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C1 Transformações lineares não limitadas

Motivação: Vale considerar transformações T : D(T ) ⊆ X → Y lineares?

• X, Y e.m.: cont́ınua =⇒ fechada

• (TGF) X, Y Banach: linear fechada =⇒ cont́ınua/limitada

∴ X, Y Banach, T ∈ L?(X, Y ): fechada ⇐⇒ limitada

as únicas transformações T : D(T ) ⊆ X → Y lineares fechadas que
não são limitadas estarão definidas em subesp. vet. próprios de X

• Por que considerar aplicações fechadas?

∗ aplicações de interesse são fechadas

∗ ser fechada é hipótese mais do fraca que ser cont́ınua e ainda assim
obtém-se resultados importantes

Exemplo. Considere a norma uniforme ‖f‖∞ = sup
x∈[0,1]

|f(x)|, o operador

diferencial

T : (C1([0, 1]), ‖f‖∞)não é Banach → (C([0, 1]), ‖f‖∞)Banach : f 7→ f ′

é linear, não é limitado mas é fechado. F

Pergunta:

Conseguimos X Banach de modo que C1([0, 1])
s.e.v.
⊂ X e o operador diferencial

T : C1([0, 1]) ⊂ X → C([0, 1]) ainda é fechado?
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Sejam X, Y espaços de Banach.

Definição C1.1 (Trans. lin. “não-limitada”). Uma transformação linear
“não-limitada” de X em Y é uma transformação linear T : D(T )→ Y , onde
D(T ) é um subespaço de X.
Chamamos

• D(T ) é o Domı́nio de T ,

• G(T ) = {(x, Tx) ∈ X × Y : x ∈ D(T )} ⊆ X × Y é o Gráfico de T ,

• R(T ) = {Tx ∈ Y : x ∈ D(T )} ⊆ Y é a Imagem (Range) de T ,

• N(T ) = {x ∈ D(T ) : Tx = 0} é o Núcleo de T .

T é dita

• densamente definida se D(T ) é denso em X (D(T ) = X)

• limitada se ∃ c ≥ 0 tal que ‖Tx‖Y ≤ c‖x‖X , ∀x ∈ D(T )

• fechada se G(T ) é fechado em X × Y

F

Comparação:

• T ∈ L?(X, Y ) é fechada se G(T ) é fechado (pag. B23):

� se X × Y 3 (xn, T (xn))→ (x, y) ∈ X × Y então y = Tx

� equiv se X × Y 3 (xn, T (xn))→ (0, y) ∈ X × Y então y = 0

• T não-limitada é fechada se G(T ) é fechado em X × Y :

� se D(T ) × Y 3 (xn, T (xn)) → (x, y) ∈ X × Y então x ∈ D(T ) e
y = Tx

�

0X,Y são e.v.n. sobre K e somente isso bastava para a definição.
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C1.1 Exemplos Aula 9

Exemplo C1.2. Considere o operador diferencial T : f 7→ Tf = f ′.

1. T : C([0, 1])→ C([0, 1]) está mal definida

2. T : (C1([0, 1]), ‖f‖∞)︸ ︷︷ ︸
X não é Banach

→ (C([0, 1]), ‖f‖∞)︸ ︷︷ ︸
Y Banach

é linear de X em Y , não é limi-

tado mas é fechado.

3. T : (C1([0, 1]), ‖f‖ = sup |f |+ sup |f ′|)︸ ︷︷ ︸
X Banach

→ (C([0, 1]), ‖f‖∞)︸ ︷︷ ︸
Y Banach

é

linear de X em Y limitado/cont́ınuo e fechado (TGF B4.14)

4. T : C1([0, 1])
s.e.v
⊆ Y → Y é um operador linear “não-limitado” de Y em

Y que não é limitado mas é fechado.

F

Exemplo C1.3. Considere o operador identidade T : x 7→ Tx = x.

1. T : X → X é: linear limitado e fechado

2. T : D(T )
s.e.v

 X→ X tal que D(T ) = X (densamente definido) é: linear
não-limitado de X em X que é limitado mas não é fechado.

F

C1.2 Fechadas

Proposição. Sejam X, Y espaços de Banach, T : D(T ) ⊆X → Y linear.

• Se D(T ) é fechado em X, então T é fechada se e só se T é limitada.

• Se T é fechada e limitada, então D(T ) é fechado em X.

�

Demonstração. Exerćıcio.
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Observação C1.4. Se T : D(T ) ⊂ X → Y é linear limitada e densamente
definida, podemos estendê-la a uma única transformação linear limitada em X.

Neste caso, se D(T ) 6= X então T não é fechada.

Queremos: ∃! T̄ : X → Y linear limitada tal que T̄ |D(T ) = T

• x ∈ X = D(T ), ∃ {xn} ⊂ D(T ); xn → x ∈ X

• defina T̄ : X → Y : x 7→ T̄ (x) := lim
n→∞

Txn

Af.1. lim
n→∞

Txn = y ∈ Y é único

Af.2. T̄ é linear, limitada e T̄ |D(T ) = T

Af.3. T̄ é única

F

As aplicações de interesse estão relacionadas principalmente com trans-
formações lineares densamente definidas e fechadas.

Observação. O Teorema da aplicação aberta e algumas de suas consequências
se estendem ao caso de T fechada:

Teorema da Aplicação aberta para T fechada

Sejam X, Y espaços de Banach e T ∈ L(X, Y ) T : D(T ) ⊆X → Y linear
fechada.

• se T é sobrejetora, então T é aberta (se A é um aberto de X então
T (A ∩D(T )) é aberto).[TL80, p.212]

Além disso, existe C > 0 tal que para cada y ∈ Y pode-se encontrar
x ∈ D(T ) tal que

‖x‖ ≤ C‖y‖ e y = Tx.

