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D1Recordação sobre Topologia Aula 12 D2

D2Exemplos de topologia D2
D2.0.1 Topologia induzida pela norma (topologia “forte”, “usual”): D2
D2.0.2 Topologia discreta (“maior” topologia) . . . . . . . . . . D2
D2.0.3 Topologia gerada . . . . . . . . . . . . . . . . . . . . . . D5
D2.0.4 Topologia induzida por uma famı́lia de funções . . . . . . D6

D3Topologia fraca em e.v.n. X D7

Aula 13 D16
D3.1 Convexos na topologia fraca . . . . . . . . . . . . . . . . . . . . D22

Aula 14 D27

D4Topologias em X∗ D29
D4.1 Bidual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D30
D4.2 Topologias Fraca e Fraca* . . . . . . . . . . . . . . . . . . . . . D32

D5Compacidade e Teorema de Banach-Alaoglu D40

Aula 15 D43

D6Mais coisas.. D46

D1



AF-D 8 de outubro de 2025

D1 Recordação sobre Topologia Aula 12

• X conjunto não vazio.

• τ coleção de subconjuntos de X: τ = {Xα}α∈Λ.

Dizemos que τ é uma topologia em X se:

(a) ∅, X ∈ τ

(b)
⋃
qqXα ∈ τ , Xα ∈ τ

(c)
⋂
finitaXα ∈ τ , Xα ∈ τ

(X, τ) é chamado espaço topológico.
Os elementos de uma topologia τ são chamados de abertos.

D2 Exemplos de topologia

D2.0.1 Topologia induzida pela norma (topologia “forte”, “usual”):

• X é um espaço vetorial normado

• τ : gerada pelas bolas abertas, é o conjunto de todos os abertos de X, onde

um aberto de X é um subconjunto de X em que todo ponto é ponto
interior, ou seja, para cada ponto do subconjunto, existe uma bola aberta
centrada no ponto contida no subconjunto (portanto, depende da norma)

τ satisfaz (a), (b) e (c):

∅, X ∈ τ,
⋃
qq

Ai ∈ τ,
⋂
finita

Ai ∈ τ, (Ai ∈ τ).

τ é topologia em X, chamada de topologia induzida pela norma.

D2.0.2 Topologia discreta (“maior” topologia)

• X conjunto não vazio

• τ é o conjunto de todos os subconjuntos de X: 2X ou P(X)

τ é topologia em X, chamada de topologia discreta.

τ ⊂ 2X , ∀τ topologia em X
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Motivação

• A topologia induzida pela norma em um e.v.n. é “muito forte” no
sentido que tem “muitos abertos” e consequentemente “poucos com-
pactos”. Por exemplo, a bola fechada em um e.v.n. de dimensão
infinita não é compacta (Teo. de Riesz A5.7):

BX
1 (0) compacta ⇒ dimX <∞ (?)

• Muitas soluções de problemas são baseadas em max/min de funções:
a compacidade tem um papel fundamental e com o fato (?), muitos re-
sultados não podem ser obtidos diretamente em espaços de dimensão
infinita.

• Por outro lado, uma função tem mais chance de ser cont́ınua na
topologia induzida pela norma (muitos abertos).

Objetivo: definir topologias “mais fracas” (com menos abertos e
mais compactos) do que a topologia induzida pela norma, que de
alguma maneira “preservem” propriedades de continuidade.

Definição D2.1. Uma função f : (X, τX) → (Y, τY ) é cont́ınua quando
f−1(Ω) ∈ τX para todo Ω ∈ τY . F

Definição D2.2. Se (X, τ) é um espaço topológico, dizemos que C ⊆ X é
compacto se toda cobertura aberta de C possui uma subcobertura finita.

se C ⊆
⋃
i∈I Ai onde {Ai} ⊆ τ então existe un subconjunto finito

de ı́ndices I0 ⊆ I tal que C ⊆
⋃
i∈I0 Ai

F

Definição D2.3. Dizemos que um (X, τ) espaço topológico (ou que a topo-
logia τ) é de Hausdorff se para todo x, y ∈ X com x 6= y, existem O1, O2 ∈ τ
disjuntos tais que x ∈ O1, y ∈ O2. F
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Observação. X e.v.n., τ1 topologia emX, τ2 topologia induzida pela norma:

• xn → x em τ1 ⇐⇒ ∀ V ∈ τ1, V 3 x, ∃ n0;xn ∈ V , n ≥ n0

• xn → x em τ2 ⇐⇒ ‖xn − x‖ → 0

Seja (X, τ) espaço topológico

1. V ⊂ X é uma vizinhança de x ∈ X se

∃ O ∈ τ ;x ∈ O ⊂ V

2. Nx ⊂ τ é uma base de vizinhanças de x ∈ X quando

x ∈ U ∈ τ =⇒ ∃ V ∈ Nx;x ∈ V ⊂ U

3. N ⊂ τ é uma base para τ quando todo O ∈ τ ,

O =
⋃
i∈I

Vi, Vi ∈ N

Definição D2.4. Se τ1, τ2 são duas topologias no conjunto X, dizemos que:

• τ2 é mais fina que τ1, se τ1 ⊆ τ2

(mais fina se tem mais abertos, “maior”)

• τ1 é menos fina que τ2, se τ1 ⊆ τ2

(menos fina se tem menos abertos, “menor”, “mais fraca”)

F

Exemplo.
A topologia discreta é mais fina que a topologia induzida pela norma. F

Nosso interesse: queremos uma topologia menos fina que a topologia in-
duzida pela norma que preserve continuidade.
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D2.0.3 Topologia gerada

• X um espaço topológico

• g ⊂ P(X): uma famı́lia de conjuntos de X

• {τi}i∈I a coleção de topologias em X tais que g ⊂ τi, ∀i ∈ I,1

isto é, todo elemento de g é aberto em cada topologia τi.

•
⋂
i∈I τi é a menor (menos fina) topologia em X que contém g [Loi75, p. 77]

Denotamos a topologia menos fina de X que contém g por

[g] =
⋂
i∈I

{τi : τi é topologia em X, g ⊂ τi}

e é denominada topologia gerada por g.

Qual é a “cara” da topologia [g]?

• E = g ∪ {∅, X}.

• τ topologia em X tal que E ⊂ τ

Então, τ deve conter interseções finitas de elementos de E :

γ :=

⋂
j∈J

Aj ; Aj ∈ E , J finito

 ⊂ τ

Por consequência, τ deve conter uniões quaisquer de elementos de γ:

τ(E) :=

⋃
λ∈Λ

Bλ ; Bλ =
⋂
j∈Jλ

Aj,λ, Aj,λ ∈ E , Jλ finito

 ⊂ τ

• τ(E) ⊂ τ , para toda topologia τ que contém g: τ(E) ⊂ [g].

• τ(E) é uma topologia em Xque contém g: [g] ⊂ τ(E). [Loi75, p. 77]

[g] = τ(E)

Resumindo: dado g ⊂ P(X), a topologia gerada por g (a menos fina que
contém g) é aquela formada por ∅, X e uniões quaisquer de interseções finitas
de elementos de g.

1Esta coleção é não vazia, pois 2X é uma dessas topologias
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D2.0.4 Topologia induzida por uma famı́lia de funções

• X um conjunto

• {(Yi, τi)}i∈I uma coleção de espaços topológicos

• F = {ϕi}i∈I uma coleção de funções ϕi : X → Yi

Queremos a topologia menos fina τ em X de modo que toda ϕi seja cont́ınua,
i.e.,

ϕ−1
i (Ωi) ∈ τ, Ωi ∈ τi, ∀i ∈ I

i.e, queremos a topologia menos fina que contém

g =
{
ϕ−1
i (Ωi) ⊂ X ; Ωi ∈ τi, i ∈ I

}
⊂ P(X).

Pela Seção D2.0.3, a topologia menos fina que torna cada ϕi cont́ınua, cha-
mada topologia induzida pela famı́lia F , é a topologia gerada por g:

σ :=

⋃
λ∈Λ

⋂
j∈Jλ

ϕ−1
i,λ(Ωi,λ) ; Ωi,λ ∈ τi, i ∈ I, Jλ finito

 . (D2.1)

Note que, para a topologia induzida por F :

• uma base para σ é da forma:

N =
{⋂
i∈J

ϕ−1
i (Ωi) : Ωi ∈ τi, J ⊂ I finito

}
(D2.2)

• para cada x ∈ X, obtemos uma base de vizinhanças de x (na topologia σ)
considerando conjuntos da forma⋂

i∈J

ϕ−1
i (Vi),

onde J é finito e cada Vi é uma vizinhança de ϕi(x) em Yi:

Nx =
{⋂
i∈J

ϕ−1
i (Vi) : Vi é vizinhança de ϕi(x) em Yi, J é finito

}
(D2.3)
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D3 Topologia fraca em e.v.n. X

Objetivo: usar X∗ para definir uma topologia σ em X

“σ(X,X∗)” será uma topologia em X induzida por X∗

Definição D3.1 (Topologia fraca). Seja X um e.v.n. sobre K.
Denotamos por τX sua topologia forte: a induzida pela norma.

