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E1 Reflexividade

Um e.v.n. X é reflexivo quando o mergulho canônico é sobrejetor:

J : X −→ X∗∗

x 7−→ J(x) = Φ : X∗ → K

φ 7−→ Φ(φ) = (Jx)(φ) = φ̂(x) = φ(x)

E1.1 Adjunto do adjunto

Adjunto de operador linear densamente definido não-limitado

Sejam X, Y espaços de Banach e T : D(T ) ⊆X → Y

T ∗ : D(T ∗) ⊆
s.e.v.

Y ∗ → X∗ : g 7→ T ∗g = f

onde
D(T ∗) = {g ∈ Y ∗ : g ◦ T : D(T )→ K é limitada}

e f = g ◦ T é a única extensão linear cont́ınua em X de g ◦ T .

(T ∗g)(x) = g(Tx) ∀ x ∈ D(T ), g ∈ D(T ∗).

〈T ∗g, x〉X∗,X = 〈g, Tx〉Y ∗,Y ∀ x ∈ D(T ), g ∈ D(T ∗).

J : Y ∗ ×X∗ → X∗ × Y ∗ : (g, f) 7→ (−f, g) (isomof., Proposição C3.6)

G(T )⊥ = J (G(T ∗))

T ∗ é linear e fechado. (Teorema C2.3)

T é fechada =⇒ D(T ∗) separa os pontos de Y :
∀y ∈ Y \ {0},∃ g ∈ D(T ∗); g(y) 6= 0.

Spoiler: Se Y é reflexivo então D(T ∗) é denso em Y ∗. Poderá ser definido o adjunto do

adjunto.

T ∈ L(X, Y ) =⇒ T ∗ ∈ L(Y ∗, X∗) e ‖T‖ = ‖T ∗‖
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Proposição E1.1. Seja T : D(T ) ⊆X → Y uma transformação linear
densamente definida e fechada. Se Y é reflexivo então D(T ∗) é denso em Y ∗.
Podemos definir o adjunto do adjunto �

Demonstração.

Exerćıcio B2.6. Um subespaço M de um e.v.n. X é denso se e só se vale que

∀φ ∈ X∗ t.q. φ|M = 0, vale φ ≡ 0

Queremos: ∀Φ ∈ Y ∗∗ t.q. Φ|D(T ∗) = 0, vale Φ ≡ 0

• supor D(T ∗) não é denso em Y ∗

• ∃ Φ ∈ Y ∗∗ \ {0}; Φ|D(T ∗) = 0

• ∃ y ∈ Y \ {0}; Φ = Jy (Y é reflexivo: J(Y ) = Y ∗∗)

• D(T ∗) separa pontos de Y (T fechada, Teorema a C2.3)

• ∃ φ ∈ D(T ∗); φ(y) 6= 0

0 = Φ(φ) = Jy(φ) = φ(y) 6= 0 ��

T : D(T ) ⊆X → Y dens. def. fechada, Y reflexivo

T ∗ : D(T ∗) ⊆
s.e.v.

Y ∗ → X∗ : g 7→ T ∗g = f dens. def.

T ∗∗ : D(T ∗∗) ⊆
s.e.v.

X∗∗ → Y ∗∗ : Φ 7→ T ∗∗Φ = Ψ

Proposição E1.2. Sejam X, Y espaços reflexivos, T : D(T ) ⊆X → Y uma
transformação linear densamente definida e fechada. Então, T ∗∗ : D(T ∗∗) ⊆X∗∗ →
Y ∗∗ satisfaz (após identificação de X com X∗∗ e de Y com Y ∗∗)

T ∗∗ = T.

�

Demonstração. Exerćıcio.
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E1.2 Principais resultados

Proposição E1.3. Se X é um espaço reflexivo (de Banach), então X∗ é
reflexivo. �

Proposição E1.4. Se X é um espaço reflexivo (de Banach), todo seu su-
bespaço fechado é reflexivo. �

Lema E1.5. Se X e Y são e.v.n isomorfos, então X é reflexivo se e só se
Y é reflexivo. �

As Proposições E1.3, Proposições E1.4 e o Lema E1.5, implicam:

Proposição E1.6. Se X é um espaço de Banach e X∗ é reflexivo, então X
é reflexivo. �

As Proposições E1.3 e E1.6 implicam:

Teorema E1.7. Seja X um espaço de Banach. Então, X é reflexivo
se, e somente se, X∗ é reflexivo. �

E1.2.1 Prova da Proposição: X refl. =⇒ X∗ refl.

Prova da Proposição E1.3: X reflexivo (de Banach) =⇒ X∗ é reflexivo.

• X Banach (Proposição D4.2)

• o mergulho canônico J é sobrejetor: J(X) = X∗∗ (X reflexivo)

J : X −→ X∗∗

x 7−→ J(x) : X∗ → K

φ 7−→ (Jx)(φ) = φ(x)

Queremos o mergulho canônico K sobrejetor: K(X∗) = X∗∗∗

K : X∗ −→ X∗∗∗

φ 7−→ K(φ) = Ψ : X∗∗ → K

ψ 7−→ (Kφ)(ψ) = ψ(φ)
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• Ψ ∈ X∗∗∗

Queremos: φ ∈ X∗ ; K(φ) = Ψ

⇐⇒ K(φ)(ψ) = Ψ(ψ),∀ψ ∈ X∗∗

J é bijetor⇐⇒ K(φ)(Jx) = Ψ(Jx),∀x ∈ X

• J∗ : X∗∗∗ → X∗ é tq (J∗Ψ) ∈ X∗ e vale (ppdd de adjunto)

(J∗Φ)(x) = Φ(Jx) ∀ x ∈ X, Φ ∈ X∗∗∗

•

Ψ(Jx) = J∗Ψ(x)
def.J
= Jx(J∗Ψ)

def.K
= K(J∗Ψ)(Jx) ∀ x ∈ X

E1.2.2 Prova da Proposição: s.e.v. fech. de refl. é refl.

Prova da Proposição E1.4: X reflexivo (de Banach) =⇒M
s.e.v
⊂

fechado
X é reflexivo.

o mergulho canônico JX é sobrejetor: JX(X) = X∗∗ (X reflexivo)

JX : X −→ X∗∗

y 7−→ JX(y) : X∗ → K

φ 7−→ (JXy)(φ) = φ(y)

Queremos o mergulho canônico JM sobrejetor: JM(M) = M ∗∗

JM : M −→ M ∗∗

x 7−→ JM(x) : M ∗ → K

ψ 7−→ (JMx)(ψ) = ψ(x)

i.e, ∀ϕ ∈M ∗∗, ∃x ∈M ; JMx = ϕ

M ⊂ X
JX−−→←−−−
J−1
X

X∗∗x x??

M
JM−→ M ∗∗

M ∗∗ ?? //

J−1X ◦??

88X∗∗
J−1X //X : ϕ 7−→ ??ϕ 7−→ J−1

X ??ϕ︸ ︷︷ ︸
∈X

∈M ?

JM (J−1
X ??ϕ) = ϕ
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• R : X∗ →M ∗ : ϕ 7→ R(ϕ) = ϕ|M (restrição)

� R é linear

� R é sobrejetora (T. H-B para e.v.n.B2.3)

Corolário[Extensão de funcional mantendo a norma] B2.3 Sejam X um e.v.n. sobre K, M um subespaço e

f ∈ M∗. Então existe um funcional f̃ ∈ X∗ tal que f̃ |M = f e
∥∥∥f̃∥∥∥

X∗ = ‖f‖M∗ .

• R∗ : M ∗∗ → X∗∗

• ϕ ∈M ∗∗

Af.1. x := J−1
X R∗ϕ ∈M

Af.2. JM(x) = ϕ �

Prova da Af.1. x := J−1
X R∗ϕ ∈M

• Suponha x ∈ X \M

Teorema [Existem muitos funcionais]B2.4 a. M s.e.v. fechado de X e
x0 ∈ X \M =⇒, f ∈ X∗, f |M = 0, e f(x0) = d(x0,M) > 0.

• ∃ψ ∈ X∗ : ψ|M = 0 , ψ(x) 6= 0.

0 6= ψ(x)
def Jx

=
x∈X

JX(x)(ψ)
def x
=

JXx=R∗ψ
R∗ϕ(ψ)

ppddR∗
=

ϕ∈DR∗ ,ψ∈DR

ϕ(Rψ)

def R
= ϕ( ψ|M ) = ϕ(0) = 0 ��

Prova da Af.2. JM(x) = ϕ, i.e., JM(x)(ψ) = ϕ(ψ) ∀ ψ ∈M ∗

• ψ ∈M ∗

• ∃ η ∈ X∗; Rη = η|M = ψ (R : X∗ →M∗ : ϕ 7→ R(ϕ) = ϕ|M é sobrej.)

