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E1 Reflexividade

Um e.v.n. X é reflexivo quando o mergulho candnico é sobrejetor:

J: X — X
r — J@)=%: X* =K
$p—  D(¢) = (Jr)(0) = p(z) = $()

E1.1 Adjunto do adjunto

Sejam X, Y espacos de Banach e T: D(T) cx — Y

T°:D(T") CY =>X":1g=Tg=f

S.e.v.

onde
D(T*)={ge€eY*:goT:D(T)— K é limitada}

e f =goT é a unica extensao linear continua em X de goT.

(T*g)(x) =g(Tx) VY xe€ D(T), g€ D(T).

(I"g,x)x-x = (9. Tx)y~y ¥V xe€D(T), ge D(T").

J:Y'x X" > X xY": (g, f) —> (—f, g) (isomof., Proposicao C3.6)

G(T)" = J(G(T7))
T™* ¢ linear e fechado. (Teorema (2.3)
T é fechada = D(T™) separa os pontos de Y
Vy € Y \{0},3 g € D(T"); g(y) # 0.
Spoiler: Se Y é reflexivo entdao D(T™) é denso em Y*. Podera ser definido o adjunto do

adjunto.

TelLX,)Y)=T e L(Y* X*) e |T| =T
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Proposicao E1.1. Seja T' : D(T) cx — Y wuma transformagao linear
densamente definida e fechada. Se 'Y ¢é reflexivo entao D(T™*) é denso em Y™,

Podemos definir o adjunto do adjunto <

Demonstracao.

Exercicio B2.6. Um subespaco M de um e.v.n. X é denso se e sé se vale que

Vo € X* t.q. ¢|pr =0, vale p =0

e supor D(T*) nao é denso em Y™

eID Y\ {0} Blpi =0

e JycY\{0}; P=Jy (Y é reflexivo: J(Y) = Y**)
e D(T*) separa pontos de Y (T fechada, Teorema a C2.3)

e 39 D(IT); ¢(y) #0

T:D(T)cx — Y dens. def. fechada, Y reflexivo

T :D(T") CY" - X":g—T'g=f dens. def

S.€.v.

T :D(T™) C X 5 Y* . 0 TH0 =10

S.€.V.

Proposicao E1.2. Sejam X,Y espacos reflexivos, T : D(T) cx — Y uma
transformacao linear densamente definida e fechada. Entao, T** : D(T*™) cx= —
Y** satisfaz (apds identificacao de X com X** e de’Y com Y*)

T =T.

Demonstracao. Exercicio. ]
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E1.2 Principais resultados

Proposicao E1.3. Se X ¢é um espaco reflexivo (de Banach), entdo X* é
reflexivo. <

Proposicao E1.4. Se X ¢ um espaco reflexivo (de Banach), todo seu su-
bespaco fechado € reflexivo. <

Lema E1.5. Se X eY sao e.v.n isomorfos, entao X € reflexivo se e so se
Y ¢ reflexivo. <

As Proposicoes E1.3, Proposicoes E1.4 e o Lema E1.5, implicam:

Proposicao E1.6. Se X é um espago de Banach e X* € reflexivo, entao X
¢ reflexivo. <

As Proposicoes E1.3 e E1.6 implicam:

Teorema E1.7. Seja X um espaco de Banach. Entao, X € reflexivo
se, e somente se, X* € reflexivo. <

E1.2.1 Prova da Proposicao: X refl. — X* refl.

Prova da Proposi¢ao E1.3: X reflexivo (de Banach) = X* ¢ reflexivo.

e X Banach (Proposigao D4.2)

e 0 mergulho canonico J é sobrejetor: J(X) = X** (X reflexivo)
J: X — X
r +— J(@): X*=>K
¢or—  (Jo)(¢) = o(x)
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° \:[I G X***

Queremos: ¢ € X*; K(¢p)=U

— K(8)(¥) = T(), V) € X

J é bijetor
A

K(¢)(Jx) =¥ (Jz),Vr € X
o JH: X" = X* étq (J*\I/) € X* e vale (ppdd de adjunto)
(J*®)(z) = ®(Jx) ¥ z€ X, de X

U(Jz) = JU() L ogpre) LY k) voreXx

E1.2.2 Prova da Proposigao: s.e.v. fech. de refl. é refl.

Prova da Proposi¢ao F1.4: X reflexivo (de Banach) = Mfs'?d X é reflexivo.

o mergulho canonico Jx é sobrejetor: Jyx(X) = X** (X reflexivo)
Jx : X — X*
y — Jx(y): X* =K

¢—  (Jxy)(d) = é(y)

Queremos o mergulho canénico Jy; sobrejetor: Jy, (M) = M**

Jy: M —s M
r — Ju(r): M*—=K
br— (Juz) (@) = ¥(z)
ie, Voe M™, Jv e M; Jyr =¢
McC X % X e e Iy
5 SR

1 _oe ex
29 Jx 0?7

MF* In(J5770) = ¢

@ 20— J5770 e M ?
N e’
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e R:X*—> M":pr— R(g@) :gle (restrigao)
m R ¢ linear
m R é sobrejetora (T. H-B para e.v.n.B2.3)
Coroléario[Extensao de funcional mantendo a norma] B2.3 Sejam X um e.v.n. sobre K, M um subespago e
f € M*. Entao existe um funcional fG X* tal que ﬂ]u =f e Hf”X* = Ifllar= -

o R : M™ — X**

o pc M™
Afl. z = J)}lR*gp e M
Af2. Jy(z)=¢ -
Prova da Af.1. v := Jy'R*¢ € M

e Suponha z € X \ M

Teorema [Existem muitos funcionais|B2.4 a. M s.e.v. fechado de X e
10 € X\ M =, f € X", flu =0, e f(zo) = d(zo, M) > 0.

e JYyeX* : Wy=0, Y(x) # 0.

ef Ju def =

def . * ppdd R+
0 # 9(z) X Ix(z)(¢) Txam R R ¢ oeD e beDn p(RY)
def R
= o(Ylm) = »0) = 0 e
Prova da Af.2. Jy(z) = @, ie., Jy(z)(W) = @) V¢ € M*
o e M
e dne X™; R??ZU‘MZ’Qb (R: X*— M*: ¢~ R(p) = p|m ésobrej.)
def R def Jas def R
Te@)@) = Ju@)(abe) "L @) L Rate) L)
reM d(ix % ppch*
MEX JXx(n) JXx:R*’l/) R (p(n p€DRrx nEDR ()O(Rn)
def R
=" plu) =e(¥) O
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E1.2.3 Prova da Proposicao: e.v.n. isom.: X refl. <= Y refl. Aula 16

Prova do Lema FE1.5: Se X e Y sao e.v.n. isomorfos, entao X ¢é reflexivo (de
Banach) se e s6 se Y é reflexivo (de Banach).