Definimos em X a topologia fraca, denotada2 por σ = σ(X,X∗) ,3 como

sendo a topologia gerada pela famı́lia

g =
{
φ−1(A) : φ ∈ X∗, A ⊆ K aberto

}
⊂ X ,

ou seja, a topologia induzida pela famı́lia F = {φ}φ∈X∗ F

Desta forma todo φ ∈ X∗ será ainda cont́ınuo com respeito à topologia fraca:

A topologia fraca é a menos fina que preserva a continuidade dos φ ∈ X∗

σ(X,X∗) ⊂ τX (D3.1)

a(X, σ(X,X∗))∗ = X∗ (D3.2)

a“dual”na topologia fraca se refere à continuidade: cont. na top. fraca ⇐⇒ cont./ltda. na top. forte

Outra base de vizinhanças para x na topologia fraca σ(X,X∗) é composta
pelos conjuntos da forma

Vε,φ1,..,φN (x) := {y ∈ X : |φi(y − x)| < ε ∀i = 1, .., N} (D3.3)

onde ε > 0 e φi ∈ X∗ para um número finito de i = 1, .., N .

2Denotaremos aqui, quando não der confusão, Xτ = (X, τ) e Xσ = (X,σ(X,X∗)).
3Cuidado: a notação varia... em alguns livros muda a ordem.
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Demonstração. Queremos mostrar que: Nx := {Vx := Vε,φ1,..,φN (x) : ε > 0, φ1, . . . , φN ∈ X∗}
é base de vizinhanças de x

Nx ⊂ τ é uma base de vizinhanças de x ∈ X na topologia τ se

(x ∈ U ∈ τ ⇒ ∃ V ∈ Nx;x ∈ V ⊂ U )

Af.1. Vx := Vε,φ1,..,φN (x) ∈ σ(X,X∗) (ε e φi fixados)

Queremos: Vx é “união qq de int. finita de elem. da forma f−1(B); f ∈ X∗, B ab. de K”[Eq.(D2.1)]

y ∈ Vx ⇐⇒ |φi(y − x)| < ε ∀i = 1, .., N ⇐⇒ |φi(y)− φi(x)| < ε ∀i = 1, .., N

⇐⇒ φi(y) ∈ Bε(φi(x)) ∀i = 1, .., N

⇐⇒ y ∈ φ−1
i (Bε(φi(x))) ∀i = 1, .., N ⇐⇒ y ∈

N⋂
i=1

φ−1
i (Bε(φi(x))︸ ︷︷ ︸

aberto K

)

• Vε,φ1,..,φN (x) =
N⋂
i=1

φ−1
i (Bε(φi(x))) que é um elemento de σ(X,X∗)

Af.2. Nx := {Vx := Vε,φ1,..,φN (x) : ε > 0, φ1, . . . , φN ∈ X∗} é base de viz. de x:

x ∈ U ∈ σ(X,X∗)⇒ ∃ ε > 0, φ1, . . . , φN ∈ X∗; x ∈ Vx ⊂ U

• x ∈ U ∈ σ(X,X∗)

• De Eq. (D2.3), é uma base de viz. de x :

Ñx =
{⋂
i∈J

φ−1
i (Vi) : Vi é viz. de φi(x) em K, J é finito

}
• ∃ V ∈ Ñx; U contém V 3 x, i.e.,

∃ {φi}Ni=1 ⊂ X∗, Vi ⊂ K viz. de φi(x); V =
N⋂
i=1

φ−1
i (Vi)

• ∃ ε > 0; BKε (φi(x)) ⊂ Vi, ∀i = 1, . . . , N (ε = min
i=1,...,N

εi)

• tome Vx :=
⋂N
i=1 φ

−1
i (BKε (φi(x)))∈ Nx

x ∈ Vx =
⋂N
i=1 φ

−1
i (BKε (φi(x))) ⊂

⋂
i∈J φ

−1
i (Vi) = V ⊂ U
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Proposição D3.2. Se {xn} é uma sequência em (X, σ(X,X∗)), então
xn → x se, e somente se, ϕ(xn)→ ϕ(x), ∀ϕ ∈ X∗. �

Demonstração.
(=⇒) é válida pois cada ϕ é ainda cont́ınua na topologia fraca σ(X,X∗)

(⇐=)

xn
σ→ x ⇐⇒ ∀ V ∈ σ(X,X∗), V 3 x,∃ n0;xn ∈ V , n ≥ n0

• V ∈ σ(X,X∗); x ∈ V

• ∃ ε > 0, ϕ1, . . . , ϕN ∈ X∗; Vε,ϕ1,...,ϕN (x) ⊂ V

Queremos: ∃ n0;xn ∈ Vε,ϕ1,...,ϕN (x), n ≥ n0, pois dáı xn ∈ V , n ≥ n0

xn ∈ Vε,ϕ1,...,ϕN (x), n ≥ n0 ⇐⇒ |ϕi(xn − x)| < ε, i = 1, . . . , N , n ≥ n0

• ∃ ni; |ϕi(xn − x)| = |ϕi(xn)− ϕi(x)| < ε, para n ≥ ni (ϕi(xn)→ ϕi(x))

• basta tomar n0 = max{n1, . . . , nN}

Proposição D3.3. Sejam (Z,Σ) um espaço topológico e ψ : (Z,Σ) →
(X, σ(X,X∗)) uma função. Então, ψ é cont́ınua se, e somente se, ϕ◦ψ : Z → K
é cont́ınua, ∀ϕ ∈ X∗. �

Demonstração.
(=⇒) é válida pois composta de cont́ınuas é cont́ınua

(⇐=)

Queremos: ψ−1(V ) ∈ Σ para todo V ∈ σ(X,X∗)

Eq. (D2.1): topologia induzida pela famı́lia F = {ϕ}ϕ∈X∗ :

σ(X,X∗) :=


⋃
λ∈Λ
qq

⋂
j∈Jλ
finita

ϕ−1λ (Ωλ) ; Ωλ ∈ τK, ϕλ ∈ X∗, Jλ finito

 .
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• V ∈ σ(X,X∗)

• V =
⋃
λ∈Λ
qq

⋂
j∈Jλ
finita

ϕ−1
λ (Ωλ) onde Ωλ ∈ τK, ϕλ ∈ X∗

• ψ−1(V ) =
⋃
λ∈Λ
qq

⋂
j∈Jλ
finita

ψ−1(ϕ−1
λ (Ωλ)) =

⋃
λ∈Λ
qq

⋂
j∈Jλ
finita

(ϕλ ◦ ψ)−1(Ωλ) ∈ Σ?

• Hipótese: ϕ ◦ ψ : (Z,Σ)→ K cont́ınua, ∀ϕ ∈ X∗

=⇒ (ϕλ ◦ ψ)−1(Ωλ) ∈ Σ

=⇒
⋂
j∈Jλ
finita

(ϕλ ◦ ψ)−1(Ωλ) ∈ Σ

=⇒
⋃
λ∈Λ
qq

⋂
j∈Jλ
finita

(ϕλ ◦ ψ)−1(Ωλ) ∈ Σ

Proposição D3.4. A topologia fraca σ = σ(X,X∗)

(a) é Hausdorff

(b) se X tem dimensão finita, coincide com a topologia forte τ .

(c) se X tem dimensão infinita,

(i) é estritamente menos fina da topologia forte τ :

1. todo aberto de σ contém uma reta,

2. nenhuma bola aberta é um aberto de σ

(ii) não pode ser metrizada �

De fato: 1. a prova fornece que: dado x ∈ X, todo aberto Vε,φ1,...,φN (x) ∈
σ(X,X∗) contém os pontos x + ty, t ∈ R, para algum y ∈ X. Portanto se

V ∈ σ(X,X∗) é tal que x ∈ V , então V contém todos os pontos contém os

pontos x+ ty, t ∈ R, para algum y ∈ X.

2. bola aberta não pode conter uma reta: considere g(t) = ‖x+ ty‖ e

reproduza argumento da página D27.
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Demonstração. (a) A topologia fraca σ = σ(X,X∗) é Hausdorff

• x, y ∈ X com x 6= y

Queremos: O1, O2 ∈ σ(X,X∗) disjuntos tais que x ∈ O1, y ∈ O2.

Teorema B2.4 [Existem muitos funcionais] Seja X um e.v.n. sobre K.

(c) X∗ separa pontos: Se x 6= y, existe f ∈ X∗ tal que f(x) 6= f(y).

• ∃ φ ∈ X∗ tal que φ(x) 6= φ(y)

• ∃ U1, U2 ⊂ K abertos disjuntos; φ(x) ∈ U1, φ(y) ∈ U2 (K é Hausdorff)

a saber, basta tomar Ui = Bε(φ(xi)) onde ε = |φ(x1)− φ(x2)|/2

• x ∈ φ−1(U1) =: O1, y ∈ φ−1(U2) =: O2

pag. D7: todo φ ∈ X∗ será ainda cont́ınuo com respeito à topologia fraca

• O1, O2 ∈ σ(X,X∗) e O1 ∩O2 = ∅

z ∈ O1 ∩O2 =⇒ φ(z) ∈ U1 ∩ U2 ��

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) Se dimX <∞ , a top. fraca σ coincide com a top. forte τ .