JM(x)(ψ) = JM(x)( η|M )
def R
=

η∈X∗
JM(x)(Rη)

def JM=
Rη∈M∗

Rη(x)
def R
=
x∈M

η(x)

x∈M
=

M⊂X
JXx(η)

def x
=

JXx=R∗ψ
R∗ϕ(η)

ppddR∗
=

ϕ∈DR∗ ,η∈DR

ϕ(Rη)

def R
= ϕ(η|M) = ϕ( ψ )
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E1.2.3 Prova da Proposição: e.v.n. isom.: X refl. ⇐⇒ Y refl. Aula 16

Prova do Lema E1.5: Se X e Y são e.v.n. isomorfos, então X é reflexivo (de
Banach) se e só se Y é reflexivo (de Banach).

JY : Y → Y ∗∗= J(Y ) o mergulho canônico: (Y reflexivo)

(JY y)(ψ) = ψ(y), ∀y ∈ Y, ψ ∈ Y ∗.

JX : X → J(X) ⊆ X∗∗ o mergulho canônico:

(JXx)(φ) = φ(x), ∀x ∈ X, φ ∈ X∗.

Queremos: JX sobrejetor: ∀Φ ∈ X∗∗,
?

∃ x ∈ X; JXx = Φ, i.e,

φ(x) = JXx(φ) = Φ(φ), ∀φ ∈ X∗

X σ // Y

JY
��

X∗∗

!!

OO

ρ? // Y ∗∗

X Yσ−1oo

X∗∗
ρ? // Y ∗∗

J−1Y

OO

K X
φoo σ //

JX
��

Y
τ(φ)

//

JY
��

φ◦σ−1

||
K

X∗∗
ρ // Y ∗∗

K X∗Φoo τ //

JX∗

��

Y ∗
ρ(Φ)

//

JY ∗

��

Φ◦τ−1

{{
K

X∗∗∗
ρ // Y ∗∗∗

• σ : X → Y : x 7→ σ(x) = y o isomorfismo (linear, bij., isomético)

• τ : X∗ → Y ∗ : φ 7→ τ(φ) : Y → K : y 7→ (τφ)(y) := φ(σ−1(y))

• ρ : X∗∗ → Y ∗∗ : Φ 7→ ρ(Φ) : Y ∗ → K : ψ 7→ (ρΦ)(ψ) = Φ(τ−1(ψ))
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• τ e ρ são isomorfismos

Queremos: x =?? ∈ X; φ(x) = JXx(φ) = Φ(φ), ∀φ ∈ X∗ X Y
σ−1
oo

X∗∗
ρ // Y ∗∗

J−1
Y

OO

• Φ ∈ X∗∗, φ ∈ X∗

• x := σ−1(J−1
Y (ρ(Φ))) ∈ X

φ(x) = φ
(
σ−1(J−1

Y (ρ(Φ)))
) def.τ

= (τφ)
(
J−1
Y (ρ(Φ))

)
τ : X∗ → Y ∗ : φ 7→ τ(φ) : Y → K : y 7→ (τφ)(y) := φ(σ−1(y))

Φ(φ) = Φ(τ−1(τφ))
def.ρ
= ρ(Φ)︸︷︷︸

∈Y ∗∗

(τφ)
JY sob.

= JY y(τφ)
def. JY

= τφ(y)

ρ : X∗∗ → Y ∗∗ : Φ 7→ ρ(Φ) : Y ∗ → K : ψ 7→ (ρΦ)(ψ) = Φ(τ−1(ψ))

JY : Y → Y ∗∗ sobrejetor : ∃ y ∈ Y ; JY y = ρ(Φ)

E1.2.4 Prova da Proposição: X Banach e X∗ refl. =⇒ X refl.

Prova da Proposição E1.6: Se X é um espaço de Banach e X∗ é reflexivo, então
X é reflexivo.

• o mergulho canônico J : X → J(X) é um isomorfirmo

• X∗∗ é reflexivo (Prop. E1.3, X∗ é refl.)

Af.1 J(X) ⊂ X∗∗ é s.e.v. fechado

• J(X) é reflexivo (Prop. E1.4, X∗∗ é refl.)

• X é reflexivo (Lema E1.5)
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Prova da Af.1:

• Φ ∈ J(X)

Queremos: Φ ∈ J(X), i.e.,
?

∃ x ∈ X; JXx = Φ

• ∃ xn ∈ X; JXxn → Φ

• {JXxn} é de Cauchy (é convergente)

‖xn − xm‖
J isom.isom.

= ‖JX(xn − xm)‖ → 0

• {xn} é de Cauchy

• {xn} é convergente: xn → x ∈ X (X Banach)

• JXxn → JXx (Teo. D4.1, JX é cont.)

• JXx = Φ (unicidade)

De fato a prova anterior fornece: Se X é Banach,

• J(BX) ⊂ X∗∗ é fechado na topologia forte τX∗∗ (note: ‖x‖ = lim ‖xn‖ ≤ 1)

Logo,

• J(BX) é denso em BX∗∗ na topologia forte τX∗∗ se só se

J(BX) = J (BX )
τX∗∗

= BX∗∗

Ainda, se X e.v.n.,

• J(BX) = BX∗∗ se só se X é reflexivo

J(BX) = BX∗∗ =⇒ X é reflexivo, i.e, J(X) = X∗∗

Φ ∈ X∗∗ =⇒ Φ ∈ BX∗∗
R (0), p/ algum R > 0 =⇒ Φ

R
∈ BX∗∗ = J(BX) =⇒ Φ ∈ J(BX

R (0)) ⊂ J(X)

X é reflexivo =⇒ J(BX) = BX∗∗ (hip.: J é isometria, sobrej.)

• x ∈ BX =⇒ ‖Jx‖X∗∗ = ‖x‖X ≤ 1 =⇒ J(BX) ⊂ BX∗∗ ∴ J(BX) ⊂ BX∗∗

• Φ ∈ BX∗∗ ⊂ X∗∗ J sob.
=⇒ ∃ x ∈ X; Jx = Φ

‖x‖X = ‖Jx‖X∗∗ = ‖Φ‖X∗∗ ≤ 1 =⇒ x ∈ BX e Φ ∈ J(BX) ∴ BX∗∗ ⊂ J(BX)
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Exerćıcios

Exerćıcio E1.8. `p com p ∈ (1,∞) é reflexivo. [Muj, p.51] F

Exerćıcio E1.9. Não são reflexivos `1, `∞, c00, c0 e c . F

Conclua:

• A rećıproca da Proposição E1.3 não vale(dual reflex.; esp. refl.): (c00)
∗ é

isometricamente isomorfo a `2.

• No caso particular de sequencias finitas (Kn), temos então que o dual
de (Kn, ‖ ‖p) é isometricamente isomorfo a (Kn, ‖ ‖p′). Isso inclusive para
p = ∞ (podemos ver Kn como subconjunto de c0). Todos são então
reflexivos.

Teorema de Riez A5.7:

Em um e.v.n. X temos então que BX
1 (0) é compacta (na topologia forte)

se e só se X tem dimensão finita.

E10
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E1.2.5 Teorema de Kakutani

Teorema E1.10 [Kakutani]. Seja X um e.v.n..
X é reflexivo se, e somente se, BX é compacta na topologia fraca.

�

Lema E1.11. Seja X um e.v.n.. Então, J : Xσ → X∗∗σ∗ é
cont́ınua e (quando existe) sua inversa é cont́ınua. �

J(BX) é denso em BX∗∗ com a topologia forte

X Banach⇐⇒ J(BX) = BX∗∗

X e.v.n.⇐⇒ X reflexivo

Lema E1.12 [Lema (Goldstine)]. Seja X um e.v.n. Então
J(BX) é denso em BX∗∗ com a topologia σ∗ = σ(X∗∗, X∗).
Também J(X) é denso em X∗∗ com a mesma topologia. �

Lema E1.13 [Lema (Helly) ]. Sejam X um
e.v.n., (f1, . . . , fn) ∈ (X∗)n, α ∈ Kn e

T : X → Kn : x 7→ (f1(x), . . . , fn(x)) ;

então, são equivalentes

i) Para todo ε > 0 existe xε ∈ BX tal que

‖T (xε)−α‖∞ < ε,

ii) Para todo β ∈ Kn,

|β ·α| ≤ ‖β · T ‖X∗ .