Jy 1Y = Y= J(Y) o mergulho canénico: (Y reflexivo)

(Syy) (@) =¥(y), VyeY, veY

Jx : X = J(X) C X* o mergulho canonico:
(Jxz)(¢) = ¢(z), Vze X, ¢€ X"
Queremos: Jy sobrejetor: Vo c X* J3re X Jyx= e,

U(vil') = J4\'.L1,f<()) — (P(o), Vo € X*

XY Xy
I \Jy !
poo Por—1
K=’ x_—o y W g K= x+_©  y="P g
w ] |
X p Y
ec: X—>Y: xr—o(r)=y o isomorfismo (linear, bij., isomético)

e T X Y ¢d=1(0):Y =K: ye (7¢)(y) = ¢l (y))

¢ XT YT 0 p(R): Y K ¥ (p@)(¥) = R(r7H(Y))
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e T e p sao isomorfismos

Queremos: = =?? € X; ¢(z) = Jxa(p) = ®(¢), Vo € X* X <Z ! Y

e dc X pe X
o o= 0 (7 (p(®)) € X

def._Jy

2(0) = (r'(r9)) = p(@)(r0) 227 Jry(re) Z=D ro(y)

ey

prXT YT e p(@): Y K ¢ (p0)(¥) = 2(77(1))

Jy Y = Y sobrejetor: JyeY; Jyy = p(P)

E1.2.4 Prova da Proposicao: X Banach e X* refl. — X refl.

Prova da Proposicao E1.6: Se X é um espaco de Banach e X* é reflexivo, entao
X é reflexivo.

e 0 mergulho canonico J : X — J(X) é um isomorfirmo

o X é reflexivo (Prop. E1.3, X* é refl.)
Af.l J(X) C X* és.e.v. fechado

e J(X) é reflexivo (Prop. E1.4, X** é refl.)

e X ¢ reflexivo (Lema E1.5)
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Prova da Af.1:

e dc J(X)

Queremos: ¢ € J(X), i.e., Jr¢€ X;Jxx =

e dx,eX; Jxzx,—

e {Jxx,} é de Cauchy (é convergente)
e I PN

e {x,} é de Cauchy

e {x,} é convergente: x, — x € X (X Banach)

o Jxx, — Jxx (Teo. D4.1, Jx é cont.)

o Jxx =97 (unicidade)

]

De fato a prova anterior fornece: Se X é Banach,
e J(BX) c X** é fechado na topologia forte - (note: ||z|| =lim||z,|| < 1)
Logo,

e J(BX) é denso em BX™ na topologia forte 7x- se s6 se

[ T k% JE—
J(BX) = J(BX) = BX™
Ainda, se X e.v.n.,

e J(BX) = BX" se s6 se X é reflexivo

J(BX) = BX™ — X & reflexivo, i.e, J(X) = X**

S d — —
P e X = @€ B (0), p/algum r>0=> %€ BX™ = J(BX) = ® € J(Bx(0)) C J(X)
X é reflexivo = J(BX) = BX™ (hip.: J é isometria, sobrej.)

o€ BX = |Jz| e = ||2]|y <1 = J(BX)C BX™~ - J(BX) c BX™

e dcBXT X 2 3 e X, Jr=0

|zl = [J2] xur = [|®]| xoe <1= z€ BX e &cJ(BX) - BX™ c J(BX)
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Exercicio E1.8. £, com p € (1,00) é reflexivo. M p51] *
Exercicio E1.9. Nao sao reflexivos #1, ¢, coo, Co € C . *
Conclua:

o A reciproca da Proposicio E1.3 ndo vale(dual reflexs esp.refl.), o0y g

isometricamente isomorfo a /5.

e No caso particular de sequencias finitas (K"), temos entao que o dual
de (K", || ||,,) ¢ isometricamente isomorfo a (K", || |[,). Isso inclusive para
p = oo (podemos ver K" como subconjunto de ¢y). Todos sdo entao
reflexivos.

Teorema de Riez A5.7:

Em um e.v.n. X temos entdo que Bit (0) é compacta (na topologia forte)
se e s6 se X tem dimensao finita.

E10
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E1.2.5 Teorema de Kakutani

Teorema E1.10 [Kakutani]. Seja X um e.v.n..

X € reflexivo se, e somente se, BX ¢ compacta na topologia fraca.
<

Lema E1.11. Seja X um e.v.n.. Entao, J : X, — X&' é
continua e (quando existe) sua inversa € continua. <

J(BX) é denso em BX™" com a topologia forte

X Banach J(BiX) _ W
X ewn. .
<£2™ X reflexivo

Lema E1.12 [Lema (Goldstine)]. Seja X um e.v.n. Entdo

J(BX) € denso em BX™ com a topologia o* = o(X**, X*).
Também J(X) é denso em X** com a mesma topologia. <

Lema E1.13 [Lema (Helly) ]. Sejam X um
e.v.n., (fi,-.., fn) € (X)", acK" e

T: X —>K":z— (fi(z),..., fulz));
entao, sao equivalentes

i) Para todo € > 0 existe x. € BX tal que
1T (ze) — aflo <
ii) Para todo B € K",

B-al < |[B-T|

X* -
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Prova do Teorema Kakutani F1.10: X é reflexivo se s6 se BX é compacta na
topologia fraca.