• Eq. (D3.1): σ ⊂ τ

Af. 1. τ ⊂ σ

• U ∈ τ

• fixe x0 ∈ U (U é viz. de x0 na top. forte)

• ∃ r > 0; Br(x0) ⊂ U
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Queremos: U ∈ σ, i.e., U viz. de x0 na top. fraca, i.e., devemos encontrar
ε > 0, ϕ1, . . . , ϕ? ∈ X∗;

Vε,ϕ1,..,ϕ?
(x0) := {x ∈ X : |ϕi(x− x0)| < ε ∀i = 1, .., ?} ⊂ U

Af. 2. ∃ ε > 0, ϕ1, . . . , ϕ? ∈ X∗; Vε,ϕ1,..,ϕ?
(x0) ⊂ Br(x0)

precisamos encontrar ε > 0, ϕ1, . . . , ϕ? ∈ X∗;

x ∈ Vε,ϕ1,..,ϕ?
(x0) =⇒ x ∈ Br(x0)

|ϕi(x)− ϕi(x0)| < ε (ε =?, ϕi =?) =⇒ ‖x− x0‖ < r

• {e1, . . . , em} base normalizada de X (dimX = m <∞)

• cada x ∈ X é escrito de maneira única

x =
m∑
i=1

ai(x)ei, ai(x) ∈ K

• ϕi : X → K : x 7→ ϕi(x) = ai(x), i = 1, . . . ,m

• ϕi ∈ X∗, i = 1, . . . ,m [verifique!]

‖x− x0‖ =

∥∥∥∥∥
m∑
i=1

(ai(x)− ai(x0))ei

∥∥∥∥∥ ≤
m∑
i=1

|ai(x)− ai(x0)| ‖ei‖

=
m∑
i=1

|ϕi(x)− ϕi(x0)| < εm = r

• x ∈ V r
m ,ϕ1,..,ϕm(x0) =⇒ x ∈ Br(x0)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(c)-(i) Se dimX = ∞, a top. fraca σ é estritamente menos fina da
top. forte τ :
1. todo aberto de σ contém uma reta,
2. nenhuma bola aberta é um aberto de σ.

∗ bola aberta não pode ser um aberto na top. fraca pois não contém reta

∴ σ  τ : bola aberta é conj. aberto na topologia forte e não é na top. fraca

Precisamos mostrar que: todo aberto de σ contém uma reta.

• U ∈ σ

pag. D8: x ∈ U ∈ σ(X,X∗)⇒ ∃ ε > 0, φ1, . . . , φN ∈ X∗; x ∈ Vx ⊂ U

• fixado x ∈ U, ∃ ε > 0, φ1, . . . , φN ∈ X∗;
x ∈ Vε,φ1,...,φN (x) = {y ∈ X : |ϕi(y − x)| < ε ∀i = 1, .., N} ⊂ U

Basta mostrar: Vx := Vε,φ1,...,φN (x) contém uma reta, i.e., que para
algum y ∈ X \ {0}, x+ ty ∈ Vx, ∀t ∈ R

x+ ty ∈ Vx ⇐⇒ |ϕi(x+ ty − x)| < ε⇐⇒ |ϕi(ty)| < ε

⇐⇒ |t| |ϕi(y)| < ε, ∀i = 1, .., N ,

que é seguramente verdadeira se ϕi(y) = 0, ∀i = 1, .., N

Af.1. ∃ y ∈ X \ {0}; ϕi(y) = 0, ∀i = 1, .., N

• T : X → KN : x 7→ T (x) = (ϕ1(x), . . . , ϕN(x))

� T é linear

� T não é injetora (N(T ) 6= {0}):

caso contrário:
T : X → T (X) é isomorfismo e dimX = dimT (X) ≤ N ,
mas dimX =∞

∴ ∃ y 6= 0; 0 = T (y) = (ϕ1(y), . . . , ϕN(y))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(c)-(ii) Se dimX =∞, a top. fraca σ não pode ser metrizada.

• supor, por contradição, que existe uma métrica d em X que induza σ

Objetivo: escrever X∗ como união enumerável de conjuntos nunca-
densos, ou seja, X∗ seria de 1a. categoria nele mesmo.

Definição. (pag. A9) Um conjunto A ⊂ X é dito de primeira Categoria

em X se A é união enumerável de conjuntos nunca-densos Fi ⊂ X (F
′
i = ∅) F

Mas X∗ é Banach, e portanto ele é de 2a. categoria nele mesmo.

Teorema [das categorias de Baire] A2.21 Todo espaço métrico completo

é de segunda categoria nele mesmo.

• considere a base de vizinhanças de 0 ∈ X composta pelos conjuntos:

∆ 1
k

:=

{
x ∈ X : d(x, 0) <

1

k

}
, k ∈ N

• ∃ ε > 0, ϕk1, . . . , ϕ
k
N(k) ∈ X∗; (pois ∆ 1

k
∈ σ)

Vε,ϕk1 ,...,ϕkN(k)
(0) ⊂ ∆ 1

k

• dada ϕ ∈ X∗, ∃ k ∈ N; (pois V1,ϕ(0) ∈ σ)

∆ 1
k
⊂ V1,ϕ(0)

•
∴

⋂
i=1,..,N(k)

N(ϕki ) ⊂ Vε,ϕk1 ,...,ϕkN(k)
(0) ⊂ ∆ 1

k
⊂ V1,ϕ(0) (D3.4)

Lema D3.5. Se X é e.v.n e φ, φ1, .., φn ∈ L?(X,K) com⋂
i=1,..,N

N(φi) ⊆ N(φ),

então φ é combinação linear dos φi
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Af.1.
⋂

i=1,..,N(k)

N(ϕki ) ⊂ N(ϕ)

supor x ∈
⋂

i=1,..,N(k)

N(ϕki ) e x /∈ N(ϕ)

=⇒ ϕki (x) = 0,∀i, x ∈ V1,ϕ(0) e ϕ(x) = a 6= 0 (por Eq. D3.4)

=⇒ ϕki (x) = 0,∀i, |ϕ(x)| = |a| < 1

mas:
ϕki (x) = 0,∀i =⇒ ϕki (λx) = 0,∀i,∀λ =⇒ λx ∈ V1,ϕ(0),∀λ
e
∃ λ ∈ K; |ϕ(λx)| = |λa| > 1 ��

• ϕ é combinação linear de ϕk1, . . . , ϕ
k
N(k) (Lema D3.5)

∴ ϕ ∈ X∗ =⇒ ϕ ∈ [ϕk1, . . . , ϕ
k
N(k)]

• X∗ =
⋃
k∈N

[ϕk1, . . . , ϕ
k
N(k)]

Af.2. Fk := [ϕk1, . . . , ϕ
k
N(k)] são nunca-densos em X∗, i.e, Fk

′
= ∅

� Fk é subespaço fechado de X∗ (pois dimFk <∞)

Corolário A5.4 Subespaços de dimensão finita de um

e.v.n são fechados.

� Fk é subespaço próprio de X∗ (pois dimX∗ =∞)

� Fk
′
= Fk

′ = ∅

Exerćıcio A3.14 Se S é um subespaço próprio de um

e.v.n. X, então S′ = ∅.

D15



AF-D 8 de outubro de 2025

Aula 13

Lema D3.5. Se X é e.v.n e φ, φ1, .., φn ∈ L?(X,K) com⋂
i=1,..,N

N(φi) ⊆ N(φ),

então φ é combinação linear dos φi �

Demonstração.

T : X → Kn+1 : x 7→ Tx = (φ1(x), . . . , φN(x), φ(x))

• p = (0, . . . , 0, 1) /∈ R(T ) (pela hipótese)

• R(T ) s.e.v. fechado de KN+1 (pois tem dim. finita, C. A5.4)

• ∃ ψ ∈ (KN+1)∗ ; ψ|R(T ) = 0 e ψ(p) 6= 0 (Teorema B2.4-(a))

Teorema [Existem muitos funcionais] B2.4 Seja X um e.v.n sobre K. [a.]

Se M é um subespaço fechado de X e x0 ∈ X \M , então existe f ∈ X∗ tal que

f |M = 0, e f(x0) = d(x0,M) = infm∈M ‖x0 −m‖ > 0.