�
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Prova do Teorema Kakutani E1.10: X é reflexivo se só se BX é compacta na
topologia fraca.

(=⇒)

• J : X → X∗∗ é bijetor (X reflexivo)

• BX∗∗ = J(BX) ∴ BX = J−1(BX∗∗)

J(BX) = BX∗∗ se só se X é reflexivo (pág. E9)

• BX∗∗ é compacta na topologia fraca* do bidual σ∗ = σ(X∗∗, X∗) (T. B-A)

Teorema Banach-Alaoglu D5.2. Seja X um e.v.n. A bola fechada BX∗ =
{f ∈ X∗ : ‖f‖ ≤ 1} é compacta na topologia fraca∗ σ(X∗, X).

• J−1 : (X∗∗, σ(X∗∗, X∗))→ (X, σ(X,X∗)) é cont́ınua

Lema E1.11. Seja X um e.v.n.. Então, J : Xσ → X∗∗σ∗ é cont́ınua e (quando
existe) sua inversa J−1 : X∗∗σ∗ → Xσ é cont́ınua.

• BX = J−1(BX∗∗) é compacto na top. fraca de X (Ex. de top. D5-(a))

(⇐=)

• BX é compacto na topologia fraca (hipótese)

• J(BX) é compacto na topologia fraca* do bidual σ(X∗∗, X∗) (Lemma E1.11)

• J(BX) é fechado na topologia fraca* do bidual σ(X∗∗, X∗) (Ex. de top.

D5-(b))

∴ J(BX) = J(BX)
σ∗ Goldstine

= BX∗∗

Lema (Goldstine) E1.12 Seja X um e.v.n.. Então J(BX) é denso em BX∗∗

com a topologia σ∗ = σ(X∗∗, X∗).

• X é reflexivo (pág. E9)
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Juntando resultados obtidos, temos esta importante consequência:

Corolário E1.14. Seja X é um espaço reflexivo (de Banach). Se K ⊆
X é fechado, limitado e convexo, então K é compacto na topologia fraca.

�

Demonstração.

• K é fechado na top. fraca σ(X,X∗) (T. Mazur, K fech. conv. top. forte)

Teorema Mazur D3.10 Se X é um e.v.n. sobre K e C ⊆ X é convexo, são
equivalentes:

a) C fechado na topologia forte

b) C fechado na topologia fraca

• K ⊂ BX
R (0), para algum R > 0 (K limitado)

• BX
1 (0) é compacto na top. fraca (Kakutani, X reflexivo)

• BX
R (0) = RBX

1 (0) compacto na top. fraca

• K é compacto na top. fraca (Ex. de top. D5-(c))

E1.2.6 Prova dos Lemas Técnico, Helly e Goldstine

Aula 17

A seguir provaremos os Lemas E1.11, de Helly E1.13 e Goldstine E1.12.
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Prova do Lema E1.11: Seja X um e.v.n.. Então, J : Xσ → X∗∗σ∗ é cont́ınua e
(quando existe) sua inversa é cont́ınua.

Proposição D3.3 T é cont́ınua se, e somente se, ϕ◦T : Z → K é cont́ınua, ∀ϕ ∈ X∗.

(Z,Σ)
T //

ϕ◦T

44(X,σ(X,X∗))
ϕ // (K, τK)

pag. D43: De fato, resultado análogo vale em geral trocando o esp. (X,σ)
pelo esp. topológico (Y, σ̃) e trocando ϕ por todas as funções que define
σ̃ a menor topologia que as deixa cont́ınuas.

(Z,Σ)
T //

Jx◦T

55
(X∗, σ∗)

Jx // (K, τK) (E1.1)

T é cont́ınua ⇐⇒ Jx ◦ T é cont́ınua para todo x ∈ X
Lembre: a top. fraca∗ σ∗ = σ(X∗, X) em X∗ é a induzida pela famı́lia J(X) =
{Jx}x∈X , J : X → X∗∗ mergulho canônico: Jx(f) = f(x),∀f ∈ X∗, x ∈ X.
Todo Φ ∈ J(X) será ainda cont́ınuo com respeito à topologia fraca∗.
Analogamente toda mapa φ ∈ X∗ 7→ φ(x) (avaliação em x ∈ X fixado) será cont́ınua
com respeito à topologia fraca∗.

• Temos: J é cont́ınua ⇐⇒ Kf ◦ J é cont́ınua para todo f ∈ X∗

(X, σ(X,X∗)) J //

Kf◦J

33(X∗∗, σ(X∗∗, X∗))
Kf // (K, τK)

Analogamente: a top. fraca∗ σ(X∗∗, X∗) em X∗∗ é a induzida pela famı́lia K(X∗) = {Kf}f∈X∗ ,
K : X∗ → X∗∗∗ mergulho canônico: Kf(φ) = φ(f),∀φ ∈ X∗∗, f ∈ X∗.
Todo Φ ∈ K(X∗) será ainda cont́ınuo com respeito à topologia fraca∗ σ(X∗∗, X∗).

Analogamente toda mapa φ ∈ X∗∗ 7→ φ(f) (avaliação em f ∈ X∗ fixado) será cont́ınua com

respeito à topologia fraca∗ σ(X∗∗, X∗).

� f ∈ X∗

x 7−→ Jx 7−→ Kf(Jx)
K
=

merg.can.
Jx(f)

J
=

merg.can.
f(x)

a qual é cont́ınua na top. forte, e portanto é cont́ınua na top. fraca
σ(X,X∗) (def. top. fraca D3.1)
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• Temos: J−1 é cont́ınua ⇐⇒ f ◦ J−1 é cont́ınua para todo f ∈ X∗ (∃J−1)

(J(X) ⊆ X∗∗, σ(X∗∗, X∗)) J−1 //

f◦J−1

33(X, σ(X,X∗))
f // (K, τK)

� f ∈ X∗

φ 7−→ J−1φ = x 7−→ f(J−1φ) = f(x)
J
=

merg.can.
Jx(f) = φ(f)

a qual é cont́ınua na top. fraca* σ(X∗∗, X∗) (def. top. fraca∗ D4.3)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Prova do Lema (Helly) E1.13: SejamX um e.v.n, (f1, . . . , fn) ∈ (X∗)n, α ∈ Kn

e
T : X → Kn : x 7→ (f1(x), . . . , fn(x)) ;

então, são equivalentes

i) Para todo ε > 0 existe xε ∈ BX tal que

‖T (xε)−α‖∞= max
j=1,...,n

{|fj(xε)− αj |} < ε,

ii) Para todo β ∈ Kn,

|β ·α| ≤ ‖β · T ‖X∗ = sup
x∈X
‖x‖≤1

|β · Tx|.

i) =⇒ ii)

|β ·α| − |β · Txε| ≤ |β ·α− β · Txε| = |β · Txε − β ·α| = |β · (Txε −α)|

|β ·α| ≤ |β · Txε|+ |β · (Txε −α)| ≤ ‖β · T ‖X ∗ ‖xε‖ + |β · (Txε −α)|

HolderA2.5
≤ ‖β · T ‖X∗ + ‖β‖1︸ ︷︷ ︸

const.

‖Txε −α‖∞ (
∑
|ξjηj | ≤

(∑
|ξj |

p
)1/p (∑

|ηj |
q
)1/q

)

hipotese

≤ ‖β · T ‖X∗ + cε, ∀ε > 0
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Note: i)
(
∀ε > 0,∃xε ∈ BX ; ‖T (xε)−α‖∞ < ε

)
⇐⇒ α ∈ T (BX) ⊂ Kn

ii) =⇒ i): Caso K = R

Suponha α /∈ T (BX)

Queremos encontrar β ∈ Rn; |β ·α| > ‖β · T ‖X∗ = sup x∈X
‖x‖≤1

|β · Tx|.

• {α} ∩ T (BX) = ∅

• {α} convexo compacto

• T (BX) convexo fechado (prova do lema TAA pag. B21, T linear)

Teorema B3.4 [Hahn-Banach - Forma Geométrica 2 ] Sejam X um

e.v.n. real e A,B ⊆ X conjuntos convexos, não vazios e disjuntos. Se A é

fechado e B é compacto, então existe um hiperplano fechado que separa A e

B no sentido forte: ∃ α ∈ R, f ∈ X∗; f |B ≥ α+ ε > α > α− ε ≥ f |A.

