (1,∞).
O mesmo vale para p = 1 se a medida é σ−finita mas não vale
para p =∞ (exceto casos “triviais”). �

Em particular, mostramos o Teorema F3.2 e o seguinte
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Teorema F3.9 [de Representação de Riesz]. Sejam 1 ≤ p < ∞,
p e p′ conjugados e φ ∈ (Lp(Ω))∗ (no caso p = 1 assumimos a medida
σ−finita).
Então existe um único u ∈ Lp′(Ω) tal que

〈φ, f〉 = φ(f) =

ˆ
Ω

uf , ∀ f ∈ Lp(Ω).

Além disso ‖u‖Lp′(Ω) = ‖φ‖(Lp(Ω))∗ �

Isto permite identificar Lp
′
(Ω) e (Lp(Ω))∗.

Lema F3.6+ Proposição F3.8:

T : Lp
′ → (Lp)∗ : u 7→ [Tu = φu : f ∈ Lp 7→ φu(f) =

ˆ
Ω

fu]

- p ∈ (1,∞): é isom. isom. sobrejetor
- p = 1: é isom. isom. sobrejetor se a medida é σ-finita
- p =∞: é isom. isom. sobre a imagem

Teorema F3.2

• (Lp)∗ é isometricamente isomorfo a Lp
′
, para p ∈

(1,∞).

• (L1)∗ é isometricamente isomorfo a L∞, desde
que a medida seja σ−finita.

• (L∞)∗ contém um subespaço isometricamente
isomorfo a L1. O subespaço é próprio (exceto
casos “triviais”).
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Observação F3.10. Existe uma 2a desig. de Clarkson, que mostra que Lp

é u.c. e logo reflexivo também no caso p ∈ (1, 2] . O resultado completo é o

seguinte: [Desigualdades de Clarkson] sejam u, v ∈ Lp(Ω), e p′ =
p

p− 1
.

Se 2 ≤ p <∞, então∥∥∥∥u+ v

2

∥∥∥∥p
Lp

+

∥∥∥∥u− v2

∥∥∥∥p
Lp

≤ 1

2
‖u‖pLp +

1

2
‖v‖pLp, (F3.3)∥∥∥∥u+ v

2

∥∥∥∥p′
Lp

+

∥∥∥∥u− v2

∥∥∥∥p′
Lp

≥
(

1

2
‖u‖pLp +

1

2
‖v‖pLp

)p′−1

. (F3.4)

Se 1 < p ≤ 2, então∥∥∥∥u+ v

2

∥∥∥∥p′
Lp

+

∥∥∥∥u− v2

∥∥∥∥p′
Lp

≤
(

1

2
‖u‖pLp +

1

2
‖v‖pLp

)p′−1

, (F3.5)

22−p
(∥∥∥∥u+ v

2

∥∥∥∥p
Lp

+

∥∥∥∥u− v2

∥∥∥∥p
Lp

)
≥ 1

2
‖u‖pLp +

1

2
‖v‖pLp. (F3.6)

F

Exerćıcios

Exerćıcio F3.11. Se T : X → Y é uma isometria linear e X é Banach,
então T (X) é um s.e.v. fechado. (ver p. E8) F

Exerćıcio F3.12. Faça os exerćıcios 4.2, 4.3, 4.4, 4.5, 4.6, 4.7 (p.
118...) do [Bre11]. F
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F3.1 Demonstrações

F3.1.1 1a. Desigualdade de Clarkson

Prova da 1a des. de Clarkson: Sejam a, b ∈ K e 2 ≤ p <∞. Então∣∣∣∣a+ b

2

∣∣∣∣p +

∣∣∣∣a− b2

∣∣∣∣p ≤ |a|p + |b|p

2
. (F3.1)

Logo, se f, g ∈ Lp(Ω), 2 ≤ p <∞, então∥∥∥∥f + g

2

∥∥∥∥p
Lp

+

∥∥∥∥f − g2

∥∥∥∥p
Lp

≤ 1

2
‖f‖pLp +

1

2
‖g‖pLp . (F3.2)

Demonstração.

• Eq. (F3.2) segue da Eq. (F3.1)

considere a = f(x), b = g(x), a definição de ‖·‖p e note que f, g, f+g, f−g ∈ Lp.
Portanto todas essas funções são finitas q.s. e ainda suas integrais sob um
conjunto de medida nula valem zero:

´
Ω =
´

Ω\E +
´
E =
´

Ω\E (µ(E) = 0)

Af. 1. αp + βp ≤ (α2 + β2)p/2, ∀ α, β ≥ 0

� β = 0: ok

� β 6= 0:

αp+βp ≤ (α2+β2)p/2 ⇐⇒
(
α

β

)p
+1 ≤ (α2 + β2)p/2

(β2)p/2
=

((
α

β

)2

+ 1

)p/2

⇐⇒

((
α

β

)2

+ 1

)p/2

−
(
α

β

)p
− 1 ≥ 0

� f(x) := (x2 + 1)p/2 − xp − 1, x ≥ 0

Queremos f(x) ≥ 0, ∀ x ≥ 0

� f é crescente em [0,∞) (pois f ′ ≥ 0) e f(0) = 0
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Af. 2.

(
α2

2
+
β2

2

)p/2
≤ 1

2
(αp + βp) 5

• tome α =
∣∣a+b

2

∣∣, β =
∣∣a−b

2

∣∣ na Af. 1 e depois α = |a|, β = |b| na Af. 2 e
(F3.1) está provado

F3.1.2 Demonstração T : Lp
′ → (Lp)∗ é isom. isom. (sobrejetor) Aula 22

Prova do Lema F3.6: Sejam p e p′ conjugados.

T : Lp
′ → (Lp)∗ : u 7→ [Tu = φu : f ∈ Lp 7→ φu(f) =

ˆ
Ω

fu]

é uma isometria (linear) para p ∈ (1,∞).
O mesmo vale para p = 1 se a medida é σ−finita e vale para p =∞.

Demonstração.

• T é linear (∀ p ∈ [1,∞])

(I) Tu ∈ (Lp)∗, ∀ u ∈ Lp′ e ‖Tu‖(Lp)∗ ≤ ‖u‖p′ ∀ u ∈ Lp (∀ p ∈ [1,∞])

• Tu : Lp → K é linear

• Tu é limitado

|Tu(f)| = |φu(f)| =

∣∣∣∣∣∣
ˆ

Ω

f︸︷︷︸
Lp

u︸︷︷︸
Lp′

∣∣∣∣∣∣ ≤ ‖f‖p ‖u‖p′
Desilgualdade de Hölder F2.1. p, q ∈ [1,∞] conjugados, f ∈
Lp(Ω), g ∈ Lq(Ω) =⇒ fg ∈ L1(Ω) e ‖fg‖1 ≤ ‖f‖p ‖g‖q

∴ ‖Tu‖(Lp)∗ = sup
f∈Lp

‖f‖p≤1

|Tu(f)| ≤ ‖u‖p′

5use f(x) := xp + 1− 2
(

x2

2 + 1
2

)p/2
, x ≥ 0
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(II) ‖u‖p′ ≤ ‖Tu‖(Lp)∗

Queremos ‖u‖p′ ≤ ‖Tu‖(Lp)∗ = sup
f∈Lp

f 6=0

|Tu(f)|
‖f‖p

Basta mostrar que ∃ f0 ∈ Lp, f0 6= 0; ‖u‖p′ =
|Tu(f0)|
‖f0‖p

‖u‖p
′

p′ =
´

Ω |u|
p′ =
´

Ω |u|
p′−2 |u|2 =

´
Ω |u|

p′−2ū︸ ︷︷ ︸
f0 ??

u
?
=
(
Tu(f0 ??)
‖f0‖p

)p′
• f0 está bem definida? está em Lp? ‖f0‖p = 0, 6= 0,=? ???