ψ(x) =ψ(x1, . . . , xN+1) =
N+1∑
i=1

λixi , onde λN+1 = ψ(0, . . . , 0, 1) 6= 0

• x ∈ X:

0 = ψ(Tx) = ψ(φ1(x), . . . , φN(x), φ(x)) =
N∑
i=1

λiφi(x) + λN+1φ(x)

∴ φ(x) =
N∑
i=1

(
− λi
λN+1

)
φi(x), x ∈ X
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Exerćıcios

Exerćıcio D3.6. Mostre que

+ : Xσ ×Xσ −→ Xσ : (x, y) 7→ x+ y

· : K×Xσ −→ Xσ : (λ, x) 7→ λx

são cont́ınuas (use as bases de vizinhanças!) F

Notação de convergência fraca e forte. Escreveremos:
• xn ⇀ x (xn conv. fracamente a x) quando a convergência é na top. fraca,

• xn → x (xn conv. fortemente a x) quando a convergência é na top. forte F

Observação. Como a topologia fraca é de Hausdorff (Proposição D3.4), se
uma sequência converge fracamente, então seu limite é único. F

Proposição D3.7. Seja {xn} uma sequência em X. Temos que:

i) xn ⇀ x ⇐⇒ φ(xn)→ φ(x) ∀ φ ∈ X∗

ii) xn → x =⇒ xn ⇀ x

iii) xn ⇀ x =⇒ {‖xn‖} é limitada e ‖x‖ ≤ lim inf ‖xn‖
iv) xn ⇀ x e φn → φ em X∗ =⇒ φn(xn)→ φ(x). �

Demonstração.
i) xn ⇀ x ⇐⇒ φ(xn)→ φ(x) ∀ φ ∈ X∗ é a Proposição D3.2:

Se {xn} é uma seq. em (X,σ(X,X∗)), então xn → x⇐⇒ ϕ(xn)→ ϕ(x), ∀ϕ ∈ X∗.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ii) xn → x =⇒ xn ⇀ x

xn → x =⇒ φ(xn)→ φ(x), ∀φ ∈ X∗ i)
=⇒ xn ⇀ x

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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iii) xn ⇀ x =⇒ a seq. {‖xn‖} é limitada e ‖x‖ ≤ lim inf ‖xn‖

Queremos: {‖xn‖} limitada, i.e., ∃ c; ‖xn‖ ≤ c,∀n, ou equivalente-
mente que o conj. B = {xn : n ∈ N} ⊂ X seja limitado

Corolário B4.3(LU-Banach-Steinhaus). Se X é um e.v.n. sobre K e B ⊂ X:

φ(B) = {φ(x), x ∈ B} limitado ∀ φ ∈ X∗ =⇒ B limitado.

Af.1. φ(B) = {φ(xn), n ∈ N} é limitado ∀ φ ∈ X∗

• φ ∈ X∗

xn ⇀ x
i)

=⇒ φ(xn)→ φ(x) =⇒ {φ(xn), n ∈ N} limitado

Af.2. ‖x‖ ≤ lim inf ‖xn‖

Exerćıcio B2.5. ‖x‖X = max
φ∈X∗
‖φ‖X∗=1

|φ(x)|

• φ ∈ X∗; ‖φ‖X∗ = 1

• φ(x) = limφ(xn) (por i))

• |φ(xn)| ≤ ‖φ‖ ‖xn‖ = ‖xn‖

∴ |φ(x)| = lim |φ(xn)| = lim inf |φ(xn)| ≤ lim inf ‖xn‖
=⇒ ‖x‖ ≤ lim inf ‖xn‖

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

iv) xn ⇀ x e φn → φ em X∗ =⇒ φn(xn)→ φ(x)

Af.3. ∀ε > 0,∃ n0; |φn(xn)− φ(x)| < ε, n ≥ n0

Temos:

• xn ⇀ x
i)

=⇒ φ(xn)→ φ(x)

• φn → φ em X∗ =⇒ ‖φn − φ‖ → 0
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|φn(xn)− φ(x)| ≤ |φn(xn)− φ(xn) |+ | φ(xn) − φ(x)|

≤ |(φn − φ)(xn)|+ |φ(xn)− φ(x)|

≤ ‖φn − φ‖︸ ︷︷ ︸
↓

0

‖xn‖︸︷︷︸
limitado

+ |φ(xn)− φ(x)|︸ ︷︷ ︸
↓

0

Exerćıcios

Exerćıcio D3.8. a Mostre que, se p ∈ (1,∞), a sequência en = (δi,n)
converge fracamente mas não fortemente em `p.
O que pode dizer para os casos p = 1 e p =∞?
O que pode dizer da sequência cn = 1

n

∑n
i=1 ei ? F

aa rećıproca de Proposição D3.7-ii) não é válida!

Teorema D3.9. Sejam X e Y e.v.n. e T ∈ L?(X, Y ). Então, são equiva-
lentes as continuidades dos operadores

(a) T : Xτ → Yτ : x 7→ Tx

(b) T : Xσ → Yσ : x 7→ Tx

(c) T : Xτ → Yσ : x 7→ Tx �

a○ =⇒ b○ =⇒ c○ =⇒ a○

a○ imediata
=⇒ c○

b○ similar c)⇒a)
=⇒ a○
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Demonstração. (a) =⇒ (b)

• T : (X, τX)→ (Y, τY ) é cont́ınua

Queremos: T : (X, σ(X,X∗))→ (Y, σ(Y, Y ∗)) cont́ınua:

Proposição D3.3. T̃ : (Z,Σ)→ (Y, σ(Y, Y ∗)) é cont́ınua⇔ ϕ◦T̃ : (Z,Σ)→
K é cont́ınua, ∀ϕ ∈ Y ∗.

ou seja, ϕ ◦ T : (X, σ(X,X∗))→ K cont́ınua ∀ϕ ∈ Y ∗

• ϕ ◦ T : (X, τX)→ K é cont́ınua ∀ϕ ∈ Y ∗, i.e., ϕ ◦ T ∈ X∗ (top. forte)

∴ ϕ ◦ T é cont́ınua na top. fraca σ(X,X∗), ∀ϕ ∈ Y ∗ (def. top. fraca)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(b) =⇒ (c)

• T : (X, σ(X,X∗))→ (Y, σ(Y, Y ∗)) é cont́ınua

Queremos: T : (X, τX)→ (Y, σ(Y, Y ∗)) cont́ınua:

Proposição D3.3. T̃ : (Z,Σ)→ (Y, σ(Y, Y ∗)) é cont́ınua⇔ ϕ◦T̃ : (Z,Σ)→
K é cont́ınua, ∀ϕ ∈ Y ∗.

ou seja, ϕ ◦ T : (X, τX)→ K cont́ınua ∀ϕ ∈ Y ∗

• dada ϕ ∈ Y ∗

• ϕ : (Y, σ(Y, Y ∗))→ K é cont́ınua (def. top. fraca)

• ϕ ◦ T : (X, σ(X,X∗))→ K cont́ınua

(X,σ(X,X∗))∗ = X∗ (D3.2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(c) =⇒ (a)

• T : (X, τX)→ (Y, σ(Y, Y ∗)) é cont́ınua

• ϕ ◦ T : (X, τX)→ K é cont́ınua, ∀ϕ ∈ Y ∗

Proposição D3.3. T̃ : (Z,Σ)→ (Y, σ(Y, Y ∗)) é cont́ınua⇐⇒ ϕ◦T̃ : (Z,Σ)→
K é cont́ınua, ∀ϕ ∈ Y ∗.

Queremos: T : (X, τX)→ (Y, τY ) cont́ınua

Af.1. T é limitado, i.e., ‖Tx‖ ≤ c, ∀x ∈ X, ‖x‖ ≤ 1

Corolário B4.3(LU-BS). Se Y é um e.v.n. sobre K e B ⊂ Y :

φ(B) = {φ(x), x ∈ B} limitado ∀ φ ∈ Y ∗ =⇒ B limitado.

• B := {Tx : x ∈ X, ‖x‖ ≤ 1} ⊂ Y

Queremos: B limitado, pois dáı ∃ c; ‖b‖ ≤,∀b ∈ B
Basta mostrar: ϕ(B) é limitado, ∀ϕ ∈ Y ∗

ϕ(B) = {ϕ(Tx) : x ∈ X, ‖x‖ ≤ 1} é limitado, ∀ϕ ∈ Y ∗

⇐⇒ ‖(ϕ ◦ T )(x)‖ ≤ c, ∀x ∈ X, ‖x‖ ≤ 1, , ∀ϕ ∈ Y ∗

⇐⇒ ϕ ◦ T : (X, τX)→ K é limitada, ∀ϕ ∈ Y ∗

⇐⇒ ϕ ◦ T : (X, τX)→ K é cont́ınua, ∀ϕ ∈ Y ∗
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D3.1 Convexos na topologia fraca

• X é um e.v.n. de dimensão finita e C ⊆ X:
C é aberto/fechado em σ(X,X∗) ⇐⇒ C é aberto/fechado em τX

• X é um e.v.n. de dimensão infinita:
C é aberto/fechado em σ(X,X∗) =⇒ C é aberto/fechado em τX

� bola aberta (é convexo)
- é conj. aberto na topologia forte
- não é conj. aberto na topologia fraca (Proposição D3.4)

� complementar da bola aberta (não é convexo)
- é conj. fechado na topologia forte
- não é conj. fechado na topologia fraca

� bola fechada (é convexo)
- é conj. fechado na topologia forte
- é conj. fechado na topologia fraca (Teorema D3.10)

� esfera (não é convexo)
- é conj. fechado na topologia forte
- não é conj. fechado na topologia fraca (Corolário D3.11)

C convexo:

C é aberto/fechado em σ(X,X∗) ⇐= C é aberto/fechado em τX

Teorema D3.10 [Mazur]. Se X é um e.v.n. sobre K e C ⊆ X é convexo,
são equivalentes:

a) C fechado na topologia forte

b) C fechado na topologia fraca

c) C coincide com a interseção de todos os semiespaços fechados que o contêm.
�

Demonstração.
b) =⇒ a) como σ(X,X∗) ⊂ τX :

C fech. na top.a fraca ⇒ Cc ab. na top. fraca ⇒ Cc ab. na top. forte ⇒ C fech. na top. forte

D22



AF-D 8 de outubro de 2025

a) =⇒ b) Caso 1: K = R

• C convexo é fechado em τX

Queremos: X \ C é aberto em σ(X,X∗)

• x0 ∈ X \ C

Af.1. ∃ V ∈ σ(X,X∗); x0 ∈ V e V ⊂ X \ C, i.e., V ∩ C = ∅

V ∈ σ(X,X∗)⇐⇒ V =
⋂
finita

ϕ∈X∗

ϕ−1(Oi), Oi ⊂
aberto

R

Teorema B3.4 [Hahn-Banach - Forma Geométrica 2 ] SejamX um e.v.n.
real e C,B ⊆ X conjuntos convexos, não vazios e disjuntos. Se C é fechado
e B é compacto, então existe um hiperplano fechado que separa C e B no
sentido forte: ∃ ϕ ∈ X∗;ϕ|B ≥ α+ ε > α > α− ε ≥ ϕ|C .