• ∃ ξ ∈ R, ϕ ∈ (Rn)∗; ϕ(α) > ξ > ϕ|
T (BX)

• ∃ β ∈ Rn; ϕ(x) = β · x (linear em Rn)

ξ > ϕ|
T (BX)

=⇒ ϕ(Tx) < ξ, x ∈ BX ⇐⇒ β · Tx < ξ, x ∈ BX

simetria⇐⇒ |β · Tx| < ξ, x ∈ BX

=⇒ ‖β · T‖X∗ ≤ ξ

∴ ‖β · T‖X∗ ≤ ξ < ϕ(α) = β ·α ≤ |β ·α|

ii) =⇒ i): Caso K = C: Exerćıcio. Sugestão: escreva

fj = <efj + i=mfj, αj = α1
j + iα2

j , βj = β1
j + iβ2

j , j = 1, . . . , n

e aplique o Caso K = R.
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Prova do Lema (Goldstine) E1.12: Seja X um e.v.n.. Então,

J(BX)
σ(X∗∗,X∗)

= BX∗∗ , J(X)
σ(X∗∗,X∗)

= X∗∗.

Af.1. J(BX)
σ(X∗∗,X∗)

⊂ BX∗∗

• J(BX) ⊂ BX∗∗ (J : X → X∗∗ merg. canônico: isometria)

• J(BX)
σ(X∗∗,X∗)

⊂ BX∗∗
σ(X∗∗,X∗)

• BX∗∗ comp. na top. fraca∗ σ(X∗∗, X∗), logo fechado (T.B-A D5.2, ex. top. D5 )

• BX∗∗
σ(X∗∗,X∗)

= BX∗∗

Af.2. BX∗∗ ⊂ J(BX)
σ(X∗∗,X∗)

• ϕ ∈ BX∗∗

Queremos ∀ϕ3V ∈ σ(X∗∗, X∗), V ∩ J(BX) 6= ∅, i.e., ∃ x ∈ BX; Jx ∈ V

• V ∈ σ(X∗∗, X∗) ; V 3 ϕ

• ∃ε > 0, f1, . . . , fn ∈ X∗; Vε,f1,...,fn(ϕ) = {η ∈ X∗∗ : |(η − ϕ)(fj)| < ε, ∀j} ⊂
V

Basta mostrar: ∃ x ∈ BX ; |(Jx− ϕ)(fj)| < ε,∀j = 1, . . . , n

⇐⇒ |fj(x)− ϕ(fj)︸ ︷︷ ︸
∈K

| < ε,∀j = 1, . . . , n

Lema (Helly) E1.13: Sejam X um e.v.n, (f1, . . . , fn) ∈ (X∗)n, α ∈ Kn e

T : X → Kn : x 7→ (f1(x), . . . , fn(x)) ;

então, são equivalentes

i) Para todo ε > 0 existe xε ∈ BX tal que

‖T (xε)−α‖∞= max
j=1,...,n

{|fj(xε)− αj |} < ε,
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ii) Para todo β ∈ Kn,

|β ·α| ≤ ‖β · T ‖X∗ = sup
x∈X
‖x‖≤1

|β · Tx|.

• T : X → Kn : x 7→ (f1(x), . . . , fn(x))

• α := (ϕ(f1), . . . , ϕ(fn)) ∈ Kn

• β ∈ Kn

|β ·α| =

∣∣∣∣∣
n∑
i=1

βiϕ(fi)

∣∣∣∣∣
linearidade

=
ϕ∈BX∗∗

∣∣∣∣∣ϕ
(

n∑
i=1

βifi

)∣∣∣∣∣
ϕ∈X∗∗
≤

βifi∈X∗
‖ϕ‖X∗∗

∥∥∥∥∥
n∑
i=1

βifi

∥∥∥∥∥
X∗

= ‖ϕ‖X∗∗ sup
x∈X
‖x‖≤1

∣∣∣∣∣
n∑
i=1

βifi(x)

∣∣∣∣∣
= ‖ϕ‖X∗∗ sup

x∈X
‖x‖≤1

|β · Tx|

= ‖ϕ‖X∗∗ ‖β · T ‖X∗

ϕ∈BX∗∗

≤ ‖β · T ‖X∗

Af. 3. J(X)
σ(X∗∗,X∗)

= X∗∗

Exerćıcio.
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E2 Separabilidade e metrização da bola

E2.1 Definição e propriedades

Um espaço métrico (X, d) é dito separável se existir um subconjunto enu-
merável D ⊆ X que é denso em X.

LEMBRETE:[Fol99, pag. 6]

– card(X) ≤ (resp. = // resp. ≥) card(Y ) significa que
existe f : X → Y injetora (resp bijetora // , resp. sobrej.)
– a desigualdade estrita < (resp. >) significa que existe uma
injeção (resp. sobrejeção) mas não uma bijeção.
– X enumerável significa card(X) ≤ card(N),
– um produto cartesiano finito de enumeráveis é enumerável
– uma reunião enumerável de enumeráveis é enumerável
– P(N) não é enumerável

P(N) é enumerável ⇐⇒ card(P(N)) ≤ card(N)
Mas
card(X) < card(P(X)) para qualquer conjunto X:

• f : X → P(X) : x 7→ f(x) = {x} é injetora:

card(X) ≤ card(P(X))

• qualquer g : X → P(X) : x 7→ g(x) = Z ⊂ X não
pode ser sobrejetora pois:

P(X)3Y := {x ∈ X : x /∈ g(x) = Z} /∈ Im(g)

Y ∈ Im(g)⇔ ∃x ∈ X; g(x) = Y , neste caso x ∈ Y ?
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Exerćıcios

Exerćıcio E2.1. São separáveis [BPT12, p. 16..]

• Kn (separado por Qn ou Q2n)

• `p com 1 ≤ p <∞ (separados por c00(Q)) e também c, c0 .

• também Xn, `p(X), c(X), c0(X) se X é separável.

• (C([a, b],R), ‖ ‖U) (Teorema da Aproximação de Weierstrass)

`∞ não é separável. F

Exerćıcio E2.2. Sejam X um e.v.n, {xn} uma sequência em X e M =
[xn]n∈N (combinações lineares (finitas) de elementos da sequência).
Mostre que se M é denso em X, então X é separável. F

Proposição E2.3. Seja X um espaço métrico separável e ∅ 6= F ⊂ X.
Então F é separável. �

Proposição E2.4. Se X é um e.v.n. e X∗ é separável então X também é
separável. �

Observação. A reciproca não é verdadeira: `1 é separável e seu dual (iso-
metricamente isomorfo a `∞, Ex. C2.4) não é. F

Lema E2.5. Se X e Y são e.v.n. isometricamente isomorfos, então X é
separável se, e somente se, Y é separável. �

Demonstração. Exerćıcio.

O Teorema E1.7, a Proposição E2.4 e o Lema E2.5 implicam:

Teorema E2.6. Seja X um espaço de Banach. Então, X é reflexivo
e separável, se e somente se, X∗ é reflexivo e separável. �

Demonstração. (⇐=) Teorema E1.7 + a Proposição E2.4
(=⇒)

X refl.
merg.can

=⇒
is.is.sob.

X∗∗ isom.isom. a X
Xsep.
=⇒
L.E2.5

X∗∗ separável
P.E2.4
=⇒ X∗ separável
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E2.1.1 Demonstrações

Aula 18

Prova da Proposição E2.3: Seja X um espaço métrico separável e ∅ 6= F ⊂ X.
Então F é separável.

• ∃ D = {xn, n ∈ N} ⊂ X enumerável e denso em X (X separável)

Af. 1. X =
⋃
n∈N

B 1
m

(xn) ∀m ∈ N

� x ∈ X = D

� ∃ xn0 ∈ D ∩B 1
m

(x) (B 1
m

(x) aberto em X e.m.)

� x ∈ B 1
m

(xn0)

∴ x ∈
⋃
n∈NB 1

m
(xn)

Queremos: um subconj. de F enumerável e denso em F

• para cada (m,n) tal que F ∩B 1
m

(xn) 6= ∅ escolha (a intersec. não pode ser ∅ ∀m,n: F 6= ∅)

ym,n ∈ F ∩B 1
m

(xn)

• Y := {ym,n}m,n∈N é um subconjunto de F enumerável

Af. 2. Y = F

• Y ⊂ F pois Y ⊂ F

• F ⊂ Y :

� y ∈ F
Queremos: ∀ε > 0, ∃z ∈ Y ∩Bε(y), i.e, ∃z ∈ Y ; ‖y − z‖ < ε

� y = ym,n para algum (m,n), ok!