� para p = 1, não: p′ = ∞ e não faz sentido a expressão |u|p′−2: mais
trabalho

� para p ∈ (1,∞): precisa ver o caso em que p′ − 2 pode ser negativo e
arrumar a expressão para fazer sentido

� p =∞: p′ = 1 e mesmo caso anterior com atenção nas normas

• f0(x) :=

|u(x)|p′−2ū(x) = |u(x)|p′−1 ū(x)

|u(x)|
, u(x) 6= 0

0, u(x) = 0
,

• f0 está bem definida para p ∈ (1 ,∞) e é mensurável

• f0 ∈ Lp

‖f0‖pp =

ˆ
Ω

|f0|p =

ˆ
Ω\{u=0}

∣∣∣|u|p′−2ū
∣∣∣p =

ˆ
Ω\{u=0}

(
|u|p′−1

∣∣∣∣ ū|u|
∣∣∣∣)p︸ ︷︷ ︸

|u|

p(p
′ − 1)︸ ︷︷ ︸
p′

=

ˆ
Ω\{u=0}

|u|p′ +
ˆ
{u=0}

|u|p′ = ‖u‖p
′

p′ <∞

• ‖f0‖p = 0 =⇒ ‖u‖p′ = 0 =⇒ u = 0 q.s. e (II) vale
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• ‖f0‖p 6= 0 =⇒ ‖u‖p′ =
|Tu(f0)|
‖f0‖p

e (II) vale

Tu(f0) =

ˆ
|u|p′−2ū u = ‖u‖p

′

p′ =⇒

=⇒ |Tu(f0)|
‖f0‖p

=
‖u‖p

′

p′

‖f0‖p
=
‖u‖p

′

p′

‖u‖
p′
p

p′

= ‖u‖p
′−p′

p

p′ = ‖u‖
p′
p (p−1)

p′ = ‖u‖p′

• para p =∞: p′ = 1,

f0 =


ū(x)

|u(x)|
, u(x) 6= 0

0, u(x) = 0
, Tu(f0) = ‖u‖1 , ‖f0‖∞ =

{
0

1
e (II) vale

• para p = 1: p′ =∞:

(II’) ‖u‖∞ ≤ ‖Tu‖(L1)∗

Passo 1: µ(Ω) <∞

Aε := {x ∈ Ω : |u(x)| ≥ ‖Tu‖(L1)∗ + ε} (ε > 0)

Basta mostrar que µ(Aε) = 0, ∀ε > 0 pois dáı

|u(x)| < ‖Tu‖(L1)∗ + ε q.t.p. x ∈ Ω

‖u‖∞ = inf{c : |u(x)| ≤ c q.s. em Ω} ≤ ‖Tu‖(L1)∗ + ε, ∀ε > 0

e vale (II’)

f0(x) :=


ū(x)

|u(x)|
XAε

(x), u(x) 6= 0

0, u(x) = 0

• f0 está bem definida e é mensurável
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• f0 ∈ L1(Ω)

ˆ
Ω

|f0| =
ˆ

Ω\{u=0}

|ū(x)|
|u(x)|

XAε
(x)

u6=0
=

emAε

ˆ
Aε

1 = µ(Aε) ≤ µ(Ω) <∞

‖f0‖1 = µ(Aε)

• qual propriedade |Tu(f0)| satisfaz ???

|Tu(f0)| ≤ ‖Tu‖(L1)∗ ‖f0‖1 = ‖Tu‖(L1)∗ µ(Aε) , ∀ε > 0

|Tu(f0)| =

∣∣∣∣ˆ
Ω

f0u

∣∣∣∣ =

∣∣∣∣ˆ
Ω

ū(x)

|u(x)|
XAε

(x)u(x)

∣∣∣∣ =

∣∣∣∣ˆ
Ω

|u(x)|XAε
(x)

∣∣∣∣
=

ˆ
Aε

|u(x)|

def.Aε

≥
(
‖Tu‖(L1)∗ + ε

) ˆ
Aε

1

=
(
‖Tu‖(L1)∗ + ε

)
µ(Aε), ∀ε > 0

•
(
‖Tu‖(L1)∗ + ε

)
µ(Aε) ≤ ‖Tu‖(L1)∗ µ(Aε), ∀ε > 0

• µ(Aε) = 0 para todo ε > 0

se para algum ε > 0, µ(Aε) 6= 0(
‖Tu‖(L1)∗ + ε

)
≤ ‖Tu‖(L1)∗ ��
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Passo 2: Ω é σ-finito

Basta mostrar que Aε := {x ∈ Ω : |u(x)| ≥ ‖Tu‖(L1)∗ + ε} tem medida nula

• ∃ Ωn ∈ Σ; Ω =
⋃
n∈N

Ωn com µ(Ωn) <∞ (Ω σ-finito)

• Aε =
⋃
n∈NA

n
ε ,

An
ε := {x ∈ Ωn : |u(x)| ≥ ‖Tu‖(L1)∗ + ε}

• µ(An
ε ) = 0, ∀ n (Passo 1: µ(Ωn) <∞)

• µ(Aε) = 0

Prova da Proposição F3.8:

T : Lp
′ → (Lp)∗ : u 7→ [Tu = φu : f ∈ Lp 7→ φu(f) =

ˆ
Ω

fu]

é sobrejetora para p ∈ (1,∞).
O mesmo vale para p = 1 se a medida é σ−finita mas não vale para p =∞ .

Demonstração.
Caso 1 < p <∞

• T (Lp
′
) é s.e.v. fechado em (Lp)∗

Ex. F3.11: Se T : X → Y é uma isometria linear e X é Banach, então T (X) é
um s.e.v. fechado. (ver p. E8: prova de dual refl. implica esp. refl.)

Basta mostrar que T (Lp
′
) é denso em (Lp)∗, pois dáı

T (Lp
′
) = T (Lp′) = (Lp)∗

Ex. B2.6 Um subespaço M de em e.v.n. X é denso se e só se vale que

∀φ ∈ X∗ t.q. φ|M = 0, vale φ ≡ 0
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• Φ ∈ (Lp)∗∗; Φ|T (Lp′) = 0, i.e., Φ(T (u)) = 0, ∀ u ∈ Lp′

Queremos Φ = 0

• Lp é reflexivo (Corolários F3.5 (p ∈ [2,∞])+F3.7(p ∈ (1, 2]))

• J : Lp → (Lp)∗∗ o mergulho canônico é sobrejetor

• ∃ f ∈ Lp; quad Jf = Φ

Basta mostrar que f = 0 (lembre: f = 0 ∈ Lp diz f = 0 q.s.)

0 = Φ(T (u)) = Jf (T (u))
Def.J

= Tu(f) =

ˆ
fu, ∀ u ∈ Lp′

• u(x) :=

|f(x)|p−2f̄(x) = |f(x)|p−1 f̄(x)

|f(x)|
, f(x) 6= 0

0, f(x) = 0

∈ Lp′ (p.F23)

•
0 =

ˆ
fu =

ˆ
f |f(x)|p−2f̄(x) =

ˆ
|f(x)|p p<∞

= ‖f‖pp

• f = 0 q.s.