• B = {x0} é convexo, compacto e B ∩ C = ∅

• ∃ ϕ ∈ X∗; ϕ(x0) > α > ϕ(x), x ∈ C

ϕ(x0) ∈ (α,∞) =⇒ x0 ∈ ϕ−1((α,∞))

• V := ϕ−1((α,∞)) 4

V ∈ σ(X,X∗) pois (α,∞) é um aberto em R
x0 ∈ V
V ∩ C = ∅ pois caso contrário ϕ(x) > α para algum x ∈ C

4este é de fato o semiespaço {x ∈ X : ϕ(x) > α}
ainda C não intercepta tal semiespaço, de fato, C ⊂ ϕ−1((−∞, α))
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b) =⇒ a) Caso 2: K = C

• C convexo é fechado em τX

Queremos: C é fechado na σ(X,X∗): C
σ(X,X∗)

= C

Seção B2.2: X e.v.(n.) sobre C, XR e.v.(n.) sobre R obtido de X limitando

a multiplicação aos escalares reais.

• C
σ(XR,X

∗
R)

= C (Caso 1)

Basta mostrar: C
σ(X,X∗)

= C
σ(XR,X

∗
R)

⊃

• C
σ(XR,X

∗
R)

= C ⊂ C
σ(X,X∗)

⊂

• x0 ∈ C
σ(X,X∗)

:

∴ todo V ∈ σ (X,X∗) tal que x0 ∈ V , temos V ∩ C 6= ∅, em particular,
para todo ε > 0, n ∈ N e ϕ1, . . . , ϕn ∈ X∗ temos Vε,ϕ1,...,ϕn (x0) ∩ C 6= ∅

Queremos: todo V ∈ σ (XR, X
∗
R) tal que x0 ∈ V , temos V ∩ C 6= ∅, basta:

para todo ε > 0, n ∈ N e ψ1, . . . , ψn ∈ X∗R temos Vε,ψ1,...,ψn (x0) ∩ C 6= ∅

• ε > 0 e ψ1, . . . , ψn ∈ X∗R

Seção B2.2: φ ∈ L(XR,R) =⇒ f(x) := φ(x)− iφ(ix) ∈ L(X,C)

• ϕj(x) := ψj(x)− iψj(ix), x ∈ X, j = 1, . . . , n

• ϕj ∈ X∗, j = 1, . . . , n

• ∃ x ∈ Vε,ϕ1,...,ϕn (x0)∩ C

Af.1. x ∈ Vε,ψ1,...,ψn (x0), i.e, |ψj (x− x0)| < ε, ∀j = 1, . . . , n

|ψj (x− x0)| = |<e(ϕj) (x− x0)| ≤ |ϕj (x− x0)| < ε ∀j = 1, . . . , n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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C ⊂ X convexo é fechado ⇐⇒ C coincide com a interseção de todos os
semiespaços fechados que o contêm: C =

⋂
H semiesp.fech.

C⊂H

H

(⇐=)
intersecção qualquer de fechado é fechado[Loi75, p. 24]

(=⇒)

• C ⊂
⋂

H semiesp.fech.

C⊂H

H ok!

Af.1.
⋂

H semiesp.fech.

C⊂H

H ⊂ C, i.e., Cc ⊂

 ⋂
H semiesp.fech.

C⊂H

H


c

• x0 ∈ X \ C

Caso 1: K = R

f ∈ X∗, [f = α] := {x ∈ X : f(x) = α} = f−1(α): hiperplano fechado

{x ∈ X : f(x) ≥ α} = f−1([α,∞)): um semiespaço fechado determinado por

[f = α]

• ∃ ϕ ∈ X∗; C ⊂ ϕ−1((−∞, α]) =: W (pag. D23)

a) =⇒ b) Caso 1: K = R

• B = {x0} é convexo, compacto e B ∩ C = ∅
• ∃ ϕ ∈ X∗; ϕ(x0) >α > ϕ(x), x ∈ C

ϕ(x) ∈ (−∞, α) ⊂ (−∞, α] =⇒ x ∈ ϕ−1((−∞, α]), x ∈ C

• x0 /∈ W

• W é um semiespaço fechado

∴ x0 /∈
⋂

H semiesp.fech.

C⊂H

H
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Caso 2: K = C

f ∈ X∗ =⇒ <e(f),=m(f) ∈ (XR)∗ e os semiespaços em X são definidos
através dos funcionais reais, por exemplo:

{x ∈ X : <e(f)(x) ≥ α}: é um semiespaço fechado

• ∃ ϕ ∈ (XR)∗; C ⊂ ϕ−1((−∞, α]), x0 /∈ ϕ−1((−∞, α]) (Caso 1)

• ψ(x) := ϕ(x)− iϕ(ix), x ∈ X

• C ⊂ {x ∈ X : <e(ψ)(x) = ϕ(x) ≥ α} e x0 /∈ {x ∈ X : <e(ψ)(x) ≥ α}

∴ x0 /∈
⋂

H semiesp.fech.

C⊂H

H

Corolário D3.11. Se X tem dimensão infinta, então

SX
σ(X,X∗)

= BX
τ

e logo SX não é fechado na topologia fraca. �

Demonstração.
⊂

• SX ⊂ BXτ

SX
σ(X,X∗)

⊂ BXτ
σ(X,X∗) bolafech.

=
convexo

BX
τ

⊃

• x ∈ BX
τ

• ‖x‖ = 1 =⇒ x ∈ SX ⊂ SX
σ(X,X∗)

• ‖x‖ < 1:

Queremos: x ∈ SX
σ(X,X∗)

, i.e,
para todo V ∈ σ(X,X∗); x ∈ V temos V ∩ SX 6= ∅
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• V ∈ σ(X,X∗) com x ∈ V

Proposição D3.4 Se X tem dimensão infinita, σ = σ(X,X∗) é estritamente

menos fina da topologia forte τ : [1.] todo aberto de σ contém uma reta,

• ∃ y ∈ X; x+ ty ∈ V , ∀t ∈ R (ver Af.1,p.D13)

Basta mostrar: ∃ t̄ ∈ R;x+ t̄y ∈ SX

x+ ty ∈ SX ⇐⇒ ‖x+ ty‖ = 1

g : [0,∞)→ [0,∞) : t 7→ g(t) = ‖x+ ty‖ é tal que:

� g é cont́ınua

� g(0) = ‖x‖ < 1

� lim
t→∞

g(t) =∞ pois g(t) ≥ |t| ‖y‖ − ‖x‖

∴ ∃ t̄ ∈ R \ {0}; g(t) = 1 (TV I)

Aula 14

Definição D3.12. Dado um conjunto A ⊆ X, definimos a envoltória con-
vexa, ou o convexificado de A, denotado por co(A), como sendo o menor
convexo de X que contém A:

co(A) =

{
N∑
i=1

λiai : N ∈ N,
N∑
i=1

λi = 1, λi ≥ 0, ai ∈ A

}
F

As combinações do tipo do conjunto acima são chamadas combinações
lineares convexas de elementos de A.
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Corolário D3.13. Se xn ⇀ x em um e.v.n. X, então existe uma sequência
de combinações lineares convexas dos xn que converge fortemente para x. �

Demonstração.

Queremos: ∃ {zm} ⊂ co({xn}) tal que zm → xm

• xn ⇀ x, i.e.,

∀ V ∈ σ(X,X∗), x ∈ V, ∃ n0; xn ∈ V, n ≥ n0

• ∀ V ∈ σ(X,X∗), x ∈ V, ∃ xk ∈ V ∩ {{xn}}, i.e.,

x ∈ {xn}
σ(X,X∗)

• {xn} ⊂ co({xn}) e co({xn}) é convexo:

x ∈ {xn}
σ(X,X∗) ⊂ co({xn})

σ(X,X∗) T.D3.10
=

Mazur
co({xn})

τX

∴ ∀ V ∈ τX , x ∈ V, ∃ z ∈ V ∩ co({xn})

• ∀m ∈ N,∃ zm ∈ B 1
m

(x) ∩ co({xn})

‖zm − x‖ <
1

m

n→∞−→ 0 ∴ zm → x
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D4 Topologias em X∗

Três topologias em X∗

• topologia forte, τX∗: induzida pela norma de X∗

topologia fraca em X e.v.n. é a topologia menos fina que τX , a qual é a
induzida pela famı́lia F = {g}g∈X∗

σ(X,X∗) é a topologia em X induzida por X∗,

e que preserva a continuidade de g ∈ X∗

• topologia fraca: a topologia menos fina que τX∗, a qual é a induzida
pela famı́lia F = {g}g∈(X∗)∗

“σ(X∗, (X∗)∗)” é a topologia em X∗ induzida por (X∗)∗,

e que preserva a continuidade de g ∈ (X∗)∗

(X∗)∗ =??