� y 6= ym,n ∀m,n

� dado ε > 0 e m0 ∈ N
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� ∃ n0; y ∈ B 1
m0

(xn0) (y ∈ F ⊂ X Af.1.
= ∪n∈N B 1

m
(xn) )

� F ∩B 1
m0

(xn0) 6= ∅

� z ∈ F ∩B 1
m0

(xn0) como sendo o elemento escolhido z = ym0,n0 ∈ Y

‖y − z‖ ≤ ‖y − xn0‖+‖xn0 − z‖ <
1

m0
+

1

m0
=

2

m0

tome
<

1
m0
< ε

2

ε

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Prova da Proposição E2.4: X e.v.n., X∗ separável =⇒ X separável.

• SX
∗

1 (0) é separável (SX
∗

1 (0) ⊂X∗ sep.+Prop. E2.3)

• ∃ D = {ϕn ∈ SX
∗

1 (0), n ∈ N} enumerável e denso em SX
∗

1 (0)

∀ϕ ∈ SX∗1 (0), ε > 0 ∃ϕn ∈ D; ‖ϕ− ϕn‖X∗ < ε

Queremos: M ⊂ X enumerável e denso em X

• para cada n ∈ N, ∃xn ∈ X com ‖xn‖ ≤ 1; |ϕn(xn)| ≥ 1
2 (def. sup)

‖ϕn‖X∗ = sup x∈X
‖x‖≤1

|ϕn(x)| = 1

• M := [xn, n ∈ N]Q (o e.v. gerado com coeficientes em Q ou Q2, não é s.e.v. )

Af. 1. M ⊂ X é enumerável

An := [x1, . . . , xn]Q é enumerável (Qn ou Q2n é enumerável)

λ1x1 + λnxn ←→ (λ1, . . . , λn) ∈ Qn
ou Q2n

M =
⋃
n∈N

An
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Af. 2. M é denso em X

� M é denso em L := [xn, n ∈ N]K ⊂
s.e.v .

X (L pode não er en.)

Basta mostrar que L é denso em X: L = X

� supor ∃ z0 ∈ X \ L

Teorema [Existem muitos funcionais]B2.4 a. M
s.e.v. fechado de X e x0 ∈ X \M =⇒, f ∈ X∗, ‖f‖ = 1,
f |M = 0, e f(x0) = d(x0,M) > 0.

� ∃ ϕ ∈ SX∗1 (0); ϕ|L = 0 e ϕ(z0) 6= 0

‖ϕ− ϕn‖X∗ = sup
x∈X
‖x‖≤1

|ϕ(x)− ϕn(x)|
xn∈X
≥

‖xn‖≤1
|ϕ(xn) − ϕn(xn)|

xn∈L= |ϕn(xn)| ≥ 1
2 ∀n, ��D é denso em SX

∗

Proposição E2.7. Se existe uma famı́lia não enumerável de abertos em X,
não vazios e 2 a 2 disjuntos, então X não é separável. �

Demonstração.

• {Oi}i∈I ⊂ X, I não enumerável , Oi abertos não vazios, 2 a 2 disjuntos

• supor X separável: ∃ D := {xn, n ∈ N} ⊂ X, {xn, n ∈ N} = X

• ∃ ni ∈ N; xni ∈ Oi (∅ 6=Oi ⊂
ab.
X, D denso em X)

• n : I → N : i 7→ ni é injetora (Oi ∩Oj = ∅, i 6= j)

– card(X) ≤ card(Y ) significa que existe f : X → Y injetora
– X enumerável significa card(X) ≤ card(N),

• card(I) ≤ card(N)

• I é enumerável ��
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Proposição E2.8. Todo e.v.n. X separável é isometricamente isomorfo a
um subespaço de `∞. �

Demonstração.

• ∃ {xn;n ∈ N} um subconjunto denso de X (X separável)

• ∃ ϕn ∈ X∗, n ∈ N; ‖ϕn‖X∗ = 1 e ϕn (xn) = ‖xn‖

Teorema [Existem muitos funcionais]B2.4 Seja X um e.v.n. sobre K.
[b.] Se X é não trivial, X∗ é não trivial: Se x0 6= 0, existe f ∈ X∗ tal que
‖f‖X∗ = 1 e f(x0) = ‖x0‖.

Af. 1. T : X → `∞ : x 7→ Tx = (ϕn(x))n = (ϕ1(x), ϕ2(x), . . .) é um mergulho
isométrico

`∞ = {x = (xj)j∈N ⊆ K : ‖x‖∞ <∞} , ‖x‖∞ := sup
j∈N
|xj |

� T é linear

� Tx ∈ `∞

‖Tx‖∞ = sup
j∈N
|ϕj(x)| ≤ sup

j∈N
‖ϕj‖X∗ ‖x‖ = ‖x‖, ∀x ∈ X

∴ T (X) ⊂
s.e.v.

`∞ e T é limitada/cont́ınua

� ‖Txn‖∞ = ‖xn‖, ∀n

Txn = (ϕ1(xn), . . . , ϕn(xn), . . .) = (ϕ1(xn), . . . , ‖xn‖ , . . .)

=⇒ ‖Txn‖∞ = sup
j∈N
|ϕj(xn)| ≥ ‖xn‖

� ‖Tx‖∞ = ‖x‖, ∀x ∈ X ({xn;n ∈ N} = X)

∴ T é uma isometria e logo injetora

E24



AF-E 31 de outubro de 2025

Exerćıcios

Exerćıcio E2.9 (EE2). Seja X um e.v.n. de dimensão infinita e se-
parável.

• Mostre que existe uma sequência de subespaços de dimensão finita
cuja reunião é densa.

• Mostre que existe uma sequência φn em X∗ com ‖φn‖ = 1 e tal que
φn(x)→ 0 para todo x ∈ X

F

E2.2 Metrização da bola

Teorema E2.10. Seja X um e.v.n. Então X é separável, se e somente se,
(BX∗, σ(X∗, X)) é metrizável.
Uma métrica é

dσ∗(φ, ψ) :=
∞∑
n=1

1

2n
|φ(xn)− ψ(xn)| , φ, ψ ∈ BX∗,

onde {xn} é denso em BX.
�

(BX∗ , σ(X∗, X)) é metrizável ⇐⇒ ∃d : BX∗ × BX∗ → [0,∞) métrica; todo aberto da top. forte

(induzida por d) contém aberto da top. fraca∗ restrita BX∗ e vice-versa.

Teorema E2.11. Seja X um e.v.n. Então X∗ é separável, se e somente
se, (BX , σ(X,X∗)) é metrizável. Uma métrica é

dσ(x, y) :=
∞∑
n=1

1

2n
|fn(x− y)| , x, y ∈ BX ,

onde {fn} é denso em BX∗. �

Exerćıcios

Exerćıcio E2.12 (BX metr.). Prove o Teorema E2.11 imitando a do
Teorema E2.10 e usando o exerćıcio 3.24 do [Bre11, p.85, 75–76]. F

De fato, nos Teoremas E2.10 e E2.11 pode-se substituir a bola unitária por qualquer bola fechada.
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Prova do Teorema E2.10.
(=⇒)

• BX é separável (X separável)

Proposição E2.3 Se X é e.m. separável e ∅ 6= F ⊂ X, então F é separável.

• ∃ {xn ∈ BX : n ∈ N} enumerável e denso em BX

• d : BX∗ ×BX∗ → [0,∞)

dσ∗(φ, ψ) :=
∞∑
n=1

1

2n
|φ(xn)− ψ(xn)|

Af.1. d está bem definida

Af.2. d é uma métrica

dada φ0 ∈ BX∗, i.e., φ0 ∈ X∗ e ‖φ0‖ ≤ 1:

Af.3. φ0 ∈ V ∈ σ(X∗, X)|
BX∗ =⇒ ∃ U ∈ τ

BX∗ ; φ0 ∈ U ⊂ V

Af.4. φ0 ∈ U ∈ τBX∗ =⇒ ∃ V ∈ σ(X∗, X)|
BX∗ ; φ0 ∈ V ⊂ U

• (BX∗, σ(X∗, X)) é metrizável

Prova da Af. 1.: ∀φ, ψ ∈ BX∗ ,

1

2n
|φ(xn)− ψ(xn)| ≤

1

2n
‖φ− ψ‖ ‖xn‖ ≤

1

2n
‖φ− ψ‖ ≤ 2

1

2n
,

∞∑
n=1

1

2n−1
<∞

Prova da Af. 2.:

(a) dσ∗(φ, ψ) ≥ 0,∀φ, ψ ∈ BX∗

(b) dσ∗(φ, ψ) = 0 =⇒ φ(xn) = ψ(xn),∀n
{xn}
=⇒
denso

φ(x) = ψ(x),∀x ∈ BX linearidade
=⇒

φ(x) = ψ(x),∀x ∈ X

(c) dσ∗(φ, ψ) ≤ dσ∗(φ, ρ) + dσ∗(ρ, ψ),∀φ, ψ, ρ ∈ BX∗

Prova da Af. 3.:
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• φ0 ∈ BX∗, φ0 ∈ V ∈ σ(X∗, X)|
BX∗

• ∃ ε > 0, y1, . . . , ym ∈ X;

Vε,y1,...,ym(φ0) = {φ ∈ BX∗ : |(φ− φ0)(yi)| < ε,∀i = 1, . . . ,m} ⊂ V

Basta mostrar ∃ U ∈ τ
BX∗ ; φ0 ∈ U ⊂ Vε,y1,...,ym(φ0), i.e.,

?

