
AF-B 19 de setembro de 2025

Conteúdo
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B1 Funcionais lineares cont. Aula 4

• X e.v.: os elementos de L?(X,K) são ditos funcionais lineares

• X e.v.n.: os elementos de L(X,K) são ditos funcionais lineares cont́ınuos
(limitados).

• X∗ :=L(X,K) é dito dual de X e é sempre Banach.

Teorema de Hahn Banach: forma anaĺıtica

• resolve “problema de extensão”: estende funcionais lineares definidos
em subespaços ao e.v.n. conservando determinada propriedade do
funcional;

• mostra a existência de funcionais lineares limitados: X∗ é rico!

Teorema de Hahn Banach: forma geométrica

• mostra que dois conjuntos convexos (satisfazendo determinadas
condições) podem ser “separados”por um hiperplano
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B2 O Teorema de Hahn Banach

Um funcional sublinear num e.v.n X, é uma função p : X → R tal que

p(x+ y) ≤ p(x) + p(y) e p(λx) = λp(x) ∀ x, y ∈ X, ∀λ ≥ 0.

Exemplos:

• todo funcional linear é um funcional sublinear

• toda norma é um funcional sublinear

• toda seminorma1 é um funcional sublinear

Teorema B2.1 [Hahn-Banach real]. Sejam

• X um espaço vetorial real,

• p um funcional sublinear em X,

• M um subespaço vet. de X

• f um funcional linear em M tal que f(x) ≤ p(x) para todo x ∈M .

Então existe um funcional linear f̃ em X tal que f̃(x) ≤ p(x) para todo
x ∈ X e f̃ |M = f .[Fol99, prova:p.158] �

Teorema B2.2 [Hahn-Banach complexo]. Sejam

• X um espaço vetorial real complexo,

• p um funcional sublinear uma seminorma em X,

• M um subespaço vet. de X

• f um funcional linear em M tal que f(x) ≤ p(x) |f(x)| ≤ p(x) para
todo x ∈M .

Então existe um funcional linear f̃ em X tal que f̃(x) ≤ p(x) |f̃(x)| ≤ p(x)
para todo x ∈ X e f̃ |M = f . �

1uma seminorma deve satisfazer as propriedades de norma exceto a condição ‖x‖ = 0 =⇒ x = 0
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B2.1 Prova H-B-real

Prova Teorema H-B-real:

Lema de Zorn Se X é um conjunto parcialmente ordenado e todo subconjunto
totalmente ordenado de X tem um limitante superior então X tem um elemento
maximal.

Conjunto parcialmente ordenado: com uma relação de ordem
”�”(reflexiva, antisimétrica e transitiva)
(reflexiva x � x
antisimétrica x � y e y � x =⇒ x = y
transitiva x � y e y � z =⇒ x � z)
Conjunto totalmente ordenado: com uma relação de ordem ”�”
tal que dados x, y quaisquer x � y ou y � x
Limitante superior de Y ⊆ X: l ∈ X t.q. y � l para todo y ∈ Y .
m ∈ X é elemento maximal de X: x ∈ X e m � x =⇒ m = x.

1. E = {(Mλ, gλ) : M ⊂Mλ

s.e.v.
⊆ X e gλ ∈ L?(Mλ,R); gλ ≤ p emMλ, gλ|M = f}

2. E 6= ∅

3. “�” definida abaixo é uma relação de ordem em E :

(Mλ, gλ) � (Mβ, gβ)⇐⇒

{
Mλ ⊂Mβ

gβ|Mλ
= gλ

4. (E ,�) é um conjunto parcialmente ordenado

5. Seja B = {(Mβ, gβ)}β∈B ⊂ E totalmente ordenado

Af.1. B tem um limitante superior (M̃, g̃) ∈ E

M̃ := ∪β∈BMβ e g̃ : M̃ → R : x ∈Mβ 7→ g̃(x) = gβ(x)

6. Pelo Lema de Zorn, E tem um elemento maximal (M0, g0) ∈ E

Af.2. M0 = X

7. Portanto, o T. H-B-real segue tomando f̃ := g0

Prova de Af.2.: Supor M0 6= X

1. M0 é subesp. próprio de X e tome x ∈ X \M
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Lema [Extensão em uma dimensão] Sejam

• X um espaço vetorial real,

• p um funcional sublinear em X,

• M0 um subespaço vet. próprio de X

• g0 um funcional linear em M0 t.q. g0(m) ≤ p(m), ∀m ∈
M0

• x ∈ X \M0

Então, existe g1 : M1 = M0 + Rx
s.e.v.
⊆ X → R linear tal que

g1(m) ≤ p(m) para todo m ∈M1 e g1|M0
= g0.