Caso p = 1

T : L∞ → (L1)∗ : u 7→ [Tu = φu : f ∈ L1 7→ φu(f) =

ˆ
Ω

fu]

Passo 1: µ(Ω) <∞

• φ ∈ (L1)∗

Queremos u ∈ L∞; Tu = φ

• L2(Ω) ⊆ L1(Ω) (p = 1, q = 2)

|φ(f)|
φ∈(L1)∗

≤ ‖φ‖(L1)∗ ‖f‖1

O.F2.5
≤ c ‖φ‖(L1)∗ ‖f‖2 , ∀ f ∈ L2

Obs. F2.5. Se µ(Ω) <∞ então Lq(Ω) ⊆ Lp(Ω) para 1 ≤ p < q ≤ ∞
(inclusão cont́ınua: ‖f‖p ≤ µ(Ω)1/p−1/q ‖f‖q).
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• φ|L2 ∈ (L2)∗

• T : L2 → (L2)∗ é sobrejetor (Caso 1 < p <∞)

• ∃ u ∈ L2; Tu = φ|L2, i.e.,

ˆ
Ω

fu = φ(f), ∀ f ∈ L2

Af. 1. u ∈ L∞

Como na prova anterior: Mostraremos que ‖u‖∞ ≤ ‖φ‖(L1)∗

Aε := {x ∈ Ω : |u(x)| ≥ ‖φ‖(L1)∗ + ε} , f0(x) :=
ū(x)

|u(x)|
XAε

(x)

� f0 ∈ L1(Ω)

�

(
‖Tu‖(L1)∗ + ε

)
µ(Aε) ≤ ‖Tu‖(L1)∗ µ(Aε), ∀ε > 0

� µ(Aε) = 0 para todo ε > 0

Af. 2. Tu = φ, i.e.,

ˆ
Ω

fu = φ(f), ∀ f ∈ L1

Função de truncamento: Tn(z) = z
|z| min{n, |z|}, n ∈ N;

Tn ◦ f → f pontualmente e |Tn ◦ f | ≤ |f |

Figura 2: Tn(f) =

{
f |f | ≤ n
sg(f)n n < |f |

onde sg(f) = f
|f | . No caso real, sg(f) = ±1. No caso complexo,

|sg(f)| = 1 e Tnf(x) altera o módulo sem alterar a direção de f(x) (caso n < |f(x)|)
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• seja f ∈ L1

• Tn(f) função de truncamento é mensurável

• Para cada n, |Tnf | ≤ n

• Tn(f) ∈ Lp (∀ p ∈ [1,∞]) (µ(Ω) <∞)

• |Tnf | ≤ |f | e Tnf(x)→ f(x)

Teorema da Convergência Dominada F1.7. Seja {fn} ⊂ L1(µ) tal que
(a) fn(x)→ f(x) q.t.p. x ∈ Ω,
(b) existe h ∈ L1(µ) tal que |fn| ≤ h q.t.p. para todo n. Então f ∈ L1(µ) e
‖fn − f‖1 → 0.

• Tnf → f em L1

• φ(Tnf)→ φ(f) em L1 (φ cont́ınua)

• φ(Tnf)
Tnf∈L2

= Tu(Tnf) =

ˆ
uTnf →

ˆ
uf em L1 (TCD F1.7)

u(x)Tnf(x)→ u(x)Tf(x)

|uTnf | ≤ ‖u‖∞ |Tf | ≤ ‖u‖∞ |f |

• φ(f) =

ˆ
uf = Tu(f)

Passo 2: Ω é σ-finito Justifique as passagens!

• ∃ Ωn ∈ Σ; Ω =
∐
n∈N

Ωn com µ(Ωn) <∞ (Ω σ-finito)

Sejam φ ∈ (L1)∗ e f ∈ L1(Ω):

• ∃ un ∈ L∞(Ωn); Tun(f) = φ(f)

• u :=
∑∞

n=1 un está bem definida e u ∈ L∞(Ω) (‖u‖∞ ≤ ‖φ‖)
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• un = uXΩn

• fn := fXΩn

•
∞∑
n=1

fn → f em L1

•
ˆ N∑

n=1

unf →
ˆ
uf em L1 (TCD)

•
ˆ N∑

n=1

unf → φ(f) em L1 (φ cont́ınua)

• φ(f) =

ˆ
uf = Tu(f)
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F4 Densidade, separabilidade Aula 23

Um espaço métrico (X, d) é dito separável se existir um subconjunto enumerável
D ⊆ X que é denso em X.

Alguns resultados da teoria da medida:

• ([Fol99, Th.2.40]) Se E ⊆ RN é Lebesgue mensurável, então sua me-
dida de Lebesgue satisfaz

µ(E) = inf {µ(A) : E ⊆ A aberto} = sup {µ(K) : E ⊇ K compacto}

Além disso, se µ(E) < ∞, para cada ε > 0 existe uma coleção finita
de retângulos disjuntos {Rj}mj=1 cujos lados são intervalos tais que
µ(E∆ ∪mj=1 Rj) < ε.a

aE∆R = (E \R) ∪ (R \ E), diferença simétrica

Proposição F4.1. [Fol99, p.183..]

(a) Se 1 ≤ p ≤ ∞, o conjunto das funções simples f =
∑N

j=1 ajXEj
é denso

em Lp(Ω).

(b) Se 1 ≤ p <∞, os Ej podem ser tomados de medida finita.

(c) Se Ω ⊆ RN e a medida é a de Lebesgue, os Ej de medida finita podem ser
substitúıdos por (multi-)retângulos de extremos racionais. �

Demonstração.
(a)

• f ∈ Lp e ε > 0

Queremos φ =
∑N

j=1 ajXEj
para algum N , Ej ∈ Σ; ‖φ− f‖p < ε

Proposição F1.2. Se f : X → C é mensurável, existe uma sequência {φn}
funções simples tais que 0 ≤ |φ1| ≤ |φ2| ≤ · · · ≤ |f |, φn → f pontualmente e
φn → f uniformemente em qualquer subconjunto onde f é limitada.
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• ∃ φn =

Nn∑
j=1

anjXEnj
com anj 6= 0 e Enj ∩ Enk = ∅;

� 0 ≤ |φ1| ≤ |φ2| ≤ · · · ≤ |f |
� φn → f pontualmente

� φn → f uniformemente em qualquer subconjunto onde f é limitada

1 ≤ p <∞:

• |φn| ≤ |f | ∈ Lp

• φn ∈ Lp , ∀ n

• φn(x)→ f(x) em Ω

Teorema da Convergência Dominada F1.7. Seja {fn} ⊂ Lp(µ) tal que
(a) fn(x)→ f(x) q.t.p. x ∈ Ω,
(b) existe h ∈ Lp(µ) tal que |fn| ≤ h q.t.p. para todo n. Então f ∈ Lp(µ) e
‖fn − f‖p → 0.

• ‖φn − f‖p → 0, i.e., ∃n0; ‖φn − f‖p ≤ ε, ∀n ≥ n0

• tome φ = φn0: ‖φ− f‖p ≤ ε

p =∞:

Exerćıcio F2.6: |f(x)| ≤ ‖f‖∞ q.s., ∀f ∈ L∞.

• f é limitada q.s.

• φn → f uniformemente q.s., i.e.,

∃n0; n ≥ n0 =⇒ |φn(x)− f(x)| ≤ ε, q.s.