(=)
o J: X — X*™ é bijetor (X reflexivo)
° W = J(ﬁ) - BX = J7Y(BX)

J(BX) = BX"™ se s6 se X ¢é reflexivo (pdg. E9)

e BX™ é compacta na topologia fraca*™ do bidual o* = o(X**, X*) (T. B-A)

Teorema Banach-Alaoglu D5.2. Seja X um e.v.n. A bola fechada BX" =
{f € X*:||f|| £1} é compacta na topologia fraca* o(X*, X).

o J: (X* o(X* X)) = (X,0(X, X*)) é continua

Lema E1.11. Seja X um e.v.n.. Entao, J : X, — X} é continua e (quando
existe) sua inversa J ! : X** — X, é continua.

e BX = J-1(BX™) é compacto na top. fraca de X (Ex. de top. D5-(a))
(=)
e BX & compacto na topologia fraca (hip6tese)
e J(BX) é compacto na topologia fraca* do bidual o(X**, X*) (Lemma E1.11)
e J(BYX) é fechado na topologia fraca* do bidual o(X**, X*) (Ex. de top.
D5-(b))
J(ﬁ) _ J(ﬁ) G()ng/fn(i W

Lema (Goldstine) E1.12 Seja X um e.v.n.. Entdo J(BX) é denso em BX™

com a topologia o* = o(X™**, X*).
o X ¢ reflexivo (pag. E9)
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Juntando resultados obtidos, temos esta importante consequéncia:

Corolario E1.14. Seja X € um espago reflexivo (de Banach). Se K C
X € fechado, limitado e convexo, entao K é compacto na topologia fraca.
<

Demonstracao.
e K é fechado na top. fraca O'(X, X*) (T. Mazur, K fech. conv. top. forte)

Teorema Mazur D3.10 Se X é um e.v.n. sobre K e C C X é convexo, sao
equivalentes:

a) C fechado na topologia forte
b) C fechado na topologia fraca

e K C BX(0), para algum R > 0 (K limitado)

e B{¥(0) é compacto na top. fraca (Kakutani, X reflexivo)

e BX(0) = RB{¥(0) compacto na top. fraca

e K é compacto na top. fraca (Ex. de top. D5-(c))

]

E1.2.6 Prova dos Lemas Técnico, Helly e Goldstine

Aula 17

A seguir provaremos os Lemas E1.11, de Helly E1.13 e Goldstine E1.12.

E13
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Prova do Lema E1.11: Seja X um e.v.n.. Entao, J : X, — X} é continua e
(quando existe) sua inversa é continua.

Proposicao D3.3 T' é continua se, e somente se, poT : Z — K é continua, Vi € X*.

(2,%) = (X,0(X, X*)) —2= (K, %)
\/

@oT

pag. D43: De fato, resultado anilogo vale em geral trocando o esp. (X, 0)
pelo esp. topolégico (Y,5) e trocando ¢ por todas as fungées que define
0 a menor topologia que as deixa continuas.

(Z,%) —L= (X*,0%) —%= (K, 7%) (E1.1)
\_/

JxoT

T é continua <= Jx o T é continua para todo x € X

Lembre: a top. fraca* o* = o(X*, X) em X* é a induzida pela familia J(X) =
{Jz}rex, J : X — X* mergulho canoénico: Jz(f) = f(x),Vf € X*,x € X.

Todo ® € J(X) seréd ainda continuo com respeito a topologia fraca*.
Analogamente toda mapa ¢ € X* — ¢(x) (avaliagio em x € X fixado) serd continua
com respeito a topologia fraca®.

e Temos: J é continua <= K f o J é continua para todo f € X*

(X, 0(X, X*)) =L (X*, 0(X**, X*)) RN (K, %)
- Y
KfoJ
Analogamente: a top. fraca® o(X**, X*) em X** é a induzida pela familia K(X*) = {K f}rex~,
K : X* — X*** mergulho canénico: K f(¢) = ¢(f),Vo € X** f € X*.
Todo ® € K(X™) sera ainda continuo com respeito a topologia fraca® o(X**, X*).

Analogamente toda mapa ¢ € X** +— ¢(f) (avaliagao em f € X* fizado) serd continua com

respeito a topologia fraca* o(X**, X*).
mfe X

v Jo— Kf(Jz) £ Jx(f) L f()

merg.can. merg.can.

a qual é continua na top. forte, e portanto é continua na top. fraca
O(X, X*) (def. top. fraca D3.1)

E14
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e Temos: J~! é continua <= f o J~! é continua para todo f € X* (37

( X, 0(X7, X)L (X, 0(X, X)) = (K, )
\//
foI~!

mfe X

J

pr— J'o=a v f(JT0) = flz) = Jx(f) = ¢(f)

merg.can.

a qual é continua na top. fraca™ o(X™*, X*) (def. top. fraca® D4.3)

Prova do Lema (Helly) E1.13: Sejam X ume.v.n, (fi,..., f,) € (X*)", a € K"
¢
T: X —->K":z— (fi(x),..., fulx));

entao, sao equivalentes

i) Para todo € > 0 existe z, € BX tal que

.....

ii) Para todo B € K",
|,30é‘ < H/BTHX*: sup |8 - Tx|.
Jaf<1
i) = ii)

B-al-18-Tu[<|B-a=B-Tz|=|B-Tz.— B -a| =8 (Tz. - a)

B-af < BT +|B- (Tee—a)| <[5 T o] +18- (Tz — o)

HolderA2.5

< 18- T |lx+ 1Bl T2 — | (O tegmsl < (S 1es17) 7 (S 1ng14) )
~——
const.
hipotese
< |B-T |y +ce, Ve>0
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Note: i) (Ve > 0,3z, € BY: ||T(2) — o < e) — aeT(BX)CK"

ii) = i): Caso K=R

Suponha a ¢ T(BX)

Queremos encontrar 8 € R"; |B-a| > ||B-T| . = sup cx 8- Tx|.

° {a} ﬂT(ﬁ) =

e {a} convexo compacto

° T(BX) convexo fechado (prova do lema TAA pag. B21, T linear)

Teorema B3.4 [Hahn-Banach - Forma Geométrica 2 | Sejam X um
ev.an. real e A, B C X conjuntos convexos, nao vazios e disjuntos. Se A é
fechado e B é compacto, entdo existe um hiperplano fechado que separa A e

B no sentido forte: 3a € R, fe X*; flp>a+e>a>a—e> fla.

e JEeR e @) wla) > & > vlgs

e 13 cR" cp(a:) =0 -x (linear em R"™)

§>g0|ﬁ:>g0(Tx)<§,xeﬁ — BTz <&xeBX

WG 8- Tz| <& o e BX
— BTy <¢

BTy £ € < pla) = B-a < |B-q

ii) = i): Caso K = C: Exercicio. Sugestao: escreva
fj Z%ij—l—i%mfj, Q 204}4—2'04?, ﬁj ZB}—f—iﬁf, ] = 1,...,n
e aplique o Caso K = R. ]
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Prova do Lema (Goldstine) E1.12: Seja X um e.v.n.. Entao,