• topologia fraca*: a topologia menos fina que σ(X∗, (X∗)∗), a qual será
a top. induzida por famı́lia de funções F = {gi}gi∈??

“σ(X∗, ?)” é a topologia em X∗ induzida por “?”,
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D4.1 Bidual

Seja X um e.v.n. sobre K, o

• dual de X é o e.v.n.:

X∗ = L(X,K), com ‖f‖X∗ = sup
x∈X
‖x‖X≤1

|f(x)|

• bidual de X é o dual de X∗ que é o e.v.n. dado por

X∗∗ = (X∗)∗ = L(X∗,K) = {Φ : X∗ → K : Φ é linear e limitada},

com
‖Φ‖X∗∗ = sup

f∈X∗

‖f‖X∗≤1

|Φ(f)|.

Dado x ∈ X defina x̂ : X∗ → K por

x̂(f) = f(x), ∀f ∈ X∗. (D4.1)

• x̂ é linear

• x̂ é limitada

‖x̂‖X∗∗ = sup
f∈X∗

‖f‖X∗≤1

|x̂(f)| = sup
f∈X∗

‖f‖X∗≤1

|f(x)| Ex.B2.5
= ‖x‖X

• para cada x ∈ X, existe uma única correspondente função x̂
linear limitada em X∗∗ na forma (D4.1)

Portanto,
x̂ ∈ X∗∗

e a função J : X → X∗∗ : x 7→ J(x) = x̂ está bem definida.
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Teorema D4.1 [Mergulho canônico]. Seja X um espaço vetorial nor-
mado sobre K. Então a aplicação

J : X → X∗∗ : x 7→ J(x) = x̂

é um mergulho isométrico de X em X∗∗, i.e., é um isomorfismo isométrico de
X em J(X). J é dito mergulho canônico de X em X∗∗. �

• J é linear

J(x+ky)(f) = x̂+ ky(f) = f(x+ky) = f(x)+kf(y) = x̂+kŷ,∀f ∈ X∗∗

• J é injetora

J(x) = J(y) =⇒ f(x− y) = 0,∀f ∈ X∗ =⇒ x = y

Teorema [Existem muitos funcionais] B2.4. X e.v.n. [c.]

X∗ separa pontos: Se x 6= y, existe f ∈ X∗ tal que f(x) 6= f(y)

• ‖Jx‖X∗∗ = ‖x̂‖X∗∗ = ‖x‖X
• J é limitada:

‖J‖L(X,X∗∗) = sup
x∈X
‖x‖≤1

‖Jx‖ ≤ 1

Definição. Um e.v.n X é dito reflexivo se J(X) = X∗∗. F

Proposição D4.2. Se X é reflexivo então

• X é Banach

• ‖f‖X∗ = max
x∈X
‖x‖=1

|f(x)| �

Demonstração. Exerćıcio.
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D4.2 Topologias Fraca e Fraca*

Definição D4.3 (Topologia fraca∗). Seja X∗ o dual de um e.v.n. X.
Denotamos por:
τ = τX∗ sua topologia forte (a induzida pela norma)

e por:

σ = σ(X∗, X∗∗) a topologia fraca (a induzida pela famı́lia F = {Φ}Φ∈X∗∗).

Definimos5 a topologia fraca*, denotada por σ∗ = σ(X∗, X) 6 , como

sendo a topologia gerada pela famı́lia

F =
{

(Jx)−1(A) : x ∈ X, A ⊆ K aberto
}
⊂ X∗ ,

ou seja, a topologia induzida pela famı́lia F = J(X) = {Jx}x∈X . F

Desta forma todo Φ ∈ J(X) será ainda cont́ınuo com respeito à topologia
fraca∗.
Analogamente toda mapa φ ∈ X∗ 7→ φ(x) (avaliação em x ∈ X fixado) será
cont́ınua com respeito à topologia fraca∗.

J : X −→ X∗∗

x 7−→ J(x) = Φ : X∗ → K

φ 7−→ Φ(φ) = (Jx)(φ) = φ(x)

A top. fraca∗ é a menos fina que preserva a continuidade dos Φ ∈ J(X)

σ∗ = σ(X∗, X) ⊆ σ = σ(X∗, X∗∗) ⊆ τX∗ (D4.2)

σ(X∗, X) = σ(X∗, X∗∗) se só se X é reflexivo.Proposição D4.4

5Denotaremos aqui, quando não der confusão, X∗τ = (X∗, τ), X∗σ = (X∗, σ(X∗, X∗∗)),
X∗σ∗ = (X∗, σ(X∗, X)).

6pode haver um abuso de notação/linguagem: uma notação mais rigorosa poderia ser σ(X∗, J(X))
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Pela definição (veja Eq. (D2.3)), uma base de vizinhanças para φ ∈ X∗ é
composta pelos conjuntos da forma⋂

i∈I

(Jx)−1(Oi) : Oi ⊂ K vizinhança de (Jx)(φ) = φ(x) em K, I finito.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Uma outra base de vizinhanças para φ ∈ X∗ é composta pelos conjuntos
da forma

Vε,x1,..,xN (φ) := {f ∈ X∗ : |f(xi)− φ(xi)| < ε ∀i = 1, .., N} (D4.3)

onde ε > 0 e xi ∈ X para um número finito de i = 1, .., N :

Vε,x1,..,xN (φ) =
N⋂
i=1

(Jxi)
−1(Bε(φ(xi))︸ ︷︷ ︸

aberto K

)

Vε,φ1,..,φN (x) := {y ∈ X : |φi(y)− φi(x)| < ε ∀i = 1, .., N} pag.D8
=

N⋂
i=1

φ−1i (Bε(φi(x))︸ ︷︷ ︸
aberto K

)

onde ε > 0 e φi ∈ X∗ para um número finito de i = 1, .., N .

Proposição D4.4. A topologia fraca∗ σ∗ = σ(X∗, X)

(a) é Hausdorff,

(b) se X∗ tem dimensão finita, coincide com τX∗ e com σ(X∗, X∗∗).

se X∗ tem dimensão infinita,

(c) e X é reflexivo, coincide com σ(X∗, X∗∗) e logo não pode ser metrizada

(d) e X não é reflexivo

1. é estritamente menos fina da topologia fraca σ(X∗, X∗∗).
Em particular [Φ = 0] é um (convexo) não fechado sempre que
Φ 6∈ J(X).

2. não pode ser metrizada �
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(a) A topologia fraca∗ σ∗ = σ(X∗, X) é Hausdorff.
Exerćıcio!

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(b) Se dimX∗ <∞, então σ(X∗, X) = τX∗

P.D3.4
= σ(X∗, X∗∗).

• Eq. (D4.2): σ∗ ⊂ τX∗

Af. 1. τX∗ ⊂ σ∗

• U ∈ τX∗

• fixe φ ∈ U (U é viz. de φ na top. forte)

• ∃ r > 0; BX∗
r (φ) ⊂ U

Queremos: U viz. de φ na top. fraca∗, i.e., devemos encontrar
ε > 0, x1, . . . , x? ∈ X;

Vε,x1,..,x?
(φ) := {f ∈ X∗ : |(f − φ)(xi)| < ε ∀i = 1, .., ?} ⊂ U

Af. 2. ∃ ε > 0, x1, . . . , x? ∈ X; Vε,x1,...,x?
(φ) ⊂ BX∗

r (φ)

precisamos encontrar ε > 0, x1, . . . , x? ∈ X;

f ∈ Vε,x1,...,x?
(φ) =⇒ f ∈ BX∗

r (φ)

|(f−φ)(xi)| < ε (ε =?, xi =?)∀i =⇒ ‖f − φ‖X∗ = sup
x∈X
‖x‖X≤1

|(f−φ)(x)| < r

• {e1, . . . , em} base de X (dimX = m <∞)

• cada x ∈ X é escrito de maneira única
x =

∑m
i=1 ai(x)ei, ai(x) ∈ K

• ϕi : X → K : x 7→ ϕi(x) = ai(x), i = 1, . . . ,m

• ϕi ∈ X∗, i = 1, . . . ,m é tal que ϕi(ej) = δij
[base dual] :

x =
m∑
i=1

ϕi(x)ei
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|(f − φ)(x)| =

∣∣∣∣∣∣
m∑
i=1

ϕi(x)(f − φ)(ei)

∣∣∣∣∣∣ ≤
m∑
i=1

|ϕi(x)| |(f − φ)(ei)|

≤

(
m∑
i=1

|ϕi(x)|

)
max
1≤i≤n

|(f − φ)(ei)|

≤

(
m∑
i=1

‖ϕi‖ ‖x‖

)
max
1≤i≤n

|(f − φ)(ei)|

=

(
m∑
i=1

‖ϕi‖

)
︸ ︷︷ ︸
C=const. 6=0

(
max
1≤i≤n

|(f − φ)(ei)|
)
‖x‖

f ∈ Vε,x1,...,x?
(φ) =⇒ f ∈ BX∗

r (φ)

|(f−φ)(xi)| < ε (ε =?, xi = ei)∀i =⇒ ‖f − φ‖X∗ = sup
x∈X
‖x‖X≤1

|(f−φ)(x)| < r

∴

‖f − φ‖X∗ = sup
x∈X
‖x‖X≤1

|(f−φ)(x)| ≤ C max
1≤i≤n

|(f−φ)(ei)| < Cε = r

• f ∈ V r
C ,e1,..,em(φ) =⇒ f ∈ Br(φ)X∗

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(c) Se X é reflexivo, a topologia fraca∗ σ∗ = σ(X∗, X) coincide com σ =
σ(X∗, X∗∗).