2. existe g1 como no lema acima

3. (M1, g1) ∈ E

M ⊂M0 ⊂M1

s.e.v
⊆ X

(g1|M0
= g0, g0|M = f) =⇒ g1|M = f

4. (M0, g0) � (M1, g1)

pelo Lema: M0 ⊂M1 g1|M0
= g0

5. como (M0, g0) maximal, então (M1, g1) = (M0, g0) ��

6. portanto M0 = X
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B2.2 Prova H-B-complexo Aula 5

Relação espaço real / espaço complexo

• Seja X um e.v. sobre C, definimos XR o e.v. sobre R obtido de X
limitando a multiplicação aos escalares reais.

Se X for normado, sua norma também induz uma norma em XR.

• Dado f ∈ L?(X,C), vale:

φ := <e(f) ∈ L?(XR,R)

e
f(x) = φ(x)− iφ(ix)

• Dado φ ∈ L?(XR,R), vale:

f(x) := φ(x)− iφ(ix) ∈ L?(X,C)

• Além disso ‖f‖X∗ = ‖φ‖X∗R

Teorema. [Hahn-Banach complexo] Sejam

• X um espaço vetorial real complexo,

• p um funcional sublinear uma seminorma em X,

• M um subespaço vet. de X

• f um funcional linear em M tal que f(x) ≤ p(x) |f(x)| ≤ p(x) para todo x ∈M .

Então existe um funcional linear f̃ em X tal que f̃(x) ≤ p(x) |f̃(x)| ≤ p(x) para todo x ∈ X e

f̃ |M = f .

Prova Teorema H-B-complexo:

1. φ = <e(f) satisfaz as hipóteses do Teorema H-B-real

2. existe φ̃ : XR → R linear tal que φ̃|MR = φ e φ̃(x) ≤ p(x), x ∈ XR

3. f̃(x) := φ̃(x)− iφ̃(ix), x ∈ X é uma extensão de f , ou seja, f̃ |M = f

Af.1. f̃ : X → C é linear

Af.2. |f̃(x)| ≤ p(x) para todo x ∈ X
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B2.3 Algumas consequências do T. de Hahn-Banach

Corolário B2.3 [Extensão de funcional mantendo a norma]. 2

Sejam X um espaço vetorial normado sobre K, M um subespaço e f ∈M ∗.
Então existe um funcional f̃ ∈ X∗ tal que

f̃ |M = f e
∥∥∥f̃∥∥∥

X∗
= ‖f‖M∗ .

�

Demonstração.

1. f ∈M ∗ =⇒ |f(x)| ≤ ‖f‖M∗ ‖x‖ para todo x ∈M

2. p(x) := ‖f‖M∗ ‖x‖, x ∈M , é uma seminorma

3. (H-B-C) ∃ f̃ : X → K linear; |f̃(x)| ≤ p(x) para todo x ∈ X e f̃ |M = f

4. (2)+(3) =⇒
∥∥∥f̃∥∥∥

X∗
= sup

x∈X
‖x‖=1

|f̃(x)| ≤ ‖f‖M∗

5. portanto f̃ é limitada (f̃ ∈ X∗)

6.
∥∥∥f̃∥∥∥

X∗
= sup

x∈X
‖x‖=1

|f̃(x)| ≥ sup
x∈M
‖x‖=1

|f̃(x)| = sup
x∈X
‖x‖=1

|f(x)| = ‖f‖M∗

7. (4)+(6) =⇒
∥∥∥f̃∥∥∥

X∗
= ‖f‖M∗

Teorema B2.4 [Existem muitos funcionais]. Seja X um espaço vetorial
normado sobre K.

a. Se M é um subespaço fechado de X e x0 ∈ X \M , então existe f ∈ X∗ tal
que

f |M = 0, ‖f‖X∗ = 1 e f(x0) = d(x0,M) = inf
m∈M
‖x0 −m‖ > 0.

2Teorema de Hahn-Banach para e.v.n.
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b. Se X é não trivial, X∗ é não trivial: Se x0 6= 0, existe f ∈ X∗ tal que
‖f‖X∗ = 1 e f(x0) = ‖x0‖.

c. Os funcionais lineares limitados em X separam pontos: Se x 6= y, existe
f ∈ X∗ tal que f(x) 6= f(y).