• se T é bijetora, então T−1 é cont́ınua: T−1 ∈ L(Y,X).
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Exerćıcios

Exerćıcio C1.5. • Considere T : (c00, ‖ ‖1)→ `1 : (xi) 7→ (ixi)
é bem definido? limitado? cont́ınuo? fechado?

• Considere T : c00 ⊆`1 → `1 : (xi) 7→ (ixi)
é limitado? densamente definido? fechado?

• Considere T : c00 ⊆`1 → K : (xi) 7→
∑∞

i=1 xi
é limitado? cont́ınuo? fechado?

• Considere T : c00 ⊆(c0,‖ ‖∞) → K : (xi) 7→
∑∞

i=1 xi
é limitado? cont́ınuo? fechado? F
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C2 Adjunto

Definição C2.1 (Adjunto (de cont́ınuo)).
Sejam X, Y espaços de Banach e T ∈ L(X, Y ). Definimos o adjunto de T

como
T ∗ : Y ∗ → X∗ : φ 7→ φ ◦ T.

F

Objetivo: definir adjunto para operador não limitado

T : D(T ) ⊂
s.e.v.

X → Y linear densamente definido

T ∗ : D(T ∗) ⊂ Y ∗ → X∗ : g 7→ T ∗g = f =??

• D(T ∗) =?? seja s.e.v. de Y ∗

• tenhamos a garantia de que dada g ∈ D(T ∗), ∃! f ∈ X∗ tal que
T ∗g = f

Definição C2.2 (Adjunto (de não-limitado)).
Sejam X, Y espaços de Banach e T : D(T ) ⊆X → Y uma transformação

linear densamente definida. Definimos o adjunto de T como

T ∗ : D(T ∗) ⊆
s.e.v.

Y ∗ → X∗ : g 7→ T ∗g = f

onde
D(T ∗) = {g ∈ Y ∗ : g ◦ T : D(T )→ K é limitada}

e f = g ◦ T é a única extensão linear cont́ınua em X (Obs. C1.4) de g◦T . F

Vale então

(T ∗g)(x) = f(x) = (g ◦ T )(x) = g(Tx) ∀ x ∈ D(T ), g ∈ D(T ∗). (C2.1)

Se para f ∈ X∗ substituirmos a notação f(x) por 〈f, x〉X∗,X , a relação acima
torna-se:

〈T ∗g, x〉X∗,X = 〈g, Tx〉Y ∗,Y ∀ x ∈ D(T ), g ∈ D(T ∗).
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Teorema C2.3. Seja T : D(T ) ⊆X → Y uma transformação linear densa-
mente definida (X, Y Banach). Então

(a) T ∗ é linear e fechado.

(b) Se T é fechada então D(T ∗) separa os pontos de Y :

∀y ∈ Y \ {0},∃ g ∈ D(T ∗); g(y) 6= 0.1

Spoiler: Se Y é reflexivo então D(T ∗) é denso em Y ∗. Poderá ser definido o adjunto do

adjunto.

(c) Se T ∈ L(X, Y ) então T ∗ ∈ L(Y ∗, X∗) e ‖T‖ = ‖T ∗‖. �

Demonstração.
(a) T ∗ é linear:

• λ ∈ K, g1, g2 ∈ D(T ∗) =⇒ ∃! f1, f2; T
∗gi = fi, i = 1, 2

f1 + λf2 é a única extensão linear cont́ınua de (g1 + λg2) ◦ T

(a) T ∗ é fechado:

• D(T ∗)×X∗ 3 (gn, T
∗gn)→ (g, f) ∈ Y ∗ ×X∗

Queremos: g ∈ D(T ∗) e f = T ∗g⇔ g ◦ T : D(T )→ K ltda. e T ∗g(x) = f(x), x ∈ X

Temos gn ∈ D(T ∗) e :

(i) gn → g em Y ∗ ⇐⇒ ‖gn − g‖Y ∗ → 0 =⇒ lim
n→∞

gn(y) = g(y), y ∈ Y

(ii) T ∗gn → f em X∗ ⇐⇒ ‖T ∗gn − f‖X∗ → 0 =⇒ lim
n→∞

T ∗gn(x) = f(x), x ∈ X

Queremos |g(Tx)| ≤ c ‖x‖X para todo x ∈ D(T ), mas g(Tx) =???

• x ∈ D(T ) =⇒ y = Tx ∈ Y e

g(Tx)
(i)
= lim

n→∞
gn(Tx)

(C2.1)
=

gn∈D(T ∗)
lim
n→∞

T ∗gn(x)
(ii)
= f(x) (∗)

• |g(Tx)| = |f(x)| ≤ ‖f‖X∗ ‖x‖X para todo x ∈ D(T )

∴ g ∈ D(T ∗)

1Portanto, se g(y) = 0 para toda g ∈ D(T ∗), então y = 0.
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• Por (*):

T ∗g(x)
(C2.1)

=
g∈D(T ∗)

g(T (x)) = f(x), ∀x ∈ D(T )

∴ em particular, T ∗g é linear limitada em D(T ) e vale:

T ∗g(x)= lim
n→∞

T ∗g(xn)
(C2.1)

=
g∈D(T ∗)

lim
n→∞

gT (xn)
(∗)
= lim

n→∞
f(xn)

f∈X∗
= f(x),∀x ∈ X

pois
x ∈ X = D(T ) =⇒ x = lim

n→∞
xn, xn ∈ D(T )

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Aula 10

(b) Se T é fechada então D(T ∗) separa os pontos de Y

Teorema B2.4. Se M é um subespaço fechado de X e x0 ∈ X \M , então ∃ f ∈ X∗;

f |M = 0, ‖f‖X∗ = 1 e f(x0) = d(x0,M) = inf
m∈M

‖x0 −m‖ > 0.