∃ r > 0; ∆r(φ0) := {φ ∈ BX∗ : d(φ, φ0) < r} ⊂ Vε,y1,...,ym(φ0)

Queremos: r > 0;

d(φ, φ0) =
∞∑
n=1

1

2n
|φ(xn)−φ0(xn)| < r =⇒ |(φ−φ0)(yi)| < ε,∀i = 1, . . . ,m (φ ∈ BX∗)

i.e.,

1

2n
|φ(xn)− φ0(xn)| < r,∀n =⇒ |(φ− φ0)(yi)| < ε,∀i = 1, . . . ,m

i.e.,

|φ(xn)− φ0(xn)| < 2nr,∀n =⇒ |(φ− φ0)(yi)| < ε,∀i = 1, . . . ,m

|(φ− φ0)(yi)| ≤ |φ(yi)−φ(xn)|+ |φ(xn)−φ0 (xn)|︸ ︷︷ ︸
Ok

+|φ0 (xn)− φ0(yi)|

≤ ‖φ‖ ‖yi − xn‖+ 2nr + ‖φ0‖ ‖xn − yi‖

≤ ‖yi − xn‖+ 2nr + ‖xn − yi‖ , ∀n

Se yi ∈ BX , i = 1, . . . ,m, ({xn} é denso em BX )

∀ε̃ > 0, ∃ xni ∈ BX ; ‖xni − yi‖ < ε̃

∴ |(φ− φ0)(yi)| ≤ 2 ‖yi − xni‖+ 2nir ≤ 2ε̃+ 2nir

basta tomar ε̃ = ε
4 e r > 0; 2nir < ε

2 ,∀ni i.e., 0 < r < min{ ε
2ni+1 , i = 1, . . . ,m}

S.P.G. podemos considerar y1, . . . , ym ∈ BX (trocando ε !)
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tome zi ∈ BX , i = 1, . . . ,m, dados por

zi =

{
yi
‖yi‖ , ‖yi‖ > 1

yi, ‖yi‖ ≤ 1

Queremos ε > 0 tal que:

Ṽε,z1,...,zm(φ0) = {φ ∈ BX∗ : |(φ−φ0)(zi)| < ε,∀i} ⊂ Vε,y1,...,ym(φ0) ⊂ V

φ ∈ Ṽε,z1,...,zm(φ0)
?

=⇒ φ ∈ Vε,y1,...,ym(φ0)
•
|(φ− φ0)(

yi
‖yi‖)| < ε⇒ |(φ− φ0)(yi)| < ε ‖yi‖ = ε

•
|(φ− φ0)(yi)| < ε = ε

tome ε = min{ε, ε
‖yi‖ , i = 1, . . . ,m}

Prova da Af. 4.:

• φ0 ∈ BX∗, φ0 ∈ U ∈ τ
BX∗ ;

∴ ∃ r > 0; ∆r(φ0) = {φ ∈ BX∗ : d(φ, φ0) < r} ⊂ U

Queremos mostrar: ∃ φ03V ∈ σ(X∗, X)|
BX∗ ; V ⊂ U

Basta mostrar: ∃ y1, . . . , ym ∈ X, ε > 0;

Vε,y1,...,ym(φ0) = {φ ∈ BX∗ : |(φ− φ0)(yi)| < ε,∀i = 1, . . . ,m} ⊂ ∆r(φ0)

• candidatos naturais: yi = xi (elem. do conj. {xn} denso em BX)

• para quantos pontos (m =?) e para qual ε > 0 temos:

|(φ−φ0)(
xi︷︸︸︷
yi )| < ε,∀i = 1, . . . ,m(=?) =⇒ d(φ, φ0) =

∞∑
n=1

1

2n
|φ(xn)−φ0(xn)| < r
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d(φ, φ0) =
∞∑
n=1

1

2n
|φ(xn)− φ0(xn)|

=
m∑
n=1

1

2n
|φ(xn)− φ0(xn)| +

∞∑
n=m+1

1

2n
|φ(xn)− φ0(xn)|

se
<

φ∈Vε,y1 ,...(φ0 )
ε

m∑
n=1

1

2n
+

∞∑
n=m+1

1

2n
‖φ− φ0‖ ‖xn‖

φ,φ0∈BX∗

<
xn∈BX

ε
m∑
n=1

1

2n
+

∞∑
n=m+1

1

2n
2

( ∞∑
n=1

1

2n
=

1
2

1− 1
2

= 1

)

≤ ε+ 2
1

2m−1

1− 1
2

= ε+
1

2m−1

queremos
<

φ∈∆r (φ0 )

r

2
+
r

2

basta tomar m ∈ N tal que 1
2m−1 <

r
2 e 0 < ε < r

2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(⇐=)

• ∃ d : BX∗ ×BX∗ → [0,∞) métrica; todo aberto de τ
BX∗ contém aberto de

σ(X∗, X)|
BX∗ e vice-versa ((BX∗ , σ(X∗, X)) é metrizável)

Queremos encontrar D ⊂ X enumerável e denso em X

• ∆ 1
k
(0) = {φ ∈ BX∗ : d(φ, 0) < 1

k} ∈ τ
BX∗

• ∃ εk > 0, xk1, . . . , x
k
nk
∈ X;

Vεk,xk1 ,...,xknk
(0) = {φ ∈ BX∗ : |φ(xki )| < ε,∀i = 1, . . . , nk} ⊂ ∆ 1

k
(0)

• D := [{xk1, . . . , xknk : k ∈ N}]Q2 ⊂ X é enumerável (ver p. E22, não é s.e.v.)

• L := [{xk1, . . . , xknk : k ∈ N}]K ⊂
s.e.v.

X (pode ser não enumerável)
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• D é denso em L

Af. L é denso em X e portanto D é denso em X

Exerćıcio B2.6. Um subespaço M de um e.v.n. X é denso se e só se vale que

∀φ ∈ X∗ t.q. φ|M = 0, vale φ ≡ 0

� φ ∈ X∗; φ|L = 0

=⇒ φ(xki ) = 0, ∀i = 1, . . . , nk, ∀k ∈ N

=⇒ |φ(xki )| < εk, ∀i = 1, . . . , nk, ∀k ∈ N

=⇒ φ ∈ Vεk,xk1 ,...,xknk (0) ⊂ ∆ 1
k
(0) ∀k ∈ N

=⇒ d(φ, 0) < 1
k ∀ k ∈ N =⇒ φ ≡ 0

E2.2.1 Consequências

Aula 19

Corolário E2.13. Nas hipóteses do Teorema E2.10 (X separável) (resp.
E2.11, X∗ separável) para limitados de X∗ (resp. de X), compacidade e com-
pacidade sequêncial são equivalentes. �

• K é sequencialmente compacto:
toda sequência em K possui subsequencia convergente em K

• Em espaços topológicos:
compacto < sequencialmente compacto:

– (B`∗∞ , σ(`∗∞, `∞)) é compacta e é posśıvel construir sequência em B`∞ que não
possui subsequência convergente[Bre11, Exerćıcio 3.18] (Verifique!)
– o espaço de todos os ordinais numeráveis ω1, munido com a topologia da ordem é se-
quencialmente compacto, mas não compacto.[Mun00, Exerc.6-Seção 26, Exemplo 5-Seção 27]

• Em espaços métricos:[Mun00, Theorem 27.3]

compacto ⇐⇒ sequencialmente compacto
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Temos então

Corolário E2.14. Se X é um e.v.n. separável e {fn} é uma sequência
limitada de X∗, então existe subsequência {fnk} que converge em σ(X∗, X)
(conv. fraca∗). �

Teorema E2.15. Seja X um e.v.n reflexivo (de Banach) e {xn} uma
sequência limitada em X . Então existe uma subsequência {xnk} que con-
verge em σ(X,X∗) (conv. fraca). �

Prova do Corolário E2.14:

• ∃M > 0 tal que ‖fn‖ ≤M , ∀n ∈ N ({fn} limitada de X∗)

• gn = fn
M ∈ BX∗

• (BX∗, σ(X∗, X)) é metrizável (Teorema E2.10, X separável)

• (BX∗, σ(X∗, X)) é compacto (Teorema Banach-Alaoglu D5.2)

• (BX∗, σ(X∗, X)) é sequencialmente compacto

• {gn} possui subsequência {gnk} que converge na top. fraca∗ para g ∈ BX∗

• fnk
∗
⇀Mg em X∗

Prova do Teorema E2.15:

Proposição E1.4. Todo subespaço fechado de um e.v.n. X reflexivo (de Banach)
é reflexivo.