• ‖φn − f‖∞ = inf{c : |φn(x)− f(x)| ≤ c q.s. em Ω} ≤ ε, n ≥ n0

• tome φ = φn0: ‖φ− f‖∞ ≤ ε
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(b) Se 1 ≤ p <∞, os Ej podem ser tomados de medida finita

Af.: µ(Enj) <∞, ∀j (Enj como em (a))

1 ≤ p <∞:

• (Enj ∩ Enk = ∅ e φn ∈ Lp )

‖φn‖pp =

ˆ
|φn|p =

ˆ ∣∣∣∣∣
Nn∑
j=1

anjXEnj
(x)

∣∣∣∣∣
p

X
Enj

(x) 6=0

=
max. unico j

ˆ Nn∑
j=1

|anj |pXEnj
(x)

=

Nn∑
j=1

|anj |p
ˆ
X

Enj
(x)

=

Nn∑
j=1

|anj |pµ(Enj) < ∞

• µ(Enj) <∞ (anj 6= 0)

Note que para p =∞:

‖φn‖∞ = inf{c :

∣∣∣∣∣∣
Nn∑
j=1

anjXEnj (x)

∣∣∣∣∣∣ ≤ c q.s. em Ω} = inf{c :
∣∣anj ∣∣ ≤ c q.s. em Ω} <∞

mas não envolve µ(Enj )
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(c) Se Ω ⊆ RN e a medida é a de Lebesgue, os Ej de medida finita podem
ser substitúıdos por (multi-)retângulos de extremos racionais.

• ∃ φ =
∑Nn

j=1 anjXEnj
, µ(Enj) <∞; ‖φ− f‖p ≤ ε

2 (item (a)+(b))

• para cada Enj , existe uma coleção finita de retângulos disjuntos {R̃njk};
µ(Enj ∆ ∪k R̃njk) <

δ
2

([Fol99, Th.2.40]) Se E ⊆ RN é Lebesgue mensurável e µ(E) < ∞, para cada
ε > 0 existe uma coleção finita de retângulos disjuntos {Rj}mj=1 cujos lados são
intervalos tais que µ(E∆ ∪mj=1 Rj) < ε.a

aE∆R = (E \R) ∪ (R \ E), diferença simétrica

• existe uma coleção finita de retângulos {Rnjk} com vértices em Q tais que
µ(Enj ∆ ∪k Rnjk) < δ (QN é denso em RN )

• φ̃ :=
∑Nn

j=1 anjX∪kRnjk

Queremos δ adequado de modo que
∥∥∥φ̃− φ∥∥∥

p
≤ ε

2

∥∥∥φ̃− f∥∥∥
p
≤
∥∥∥φ̃− φ∥∥∥

p
+ ‖φ− f‖p ≤

ε

2
+
ε

2
= ε

Af. Para δ =??, vale
∥∥∥φ̃− φ∥∥∥

p
≤ ε

2
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• ∥∥∥φ̃− φ∥∥∥
p

=

∥∥∥∥∥
Nn∑
j=1

anj

(
X∪kRnjk

−X
Enj

)∥∥∥∥∥
p

Minkowki
≤

Nn∑
j=1

|anj |
∥∥∥X∪kRnjk

−X
Enj

∥∥∥
p

≤ max
j
{|anj |p}

Nn∑
j=1

∥∥∥X∪kRnjk
−X

Enj

∥∥∥
p

• ∣∣∣X∪kRnjk
(x)−X

Enj
(x)
∣∣∣ =

{
1, x ∈ (∪kRnjk \ Enj) ∪ (Enj \ ∪kRnjk) =Enj∆ ∪k Rnjk

0, c.c.

• ∥∥∥X∪kRnjk
−X

Enj

∥∥∥p
p

=

ˆ ∣∣∣X∪kRnjk
(x)−X

Enj
(x)
∣∣∣p = µ(Enj∆ ∪k Rnjk)

• ∥∥∥φ̃− φ∥∥∥
p
≤ max

j
{|anj |p}

Nn∑
j=1

(µ(Enj∆ ∪k Rnjk) )1/p

≤ max
j
{|anj |p}Nn︸ ︷︷ ︸

c=c(n,p)>0

δ 1/p

• para δ =
(
ε
2c

)p
vale

∥∥∥φ̃− φ∥∥∥
p
≤ ε

2

A demonstração anterior fornece: se Ω ⊆ RN e a medida é a de Lebesgue, então o
conjunto das funções simples f =

∑N
j=1 ajXRj , aj ∈ R, Rj multi-retângulos com vértices

racionais, é denso em Lp(Ω). Como Q é denso em R, prove que “aj ∈ R podem ser
substitúıdos por bj ∈ Q”. (Análogo se aj ∈ C)

Logo, o conjunto das funções simples f =
∑N

j=1 ajXRj , aj ∈ Q (resp. Q + iQ), Rj multi-

retângulos com vértices racionais, é enumerável e denso em Lp(Ω).
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Corolário F4.2. Se Ω ⊂ RN e a medida é a de Lebesgue, então Lp(Ω)
é separável para 1 ≤ p <∞. �

Proposição F4.3. L∞(Ω,M, µ) não é separável (exceto casos “trivi-
ais”) �

Prova da Proposição F4.3 para o caso Ω ⊂
aberto

RN . [Bre11, p.103]

Proposição E2.7. Se existe uma famı́lia não enumerável de abertos em X, não
vazios e 2 a 2 disjuntos, então X não é separável.

• a ∈ Ω, ∃ ra > 0; Bra(a) ⊂ Ω (Ω ⊂
aberto

RN )

• Oa :=
{
f ∈ L∞(Ω) :

∥∥f −X
Bra (a)

∥∥
∞ < 1

2

}
• cada Oa é não vazio∥∥X

Bra (a)

∥∥
∞ = 1 e X

Bra (a)
∈ Oa :

∥∥X
Bra (a)

−X
Bra (a)

∥∥
∞ = 0 < 1

2

• cada Oa é aberto

Oa = B 1
2
(X

Bra (a)
)

• {Oa}a∈Ω é não enumerável (todo aberto não vazio de RN é não enumer.)

• Oa ∩Ob = ∅, a 6= b

f ∈ Oa ∩Ob =⇒∥∥∥XBra (a)
−X

Brb
(b)

∥∥∥
∞
≤
∥∥∥XBra (a)

− f
∥∥∥
∞

+
∥∥∥f −XBrb (b)∥∥∥∞ <

1

2
+

1

2
= 1

|X
Bra (a)

(x)−X
Brb

(b)
(x)| =


1, x ∈ Bra(a)∆ Brb(b)︸ ︷︷ ︸

6= ∅, µ > 0

0, c.c.

=⇒
∥∥∥XBra (a)

−X
Brb

(b)

∥∥∥
∞

= 1

��
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Proposição F4.4. Se Ω ⊂ RN é aberto e a medida é a de Lebesgue,
então Cc(Ω) é denso em Lp(Ω) para 1 ≤ p <∞. �

Demonstração.

• f ∈ Lp e ε > 0

• S := {
∑N

j=1 ajXEj
, µ(Ej) <∞} é denso em Lp(Ω)

Proposição F4.1. (a) Se 1 ≤ p ≤ ∞, o conjunto das funções simples f =∑N
j=1 ajXEj é denso em Lp(Ω). (b) Se 1 ≤ p < ∞, os Ej podem ser tomados

de medida finita.

• ∃ φ ∈ S; ‖f − φ‖p ≤ ε
2

Basta mostrar que para cada E ∈ Σ com µ(E) < ∞, ∃ f ∈ Cc(Ω);
‖X

E
− f‖p ≤ ε

2const .

∃g =
∑
ajfj ∈ Cc; ‖φ− g‖p =

∥∥∥∑ aj

(
X

Ej
− fj

)∥∥∥
p
≤ const.ε

‖f − g‖p ≤ ‖f − φ‖p + ‖φ− g‖p ≤ ε

(ver pag. F35)

• E ∈ Σ com µ(E) <∞

• ∃ A ⊇ E (A ⊂ Ω) aberto e K ⊆ E compacto; µ(A \K) < εp (Ω ab.)