‖(x, y)‖X×Y = ‖x‖X + ‖y‖Y (p.A13)

• y0 ∈ Y \ {0}

Queremos: g =?? ∈ D(T ∗); g(y0) 6= 0

• (0, y0) /∈ G(T ) que é s.e.v. fechado de X × Y

• ∃ f ∈ (X × Y )∗; f |G(T ) = 0, ‖f‖(X×Y )∗ = 1 e f(0, y0) = d > 0.

• Note: f(x, y) = f(x, 0) + f(0, y) para todo (x, y) ∈ X × Y

• h : X → K : x 7→ h(x) = f(x, 0) está em X∗

• g : Y → K : y 7→ g(y) = f(0, y) está em Y ∗ e g(y0) 6= 0

falta provar que g ◦ T : D(T )→ K é limitada

g(Tx) = f(0, Tx) = f(x, Tx)− f(x, 0)
f |G(T )=0

= 0− h(x), x ∈ D(T )

(g ◦ T )(x) = −h(x), x ∈ D(T ), e h é limitada em X

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(c) T ∈ L(X, Y ) =⇒ T ∗ ∈ L(Y ∗, X∗) e ‖T‖ = ‖T ∗‖

• D(T ∗) = {g ∈ Y ∗ : g ◦ T : D(T )→ K é limitada} T ltdo
= Y ∗

Queremos: T ∗ limitado ⇐⇒ ‖T ∗g‖X∗ = sup‖x‖≤1 |T ∗g(x)| ≤ c ‖g‖Y ∗, ∀g ∈ Y ∗

• x ∈ X = D(T ); ‖x‖ ≤ 1 e g ∈ Y ∗ = D(T ∗)

|T ∗g(x)| (C2.1)
= |gT (x)|

g∈Y ∗
≤ ‖g‖Y ∗ ‖Tx‖Y

T∈L
≤ ‖g‖ ‖T‖ ‖x‖ ≤ ‖T‖︸︷︷︸

c

‖g‖

Queremos: ‖T ∗‖ = ‖T‖

• ‖T ∗‖ = sup
‖g‖≤1

‖T ∗g‖

∴ ‖T ∗‖ ≤ ‖T‖

• ‖T‖ = sup
‖x‖≤1

‖Tx‖Y e ‖Tx‖Y = sup
‖f‖Y ∗=1

|f(Tx)|

Exerćıcio B2.5. Se X é um e.v.n. não trivial, vale ‖x‖X = max
f∈X∗
‖f‖X∗=1

|f(x)|.

|f(Tx)| (C2.1)
= |T ∗(fx)|

T ∗∈L
≤

f∈Y ∗
‖T ∗‖ ‖f‖ ‖x‖

∴ ‖T‖ ≤ ‖T ∗‖

C10
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Exerćıcios

Exerćıcio C2.4. Sejam p ∈ [1,∞) e q = p
p−1 ∈ (1,∞]. Então o dual

de `p é isometricamente isomorfo a `q, (`p)
∗ ≈ `q.

[Muj, p. 44] a F

Exerćıcio C2.5. Calcule o adjunto dos operadores

1. T : Rn → Rm : x 7→ Ax sendo A uma matriz m× n
2. T : D(T ) ⊆`1 → `1 : (xj) 7→ (2−jxj)

3. T : D(T ) ⊆`1 → `1 : (xj) 7→ (xj+1 + xj)

4. T : D(T ) ⊆`1 → `1 : (x1, x2, x3, ..) 7→ (0, x1, x2, x3, ..)

5. T : D(T ) ⊆`3 → `2 : x 7→ 2x

6. T : D(T ) ⊆`2 → `3 : x 7→ 2x F

Exerćıcio C2.6. Dados S ∈ L(X;Y ), T ∈ L(Y ;G), prove que
(T ◦S)∗ = S∗◦T ∗. Deduza que se T é um isomorfismo topológico (resp. iso-
morfismo isométrico), então T ∗ isomorfismo topológico (resp. isomorfismo
isométrico). F

Exerćıcio C2.7. (X × Y )∗ ≈ X∗ × Y ∗ (isometricamente isomorfos).
b F

aT : `q → `∗p : y 7→ T (y) = φy onde φy : `p → K : x 7→ φy(x) =

∞∑
j=1

yjxj = 〈y, x〉

bT : (X × Y )∗ → X∗ × Y ∗ : f 7→ (h, g) onde f(x, y) = f(x, 0) + f(0, y) =: h(x) + g(y)

(h, g)(x, y) = h(x) + g(y)

〈(h, g), (x, y)〉 = 〈h, x〉+ 〈g, y〉

C11
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C3 Relações de Ortogonalidade

Sejam X um e.v.n. sobre K, M ⊆ X e N ⊆ X∗ (subconjuntos). Definimos os
conjuntos ortogonais2 de M e N , resp., por

M⊥ = {f ∈ X∗ : f(x) = 0, ∀x ∈M}

N⊥∗ = {x ∈ X : f(x) = 0, ∀f ∈ N}.

Proposição C3.1.

(a) M⊥, N⊥∗ são subsepaços fechados (de X∗ e de X resp.)

(b) se M,N são subespaços (de X e de X∗ resp.), então vale

(M⊥)⊥∗ = M e (N⊥∗)⊥ ⊃ N

(Spoiler: se X é reflexivo então (N⊥∗)⊥ = N)

�

Demonstração. (a) Exerćıcio.
(b)

• (M⊥)⊥∗ = {x ∈ X : f(x) = 0, ∀f ∈M⊥} é fechado (por (a))

Queremos: M ⊂ (M⊥)⊥∗ e portanto basta mostrar M ⊂ (M⊥)⊥∗

• x ∈M =⇒ f(x) = 0, ∀f ∈M⊥ (def. de M⊥)

• x ∈ (M⊥)⊥∗ (def. de (M⊥)⊥∗)

Queremos: (M⊥)⊥∗ ⊂M e portanto basta mostrar @ x ∈ (M⊥)⊥∗ \M

• supor que ∃ x0 ∈ (M⊥)⊥∗ \M ⊂ X \M

Teorema B2.4. M
fechado
⊂

s.e.v
X e x0 ∈ X \M , ∃ f ∈ X∗; f |M = 0, f(x0) > 0.