Teorema E2.6. Seja M um e.v.n. de Banach. Então, M é reflexivo e separável,
se e somente se, M∗ é reflexivo e separável.

Corolário E2.14. Y um e.v.n. separável e {fn} é uma sequência limitada de Y ∗ ,

então ∃ fnk
∗
⇀ f em Y ∗ (conv. na top. fraca∗ de Y ∗). (Y = M∗)

Proposição D4.7. Seja {fn} uma sequência em Y ∗. Temos que (Y = M∗)

(i) fn
∗
⇀ f ⇐⇒ fn(x)→ f(x), ∀x ∈ Y .

Proposição D3.7. Seja {xn} uma sequência em X. Temos que:
(i) xn ⇀ x ⇐⇒ φ(xn)→ φ(x) ∀ φ ∈ X∗
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• M0 := [xn; n ∈ N] e M := M0 ({xn} sequência em X)

� M é s.e.v. fechado de X

� M é reflexivo (X reflexivo, P. E1.4)

� M é separável

D := [xn; n ∈ N]Q2 ⊂M é enumerável e denso em M

• M ∗ é reflexivo e separável (T. E2.6)

Queremos uma seq. limitada em M ∗∗

• J : M →M ∗∗ mergulho canônica (isom. isom. sobrejetor)

• fn := Jxn

• {fn} é uma seq. limitada em M ∗∗ ({xn} limitada X)

‖fn‖ = ‖Jxn‖ = ‖xn‖

• ∃{fnk} conv. na top. fraca∗ σ(M ∗∗,M∗), i.e., (C. E2.14)

∃ f ∈M ∗∗ ; fnk
∗
⇀ f

=⇒


∃ x ∈M ⊂ X; f = Jx

fnk(φ)→ f(φ), ∀φ ∈M ∗ =⇒ (P. D4.7)

=⇒ Jxnk(φ)→ Jx(φ), ∀φ ∈M ∗ =⇒ φ(xnk)→ φ(x), ∀φ ∈M ∗

Queremos usar: Proposição D3.7. Seja {xn} uma sequência em X.:
(i) xn ⇀ x ⇐⇒ φ(xn)→ φ(x) ∀ φ ∈ X∗

• ϕ ∈ X∗ =⇒ ϕ|M ∈M ∗

∴ ϕ(xnk)
xnk∈M= ϕ|M(xnk)→ ϕ|M(x)

x∈M
= ϕ(x), ∀ϕ ∈ X∗

• xnk ⇀ x em X
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Exerćıcios

Exerćıcio E2.16. Faça o exerćıcio 3.16 (p. 83) do [Bre11] F

Exerćıcio E2.17. Faça os exerćıcios 3.17 e 3.18 (p. 83) do [Bre11] F

Exerćıcio E2.18. Faça o exerćıcio 3.22 (p. 84) do [Bre11] F

Exerćıcio E2.19. Faça o exerćıcio 3.25 (p. 85) do [Bre11] F

Leia e se convença:

Seja X um e.v.n.. Vimos:

A. (BX∗, σ(X∗, X)) é compacto

B. (BX , σ(X,X∗)) é compacto se, e somente se, X é reflexivo

C. (BX∗, σ(X∗, X)) é metŕızavel se, e somente se, X é separável

D. (BX , σ(X,X∗)) é metŕızavel se, e somente se, X∗ é separável

E. Se X é separável e (ϕn) ⊂ X∗ é limitada, então existe (ϕnk) e ϕ ∈ X∗
tal que

ϕnk
∗−→ ϕ (A. + C.)

F. Se X é reflexivo e (xn) ⊂ X é limitada, então existe (xnk) e x ∈ X
tal que

xnk ⇀ x (E. + · · · )

Por B. e F., podeŕıamos perguntar: existe alguma relação entre o espaço
X ser reflexivo e (BX , σ(X,X∗)) ser metrizável?

Resposta: Não. Por D., basta encontrar um espaço X reflexivo e não
separável (neste caso X∗ não é separável). Exemplo de tal espaço:

• X um conjunto não enumerável;

• µ a medida de contagem em X;

• considere p ∈ (1,∞);

• X = Lp(X,µ).
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E3 Espaços uniformemente convexos

Definição E3.1. Um e.v.n X é dito uniformemente convexo se, para
todo ε > 01, existe δ > 0 tal que

x, y ∈ BX , e ‖x− y‖ ≥ ε =⇒
∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− δ. (E3.1)

F

Convexidade uniforme é uma propriedade geométrica da BX
1 (0) (ou da

norma): deslizando uma régua de comprimento ε > 0 na BX
1 (0), seu ponto

médio deve estar dentro de BX
1−δ(0), a qual está dentro da bola unitária.

Em particular a SX1 (0) não pode conter segmentos de reta.

Exemplo E3.2. • Spoiler: Espaços com produto interno são u.c.

• (R2, ‖ ‖p): é u.c. se p ∈ (1,∞), mas não é u.c. se p = 1 ou p =∞. F

Figura 1: acima :p = 1: norma da soma, p = 2: norma Euclidiana, p =∞: norma do máximo
abaixo: p = 1.5, p = 3, sobrepostas p = 1, 1.5, 2, 3, 6,∞
Temos que: (Rn, ‖·‖p) é sempre reflexivo (ver Ex. E1.8-E1.9) mas u.c. depende da norma.

1Note que como ‖x‖ , ‖y‖ ≤ 1, então ‖x− y‖ ≥ ε só faz sentido para 0 < ε ≤ 2
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Convexidade uniforme é uma ferramenta frequentemente usada para pro-
var reflexividade:

Teorema E3.3 [Milman-Pettis]. Todo espaço de Banach uniforme-
mente convexo é reflexivo. �

Spoiler: Exemplos Importantes: serão os espaços Lp(X), p ∈ [2,∞)
(Banach + u.c.)

Spoiler: Como espaço de Hilbert é um espaço com produto interno e Banach,
segue:

Corolário E3.4. Todo espaço de Hilbert é reflexivo. �

Observação E3.5. Um espaço X é reflexivo quando o mergulho canônico
J : X → X∗∗ é sobrejetor. Uma condição para que isso ocorra é:

SX
∗∗ ⊂ J(BX).

• Φ ∈ X∗∗

Queremos: x0 ∈ X; Jx0 = Φ

• Ψ =
Φ

‖Φ‖
∈ SX∗∗ ⊂ J(BX)

• ∃ x ∈ BX ; Jx = Ψ

Φ

‖Φ‖
= Ψ = Jx =⇒ J(‖Φ‖x︸ ︷︷ ︸

x0∈X

) = Φ

F
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Prova do Teorema de Milman-Pettis E3.3: X Banach uniformemente convexo
é reflexivo

Queremos: X reflexivo, J : X → X∗∗ sobrej.

Basta mostrar que SX
∗∗ ⊂ J(BX)

pag. E9: Se X é Banach, J(BX) ⊂ X∗∗ é fechado na top. forte τX∗∗:

J(BX) = J(BX)

Basta mostrar que SX
∗∗ ⊂ J(BX) (X Banach)

• Φ ∈ X∗∗ com ‖Φ‖X∗∗ = sup
f∈X∗

‖f‖=1

|Φ(f)| = 1

Queremos: ∀ ε > 0,
?