([Fol99, Th.2.40]) Se E ⊆ RN é Lebesgue mensurável, então sua medida de
Lebesgue satisfaz

µ(E) = inf {µ(A) : E ⊆ A aberto} = sup {µ(K) : E ⊇ K compacto}
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Resultado da topologia: lema de Urysohn
(versão particular)

� ([Fol99, p. 122]) Sejam (X, d) um espaço métrico,
A ⊂ X um aberto e K ⊂ A um compacto.
Então, existe uma função f ∈ C(X, [0, 1]) tal que
X

K
≤ f ≤ X

A
. A saber

f(x) =
d(x,X \ A)

d(x,X \ A) + d(x,K)
.

Ainda mais, f = 1 em K, f = 0 em X \ A e
f ∈ Cc(X, [0, 1]).

• ∃f ∈ Cc(Ω); X
K
≤ f ≤ X

A
(K ⊂ A ⊂ Ω)

• X
K
≤ X

E
≤ X

A
(K ⊂ E ⊂ A)

Queremos ‖X
E
− f‖p ≤ ε

‖X
E
− f‖pp =

ˆ
Ω

|X
E
− f |p

X
E

- f ≤ X
A

- X
K

− (X
A
−X

K
) = X

K
− X

A
≤ X

E
- f

}
=⇒ |X

E
−f | ≤ X

A
−X

K

• (K ⊂ A ⊂ Ω)

‖X
E
− f‖pp ≤

ˆ
Ω

|X
A
−X

K
|p = µ(A \K)1/p < ε
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Exerćıcios

Exerćıcio F4.5. Lp(Ω,M, µ) é separável para 1 ≤ p < ∞ se M é
gerada por uma famı́lia enumerável de seus elementos (espaço de medida
separável). Veja exemplo de espaço de medida e comentários em [Bre11,
p. 98]. F

Exerćıcio F4.6. Procure exemplos de

• Lp(Ω,M, µ) não separável com p ∈ (1,∞).
(Dica: Lp(R, P (R), µ), µ medida de contagem)

• sequência limitada em L1([0, 1]) (medida de Lebesgue) que não admite
subsequências fracamente convergentes.

• φ ∈ (L1)∗ que não pode ser representada por u ∈ L∞.

F

Exerćıcio F4.7. Mostre que (C(R,R), ‖ ‖∞) não é separável. F
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F5 Particularidades de L1 e L∞

Quando a medida é σ−finita (por ser o dual de L1), L∞ tem as propriedades:

• a bola fechada é compacta na σ∗ = σ(L∞, L1),

T. Banach-Alaoglu D5.2. Seja X um e.v.n. A bola fechada BX∗ = {f ∈
X∗ : ‖f‖ ≤ 1} é compacta na topologia fraca∗ σ(X∗, X).

• quando L1 é separável, a bola fechada é metrizável e seq. limitadas tem
subseq conv. fraco∗

T. E2.10 Seja X um e.v.n. X é separável, se e somente se, (BX∗ , σ(X∗, X))
é metrizável.
C. E2.14. Se X é um e.v.n. separável e {fn} é uma sequência limitada de X∗,
então existe subsequência {fnk} que converge em σ(X∗, X) (conv. fraca∗).

• (L∞)∗ contém um subespaço isometricamente isomorfo a L1, que coincide
com a imagem da isometria T1 : L1 → (L∞)∗ : f 7→ [φf : u 7→

´
Ω fu]

Isto permite identificar L1 e T1(L
1) ⊆ (L∞)∗.

Porém (exceto casos triviais quando L1 é reflexivo), T1 não é sobrejetora

(L. F3.6 + P. F3.8)

• Quando L1 e L∞ são e.v.n. finito dimensionais (medida com apenas
finitos conjuntos de medida positiva, a menos de conjuntos nulos), vale

� eles são reflexivos e separáveis,

� (L∞)∗ é isometricamente isomorfo a L1 e (L1)∗ é isometricamente iso-
morfo a L∞

• em caso contrário

� L1 e L∞ não são reflexivos e L∞ não é separável.

� (L1)∗ é isometricamente isomorfo a L∞ se a medida é σ-finita mas
(L∞)∗ não é isometricamente isomorfo a L1. (L. F3.6 + P. F3.8)

� se a medida não é σ−finita pode existir φ ∈ (L1)∗ não representado
por uma u ∈ L∞ (Ex. F4.6)
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Prova: L1(Ω) não é reflexivo se Ω ⊂
aberto

RN e a medida é a de Lebesgue. [Bre11, p. 101]

• S.P.G.: 0 ∈ Ω

• µ(B1/n(0)) > 0

• fn := αnXB1/n
∈ L1(Ω), αn := µ(B1/n(0))−1 (fn ≥ 0)

ˆ
Ω

|fn| =
ˆ

Ω

µ(B1/n(0))−1X
B1/n

= µ(B1/n(0))−1

ˆ
B1/n

1 = 1

• ‖fn‖1 = 1

• {fn} é seq. limitada em L1(Ω)

• Supor L1(Ω) é reflexivo

T. E2.15. Seja X um e.v.n reflexivo (de Banach) e {xn} uma sequência limi-
tada em X . Então existe uma subsequência {xnk} que converge em σ(X,X∗)
(conv. fraca).

• ∃ {fnk} e ∃ f ∈ L1(Ω); fnk ⇀ f

• Φ(fnk)→ Φ(f) ∀ Φ ∈ (L1)∗

P. D3.7. Seja {xn} uma sequência em X. Temos que:
(i) xn ⇀ x ⇐⇒ φ(xn)→ φ(x) ∀ φ ∈ X∗

•
ˆ

Ω

ϕfnk →
ˆ

Ω

ϕf ∀ ϕ ∈ L∞ (medida de Lebesgue é σ-finita)

T. de Representação de Riesz]F3.9. Sejam 1 ≤ p <∞, p e p′ conjugados
e Φ ∈ (Lp(Ω))∗ (no caso p = 1 assumimos a medida σ−finita).
Então existe um único ϕ ∈ Lp′(Ω) tal que

〈Φ, f〉 = Φ(f) =

ˆ
Ω
ϕf , ∀ f ∈ Lp(Ω).

L. F3.6 + P. F3.8: T : Lp
′ → (Lp)∗ é bijetora
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Af.

ˆ
Ω

gfnk = 0 ∀g ∈ Cc(Ω \ {0}), ∀ nk sufic. grande

• g ∈ Cc(Ω \ {0}) =⇒ g ∈ L∞

Dizemos que f tem suporte compacto em Ω se existe um compacto K ⊂ Ω
tal que f ≡ 0 em Ω \K.
*cont́ınua de suporte compacto é limitada*

•
ˆ

Ω

gf = lim

ˆ
Ω

gfnk
Af.
= 0, ∀g ∈ Cc(Ω \ {0})

• f = 0 q.s. em Ω

Outro resultado de medida

� ([Fol99]) Seja Ω um aberto de RN e f definida em Ω
tal que fX

K
∈ L1(Ω), para todo K ⊂ Ω compacto.

Se ˆ
Ω

gf = 0, ∀g ∈ Cc(Ω)

então f = 0 q.s. em Ω.

• ϕ = 1 ∈ L∞ :

1 = ‖fnk‖1 =

ˆ
Ω

fnk →
ˆ

Ω

f = 0 ��

Prova Af.:

ˆ
Ω

gfnk = 0 ∀g ∈ Cc(Ω \ {0}), ∀ nk sufic. grande

• supp(g) ⊂ Ω \ {0}

• B1/nk(0) * supp(g) para nk sufic. grande

ˆ
Ω

gfnk =

ˆ
Ω

gαnXB1/nk

= αn

ˆ
B1/nk

g = 0
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Prova: L∞(Ω) não é reflexivo .