• ∃ f ∈ X∗; f |M = 0 e f(x0) 6= 0 =⇒ f ∈M⊥ e f(x0) 6= 0

• x0 ∈ (M⊥)⊥∗ e f ∈M⊥ =⇒ f(x0) = 0
2A notação mais comum é N⊥.
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• (N⊥∗)⊥ = {f ∈ X∗ : f(x) = 0, ∀x ∈ N⊥∗} é fechado (por (a))

Queremos: N ⊂ (N⊥∗)⊥ e basta mostrar N ⊂ (N⊥∗)⊥

• f ∈ N =⇒ f(x) = 0, ∀x ∈ N⊥∗ (def. de N⊥∗)

• f ∈ (N⊥∗)⊥ (def. de (N⊥∗)⊥)

Exerćıcios

Exerćıcio C3.2. Faça o exerćıcio 1.16 (p. 24) do [Bre11]. a F

Exerćıcio C3.3. Se M1,M2 são subespaços vetoriais do e.v.n. X com
M1 ⊆M2 e N1, N2 subespaços vetoriais de X∗ com N1 ⊆ N2, então
M⊥

2 ⊆M⊥
1 e N⊥∗2 ⊆ N⊥∗1 . F

Exerćıcio C3.4. (!) Mostre que, se M é subespaço de X
M⊥ = {0} ⇐⇒ M = X

Mostre que o mesmo não vale para N⊥∗ e X∗. F

Exerćıcio C3.5. Sejam Y e Z subespaços vetoriais fechados do e.v.n.
X, então

Y ∩ Z = (Y ⊥ + Z⊥)⊥∗ , (C3.1)

Y ⊥ ∩ Z⊥ = (Y + Z)⊥ , (C3.2)

(Y ∩ Z)⊥ ⊇ Y ⊥ + Z⊥ , (Y ⊥ ∩ Z⊥)⊥∗ = Y + Z . (C3.3)

aX = `1, X∗ = `∞, N = c0 s.e. fechado de `∞ (Ex. A3.17): N⊥∗ = {0} =⇒ (N⊥∗)⊥ = `∞ * N = c0

C13
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Os gráficos de T e T ∗ estão ligados por uma relação de ortogonalidade.

Proposição C3.6. Sejam X, Y espaços de Banach e T : D(T ) ⊆X → Y
uma transformação linear densamente definida. Seja

J : Y ∗ ×X∗ → X∗ × Y ∗ : (g, f) 7→ (−f, g)

então,
G(T )⊥ = {(−T ∗g, g) : g ∈ D(T ∗)} = J (G(T ∗)). �

Demonstração.
A segunda igualdade segue da definição de imagem.

• G(T ∗) = {(g, f) ∈ Y ∗ ×X∗ : f = T ∗g, g ∈ D(T ∗)}
= {(g, T ∗g) ∈ Y ∗ ×X∗ : g ∈ D(T ∗)}

Para a primeira igualdade:

• G(T )⊥ = {h ∈ (X × Y )∗ : h(a) = 0, a = (x, Tx) ∈ G(T )}
= {(f, g) ∈ X∗ × Y ∗ : (f, g)(x, Tx) = 0, x ∈ D(T )}

⊃

(−T ∗g, g) ∈ G(T )⊥, g ∈ D(T ∗) ⇐⇒ (−T ∗g, g)(x, Tx) = 0, x ∈ D(T ), g ∈ D(T ∗)

⇐⇒ −T ∗g(x) + g(Tx) = 0, x ∈ D(T ), g ∈ D(T ∗)
(C2.1)⇐⇒ −g(Tx) + g(Tx) = 0, x ∈ D(T ), g ∈ D(T ∗)X

⊂

(f, g) ∈ G(T )⊥ ⇐⇒ (f, g)(x, Tx) = 0, x ∈ D(T ), g ∈ Y ∗

⇐⇒ f(x) = −g(Tx), x ∈ D(T ), g ∈ Y ∗
f ltda
=⇒

g◦T ltda
f(x) = −g(Tx), x ∈ D(T ), g ∈ D(T ∗)

(C2.1)⇐⇒ f(x) = −T ∗(gx), x ∈ D(T ), g ∈ D(T ∗)

=⇒ (f, g) = (−T ∗g, g), g ∈ D(T ∗)X

C14
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Teorema C3.7. Seja T : D(T ) ⊆X → Y linear densamente definido. Então

i∗) N(T ) ⊆ R(T ∗)⊥∗

ii) N(T ∗) = R(T )⊥ e logo iv) N(T ∗)⊥∗ = R(T )

Se T é também fechado então

i) N(T ) = R(T ∗)⊥∗ e logo iii) N(T )⊥ ⊃ R(T ∗)

(Spoiler: se X é reflexivo então N(T )⊥ = R(T ∗)) �

Demonstração. iv) e iii) seguem usando a Proposição C3.1-(b).