• J(X) = X∗∗ (X é reflexivo)

• σ∗ = σ(X∗, X) é a top. induzida pela famı́lia F = J(X) = {Jx}x∈X

• σ = σ(X∗, X∗∗) é a top. induzida pela famı́lia F = {Φ}Φ∈X∗∗

J : X −→ X∗∗

x 7−→ J(x) = Φ : X∗ → K

φ 7−→ Φ(φ) = φ(x)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(d)-1. Se X não é reflexivo, a topologia fraca∗ σ∗ = σ(X∗, X) é estritamente

menos fina da topologia fraca σ = σ(X∗, X∗∗).

• o mergulho canônico J não é sobrejetor (X não é reflexivo)

• existe T ∈ X∗∗ \ J(X)

• T é cont́ınua na top. fraca σ = σ(X∗, X∗∗) (def. top. fraca)

∴ T−1(O) ∈ σ, ∀O ⊂
ab
K

Af. T não é cont́ınua na top. fraca∗ σ∗ = σ(X∗, X)

∴ T−1(O) /∈ σ∗, para algum O ⊂
ab
K

Lema D4.5. Seja X um e.v.n. sobre K. Se a função T : (X∗, σ∗) → K é linear e
cont́ınua, então T ∈ J(X): existe x ∈ X tal que T = Jx, i.e,

T (φ) = φ(x), ∀φ ∈ X∗.

De fato, as provas acima fornecem que: X é reflexivo ⇐⇒ σ∗ = σ.

Em particular [Φ = 0] é um (convexo) não fechado sempre que Φ 6∈ J(X).
Exerćıcio.[Bre11, Corollary 3.15, p. 65]
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(d)-2. Se X não é reflexivo, a topologia fraca∗ σ(X∗, X) não pode ser
metrizada
Exerćıcio.

Lema D4.5. Seja X um e.v.n. sobre K. Se a função T : (X∗, σ∗) → K é
linear e cont́ınua, então T ∈ J(X): existe x ∈ X tal que T = Jx, i.e,

T (φ) = φ(x), ∀φ ∈ X∗.

�

Demonstração.

• V := T−1(BK1 (0)) ∈ σ∗

• φ = 0 ∈ V

• ∃ ε > 0, x1, . . . , xn ∈ X;

Vε,x1,...,xn(0) = {f ∈ X∗; |f(xi)| < ε, i = 1, . . . , n} ⊂ V

• Φi := Jxi : X∗ → K, i = 1, . . . , n são lineares

Lema D3.5. Se X é e.v.n e
φ, φ1, .., φn ∈ L?(X,K) com⋂

i=1,..,N

N(φi) ⊆ N(φ),

então φ é combinação linear

dos φi

J : X −→ X∗∗

x 7−→ J(x) = Φ : X∗ → K

φ 7−→ Φ(φ) = φ(x)

Af.1. Basta mostrar que
⋂

i=1,..,N

N(Φi) ⊆ N(T ) pois dáı teremos:

existem λ1, . . . , λn ∈ K tais que:

T =
n∑
i=1

λiΦi =
n∑
i=1

λiJxi = J

(
n∑
i=1

λixi

)
= Jx,

onde x :=
∑n

i=1 λixi ∈ X
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• f ∈
⋂

i=1,..,N

N(Φi)

•

0 = αΦi(f) = αJxi(f) = αf(xi), ∀i = 1, . . . , n, ∀α ∈ K

=⇒ αf ∈ Vε,x1,...,xn(0) ⊂ V = T−1(BK1 (0)), ∀α ∈ K

=⇒ T (αf) ∈ BK1 (0), ∀α ∈ K

=⇒ |α| |Tf | = |T (αf)| < 1, ∀α ∈ K

∴ Tf = 0, i.e., f ∈ N(T )

Observação. Como a topologia fraca∗ é de Hausdorff (Proposição D4.4), se
uma sequência em X∗ converge na top. fraca∗, então seu limite é único. F

Notação D4.6. Escreveremos fn
∗
⇀ f (fn converge fraco-estrela a f) quando

a convergência é na topologia fraca∗ F

Proposição D4.7. Seja {fn} uma sequência em X∗. Temos que

i) fn
∗
⇀ f ⇐⇒ fn(x)→ f(x), ∀x ∈ X.

ii) Se ‖fn − f‖X∗ → 0, então fn
∗
⇀ f e se fn ⇀ f , então fn

∗
⇀ f .

iii) Se X é Banach e fn
∗
⇀ f , então {‖fn‖} é limitada e ‖f‖ ≤ lim inf

n→∞
‖fn‖.

iv) Se X é Banach e fn
∗
⇀ f e xn → x, então fn(xn)→ f(x). 7

�

7Corolário B4.4 (LU-B-S). X Banach e B ⊂ X∗. Se {φ(x), φ ∈ B} é ltdo ∀ x ∈ X ⇒ B ltdo.
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Exerćıcios

Exerćıcio D4.8. Prove a Proposição acima F

Exerćıcio D4.9. Mostre que a sequência tn = Trn(1) = (1, .., 1, .0...)
em l∞ não converge forte, converge fraco-estrela a 1 (e não converge fraco).

F
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D5 Compacidade e Teorema de Banach-Alaoglu

Bola Fechada no dual de X é compacta?

• na topologia forte τX∗ não é compacta quando o espaço tem
dimensão infinita (Teorema de Riesz A5.7):

BX∗
1 (0) compacta ⇒ dimX∗ <∞ ⇒ dimX <∞

• na topologia fraca∗ σ(X∗, X) é compacta:
Teorema de Banach-Alaoglu D5.2

• na topologia fraca σ(X∗, X∗∗) é compacta?
Spoiler: Teorema de Kakutani E1.8: quando X for reflexivo

Exerćıcios

Exerćıcio D5.1. Mostre que em espaços topológicos

(a) se f é cont́ınua e K é compacto então f(K) é compacto

(b) K compacto implica K fechado
(precisa Hausdorff: tome um ponto p no complementar e mostre que
é interior construindo duas famı́lias de abertos Ax ∩ Bx = ∅ com
{Ax}x∈K que cobre K e p ∈ Bx ∀x ∈ K ... )

(c) se F ⊆ K com F fechado e K compacto então F é compacto
(adicionando F c uma cobertura aberta de F cobre K ... )

F

O resultado mais importante, e principal motivação para a introdução das
topologias fracas é o seguinte:

Teorema D5.2 [Banach-Alaoglu]. Seja X um e.v.n. A bola fechada
BX∗ = {f ∈ X∗ : ‖f‖ ≤ 1} é compacta na topologia fraca∗ σ(X∗, X). �

A sua prova depende do Teorema de Tychonoff
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Espaço e topologia produtos, Teorema de Tychonoff

• Dada uma famı́lia de conjuntos {Xα}α∈A, o produto cartesiano da
famı́lia é o conjunto

P =
∏
α∈A

Xα := {f : A→
⋃
α∈A

Xα : f(α) ∈ Xα, ∀α ∈ A}

= {x = (xα)α∈A : xα ∈ Xα, ∀α ∈ A}.

Denotaremos este conjunto por XA quando todos os conjuntos Xα

são cópias de X, em particular,

KX = {f : X → K : f(x) ∈ K, ∀x ∈ X} = {y = (yx)x∈X : yx ∈ K, ∀x ∈ X}.

• Sejam πβ :
∏
α∈A

Xα → Xβ : x = (xα)α∈A 7→ xβ as projeções do

produto em cada fator.

πx : KX → K : f 7→ πx(f) = f(x)

• Se cada Xα é dotado de uma topologia τα, podemos colocar em
∏
Xα

a topologia produto (denotada por
∏

α∈A τα
∏
τKX ): gerada

pela famı́lia
F =

{
π−1
α (U) : α ∈ A, U ∈ τα

}
.

Uma base de vizinhanças para x ∈
∏
Xα é composta pelos con-

juntos da forma

Vε,α1,..,αN (x) :=
{
y ∈

∏
Xα : |xαi − yαi| < ε ∀i = 1, .., N

}
(D5.1)

onde ε > 0 e αi ∈ A para um número finito de i = 1, .., N .

base de vizinhanças para ϕ = (ϕ(x))x∈X ∈ KX

Vε,α1,..,αN (ϕ) :=
{
ψ ∈ KX : |ψ(αi)− ϕ(αi)| < ε ∀i = 1, .., N

}
com ε > 0 e αi ∈ X para um número finito de i = 1, .., N
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Teorema D5.3 [Tychonoff]. (Usa Axioma da Escolha!)
Se cada espaço topológico (Xα, τα) é compacto então

(∏
α∈AXα,

∏
α∈A τα

)
é compacto. �

Prova do Teorema de Banach-Alaoglu D5.2:

BX∗ = {f ∈ X∗ : ‖f‖ ≤ 1} é compacta na topologia σ∗ = σ(X∗, X).