• L1 é Banach (Teorema F2.10)

• (L1)∗ ≈ L∞ (T. de Representação de Riesz F3.9)

• L∞(Ω) reflexivo =⇒ (L1)∗ reflexivo =⇒ L1 reflexivo ��

P. E1.6. Se X é um espaço de Banach e X∗ é reflexivo, então X é reflexivo.
L. E1.5. Se X e Y são e.v.n isomorfos, então X é reflexivo se e só se Y é
reflexivo.

Exerćıcios

Exerćıcio F5.1 (EF1). Faça o exerćıcio 4.13 (p. 121...) do [Bre11].
F

Exerćıcio F5.2 (Espaços Lp: B,S,R,U.C.). Preencha a seguinte tabela
com S (para sim) e N (para não). Especifique, se necessário, o espaço de
medida.

Ban. Separ. Refl. U.C. Dual (Ω,Σ, µ)

(L∞(Ω), ‖ · ‖∞)

(L1(Ω), ‖ · ‖1)

(Lp(Ω), ‖ · ‖p), p ∈ (1,∞)

F

Fim da Aula 23
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F6 Convolução cont. Aula 28

Definição F6.1.

• O suporte supp(f) de uma função f ∈ C(Ω) é o menor fechado F tal que
f |F c ≡ 0.

O suporte de uma função (classe de eq.) f ∈ Lp(Ω) é a interseção dos
fechados F tais que f |F c = 0 q.t.p.

Vale que f = 0 q.t.p. no complementar de supp(f)

• Dadas f, g : RN → K definimos a convolução de f com g por:

(f ∗ g)(x) =

ˆ
RN

f(x− y)g(y)dy . (F6.1)

• Se f : RN → R, h ∈ RN , definimos a translação

(τhf)(x) := f(x+ h).

F

Proposição F6.2. Se as integrais (F6.1) correspondentes existem,

• f ∗ g = g ∗ f
• (f ∗ g) ∗ h = f ∗ (g ∗ h)

• τh(f ∗ g) = (τhf) ∗ g = f ∗ (τhg)

• supp(f ∗ g) ⊂ supp(f) + supp(g).
Em particular, se os supp. de f, g são compactos então o de f ∗ g também
é compacto. �

Teorema F6.3. Se f ∈ L1(RN) e g ∈ Lp(RN) com 1 ≤ p ≤ ∞, então,

• f(x− y)g(y) é integrável em y (para q.t.x)

• f ∗ g ∈ Lp(RN) e

‖f ∗ g‖p ≤ ‖f‖1 ‖g‖p. �

Demonstração. Caso p =∞:

• |g(y)| ≤ ‖g‖∞ q.s. em RN
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• |f(x− y)g(y)| ≤ |f(x− y)| ‖g‖∞ q.s. em RN

• y 7→ f(x− y)g(y) é integrável em RN (f ∈ L1)

•
|(f ∗ g)(x)| ≤

ˆ
RN

|f(x− y)| |g(y)|dy ≤ ‖g‖∞ ‖f‖1

(mud. variav. e |J | = 1)

• ‖(f ∗ g)(x)‖∞ ≤ ‖g‖∞ ‖f‖1

Caso p = 1:

• F (x, y) := f(x− y)g(y)

• ˆ
RN

|F (x, y)|dx =

ˆ
RN

|f(x− y)| |g(y)|dx = |g(y)|
ˆ
RN

|f(x− y)|dx

= |g(y)| ‖f‖1 <∞, para q.t.p. y ∈ RN

(g ∈ L1)

Prop. F1.5. Se f ≥ 0 é mensurável e

ˆ
f dµ < ∞, então {x : f(x) = ∞} é

um conjunto de medida nula (f <∞ q.t.p. )

•
ˆ
RN

dy

ˆ
RN

|F (x, y)|dx =

ˆ
RN

|g(y)|dy
ˆ
RN

|f(x− y)|dx = ‖g‖1 ‖f‖1 <∞

• F ∈ L1(RN × RN)

Teorema de Tonelli. Sejam X e Y abertos de RN . Se F : X × Y → R é
tal que

´
X |F (x, y)|dx < ∞ q.t.p. y ∈ Y e

´
Y dy

´
X |F (x, y)|dx < ∞ então

F ∈ L1(X × Y ).
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• F (x, ·) ∈ L1(RN) para quase todo x ∈ RN

Teorema Fubini. Sejam X e Y abertos de RN . Se F ∈ L1(X × Y ),
então F (x, ·) ∈ L1(Y ) para quase todo x ∈ X , F (·, y) ∈ L1(X) para quase

todo y ∈ Y , as funções definidas quase sempre g(x) =
´
Y |F (x, y)|dy e

h(y) =
´
X |F (x, y)|dx estão em L1(X) e L1(Y ), respectivamente, e vale

ˆ
X×Y

|F | dxdy =

ˆ
X

[ˆ
Y
|F (x, y)|dy

]
dx =

ˆ
Y

[ˆ
X
|F (x, y)|dx

]
dy

• y 7→ f(x− y)g(y) é integrável em y para q.t. x ∈ RN (f ∈ L1)

•

‖f ∗ g‖1 =

ˆ
RN

|(f ∗ g)(x)|dx

≤
ˆ
RN

[ˆ
RN

|f(x− y)| |g(y)|dy
]
dx

Fubini
=

ˆ
RN

[ˆ
RN

|f(x− y)| |g(y)|dx
]
dy

=

ˆ
RN

|g(y)|dy
ˆ
RN

|f(x− y)| dx = ‖g‖1 ‖f‖1

Caso 1 < p <∞:

• g ∈ Lp =⇒ gp ∈ L1

• f ∈ L1 =⇒ f 1/p ∈ Lp ou f 1/q ∈ Lq

• f ∗ gp ∈ L1 (caso p = 1)
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•

|(f ∗ g)(x)|p ≤
(ˆ

RN

|f(x− y)| |g(y)|dy
)p

=

ˆ
RN

|f(x− y)|1/p |g(y)|︸ ︷︷ ︸
∈Lp

|f(x− y)|1/q︸ ︷︷ ︸
∈Lq

dy

p

Holder
≤

‖fg‖1≤‖f‖p‖g‖q

[(ˆ
RN

|f(x− y)| |g(y)|pdy
)1/p (ˆ

RN

|f(x− y)|dy
)1/q

]p

=
[

((|f | ∗ |g|p)(x))1/p ‖f‖1/q
1

]p
= (|f | ∗ |g|p)(x) ‖f‖p/q1

•
ˆ
RN

|(f ∗ g)(x)|pdx =

ˆ
RN

(|f | ∗ |g|p)(x)dx ‖f‖p/q1 <∞

(f ∗ gp ∈ L1, caso p = 1)

• (f ∗ g) ∈ Lp

•

‖f ∗ g‖p ≤
[ˆ

RN

(|f | ∗ |g|p)(x)dx ‖f‖p/q1

]1/p

= ‖f‖1/q
1 ‖ |f | ∗ |g|p ‖1/p

1

caso1
≤ ‖f‖1/q

1 (‖f‖1 ‖g
p‖1)

1/p

= ‖f‖1

(
‖g‖pp

)1/p

= ‖f‖1 ‖g‖p
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F6.1 Sequência regularizante

Na prova do Teorema de Frechét-Kolmogorov usaremos seq. reguralizantes:

Definição F6.4. Chamamos sequência regularizante (ou de molificado-
res) toda sequência (ρn)n≥1 de funções tais que

ρn ∈ C∞c (RN), supp(ρn) ⊂ B 1
n
(0),

ˆ
ρn = 1, ρn ≥ 0 em RN .