Proposição C3.1 (b): se M,N são subespaços de X e de X∗ resp., então vale

(M⊥)⊥∗ = M e (N⊥∗)⊥ ⊃ N.

ii) N(T ∗) = R(T )⊥

R(T ) = {Tx ∈ Y : x ∈ D(T )⊂X} ⊆ Y

N(T ∗) = {f ∈ D(T ∗)⊂Y ∗ : T ∗f = 0} ⊂ Y ∗

M ⊂ X : M⊥ = {g ∈ X∗ : g(x) = 0, ∀x ∈M}:

R(T )⊥ = {f ∈ Y ∗ : f(y) = 0, ∀y ∈ R(T )}

f ∈ N(T ∗) ⇐⇒ T ∗f = 0 e f ∈ D(T ∗)

⇐⇒ T ∗f(x) = 0, ∀x ∈ X e f ∈ D(T ∗)

⇐⇒ T ∗f(x) = 0, x ∈ D(T ) e f ∈ D(T ∗) 3

(C2.1)⇐⇒ f(Tx) = 0, x ∈ D(T ) e f ∈ D(T ∗)

⇐⇒ f ∈ R(T )⊥ 4

3volta: D(T ) é denso em X
4volta: f ∈ Y ∗ tal que f(Tx) = 0 ∀x ∈ D(T ) implica f ◦ T limitada em D(T ) e portanto f ∈ D(T ∗)
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i∗) N(T ) ⊆ R(T ∗)⊥∗

R(T ∗) = {T ∗f ∈ X∗ : f ∈ D(T ∗)⊂Y ∗} ⊆ X∗

N(T ) = {x ∈ D(T ) : Tx = 0} ⊂ X

N ⊂ X∗ : N⊥∗ = {x ∈ X : f(x) = 0, ∀f ∈ N}:

R(T ∗)⊥∗ = {x ∈ X : g(x) = 0, ∀g ∈ R(T ∗)}

x ∈ N(T ) ⇐⇒ Tx = 0 e x ∈ D(T )

⇐⇒ f(Tx) = 0, ∀f ∈ Y ∗ e x ∈ D(T ) 5

=⇒ f(Tx) = 0, f ∈ D(T ∗) e x ∈ D(T ) 6

(C2.1)⇐⇒ T ∗f(x) = 0, f ∈ D(T ∗) e x ∈ D(T )

=⇒ x ∈ R(T ∗)⊥∗

i) N(T ) = R(T ∗)⊥∗, se T é fechada

Queremos: R(T ∗)⊥∗ ⊂ N(T ) e portanto basta mostrar @ x ∈ R(T ∗)⊥∗ \N(T )

Seja x0 ∈ R(T ∗)⊥∗ \N(T ).

• x0 ∈ R(T ∗)⊥∗ =⇒ x0 ∈ X e T ∗f(x0) = 0 para toda f ∈ D(T ∗)

• x0 /∈ N(T ) =⇒

{
x0 /∈ D(T )

T (x0) 6= 0
=⇒ (x0, 0) /∈ G(T )

s.e.v. fech.
⊂

T fechada
X × Y

Teorema B2.4 [Existem muitos funcionais] Se M é um subespaço fechado
de um e.v.n. X̃ e y0 ∈ X \M , então existe f ∈ X̃∗ tal que

h|M = 0, h(y0) = d(y0,M) > 0.

• ∃ h ∈ (X × Y )∗; h(x0, 0) 6= 0 e h|G(T ) = 0

• h ∈ (X × Y )∗ =⇒ h = (f, g) para alguma f ∈ X∗ e g ∈ Y ∗

• 0 6= h(x0, 0) = f(x0) + g(0) =⇒ f(x0) 6= 0

5volta: Teo. B2.4-(c): Y ∗ separa pontos
6podemos ir para a 1a. linha se T fechada: Teo. C2.3-(b): D(T ∗) separa pontos
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• h|G(T ) = 0 =⇒ h(x, Tx) = f(x) + g(Tx) = 0, x ∈ D(T )

=⇒ g(Tx) = −f(x), x ∈ D(T )

f∈X∗
=⇒ g ◦ T limitada em D(T )

=⇒ g ∈ D(T ∗)

∴ T ∗g(x0) = 0

• x0 ∈ X = D(T ) =⇒ x0 = lim
n→∞

xn, para alguma sequencia {xn} ⊂ D(T )

T ∗g(x0) = T ∗g( lim
n→∞

xn)
T ∗g∈X∗

= lim
n→∞

T ∗g(xn)
g∈D(T ∗)

=
x∈D(T )

lim
n→∞

g(Txn)

= − lim
n→∞

f(xn)
f∈X∗
= −f(x0) 6= 0

Corolário C3.8. Seja T : D(T ) ⊆X → Y linear densamente definido. Vale

T sobre =⇒ T ∗ inj (C3.4)

(T fechada) T ∗ sobre =⇒ T inj (C3.5)

Se a dimensão de X (para (C3.5)) ou de Y (para (C3.4)) é finita, então valem
as reciprocas. �

Demonstração. Exerćıcio.

ii) N(T ∗) = R(T )⊥

Se T é também fechado então i) N(T ) = R(T ∗)⊥∗
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C3.1 Caracterização de Transformações Lineares com Imagem

Fechada Aula 11

Uma importância deste resultado é que Imagem fechada implica Imagem
Banach e logo nos permite aplicar outros resultados.

Teorema C3.9. Seja T : D(T ) ⊆ X → Y uma transformação linear den-
samente definida e fechada. Então, são equivalentes: [TL80, p...240..][Rud73, p...96..]

i) R(T ) é fechada

ii) R(T ∗) é fechada

iii) R(T ) = N(T ∗)⊥∗

iv) R(T ∗) = N(T )⊥ �

iii○ ⇐⇒ i○ ??
=⇒ iv○ =⇒ ii○ ?

=⇒ i○
Demonstração.
iv) R(T ∗) = N(T )⊥ =⇒ ii) R(T ∗) é fechada

Segue diretamente da Proposição C3.1-(a)

Proposição C3.1.

(a) M⊥, N⊥∗ são subsepaços fechados (de X∗ e de X resp.)