[— O'()(*>k X ) - o **’ *
J(BX) — BY" T = xe
——o(X** X7)
Af1. J(BY) c BX”
o J(BX) C BX™ (J: X — X™ merg. canénico: isometria)
(X, X*) o(X** X
e J(BX) CB
e BX™ comp. na top. fraca* o(X**, X*), logo fechado (T.B-A D5.2, ex. top. D5 )
—(X* X))

_ (X, XY)
Af.2. BX™ c J(BX)

Queremos V5V € o(X™, X*), VNJ(BY)#0,ie.,Tzxe BX; JreV

e Veo(X™ X)), Voyp
36> 0, fir o fu € X5 Voppi(0) = {11 € X |00 — )| < ¥} €
v

Basta mostrar: 3o € BYX; |(Jz —)(fi)| <&Vi=1,...,n
= [filz) —e(fy)| <eVi=1,...,n
K
S

Lema (Helly) E1.13: Sejam X um e.v.n, (f1,...,fn) € (X*)", acK"e
T: X —>K': 2w (fi(z),..., fulz));
entdo, sao equivalentes

i) Para todo € > 0 existe z. € BX tal que

.....
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ii) Para todo B € K",
B-al < [|B-T|x.= sup 8- Tx|.
<1
e T: X —-K":zw— (fi(x),..., fa(x))
o a:=(p(f1),...,0(fn) €K”

e 3 K"
B-af = o(fi)
lmearzdade
Bifi
(z
< ol fi
BifieX* X
= el s S bufile)
a1 =1
= |[lellx sup [B- Tz
|z||<1
= |lellx= I8 -T x-
< 18- T x-
XX
Af 3 T 2 xe
Exercicio.
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E2 Separabilidade e metrizacao da bola

E2.1 Definicao e propriedades

Um espago métrico (X,d) é dito separavel se existir um subconjunto enu-
meravel D C X que é denso em X.

LEMBRETE:[F1%9: pag. 6]

—card(X) < (resp.= // resp.>) card(Y") significa que

existe f : X — Y injetora (resp bijetora // , resp. sobrej.)

— a desigualdade estrita < (resp. >) significa que existe uma
injegao (resp. sobrejecdo) mas ndo uma bijegao.

— X enumeravel significa card(X) < card(N),

— um produto cartesiano finito de enumeraveis é enumeravel

— uma reuniao enumeravel de enumeraveis ¢ enumeravel

— P(N) nao é enumeravel

P(N) é enumerdvel <= card(P(N)) < card(N)
Mas

o f: X > P(X):x— f(x) = {z} é injetora:
card(X) < card(P(X))

e qualquer g : X — P(X) : x — g(z) = Z C X nao
pode ser sobrejetora pois:

px)sY ={r € X 1z ¢ g(x)=2Z} ¢ Im(g)

Y elIm(g) < 3z € X;g(x) =Y, neste caso x € Y?

E19
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Exercicio E2.1. Sao separdveis [PPT12 p- 16.]

e K" (separado por Q" ou Q*")
e /, com 1 < p < oo (separados por cyp(Q)) e também ¢, ;.
e também X", (,(X), c¢(X), co(X) se X é separdvel.

e (C([a,b],R), || ||;) (Teorema da Aproximacao de Weierstrass)

{5 nao é separavel. >

Exercicio E2.2. Sejam X um e.v.n, {z,} uma sequéncia em X e M =
[z,]nen (combinagoes lineares (finitas) de elementos da sequéncia).
Mostre que se M é denso em X, entao X é separavel. *

Proposicao E2.3. Seja X um espaco métrico separdvel ¢ ) +# F C X.
Entao F € separdvel. <

Proposicao E2.4. Se X € um e.v.n. e X* ¢ separavel entao X também ¢é
separduvel. <

Observagao. A reciproca nao é verdadeira: ¢; é separdvel e seu dual (iso-

metricamente isomorfo a f.,, Ex. C2.4) nao é. *

Lema E2.5. Se X e Y sao e.v.n. isometricamente isomorfos, entao X €
separdvel se, e somente se, Y ¢ separdvel. <
Demonstracao. Exercicio. O

O Teorema E1.7, a Proposicao E2.4 e o Lema E2.5 implicam:

Teorema E2.6. Seja X um espaco de Banach. Entao, X € reflexivo
e separavel, se e somente se, X* € reflexivo e separdvel. <

Demonstragao. (<) Teorema E1.7 4+ a Proposicao E2.4

merg.can . . Xsep. , P.E2.4 ,
X refl. "EE" X jsom.isom. a X =% X** separdvel = X* separdvel [
15.15.50b. L.E2.5
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E2.1.1 Demonstragoes

Aula 18

Prova da Proposicao E2.3: Seja X um espaco métrico separdvel e ) = F C X.
Entao F' é separavel.

e 3D ={x,,n e N} C X enumerdvel e denso em X

Af. 1. X =] Bi(z,) VmeN

neN

(X separavel)

mzrceX=0D

m3dz,, € DNB1 (ZE) (B1(x) aberto em X e.m.)

1
m

mz € Bi(z,,)

C.xE UneN B%(:En)

Queremos: um subconj. de ' enumeravel e denso em F

e para cada (m,n) tal que F' N Bi(x,) # () escolha

(a intersec. nao pode ser 0 Vm,n: F # ()

Y :={Ynntmnen ¢ um subconjunto de F' enumeravel

Af. 2. Y = F

“<|

C F pois Y C F

ﬁ
=l

C

myckl

Queremos: Ve >0, 3z € YNB.(y),i.e, Iz€Y; |ly—z| <e

m Y = Y, Para algum (m,n), okl

B Y F Ymp VM, N

mdadoe >0emygeN
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m3Iny; y € Ba(ry,) (e Fc X LY Upen Ba (20) )
mo m

lFﬂBmL(:EnO)#(Z)

mz<c FNB1 (:Eno) como sendo o elemento escolhido z = Yy n, €Y
mg

1 1 2 tome
_ < — —z| < -
=21 < =l w2 < b= 2 ]

[]
Prova da Proposicao E2.4: X ev.n., X* separdvel = X separavel.
e SX7(0) é separavel (S (0) CX* sep.+Prop. E2.3)
e 3D ={p, €5 (0),n € N} enumeravel e denso em S;* (0)
| Vo € 577(0), e >03pn € D; lo—pnllx- <e
Queremos: M C X enumeravel e denso em X
o para cadan € N, 3z, € X com ||z, < 1;  |on(xn)| > 5 (def. sup)
lenllx+ =sup zex [pon(z)] =1
=<1
o M = [:cn, n c N]Q (o e.v. gerado com coeficientes em Q ou Q2, ndo ¢ s.c.v. )

Af. 1. M C X é enumeravel

A, = [:El, ce ,xn]Q é enumeravel (Q" ou Q?" é enumerdvel)

)\1331 -+ )\nfL‘n —> ()\1, ceey )\n) - @n ou Q%"

M:UM

neN
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Af. 2. M é denso em X

m M é denso em L := [Zlfn, n e N]K C X (L pode nio er en.)