F

Exemplo F6.5. Um exemplo pode ser constrúıdo assim: seja ρ : RN → R:

ρ(x) =

 e
1

‖x‖2−1 , ‖x‖ < 1

0, ‖x‖ ≥ 1.

Então ρ ∈ C∞(RN), supp(ρ) ⊂ B1(0) e

ˆ
RN

ρ(x)dx > 0.

Logo,

ρn :=

(ˆ
RN

ρ(x)dx

)−1

nNρ(nx)

fornece uma sequência regularizante. F

Figura 3: Geogebra
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Sequências regularizantes também são usadas para provar que o espaço das
funções de classe C∞ com suporte compacto é denso em Lp:

Proposição F6.6. Se f ∈ Ck
c (RN) e g ∈ L1

loc(RN) então 6

f ∗ g ∈ Ck(RN) e Dα(f ∗ g) = (Dαf) ∗ g, |α| ≤ k. �

Proposição F6.7. Seja ρn uma sequência regularizante.

• Se f ∈ C(RN) então ρn ∗ f → f uniformemente em compactos de
RN .

• Se f ∈ Lp(RN), 1 ≤ p <∞, então ρn ∗ f → f em Lp(RN). �

Uma função cont́ınua em um compacto é uniformemente cont́ınua.

Ver Figuras na próxima página.

Corolário F6.8. Seja Ω ⊂ RN um aberto qualquer. Então C∞c (Ω) é
denso em Lp(Ω) para 1 ≤ p <∞. �

Corolário F6.9. Seja Ω ⊂ RN um aberto qualquer e u ∈ L1
loc(Ω) tal que´

uf = 0 para toda f ∈ C∞c (Ω). Então u = 0 q.t.p. em Ω. �

6Ck
c (Ω) := Ck(Ω) ∩ Cc(Ω)

Lp
loc(Ω) é o espaço das funções que são Lp(K) para qualquer compacto K ⊂ Ω
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Figura 4: Wikipedia

Figura 5: em azul a função f , artigo Axiomatization of Gradient Smoothing in Neural Networks

Figura 6: verde: n = 200, artigo Non-Differentiable Functions in Machine Learning
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Compactos em C(K): Arzelá-Ascoli

Um conjunto E num espaço métrico (X, d), é dito totalmente
limitado se, para cada ε > 0, E pode ser coberto por um número
finito de bolas de raio ε.

Teorema F6.10. [Fol99, p.15] Um conjunto E num espaço
métrico (X, d), é compacto se e só se é completo e tot. limitado.

�

E totalmente limitado =⇒
:
E limitado

E totalmente limitado ⇐⇒ E totalmente limitado

Definição F6.11. Uma famı́lia F de funções é dita

• equicont́ınua em x se para todo ε > 0 existe uma vizinhança U de x tal
que |f(y)− f(x)| < ε para y ∈ U e f ∈ F ,

• equicont́ınua se for equicont́ınua em todo ponto

• pontualmente limitada se {f(x) : f ∈ F} é limitado para todo x. F

Teorema F6.12 [Arzelá-Ascoli]. [Fol99, p.137] Se K é um espaço compacto e
Hausdorff e F uma famı́lia equicont́ınua e pontualmente limitada em (C(K), ‖ ‖∞),
então F é totalmente limitada e seu fecho é compacto (F é relativamente com-
pacto). �
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F7 Compactos em Lp: Fréchet-Kolmogorov

Teorema F7.1 [Fréchet-Kolmogorov]. Seja Ω ⊂ RN um aberto, ω ⊂⊂ Ω
7 e 1 ≤ p <∞. Se F ⊆ Lp(Ω) satisfaz:

• F é limitado

• ∀ ε > 0, ∃ δ > 0, δ < dist(ω, ∂Ω) tal que

‖τhf − f‖Lp(ω) < ε, ∀h ∈ RN com |h| < δ e ∀f ∈ F .
(F7.1)

Então F | ω é relativamente compacto em Lp(ω), i.e., F | ω é compacto. �

Demonstração.

• F | ω é completo (Lp é completo)

Exerc. A2.12 Um subconj. fechado de um espaço métrico completo é completo

Basta motrar que F | ω é totalmente limitado

Dado ε > 0 queremos f1, . . . , fl ∈ LP (ω);

F | ω ⊂
l⋃

j=1

Bε(fj)

• SPG: Ω limitado

ω ⊂ Ω e ω ⊂ Bn(0)

Ω̃ = Ω ∩Bn(0) é aberto, limitado e ω ⊂⊂ Ω̃

• f ∈ F

• f̃ : RN → R

f̃(x) :=

{
f(x), x ∈ Ω

0, x ∈ RN \ Ω

7 ω ⊂⊂ Ω significa que ω é aberto e ω é um compacto contido em Ω.
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• F̃ := {f̃ : f ∈ F}

Af. 1. F̃ é limitado em Lp(RN) e em L1(RN)

Af. 2. para cada n ∈ N, (ρn uma seq. regularizante)

ρn ∗ F̃ = {ρn ∗ f : f ∈ F̃}

é equicont́ınua e pontualmente limitada em C(RN), logo

Hn := (ρn ∗ F̃)|ω
é equicont́ınua e pontualmente limitada em C(ω)

• Hn é relativamente compacto em C(ω) (ω compacto, T. Ascoli-Arzelá)

• Hn é totalmente limitado em C(ω)

• Hn (e ∴ Hn) é totalmente limitado em Lp(ω): ∃ fn1 , . . . , fnl ∈ Lp(ω);

(µ(Ω) <∞, Ω ltdo)

Hn ⊂
l⋃

j=1

Bε/2(f
n
j )

Ideia: queremos ‖f |ω − fj‖ < ε para algum j

‖f |ω − fj‖Lp(ω) ≤ ‖f |ω − hn‖Lp(ω)︸ ︷︷ ︸
??

+ ‖hn − fj‖Lp(ω)︸ ︷︷ ︸
ok!!

hn = ρn ∗ f̃
f |ω = f̃ |ω (ω ⊂ Ω,f |Ω = f̃ |Ω)

Af. 3. dada f̃ ∈ F̃|ω,
∥∥∥f̃ − ρn ∗ f̃∥∥∥

Lp(ω)
< ε

2 , se n > 1
δ

Af. 4. As convenientes bolas correspondentes de raio ε cobrem F̃ |ω em Lp(ω)

• F̃ |ω = F|ω

• F | ω ⊂
⋃l
j=1Bε(f

n
j ), F|ω é totalmente limitado
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Prova da Af.1. F̃ é limitado em Lp(RN) e em L1(RN)

•
∥∥∥f̃∥∥∥

Lp(RN )
= ‖f‖Lp(Ω)

f̃(x) :=

{
f(x), x ∈ Ω

0, x ∈ RN \ Ω

• (µ(Ω) <∞, limitado)∥∥∥f̃∥∥∥
L1(RN )

=

ˆ
RN

|f̃ | =
ˆ

Ω

|f |.1
Holder
≤ ‖f‖Lp(Ω)

(ˆ
Ω

1

)1/q

= ‖f‖Lp(Ω) µ(Ω)︸︷︷︸
const.