(b)

i) R(T ) é fechada ⇐⇒ iii) R(T ) = N(T ∗)⊥∗

Segue do Teorema C3.7-iv):

Teorema C3.7. Seja T : D(T ) ⊆X → Y densamente definido. Então

ii) e logo iv) N(T ∗)⊥∗ = R(T )

• R(T )
Hip.i)

= R(T )
T.C3.7

=
iv)

N(T ∗)⊥∗

• R(T )
T.C3.7

=
iv)

N(T ∗)⊥∗
Hip.iii)

= R(T )
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T : D(T ) ⊆ X → Y densamente definida e fechada:
ii) R(T ∗) é fechada =⇒ i) R(T ) é fechada

Queremos: R(T ) = R(T )

• consideramos S = T | : D(T ) ⊆ X → R(T ) : x 7→ Sx = Tx

• S é linear, densamente definida, fechada e R(S) = R(T )

Queremos: S sobrejetora pois dáı R(T ) = R(S) = R(T )

Lema C3.10. Seja S : D(T ) ⊆X → Banach densamente definido e fechado.

Se existe C > 0; ‖φ‖ ≤ C‖S∗φ‖, ∀φ ∈ D(S∗), então S é aberta e sobrejetora.

Precisamos: R(T ) Banach e ‖φ‖ ≤ C‖S∗φ‖,∀φ ∈ D(S∗), pois dáı S é sobrejetora

• R(T ) é subconj. fechado do esp. de Banach Y , portanto é Banach

Af.1. ‖φ‖ ≤ C‖S∗φ‖, ∀φ ∈ D(S∗)

S = T | : D(T ) ⊆ X︸︷︷︸
Banach

→ R(T )︸ ︷︷ ︸
Banach

S∗ : D(S∗) ⊆ R(T )
∗ → X∗

� S∗ é linear e fechada

Teorema C2.3. Seja T : D(T ) ⊆X → Y uma transformação linear

densamente definida (X,Y Banach). Então T ∗ é linear e fechado.

Teorema da Aplicação Aberta para T fechada (pag. C5). Sejam
X,Y espaços de Banach e T : D(T ) ⊆X → Y linear fechada e sobrejetora.
Então T é aberta e existe C > 0 tal que para cada y ∈ Y pode-se encontrar
x ∈ D(T ) tal que

‖x‖ ≤ C‖y‖ e y = Tx.

� considere S∗| = S∗ : D(S∗) ⊂ R(T )
∗︸ ︷︷ ︸

Banach

→ R(S∗)︸ ︷︷ ︸
Banach?

que é linear, fechada e

sobrejetora
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Precisamos: R(S∗) Banach e com isso teŕıamos:

∃ C > 0;∀ψ ∈ R(S∗), ∃φ ∈ D(S∗) : ‖φ‖ ≤ C‖S∗φ‖

� Se S∗ é injetora, então a Af. 1 está provada: ‖φ‖ ≤ C‖S∗φ‖, ∀φ ∈ D(S∗) .

Af.2. S∗ é injetora

Exerćıcio C3.4. Se M é subespaço de X, então M⊥ = {0} ⇐⇒M = X

� R(S) = R(T ) é denso em Y0 = R(T )

� N(S∗)
T.C3.7

=
ii)

R(S)⊥ = {0}

Af.3. R(S∗) é Banach

� R(S∗) ⊂ X∗ e X∗ é Banach

� Se R(S∗) é fechada, então R(S∗) é Banach

¡Hipótese!: R(T ∗) é fechada

Af.4. R(S∗) = R(T ∗) e dáı R(S∗) é fechada

R(S∗) = {S∗φ ∈ X∗ : φ ∈ D(S∗) ⊆ R(T )
∗ ⊂ Y ∗ }

R(T ∗) = {T ∗ψ ∈ X∗ : ψ ∈ D(T ∗) ⊂ Y ∗}

(⊂)

� S∗φ ∈ X∗ : φ ∈ D(S∗)

Queremos: S∗φ = T ∗? com ? ∈ D(T ∗) = {g ∈ Y ∗ : g ◦ T : D(T )→ K limitada}

Corol. B2.3. M = R(T ) ⊂
s.e.v

Y e f ∈M∗ =⇒ ∃ f̃ ∈ Y ∗ tal que f̃ |M = f.

� ∃ φ̃ ∈ Y ∗tal que φ̃|R(T ) = φ.

� x ∈ D(S) = D(T )

S∗φ(x)
φ∈D(S∗)

= φ(Sx)
S=T
= φ(Tx)

φ=φ̃|
R(T )

=
Tx∈R(T )

φ̃(Tx)

=⇒


φ̃ ◦ T limitada em D(T ) =⇒ φ̃ ∈ D(T ∗)

S∗φ(x) = T ∗φ̃(x), x ∈ D(T ) ∴ x ∈ X
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(⊃)

� T ∗ψ ∈ X∗ : ψ ∈ D(T ∗) = {f ∈ Y ∗ : f ◦ T : D(T )→ K limitada}
Queremos: T ∗ψ = S∗? com ? ∈ D(S∗) = {g ∈ R(T )

∗
: g ◦ S : D(S)→ K limitada}

� ψ|R(T ) ∈ R(T )
∗

� x ∈ D(T ) = D(S)

T ∗ψ(x)
ψ∈D(T ∗)

= ψ(Tx)
S=T
= ψ(Sx)

Sx∈R(T )
= ψ|R(T )(Sx)

=⇒


ψ|R(T ) ◦ S limitada em D(S) =⇒ ψ|R(T ) ∈ D(S∗)

T ∗ψ = S∗ψ|R(T )

T : D(T ) ⊆ X → Y densamente definida e fechada:
i) R(T ) é fechada =⇒ iv) R(T ∗) = N(T )⊥

(⊂)

Teorema C3.7. Seja T : D(T ) ⊆X → Y densamente definido. Se T é também

fechado então iii) N(T )⊥ ⊃ R(T ∗)

• R(T ∗) ⊂ R(T ∗) ⊂ N(T )⊥

(⊃)

• f ∈ N(T )⊥ = {f ∈ X∗ : f(x) = 0, x ∈ N(T )}

Queremos: f ∈ R(T ∗), i.e., f = T ∗ψ para alguma ψ =? em Y ∗ tal que ψ ◦ T seja limitada em D(T )