S.€.0.

Basta mostrar que L é denso em X: L = X

msupor 320 € X\ L

Teorema [Existem muitos funcionais|B2.4 a. M
s.e.v. fechadode X exg € X \ M =, f € X*, || f]| =1,
f|M =0,e f(xg) = d(.%'(),M) > 0.
X . —

n dpe S (0); plp=0ep(z)#0

T, €X

lo —onllx- = sup [p(x) —on(z)] > |p(@n) — ©nlzn)]
||;ﬁ)<<1 |z <1
nEL
= |90n(xn)| > % VTL, "7 “=D ¢ denso em SX

]

Proposicao E2.7. Se existe uma familia nao enumerdvel de abertos em X,

nao vazios e 2 a 2 disjuntos, entao X nao € separdvel. <
Demonstracao.

e {O;}icr C X, | I nao enumeravel , O; abertos nao vazios, 2 a 2 disjuntos

e supor X separavel: 3D :={z,,neN}C X, {x,,neN}=X

e dn;, € N; xniEOi (@#OiC}X,DdensoemX)
en:I— N: 1+ n;éinjetora (0;N0; =0, i #j)
—card(X) < card(Y) significa que existe f : X — Y injetora
— X enumeravel significa card(X) < card(N),
e card(l) < card(N)

e [ é enumeravel — []
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Proposicao E2.8. Todo e.v.n. X separdvel é isometricamente isomorfo a

um subespaco de l. <
Demonstracao.
e J{x,;n € N} um subconjunto denso de X (X separdvel)

edp, e X, neN;,  |oully-=1¢e@,(xy) = ||z,

Teorema [Existem muitos funcionais|B2.4 Seja X um e.v.n. sobre K.
[b.] Se X é nao trivial, X* é nao trivial: Se zg # 0, existe f € X* tal que

[fllx+ =1e f(zo) = [lzol-

AL 1.T X =l o= Tr = (pu(2)), = (p1(2), p2(x),...) é um mergulho
isométrico

loo = {2 = (2j)jen CK: [lz] <00}, 2|

m [ é linear

mlrely

IT2l[cc = sup |p;(2)| < sup [lgjllx. [J2]l = |l=]l, VeeX

jEN jEeN
 T(X) C ¢y eT élimitada/continua

e [Tzl = 2, ¥

Txy = (p1(xn), -y 0n(@n), ) = (P1(@n), - [J@all s )

= 1T #nlloe = sup [@j(zn)] = [l
jeN

o [Tzl = lzf], Vo € X ({znin €N} = X)

. T é uma isometria e logo injetora
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Exercicio E2.9 (EE2). Seja X um e.v.n. de dimensdo infinita e se-
paravel.

e Mostre que existe uma sequencia de subespacos de dimensao finita
cuja reuniao ¢ densa.

e Mostre que existe uma sequéncia ¢, em X* com ||¢,|| =1 e tal que
¢n(r) — 0 para todo z € X

*

E2.2 Metrizacao da bola

Teorema E2.10. Seja X um e.v.n. Entao X ¢ separdvel, se e somente se,
(BX",0(X*, X)) € metrizdvel.
Uma métrica é

dpe(6,) = S oelolen) (el . 6.0 € BY,
n=1

onde {x,} € denso em BX.
<

(BX",0(X*, X)) é metrizdvel <= 3d : BX" x BX" — [0,00) métrica; todo aberto da top. forte

(induzida por d) contém aberto da top. fraca* restrita BX" e vice-versa.

Teorema E2.11. Seja X um e.v.n. Entao X* ¢ separdvel, se e somente
se, (BX,0(X, X)) € metrizivel. Uma métrica é

o0 1 _
do(t,y) =Y ol fulz — BX
(z,y) 2 gulfalz =yl =y € B,
onde {f,} é denso em BX". <

Exercicios

Exercicio E2.12 (BX metr.). Prove o Teorema E2.11 imitando a do

Teorema E2.10 e usando o exercicio 3.24 do [Brell, p.85, 75-76]. *

De fato, nos Teoremas E2.10 e E2.11 pode-se substituir a bola unitaria por qualquer bola fechada.

E25



AF-E 31 de outubro de 2025

Prova do Teorema E2.10.
(=)

e BX ¢ separavel (X separavel)

Proposicao E2.3 Se X é e.m. separavel e ) # F C X, entao F é separdvel.

e 3 {x, € BX :n € N} enumeravel e denso em BX

o d: BX x BX - [0, 00)

doe(900) 1= 3 o 16(n) — ()

n=1
Af.1. d estd bem definida
Af.2. d é uma métrica
dada ¢y € BX, ie., ¢p€ X* e || < 1:
Af3. ¢pp eV eo(X" X)|gw = JU et pelUCV

Afd ¢ppelU€c€rger = IV eo( X" X))z eV U
o (BX" o(X* X)) é metrizavel
Prova da Af. 1.: V¢, € BX",
L (an) = (el < 6=l ool < o=l <20, 30 Lo<
on Ln — 2n Inll = onll___ T — —271’ — on—1 o0

Prova da Af. 2.:
(a) do-(6,9) 2 0,Y¢,¢ € BY

(b) dg*(¢,1/}) =0 = d)(ll’,’n) = xn \v/ g ¢ \VIZU € BX llﬂea%dade
¢(z) = ¥(x),Vo € X

(C) dU*(qS)w) < dU*(¢7 p) + do*(p7w)7v¢7¢7p S ﬁ
Prova da Af. 3.:
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o po € BY, ¢yeV € a(X*X)|gw
e >0, y1,...,ym € X;
Veyrgm(d0) ={¢ € BX 1 |(¢— o) (yi)| <&,Vi=1,....m}CV