• F é limitado em Lp(Ω) ∴ vale Af.1.:∥∥∥f̃∥∥∥
Lp(RN )

≤ constante, ∀f̃ ∈ F̃ (para p = 1 e p 6= 1)

(hipótese)

Prova da Af.2. para cada n ∈ N,

ρn ∗ F̃ = {ρn ∗ f : f ∈ F̃}

é equicont́ınua e pontualmente limitada em C(RN)

Passo 1: ρn ∗ F̃ ⊂ C(RN)

� f̃ ∈ F̃ , x1, x2 ∈ RN (dado ε > 0 tome δ = ε
Cn

)

|ρn ∗ f̃(x1)− ρn ∗ f̃(x2)| ≤
ˆ
RN

|ρn(x1 − y)− ρn(x2 − y)| |f̃(y)|dy

TVM
=

z∈[x1−y,x2−y]

ˆ
RN

|∇ρn(z) · (x1 − y − (x2 − y))| |f̃(y)|dy

≤
ˆ
RN

‖∇ρn‖∞ ‖x1 − x2‖ |f̃(y)|dy

= ‖∇ρn‖∞
∥∥∥f̃∥∥∥

L1(RN )︸ ︷︷ ︸
const.Cn

‖x1 − x2‖
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Passo 2: ρn ∗ F̃ é equicont́ınuo

� F̃ é limitado em L1(Ω) (Af. 1.)∥∥∥f̃∥∥∥
L1(RN )

≤ C, ∀f̃ ∈ F̃

�

|ρn ∗ f̃(x1)− ρ ∗ f̃(x2)| ≤ ‖∇ρn‖∞︸ ︷︷ ︸
const.Cn

∥∥∥f̃∥∥∥
L1(RN )

‖x1 − x2‖

≤ CnC ‖x1 − x2‖ , ∀f̃ ∈ F̃

Passo 3: ρn ∗ F̃ é pontualmente limitada (equilimitada)

�

|ρn ∗ f̃(x)| ≤
ˆ
RN

|ρn(x− y)| |f̃(y)|dy ≤ ‖ρn‖∞︸ ︷︷ ︸
Cn

∥∥∥f̃∥∥∥
L1(RN )

≤ CNC

Prova da Af. 3. dada f̃ ∈ F̃|ω,
∥∥∥f̃ − ρn ∗ f̃∥∥∥

Lp(ω)
< ε

2 , se n > 1
δ

•
∥∥∥f̃ − ρn ∗ f̃∥∥∥p

Lp(ω)
=

ˆ
ω

|(ρn ∗ f̃)(x)− f̃(x)|pdx

|(ρn ∗ f̃)(x)− f̃(x)| =?

Eq.(F6.1) : (f ∗ g)(x) =

ˆ
RN

f(x− y)g(y)dy

P.F6.2: f ∗ g = g ∗ f

(f ∗ g)(x) =

ˆ
RN

g(x− y)f(y)dy
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•

|(ρn ∗ f̃)(x)− f̃(x)| =

∣∣∣∣ˆ
RN

f̃(x− y)ρn(y) dy − f̃(x)

∣∣∣∣
´
ρn = 1

=

∣∣∣∣ˆ
RN

f̃(x− y)ρn(y) dy −
ˆ
RN

ρn(y)f̃(x)dy

∣∣∣∣
≤

ˆ
RN

∣∣∣f̃(x− y)− f̃(y)
∣∣∣ |ρn(y)|dy

=

ˆ
RN

∣∣∣f̃(x− y)− f̃(y)
∣∣∣ |ρn(y)|1/p︸ ︷︷ ︸

∈Lp

|ρn(y)|1/q︸ ︷︷ ︸
∈Lq

dy

Holder
≤

(ˆ
RN

∣∣∣f̃(x− y)− f̃(y)
∣∣∣p |ρn(y)|dy

)1/p

×
(ˆ

RN

|ρn(y)|dy
)1/q

´
ρn=1
=

supp(ρn)⊂B 1
n

(0)

(ˆ
B 1

n
(0)

∣∣∣f̃(x− y)− f̃(y)
∣∣∣p |ρn(y)|dy

)1/p

• ∥∥∥f̃ − ρn ∗ f̃∥∥∥p
Lp(ω)

≤
ˆ
ω

ˆ
B 1

n
(0)

∣∣∣f̃(x− y)− f̃(y)
∣∣∣p |ρn(y)|dydx

Fubini
=

ˆ
B 1

n
(0)

|ρn(y)|
[ˆ

ω

∣∣∣f̃(x− y)− f̃(y)
∣∣∣p dx] dy

(τhf)(x):=f(x+h)
=

f̃ |ω=f

ˆ
B 1

n
(0)
|ρn(y)| ‖τ−yf − f‖pLp(ω)dy

hipótese: ∀ ε= ε
2 > 0, ∃ δ > 0, δ < dist(ω, ∂Ω) tal que

‖τhf − f‖Lp(ω) < ε, ∀h ∈ RN com |h| < δ e ∀f ∈ F .

hipótese da Af. 3.: n > 1
δ
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• |y| < 1
n < δ∥∥∥f̃ − ρn ∗ f̃∥∥∥p

Lp(ω)
≤
(
ε
2

)p ˆ
B 1

n
(0)

|ρn(y)| dy =
(
ε
2

)p
se n > 1

δ

Prova Af. 4. As convenientes bolas correspondentes de raio ε cobrem F̃ |ω
em Lp(ω)

• f̃ ∈ F̃|ω

• fixe n0 >
1
δ

• hn0 := ρn0 ∗ f̃ ∈ Hn0 ⊂
⋃l
j=1Bε/2(f

n0
j )

• hn0 = ρn0 ∗ f̃ ∈ Bε/2(f
n0
j ) para algum j = j(f̃)

• ∥∥∥f̃ − fn0j ∥∥∥
Lp(ω)

≤
∥∥∥f̃ − ρn0 ∗ f̃∥∥∥

Lp(ω)
+
∥∥∥ρn0 ∗ f̃ − fn0j ∥∥∥

Lp(ω)

Af.3

≤ ε

2
+
ε

2
= ε

• f̃ ∈ Bε(f
n0
j )

• F̃ | ω ⊂
⋃l
j=1Bε(f

n0
j )
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Observação F7.2. X[n,n+1] em R satisfaz as hipóteses, mas não possui sub-
sequência convergente. O mesmo com nX(0,1/n) em L1((0, 1)).
Para concluir a compacidade em Lp(Ω) precisa uma condição a mais: F

Corolário F7.3. Seja Ω ⊂ RN um aberto e 1 ≤ p <∞.
Se F ⊆ Lp(Ω) é limitado, satisfaz (F7.1) para todo ω ⊂⊂ Ω e além disso vale:

dado ε > 0, existe ω ⊂⊂ Ω tal que sup
f∈F
‖f‖Lp(Ω\ω) < ε. (F7.2)

Então F é relativamente compacto em Lp(Ω). �

Proposição F7.4. Seja Ω ⊂ RN um aberto e 1 ≤ p < ∞. Se F é rela-
tivamente compacto em Lp(Ω), então satisfaz as condições do Corolário F7.3.

�

Exerćıcios

Exerćıcio F7.5. Prove a Proposição acima (ex. 4.34 do [Bre11]). F

Um exemplo de compacto pode ser obtido da seguinte forma:

Corolário F7.6. Seja g ∈ L1(RN) uma função fixa e B um subconjunto
limitado de Lp(RN), 1 ≤ p <∞. Se

F = g ∗ B := {g ∗ b : b ∈ B},

então F |ω é relativamente compacto em Lp(ω) para todo ω ⊂ RN aberto e
limitado. �
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F4.6 Exerćıcio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F39
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