• Seja T : (X∗, σ∗)→ (KX ,
∏
τK) : φ 7→ Tφ = (φ(x))x∈X

Af. 1. T é mergulho topológico

� T é injetora

� T é cont́ınua (por D5.2)

� T−1 : (T (X),
∏
τK)→ (X∗, σ∗) é cont́ınua (por D5.3)

Af. 2. T (BX∗) ⊆
∏

x∈X B
K
‖x‖(0), o qual é um compacto (T. Tychonoff)

Af. 3. T (BX∗) é fechado, logo compacto (Ex.D5-(c))

• BX∗ = T−1(T (BX∗)) é compacto na top. σ∗ (T−1 é cont́ınua, Ex.D5-(a))

�
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Aula 15

T : (X∗, σ∗)→ (KX ,
∏

τK) : φ 7→ Tφ = (φ(x))x∈X

Prova da Af. 1.: T é mergulho topológico.

• T é injetora: Tφ = Tψ =⇒ φ(x) = ψ(x), ∀x ∈ X =⇒ φ = ψ

• para as continuidades de T e sua inversa T−1 : (T (X),
∏
τK)→ (X∗, σ∗):

Proposição D3.3 ψ é cont́ınua se, e somente se, ϕ◦ψ : Z → K é cont́ınua, ∀ϕ ∈ X∗.

(Z,Σ)
ψ //

ϕ◦ψ

44(X,σ(X,X∗))
ϕ // (K, τK)

Lembre: a top. fraca σ(X,X∗) é a induzida pela famı́lia {ϕ}ϕ∈X∗
De fato, resultado análogo vale em geral trocando o esp. (X,σ) pelo esp.
topológico (Y, σ̃) e trocando ϕ por todas as funções que define σ̃ a menor
topologia que as deixa cont́ınuas, por exemplo,

(Z,Σ)
T //

πx◦T

55
(KX ,

∏
τK)

πx // (K, τK) (D5.2)

T é cont́ınua ⇐⇒ πx ◦ T é cont́ınua para todo x ∈ X
Lembre: a top. produto

∏
τK é a induzida pela famı́lia {πx}x∈X , ou ainda,

(Z,Σ)
T //

Jx◦T

55
(X∗, σ∗)

Jx // (K, τK) (D5.3)

T é cont́ınua ⇐⇒ Jx ◦ T é cont́ınua para todo x ∈ X
Lembre: a top. fraca∗ σ∗ é a induzida pela famı́lia {Jx}x∈X

• T é cont́ınua (por D5.2)

(X∗, σ∗) T //

πx◦T

33
(KX ,

∏
τK)

πx // (K, τK) : φ
T7→ w = (φ(x))x∈X

πx7→ φ(x)

� πx ◦ T (φ) = φ(x) = Jx(φ), ∀x ∈ X
� πx ◦ T = Jx ∈ J(X), a qual é cont́ınua na top. σ∗ (Def top.frac∗ D4.3)

� πx ◦ T é cont́ınua para todo x ∈ X
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• T−1 é cont́ınua (por D5.3)

(T (X),
∏
τK)

T−1
//

Jx◦T−1

44
(X∗, σ∗)

Jx // (K, τK) : w = (wx)x∈X
T−1

7→ (φ : x 7→ wx)
Jx7→ Jx(φ) = φ(x) = wx

� Jx ◦ T−1(w) = wx = πx(w), ∀w ∈ T (X)

� Jx ◦ T−1 = πx, a qual é cont́ınua na top.
∏
τKX (Def top.produto)

� Jx ◦ T−1 é cont́ınua para todo x ∈ X

Prova da Af. 2.: T (BX∗) ⊆
∏

x∈X B
K
‖x‖(0).

• ϕ ∈ BX∗

Queremos (ϕ(x))x∈X = Tϕ ∈
∏

x∈X B
K
‖x‖(0)

∏
x∈X

BK‖x‖ =
{
f : X → K : f(x) ∈ BK‖x‖(0), x ∈ X

}

• Basta mostrar que ϕ(x) ∈ BK‖x‖(0), x ∈ X: |ϕ(x)| ≤ ‖x‖ ,∀x ∈ X

ϕ ∈ BX∗ =⇒ ‖ϕ‖X∗ = sup
x∈X
x 6=0

|ϕ(x)|
‖x‖

≤ 1 =⇒ |ϕ(x)|
‖x‖

≤ 1,∀x 6= 0

Prova da Af. 3.: T (BX∗) é fechado.

• ϕ ∈ T (BX∗) ⊂ KX :

ϕ ∈ O ∈
∏

τKX =⇒ O ∩ T (BX∗) 6= ∅

Queremos (ϕ(x))x∈X = ϕ ∈ T (BX∗), i.e,

∃ f ∈ BX∗⊂X∗, i.e., f : X → K linear ltda. com ‖f‖X∗ ≤ 1; Tf = ϕ
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T : (X∗, σ∗)→ (KX ,
∏

τK) : φ 7→ Tφ = (φ(x))x∈X = (φ : X → K)

Tf = ϕ⇐⇒ (f(x))x∈X = Tf = ϕ = (ϕ(x))x∈X ⇐⇒ f = ϕ

• Basta mostrar que ϕ é linear e |ϕ(x)| ≤ 1 para todo x ∈ X, ‖x‖ ≤ 1

ϕ é linear:
ϕ(x+ y) = ϕ(x) + ϕ(y), ∀x, y ∈ X
ϕ(λx) = λϕ(x), ∀x ∈ X,λ ∈ K

• dados x, y ∈ X e ε > 0 considere

Vε,x,y,x+y(ϕ) = {ψ : X → K; |ψ(α)− ϕ(α)| < ε, α = x, y, x+ y}

• Vε,x,y,x+y(ϕ) ∈
∏
τKX (Eq. D5.1)

• ∃ ψ ∈ Vε,x,y,x+y(ϕ) ∩ T (BX∗)

|ϕ(x+ y)− ϕ(x)− ϕ(y)| =
ψ linear

= |ϕ(x+ y)−ψ(x + y) + ψ(x ) + ψ(y)− ϕ(x)− ϕ(y)|
≤ |ϕ(x+ y)− ψ(x+ y)|+ |ψ(x)− ϕ(x)|+ |ψ(y)− ϕ(y)|
ψ∈V
≤ 3ε

• dados x ∈ X, λ ∈ K e ε > 0 considere

Vε,x,λx(ϕ) = {ψ : X → K; |ψ(α)− ϕ(α)| < ε, α = x, λx}

• Vε,x,λx(ϕ) ∈
∏
τKX (Eq. D5.1)

• ∃ ψ ∈ Vε,x,λx(ϕ) ∩ T (BX∗)

|ϕ(λx)− λϕ(x)| ψ linear
= |ϕ(λx)−ψ(λx ) + λψ(x )− λϕ(x)|
≤ |ϕ(λx)− ψ(λx)|+ |λ||ψ(x)− ϕ(x)| ≤ ε+ |λ|ε
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|ϕ(x)| ≤ 1 para todo x ∈ X, ‖x‖ ≤ 1

• dados x ∈ X, com ‖x‖ ≤ 1 e ε > 0 considere

Vε,x(ϕ) = {ψ : X → K; |ψ(x)− ϕ(x)| < ε}

• Vε,x(ϕ) ∈
∏
τKX (Eq. D5.1)

• ∃ ψ ∈ Vε,x(ϕ) ∩ T (BX∗)

|ϕ(x)| ≤ |ϕ(x)− ψ(x)|+ |ψ(x)|
ψ linear

≤
ltda

ε+ ‖ψ‖ ‖x‖
‖ψ‖≤1

≤ ε+ ‖x‖ ≤ ε+ 1

Exerćıcios

Exerćıcio D5.4. A topologia fraca∗ σ(X∗, X) em X∗ é a topologia em
X∗ induzida pela topologia produto

∏
τK de KX : σ(X∗, X) = τKX |X∗ F

D6 Mais coisas..

Observação D6.1. Os Corolários do Teorema da Limitação Uniforme B4.4
(resp. B4.3) podem ser reformulados concluindo que um conjunto limitado na
topologia fraca∗ (resp. fraca) é fortemente limitado. F

Corolário B4.3 Se X é um e.v.n. sobre K e B ⊂ X, suponha que φ(B) = {φ(x), x ∈
B} seja limitado ∀ φ ∈ X∗. Então B é limitado.

Cororálio B4.4 Seja X um espaço de Banach e B ⊂ X∗, suponha que {φ(x), φ ∈ B}
seja limitado ∀ x ∈ X. Então B é limitado.

Exerćıcios

Exerćıcio D6.2. Faça os exerćıcios 3.1,..,3.5 (p. 79...) do [Bre11] F
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D4.9 Exerćıcio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D39
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