Usaremos o espaço quociente para encontrar ψ a partir de f e T :

X/N(T )⊃D(T̂ )︸ ︷︷ ︸
Banachf̂

||

T̂

$$

K R(T )︸ ︷︷ ︸
Banach⊂Y

f̂◦T̂−1
oo

T̂−1
ii

f̂ ∈ (X/N(T ))∗

T̂−1 ∈ L(R(T ), X/N(T ))

ψ ∈ Y ∗ será a extensão do func. linear ltdo f̂ ◦ T̂−1

C.B2.3. Y e.v.n., M um subespaço e f ∈ M∗ ⇒ ∃ f̃ ∈ Y ∗; f̃ |M = f.
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Af.1. X/N(T ) é Banach: (ver Seção B5.1)

N(T ) ⊂ X é fechado [verifique!] (T fechada)

Af.2. f : X → K em X∗ induz um funcional linear limitado em X/N(T ):

f̂ : X/N(T )→ K : [x] 7→ f̂([x]) = f(x)

? está bem definido:a

[y] = [x]⇔ y−x ∈ N(T )
f∈N(T )⊥⇒ f(x−y) = 0

f∈X∗⇔ f̂([x])
f(x) = f(y)

= f̂([y])

? é linear
? é limitado:

‖f̂‖ = sup{|f̂([x])| : ‖[x]‖ < 1}
= sup{|f(x)| : ‖[x]‖ < 1}

‖x‖ < 1⇐⇒ ‖[x]‖ = ‖π(x)‖ < 1

= sup{|f(x)| : ‖x‖ < 1}
= ‖f‖

aLembre-se: [x] = {y ∈ D(T ) : y − x ∈ N(T )}, x ∈ D(T ) ⊂ X

Af.3. T : D(T ) ⊂ X → Y induz um operador T̂ linear bijetor:

T̂ : D(T̂ ) ⊂ X/N(T )→ R(T ) : [x] 7→ T̂ ([x]) = T (x),

D(T̂ ) = {[x], x ∈ D(T )}
s.e.v.
⊂ X/N(T )

? está bem definido e é injetor:

[y] = [x]⇔ y−x ∈ N(T )⇔T (x−y) = 0
T (x) = T (y)⇔ T̂ ([x])=T̂ ([y])

? é sobrejetor e linear
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X/N(T )⊃D(T̂ )︸ ︷︷ ︸
Banachf̂

}}

T̂

$$
K R(T )︸ ︷︷ ︸

Banach⊂Y
f̂◦T̂−1

oo

T̂−1kk
f̂ ∈ (X/N(T ))∗ ok T̂−1 linear existe ok

T̂−1 ∈ L(R(T ), X/N(T ))

ψ ∈ Y ∗ será a extensão do func. linear ltdo f̂ ◦ T̂−1

Af.4. T̂−1 ∈ L(R(T ), X/N(T )):

T̂−1 : R(T )→ X/N(T ) : y = Tx 7→ T̂−1(T (x)) = [x]

? T̂ : D(T̂ ) ⊂ X/N(T )→ R(T )

Teorema da Aplicação Aberta para T fechada (pag.

C5). Sejam X, Y espaços de Banach e T : D(T ) ⊆X → Y

linear fechada. Se T é bijetora, então T−1 ∈ L(Y,X).

? R(T ) é Banach (hipótese: R(T ) fechado e Y Banach)

? T̂ é fechada

* D(T̂ )× Y 3 ([xn], T̂ ([xn]))→ ([x], y) ∈ X/N(T )× Y
* x̃n ∈ [xn], x̃ ∈ [x]; x̃n → x̃
* x̃n ∈ [xn]⇒ x̃n − xn ∈ N(T )⇒ T x̃n = Txn
* T x̃n = Txn = T̂ ([xn])→ y
* D(T )× Y 3 (x̃n, T (x̃n))→ (x̃, y) ∈ X × Y
* x̃ ∈ D(T ) e T x̃ = y (T fechada)
* [x] = [x̃] ∈ D(T̂ ) e T̂ ([x]) = T̂ ([x̃]) = T x̃ = y
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Af.5. ∃ ψ ∈ Y ∗ tal que ψ|R(T ) = f̂ ◦ T̂−1

? f̂ ◦ T̂−1 : R(T )
s.e.v.
⊂ Y → K é linear e limitada

Corolário B2.3 [Extensão de funcional mantendo a

norma]. Sejam X um e.v.n. sobre K, M um subespaço e

f ∈M∗ . Então ∃ f̃ ∈ X∗ tal que f̃ |M = f.

Queremos: f ∈ R(T ∗), i.e., f = T ∗ψ para alguma ψ ∈ D(T ∗), ie, ψ ∈ Y ∗; ψ ◦ T seja limitada em D(T )

Af.6. ψ ◦ T é limitada em D(T )

? x ∈ D(T )

ψ ◦ T (x) = ψ(Tx)
ψ|R(T )=f̂◦T̂−1

= f̂(T̂−1(Tx)) = f̂([x]) = f(x)

? f limitada em X =⇒ ψ ◦ T limitada em D(T )

Af.7. T ∗ψ(x) = f(x), para todo x ∈ X

? x ∈ D(T )

T ∗ψ(x)
x∈D(T )

=
ψ∈D(T ∗)

ψ(Tx) = f(x)

? T dens. def. e continuidade =⇒ T ∗ψ = f em X (veja p. C9)
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Lema C3.10. Seja T : D(T ) ⊆X → Y operador linear densamente definido
e fechado. Se existe C > 0 tal que

‖φ‖ ≤ C‖T ∗φ‖ ∀φ ∈ D(T ∗),

então T é aberta e logo sobrejetora. �

Este resultado fornece o método da estimativa a priori: para determinar
se T é sobrejetora, considera-se T ∗φ = g com g ∈ X∗ (sem se preocupar se
existe ou não solução!) e prova-se que ‖φ‖ ≤ C ‖g‖ para alguma constante
C que é independente de g.