Basta mostrar 3 U € 755+ o € U C Vo, .y (d0), ie.,

30 >0, A(dy) == {6 € BX 1 d(¢60) <7} C Ve (60)

Queremos: r > 0;

o0

| I —
d(p, ¢g) = Z %\o(z D—¢o(zp)| <r = |(¢o—o)(yi)| <e,Vi=1,....m (¢ € BX")
n=1 "
i.e.,
1 | .
?‘O( ) — ¢o(xn)| <, Vn = (¢ — ¢o)(yi)| <e,Vi=1,...,m
i.e.,
|O(x) — Po(xn)| < 2"r,Vn = (6 — ¢o)(yi)| <e,Vi=1,...,m
(@ = do) (i)l < [D(yi)— ()] + [02) =00 (20)] +[do (20) — dolyi)l
Ok
< el llyi = zall + 2" + ol lzn — vil
< lyi = @all + 2% + flzw —will, Vn
Sey, € BX,i=1,...,m, ({za} 6 denso em BX)
Ve >0, Iz, € BX; |z, —uil <&
L@ =20) (W)l < 2|y — |l + 2% <28+ 2%
baSIta tomar € = i er>0; 2"r < %,Vni 0 <r<min{gz, i =1,...,m}
S.P.G. podemos considerar vi, . .., Ym € BX (trocando € !)
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‘76,21 ..... (¢0) {¢ c BX

¢ € ‘Z,zl,...,zm <¢0)

tome ¢ = min{e

7@7
Prova da Af. 4.:

e o € BY', ¢oc U € 55

i=1,...,

tome z; € BX, i1 =1,...,m, dados por

I

Queremos ¢ > 0 tal que:

[(d—¢0)(2i)| < €,Vi} C Vo, yn(do) CV

?
— & € Ve (@0)

(¢ — ¢O)(||y ||)| <e= (¢ —do)Wi)| < elluill =
(6 — do)(yi)| <€ ==

m}

L 3r>0; Adg) ={¢ € BX :d(¢,¢0) <r} CU

Queremos mostrar: 3 45V € o( X", X)|5z=; V CU

Basta mostrar: Jyi,...,y, € X

Vegiom ($0) = {6 € BX 1 |(¢ —

e candidatos naturais: y; = z;

,e > 0;

o0)(y)| <e,Vi=1,...,m} C A(¢)

(elem. do conj. {z,} denso em BX)

e para quantos pontos (m =?7) e para qual € > 0 temos:

Z;

(G=d) (T <& Vi=1,...,m

(=7) = d(¢, ¢o) = Z 21“‘0(1:,,)—(‘)0(17”)‘ <r
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=1
do. o) = D lé(en) = dolan)
n=1
m 1 00
n=1 n=m+1
se n 1 s
< £ ponlin s ¢ qu Ln
v 2t 2 gl bl
$.00€BX* 1 = 1 © 4 1 >
< e — + _2 -2
z,€BX nz:; 2n o= 2n (nzl » 11
1
< £+ 212": T
2
1
— e+ 2m—1
quezmos ’r‘ + ’r‘
peA (D) 2 2
basta tomar m € N tal que 21 r<sel<e<g

e 3d: BX" x BX" — [0, 00) métrica; todo aberto de T contém aberto de

O'(X*, X) |W e vice-versa ((BX*,0(X*, X)) é metrizével)

Queremos encontrar D C X enumeravel e denso em X

¢ A1(0) ={p € BY :d(¢,0) < 1} € Tpx=

o dei >0, x’f,..., n;cEX

Voot (0) = {0 € BX' : |p(af)| <&, Vi=1,...,n} C As(0)

o D:=[{zf,....2} :k€eN}g C X éenumerdvel (ver p. E22, nio ¢ s.c.0.)
o [ := [{xlf, ceey nk ke N}]K ser X (pode ser ndo enumerdvel)
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e D é denso em L

Af. L é denso em X e portanto D é denso em X

Exercicio B2.6. Um subespaco M de um e.v.n. X é denso se e s6 se vale que

Vo € X* t.q. |y =0, vale p =0

o X% 0[r=0
— ¢(zf) =0, Vi=1,...,n;, VkeN

= |p(aF)| <ep, Vi=1,...,n, Vk €N

— €V, (0)CALO) VEEN

— d(¢,0) <t VkeN — ¢ =0

E2.2.1 Consequéncias

Aula 19

Corolario E2.13. Nas hipdteses do Teorema E2.10 (X separdvel) (resp.
E2.11, X* separdvel) para limitados de X* (resp. de X ), compacidade e com-
pacidade sequéncial sao equivalentes. <

o K ¢ sequencialmente compacto:
toda sequéncia em K possui subsequencia convergente em K

e Em espagos topolégicos:
compacto ¢ sequencialmente compacto:

— (B*~,0(l%,,{s)) é compacta e é possivel construir sequéncia em B‘c que nio
possui subsequéncia convergente[BmH’ Exercicio 3.18] (Verifique!)
— o0 espaco de todos os ordinais numeraveis w1, munido com a topologia da ordem é se-
quencialmente compacto, mas nao COHlpaCtO.[MunOO’ Exerc.6-Secdo 26, Exemplo 5-Segdo 27]
e Em espacos métricos:[M00; Theorem 27.3]

compacto <= sequencialmente compacto
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Temos entao

Corolario E2.14. Se X € um e.v.n. separdvel e {f,} € uma sequéncia
limitada de X*, entdo existe subsequéncia { f,, } que converge em o(X*, X)
(conv. fraca®). <

Teorema E2.15. Seja X um e.v.n reflexivo (de Banach) e {x,} uma
sequéncia limitada em X . Entdo existe uma subsequéncia {x,,} que con-
verge em o(X, X*) (conv. fraca). g

Prova do Coroldrio E2.1):

e M > 0 tal que ||f,|]| < M,Vn €N ({fn} limitada de X*)
° gn =1 € BY

o (BX",0(X*, X)) é metrizdvel (Teorema £2.10, X separdvel)
e (BX",0(X*, X)) é compacto (Teorema Banach-Alaoglu D5.2)
e (BX", 0(X*, X)) é sequencialmente compacto

e {g,} possui subsequéncia {g,,} que converge na top. fraca* para g € BX*
e f, = Mgem X*

Prova do Teorema E2.15:

Proposicao E1.4. Todo subespago fechado de um e.v.n. X reflexivo (de Banach)
¢ reflexivo.