∃ x ∈ BX; ‖Φ− Jx‖ ≤ ε

⇐⇒ Φ− Jx ∈ BX∗∗
ε

⇐⇒ Φ ∈ Jx+ εBX∗∗

Lema Goldstine E1.12. Seja X um e.v.n. Então J(BX) é denso em BX∗∗

com a topologia σ∗ = σ(X∗∗, X∗), i.e.,

J(BX) ∩ V 6= ∅, ∀
BX∗∗3Ψ3V ∈ σ(X∗∗, X∗)

Ideia: construir um adequado aberto V ∈ σ(X∗∗, X∗) que contenha Φ, pois

dáı ∃ x ∈ BX ; Jx ∈ V e depois mostrar que Φ ∈ Jx+ εBX∗∗

• ε > 0

• construção de V :

� ∃ f ∈ X∗ com ‖f‖ = 1; 1− a < |Φ(f)| (∀ a > 0)

� V := Va,f(Φ) = {Ψ ∈ X∗∗; |(Ψ− Φ)(f)| < a}

• V é um aberto de σ(X∗∗, X∗) que contém Φ ∈ SX∗∗ ⊂ BX∗∗

• ∃ x ∈ BX ; Jx ∈ V (Goldstine)
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Af. Φ ∈ Jx+ εBX∗∗ =: W , i.e., ‖Φ− Jx‖ ≤ ε

• Supor Φ /∈ W
encontraremos uma contradição com o fato de X ser u.c.

∀ ε > 0, existe δ > 0 tal que

x, y ∈ BX , e ‖x− y‖ ≥ ε =⇒
∥∥x+y

2

∥∥ ≤ 1− δ .

• Φ ∈ WC := X∗∗ \W , e ‖Φ− Jx‖ > ε

• (BX∗∗, σ(X∗∗, X∗)) é compacto (Teorema Banach-Alaoglu D5.2)

• BX∗∗ (∴ W ) é um fechado da top. fraca∗ σ(X∗∗, X∗) (Ex. top. D5 )

• WC ∈ σ(X∗∗, X∗)

• (Va,f(Φ) ∩WC) ∈ σ(X∗∗, X∗)

• ∃ y ∈ BX ; Jy ∈ (Va,f(Φ) ∩ WC ) (Goldstine)

• ‖y − x‖ = ‖Jy − Jx‖ > ε

• Jy, Jx ∈ Va,f(Φ) = {Ψ ∈ X∗∗; |(Ψ− Φ)(f)| < a}

∴


|(Jx− Φ)(f)| < a

|(Jy − Φ)(f)| < a

=⇒


|f(x)− Φ(f)| < a

|f(y)− Φ(f)| < a

2(1− a) < |2Φ(f)| = |Φ(f) + Φ(f)|
≤ |Φ(f)− f (x )|+ |f (x ) + f (y)|+ | − f (y) + Φ(f)|
< a + ‖f‖︸︷︷︸

=1

‖x+ y‖+ a

=⇒ ‖x+ y‖ > 2− 4a =⇒
∥∥∥∥x+ y

2

∥∥∥∥ > 1− 2a, ∀a > 0

∴

∥∥∥∥x+ y

2

∥∥∥∥ > 1− δ, ∀δ > 0 ��
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Proposição E3.6. Sejam X uniformemente convexo e {xn} uma sequência
em X tal que xn ⇀ x e

lim sup
n→∞

‖xn‖ ≤ ‖x‖.

Então xn → x.
Em particular, convergência fraca mais convergência da norma implica con-

vergência forte. �

Demonstração.

• lim sup
n→∞

‖xn‖ ≤ ‖x‖ ≤ lim inf
n→∞

‖xn‖ (xn ⇀ x, P.D3.7-iii)

Proposição D3.7. Seja {xn} uma sequência em X. Temos que:
iii) xn ⇀ x =⇒ {‖xn‖} é limitada e ‖x‖ ≤ lim inf ‖xn‖

• lim
n→∞
‖xn‖ = ‖x‖ (lim inf

n→∞
≤ lim sup

n→∞
)

Caso 1: x = 0

lim
n→∞
‖xn‖ = 0 =⇒ lim

n→∞
xn = 0 = x

Caso 2: x 6= 0

• ‖xn‖ 6= 0 definitivamente (∃n0; xn 6= 0, n ≥ n0)

• xn 6= 0 definitivamente

• yn :=
xn
‖xn‖

• yn ⇀ y :=
x

‖x‖
onde ‖yn‖ = 1 e ‖y‖ = 1 (xn ⇀ x, ‖xn‖ → ‖x‖)

Queremos yn → y pois dáı xn → x

lim
n→∞

xn = lim
n→∞

xn
‖xn‖

‖xn‖ = y ‖x‖ =
x

‖x‖
‖x‖ = x
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Queremos ∀ ε > 0,∃ n0; ‖yn − y‖ < ε, n ≥ n0

• ε > 0

• yn, y ∈ BX (‖yn‖ , ‖y‖ = 1)

X é u.c.: ∀ ε > 0, existe δ > 0 tal que

x, y ∈ BX , e ‖x− y‖ ≥ ε =⇒
∥∥x+y

2

∥∥ ≤ 1− δ .

Basta mostrar que lim
n→∞

∥∥∥∥yn + y

2

∥∥∥∥ = 1 , pois dáı:

∀ε̃ > 0,∃ n1; n ≥ n1 =⇒
∣∣∣∣ ∥∥∥∥yn + y

2

∥∥∥∥− 1

∣∣∣∣ < ε̃

n ≥ n1 =⇒ 1− ε̃ <
∥∥∥∥yn + y

2

∥∥∥∥ < 1 + ε̃

∴ ∃ n0; ‖yn − y‖ < ε, para todo n ≥ n0

pois se ‖yn − y‖ ≥ ε, ∀n, então (X u.c.)

∃ δ > 0;

∥∥∥∥yn + y

2

∥∥∥∥ ≤ 1− δ, ∀n ��ε̃=δ

Af. lim
n→∞

∥∥∥∥yn + y

2

∥∥∥∥ = 1

• yn + y ⇀ 2y ( xn
‖xn‖ = yn ⇀ y := x

‖x‖)

• ‖2y‖ ≤ lim inf ‖yn + y‖

Proposição D3.7. iii) xn ⇀ x =⇒ {‖xn‖} é limitada e ‖x‖ ≤ lim inf ‖xn‖

2 = ‖2y‖ ≤ lim inf ‖yn + y‖ ≤ lim sup ‖yn + y‖ ≤ lim sup (‖yn‖+ ‖y‖) = 2
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Exerćıcios

Exerćıcio E3.7. Faça o exerćıcio 3.32 (apenas pontos 1 e 2) (p. 87)
do [Bre11] (vai precisar a noção de convexidade estrita: procure no livro
e veja o ex 3.31 também). F

E3.1 Aplicação: para pessoal de equações!

Definição E3.8. Uma função Φ : X → (−∞,+∞] é dita

• semicont́ınua inferiormente (l.s.c.) se para todo λ ∈ R o conjunto

[Φ ≤ λ] = {x ∈ X : Φ(x) ≤ λ}

é fechado.

• convexa se o conjunto {(x, y) ∈ X × R : y ≥ Φ(x)} é convexo; equivalen-
temente, Φ(tx+ (1− t)y) ≤ tΦ(x) + (1− t)Φ(y): x, y ∈ X, t ∈ (0, 1). F

Corolário E3.9 [do Teorema D3.10]. Se Φ é convexa e semicont́ınua
inferiormente (ou cont́ınua) na topologia τ , então é semicont́ınua inferiormente
na topologia σ(X,X∗).

Em particular, se xn ⇀ x, então2

Φ(x) ≤ lim inf Φ(xn). �

Corolário E3.10 [do Corolário E1.14]. Seja X um espaço de Banach
reflexivo, ∅ 6= A ⊆ X um convexo fechado. Seja Φ : A → (−∞,∞] convexa,
própria (Φ 6≡ +∞), semicont́ınua inferiormente e, se A é ilimitado,

lim
x∈A
‖x‖→∞

Φ(x) = +∞. (E3.2)

Então Φ alcança seu mı́nimo em A; isto é, existe x0 ∈ A tal que

Φ(x0) = min
x∈A

Φ(x). �

2Lembre que a definição de fechado por seq. não implica na topológica, mas a topológica implica na por seq,
ou seja, se F é fechado e xn → x com {xn} ⊂ F então x ∈ F
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E4 Mais exerćıcios

Exerćıcios

Exerćıcio E4.1 (Espaços B,S,R,U.C.). Preencha a seguinte tabela com
S (para sim) e N (para não).

Banach Separáv. Reflex. Unif. Conv.

(KN , ‖ · ‖1)

(KN , ‖ · ‖∞)

(KN , ‖ · ‖p), 1 < p <∞

(c00, ‖ · ‖1)

(c00, ‖ · ‖∞)

(c00, ‖ · ‖p), 1 < p <∞

(c0, ‖ · ‖∞)

(c, ‖ · ‖∞)

`1

`∞

F
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