Demonstração.

Af.1. T é aberta

Exerćıcio B4.2.1 T : D(T ) ⊂ X → Y linear é aberta ⇐⇒ ∃ r > 0;

BY
r (0) ⊆ T (BX

1 (0) ∩D(T )).

Lema 2 - TAA. p. B19. X espaço de Banach, Y e.v.n., T fechada ,∃ r > 0;

BY
2r(0) ⊂ T (BX

1 (0) ∩D(T )) =⇒ BY
r (0) ⊂ T (BX

1 (0) ∩D(T )).

Queremos: encontrar r > 0; BY
2r(0) ⊂ T (BX

1 (0) ∩D(T ))

Teorema B3.4 [Hahn-Banach - Forma Geométrica 2 ] Sejam X um e.v.n.

real e A,B ⊆ X conjuntos convexos, não vazios e disjuntos. Se A é fechado e B é

compacto, então existe um hiperplano fechado que separa A e B no sentido forte:

∃ f ∈ X∗; f |B ≥ α+ ε > α > α− ε ≥ f |A.

• A := T (BX
1 (0) ∩D(T )) é fechado, convexo

• y0 ∈ Y \ A

• B = {y0} é compacto, convexo

• ∃ φ ∈ Y ∗; φ(y0) > α > φ|A > −α (T. HB-FG2)

|φ(Tx)| < α, x ∈ BX
1 (0) ∩D(T ) =⇒ |φ(Tx)| < 2α ‖x‖ , x ∈ D(T )

=⇒ φ ∈ D(T ∗)
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• |T ∗φ(x)| = |φ(Tx)| < 2α ‖x‖, x ∈ D(T )

• ‖T ∗φ‖ ≤ 2α =⇒ ‖φ‖ ≤ 2Cα (Hipótese)

α < φ(y0) ≤ |φ(y0)| ≤ ‖φ‖ ‖y0‖ ≤ 2Cα ‖y0‖

∴ se y /∈ A então ‖y‖ > 1
2C

• ∃ r > 0;BX
2r(0) ⊂ BX

1
2C

(0) ⊂ A = T (BX
1 (0) ∩D(T ))

Af.2. T é sobrejetora

• ∃ r > 0; BY
r (0) ⊆ T (BX

1 (0) ∩D(T )) (T é aberta)

• dado y ∈ Y \ {0}, ry

2 ‖y‖
∈ BY

r (0)

• existe x ∈ BX
1 (0) ∩D(T ) tal que Tx = ry

2‖y‖

y = T (2 ‖y‖x/r), com 2 ‖y‖x/r ∈ D(T )

De fato a prova acima nos fornece: se T é aberta então T é sobrejetora.

C4 Exerćıcios

Exerćıcios

Exerćıcio C4.1. Reveja os exerćıcios 2.22 e 2.23 (p.53) do [Bre11] F

Exerćıcio C4.2 (EC1). Considere as aplicações T : D(T ) ⊆X → Y :
x 7→ x pegando como X, Y todas as posśıveis combinações de c0 e `p (com
1 ≤ p ≤ ∞).
• Defina apropriadamente D(T ), encontre R(T ), discuta se a mapa for inj
e/ou sobre, continua, fechada, densamente definida
• Defina apropriadamente T ∗ e D(T ∗), repita a discussão acima para T ∗

F
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Exerćıcio C4.3 (EC2). Considere as aplicações T : X → Y

1. T : `2 → `2 : (xj) 7→ (2−jxj)

2. T : `1 → `2 : (xj) 7→ (2−jxj)

3. T : `2 → `2 : (x1, x2, x3, ..) 7→ (0, x2, x3, ..)

4. T : `2 → `2 : (x1, x2, x3, ..) 7→ (0, x1, x2, x3, ..)

5. T : `2 → `2 : (x1, x2, x3, ..) 7→ (x2, x3, ..)

Encontre entre elas exemplos de

• R(T ) = Y , R(T ) 6= Y , R(T ) fechada/não fechada

• R(T ∗) = X∗, R(T ∗) 6= X∗, R(T ∗) fechada/não fechada

• T injetora/não injetora,

• sup‖x‖≤1 ‖Tx‖ finito ou infinito

• sup‖Tx‖≤1 ‖x‖ finito ou infinito

• casos em que T = T ∗ ou não. F

Exerćıcio C4.4. Mostre que a aplicação T : X → X : (xi) 7→ (xi/i)
fornece um exemplo de:

• afirmação (iii) do Teorema C3.7 com inclusão estrita, se X = `1;

• reciprocas do corolário C3.8 falsas, se X = `2.

F

Exerćıcio C4.5. Seja T : D(T ) ⊆X → Y densamente definido e fe-
chado.

• Mostre que se existe C > 0 tal que

‖φ‖ ≤ C‖T ∗φ‖ ∀φ ∈ D(T ∗), (C4.1)

(como nas hipóteses do lema C3.10), pode-se mostrar diretamente que
T ∗ é injetora e sua imagem é fechada (note que pelo Teorema C3.9
isso implica T sobrejetora).

• Mostre que, analogamente, se tivermos que existe C > 0 tal que

‖x‖ ≤ C‖Tx‖ ∀x ∈ D(T ), (C4.2)

então T é injetora, sua imagem é fechada e T ∗ é sobrejetora.
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• Mostre enfim que a desigualdade (C4.1) (resp. (C4.2)) pode ser obtida
quando T (resp. T ∗) é sobrejetora, aplicando o corolário B4.4 (resp.
B4.3) ao conjunto {φ ∈ D(T ∗) : ‖T ∗φ‖ ≤ 1} (resp. {x ∈ D(T ) :
‖Tx‖ ≤ 1}),

F
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