Teorema E2.6. Seja M um e.v.n. de Banach. Entao, M é reflexivo e separavel,
se e somente se, M* é reflexivo e separavel.

Corolario E2.14. Y um e.v.n. separdvel e {f,} é uma sequéncia limitada de Y™,
entdo 3 f,, — f em Y* (conv. na top. fraca* de Y*). Y = M*)

Proposicao D4.7. Seja {f,} uma sequéncia em Y*. Temos que Y =M*)
(i) fo = <= fo(z) = f(z), Yz €Y.

Proposicao D3.7. Seja {z,} uma sequéncia em X. Temos que:
(i) 2p =2 < ¢(zn) > d(z) V ¢ € X~
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o My := [xn; n € N] e M:= WO ({xn} sequéncia em X)
m M és.e.v. fechado de X
m M é reflexivo (X reflexivo, P. E1.4)

m M é separéavel

D := [x,; n € N]gz C M é enumeravel e denso em M

o M* é reflexivo e separavel (T. E2.6)

e J: M — M* mergulho candnica (isom. isom. sobrejetor)
o fn:i=Jx,

e {f,} é uma seq. limitada em M** ({z} limitada X)

[fall = 2]l = [l

e I{f,.} conv. na top. fraca* o(M**, M*), i.e., (C. E2.14)

IfeM™; f, > f

deeMcCX; f=Jx

f (@) = f(9), Ve M — (P. D4.7)

— Jx,, (¢) = Jz(p), Yo € M = ¢(x,,) — ¢(z), Vo € M*

Proposig¢ao D3.7. Seja {z,} uma sequéncia em X.:
(i) zp =~ <= ¢(zn) = o(x) V ¢p€ X*

e pE X" = |y € M*

l’nk eM xeM

o 1, —xem X
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Exercicio E2.16. Faga o exercicio 3.16 (p. 83) do [Brell] *
Exercicio E2.17. Faga os exercicios 3.17 € 3.18 (p. 83) do [Brell] %
Exercicio E2.18. Faga o exercicio 3.22 (p. 84) do [Brell] *
Exercicio E2.19. Faga o exercicio 3.25 (p. 85) do [Brell] *

Leia e se convenca:

Seja X um e.v.n.. Vimos:
A. (BX",0(X*, X)) é compacto
(BX,0(X,X*)) é compacto se, e somente se, X é reflexivo
(BX",0(X*, X)) é metrizavel se, e somente se, X é separdvel
)

(BX,0(X, X *) ¢ metrizavel se, e somente se, X* é separavel

FU.UQ.UU

Se X é separavel e (y,) C X* ¢é limitada, entao existe (¢,,) e p € X*
tal que
o, = ¢ (A.+C)

F. Se X é reflexivo e (z,) C X ¢ limitada, entao existe (z,,) e v € X
tal que

T =z (B A+ o)

Por B. e F., poderiamos perguntar: existe alguma relagao entre o espago
X ser reflexivo e (BX,o(X, X*)) ser metrizavel?

Resposta: Nao. Por D., basta encontrar um espaco X reflexivo e nao
separavel (neste caso X* nao é separavel). Exemplo de tal espago:

e X um conjunto nao enumeravel;
e 1, a medida de contagem em X;
e considere p € (1, 00);

o X =LP(X, p).
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E3 Espacos uniformemente convexos

Definicao E3.1. Um e.v.n X é dito uniformemente convexo se, para
todo € > 0!, existe § > 0 tal que

z,y€BX, e [lz—y|>e = H#H <1-09. (E3.1)

*

Convexidade uniforme é uma propriedade geométrica da Bi<(0) (ou da
norma): deslizando uma régua de comprimento € > 0 na B;i* (0), seu ponto

médio deve estar dentro de Bi* ;(0), a qual estd dentro da bola unitdria.
Em particular a S;*(0) ndo pode conter segmentos de reta.

Exemplo E3.2. e Spoiler: Espacos com produto interno sao u.c.

o (R? | [,): é u.c. se p € (1,00), mas nio é u.c. se p=1oup = oo,

1.0

0.5

1.0

0.5

0.0

-0.5

-1.0

- =15

=15 -10 -05

1.0

0.5

. 0.0

-0.5

-1.0

0.0

0.5

1.0

1.5,

"T215 -10 -05 0.0

1.0

0.5

0.0

-0.5

-1.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

1.5,

"TT215 -10 -05 00

0.5

1.0

1.0

0.5

=15 -10 -05 0.0

0.5

1.0

1

05

0

05

1

Figura 1: acima :p = 1: norma da soma, p = 2: norma Euclidiana, p = oco: norma do méximo
abaixo: p = 1.5, p = 3, sobrepostas p =1,1.5,2,3,6,00
Temos que: (R™, ||-||,,) ¢é sempre reflexivo (ver Ex. E1.8-E1.9) mas u.c. depende da norma.

Note que como ||z||, |ly|]| < 1, entdo ||z — y|| > € s6 faz sentido para 0 < e < 2
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Convexidade uniforme é uma ferramenta frequentemente usada para pro-
var reflexividade:

Teorema E3.3 [Milman-Pettis]. Todo espago de Banach uniforme-
mente convexo € reflexivo. <

Spoiler: Exemplos Importantes: serao os espagos LP(X), p € [2,00)
(Banach + u.c.)

Spoiler: Como espaco de Hilbert é um espaco com produto interno e Banach,
segue:

Corolario E3.4. Todo espaco de Hilbert € reflexivo. <

Observacao E3.5. Um espaco X é reflexivo quando o mergulho canonico
J : X — X* é sobrejetor. Uma condicao para que isso ocorra é:

S&7 c J(BX).

e o c X

@ *% A v
.\If:wesX CJ(BX)

oﬂajéﬁ; Jr=w"

P
— =V =Jr= J(||®||z) =9
| @] ——

To€EX
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Prova do Teorema de Milman-Pettis £E3.3: X Banach uniformemente convexo
é reflexivo

Queremos: X reflexivo, J: X — X** sobrej.
Basta mostrar que X~ ¢ J(BX)

pag. E9: Se X é Banach, ](37) C X** é fechado na top. forte 7x«:

J(BX) = J(BX)

Basta mostrar que S¥~ c J(BX) (X Banach)

o & € X com ||®] g = sup |®(f)| =1
fex*

[flI=1

?
Queremos: Ve>0,3 2z BX; ||®—Jx||<e
— - Jr e BT
< & e Jr+eBX”
Lema Goldstine E1.12. Seja X um e.v.n. Entdo J(BX) é denso em BX™
com a topologia o* = o(X™*, X*), i.e.,

J(BX)NV 20, V¥ pem .V €0(X™, X7)

Ideia: construir um adequado aberto V € o(X*™, X*) que contenha ®, pois
dai 3 x € BX;Jx €V e depois mostrar que ® € Jx + cBX"™

e c >0

e construcao de V:

mdfeX com |f||=1;, 1—a<]|®(f) (Va>0)

o V= Vog(@) = {W € X7 |0 - ) (f)] < a)

e VV é um aberto de o(X**, X*) que contém ® € S*~ c BX™

e Jx € ﬁ; JreV (Goldstine)
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Af. deJr+eBX" =W, ie,|®—Jz|| <e
e Supor ¢ W
encontraremos uma contradicao com o fato de X ser u.c.
Ve >0, existe § > 0 tal que

z,y€BX, e |lz—y| >e = |Z|<1-4.

e WY =X"*\W,e |® — Jz|| > ¢
[ (BX**, J(X**, X*)) é compacto (Teorema Banach-Alaoglu D5.2)
e BX™ (. W) é um fechado da top. fraca* o(X**, X*) (Ex. top. D5 )

e WU e o(X™, X¥)
o (Vo (®)NWY) € o(X* X*)

e Iyc BX; Jye (Vo (®)nWo) (Goldstine)

o ly—z=ll =[lJy - Jzf| > ¢

o Jy,Jz €V, (D) = {¥ € X*; (¥ — ®)(f)| < a}

[(Jo = @)(f)] <a [f(z) = @(f)| <a
_—
[(Jy = @)(f)| <a f(y) —@(f)] <a
2(1 —a) <|20(f)] = [2(f)+ 2(f)]
< |@(f) =S )|+ () + Fw)l+1 = fy) + 2(f)]
< —I—UHSUerH—Fa
—= |z +y|| >2—-4a = H H>1—2a Va >0
Hx;—yH>1—5, Vo >0 e ]
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Proposicao E3.6. Sejam X uniformemente convexo e {x,} uma sequéncia
em X tal que x, — x e

limsup [z, < 2]
n—oo

Entao x,, — x.
Em particular, convergéncia fraca mais convergéncia da norma implica con-

vergéncia forte. <
Demonstracao.
e limsup ||z,| < || <liminf ||z, (,, — x, P.D3.7-iii)
n—00 n—00

Proposicao D3.7. Seja {z,} uma sequéncia em X. Temos que:
iii) zp, = v = {||z||} é limitada e ||z|| < liminf ||z,|]

e lim Han = HCEH (lim inf < lim sup)
n—00

n—00 n—00

Caso 1: =0

lim ||z,]| =0 = hm r,=0=2x
n—oo
Caso 2: x # 0
e ||x,]| # 0 definitivamente (3no; zn # 0,1 > np)

e 1, # 0 definitivamente

T
o Y, = —-
T
x
® Yp — Y= Tzl onde ||y, =1e |y =1 (20 =z, [|an] = [z])
pois dai x, — x
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Queremos V ¢ > 0,3 ng; ||y, — vyl <€, n>ng
e c>0
® yn,y € BY (lyal - Iyl = 1)
X éu.c.: Ve>0, existe d > 0 tal que

z,ye BX, e |lz—y|>e = |5 <1-0.

Basta mostrar que lim | In +yH =1, pois dai:
n—oo
Ve > 0,d ny; nan:Hyn;yH—l‘<§
n>n = 1-é< ‘yﬁyH <1+¢
3 no; ||y, — y|| < €, para todo n > ny
pois se ||y, — y|| > €, Vn, entao (X w.c.)
40> 0; ‘yn—i_yHSl—(S, vn ——z_g
Af. lim‘yn—i_yH:l
n—0o0
® Yo +y — 2y (o =% = ¥5= Tap)

e |12y]| < liminf ||y, + ||

Proposicao D3.7. iii) z, =z = {||z,,||} é limitada e ||z|| < liminf ||z,|]

2 = []2y|_< liminf[ly, +y[| < limsup [y, +yl| < Tmsup ([[yall + [lyl}) = 2

[]
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Exercicio E3.7. Faca o exercicio 3.32 (apenas pontos 1 e 2) (p. 87)
do [Brell] (vai precisar a nogao de convexidade estrita: procure no livro
e veja o ex 3.31 também). *

E3.1 Aplicacao: para pessoal de equacoes!
Defini¢ao E3.8. Uma funcao ® : X — (—o0, +o0| ¢é dita
e semicontinua inferiormente (l.s.c.) se para todo A € R o conjunto
@ <N ={reX: &) <A}

é fechado.
e convexa se o conjunto {(z,y) € X x R: y > ®(x)} é convexo; equivalen-
temente, ®(tz + (1 —t)y) < tP(x)+ (1 —t)P(y): z,y € X, t € (0,1). *

Corolédrio E3.9 [do Teorema D3.10]. Se ® ¢é convexa e semicontinua
inferiormente (ou continua) na topologia T, entdo é semicontinua inferiormente
na topologia o (X, X*).

Em particular, se x, — x, entdo?

¢(x) < liminf ®(x,,). <

Corolédrio E3.10 [do Corolario E1.14]. Seja X um espaco de Banach
reflexivo, ) # A C X um convexo fechado. Seja & : A — (—o0, 00| conveza,
propria (® #Z +00), semicontinua inferiormente e, se A € ilimitado,

lim ®(z) = 4o0. (E3.2)
€A

]| =00

Entao ® alcanca seu minimo em A; isto €, existe xg € A tal que

®(xp) = min (). <

€A

2Lembre que a definicio de fechado por seq. ndo implica na topolégica, mas a topolégica implica na por seq,
ou seja, se F' é fechado e x, — = com {z,,} C F entdo z € F
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E4 Mais exercicios

Exercicio E4.1 (Espacos B,S,R,U.C.). Preencha a seguinte tabela com
S (para sim) e N (para nao).

Banach | Separav. | Reflex. | Unif. Conv.

(KN {1~ {1)

(K [] - Jloo)
(K¥Q-1lp)s L <p< o0
(coo0, | - 11)

(c00, |+ [lso)

(0007 || ) ||P)7 1< p <0
(cos || + [loo)
(el lls)
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