�

Exerćıcios

Exerćıcio B2.5. Se X é um e.v.n. não trivial, vale

‖x‖X = max
f∈X∗
‖f‖X∗=1

|f(x)|

(mostre que a norma é igual ao sup e que o sup é atingido).
Mostre que ao contrário, na formula já vista ‖f‖X∗ = sup

x∈X
‖x‖=1

|f(x)|, o sup

pode não ser atingido (pense no espaço das funções cont́ınuas em [0, 1]
com f(0) = 0. Veja também o ex 1.4 (p. 21) do [Bre11] ) F

Exerćıcio B2.6. Mostre que um subespaço M de em e.v.n. X é denso
se e só se vale que

∀φ ∈ X∗ t.q. φ|M = 0, vale φ ≡ 0

F

Exerćıcio B2.7 (EB1). Sejam ei = (δi,j)j∈N, i ∈ N, h = (1/j)j∈N e
1 = (1, 1, 1, 1, ...), onde δi,j é o delta de Kronecker.
Mostre que existe φ ∈ (`∞)∗ tal que φ(ei) = 0 para todo i ∈ N mas
φ(1) 6= 0,
Mostre que não existe φ ∈ (`∞)∗ tal que φ(ei) = 0 para todo i ∈ N e
φ(h) 6= 0. F
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B3 Versões geométricas de H-B (aqui K = R)

B3.1 Hiperplanos

Um hiperplano (afim) é um conjunto da forma

H = [f = α] := {x ∈ X : f(x) = α}.
onde f ∈ L?(X,R), f 6= 0 e α ∈ R. f = α é chamada de equação do hiperplano.

Proposição B3.1.
[f = α] é fechado se e somente se f é cont́ınua (f ∈ X∗). �

Exerćıcios

Exerćıcio B3.2.

• [f = α] 6= ∅ para qualquer α ∈ R.

• [f = 0] é o único subespaço próprio de X que contém [f = 0].

• [f = α] é fechado ou é denso em X F

Demonstração. Se f cont́ınua, é imediato que [f = α] = f−1({α}) é fechado.
Supor H = [f = α] fechado:

Queremos: ‖f‖X∗ = sup‖x‖≤1 |f(x)| <∞⇐⇒ |f(x)| ≤ c, para todo x : ‖x‖ ≤ 1

1. X \H 6= ∅ e é aberto

2. ∃ x0 ∈ X \H e portanto f(x0) 6= α: f(x0) < α

3. ∃ r > 0; B̄x0(r) ⊂ X \H

Af.1 f(x) < α para todo x ∈ B̄x0(r)

Af.2 f(x) <
α− f(x0)

r
para todo x ∈ X : ‖x‖ ≤ 1

4. |f(x)| < α− f(x0)

r
para todo x ∈ X : ‖x‖ ≤ 1

5. se f(x0) > α, análogo (verifique!)
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B3.2 Funcional de Minkowski Aula 6

Definição B3.3. Se A,B ⊆ X dizemos que [f = α] separa A e B

• no sentido fraco, se

f(x) ≤ α ∀ x ∈ A e f(x) ≥ α ∀ x ∈ B .

• no sentido forte, se existe ε > 0 tal que

f(x) ≤ α− ε ∀ x ∈ A e f(x) ≥ α + ε ∀ x ∈ B . F

Teorema B3.4 [Hahn-Banach - Formas Geométricas ]. Seja X um
espaço vetorial normado real e sejam A,B ⊆ X dois conjuntos convexos3, não
vazios e disjuntos.

FG1 Se A é aberto então existe um hiperplano fechado que separa A e B no
sentido fraco.

FG2 Se A é fechado e B é compacto, então existe um hiperplano fechado que
separa A e B no sentido forte.

�

Aplicações

• na prova do Teorema de Krein-Milman (sobre conjuntos compacto convexos) que por sua
vez é usado para provar, p.e., os Teoremas de Bochner e de Berstein.

• em EDP: existência de uma solução fundamental para um operador diferencial geral com
coeficientes constantes (Teorema de Malgrange-Ehrenpreis).

Demonstração. Precisaremos dos dois lemas a seguir.

3Ver página A16: C ⊂ X é um conjunto convexo se

xy : tx+ (1− t)y ∈ C para todo x, y ∈ C e t ∈ [0, 1]

B10
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Dado um aberto convexo C em X com 0 ∈ C, definimos o Funcional de
Minkowski de C:

pC(x) = p(x) := inf{β−1 > 0 ; β x ∈ C}, x ∈ X.

Observação.
1. p está bem definida: para cada x ∈ X, {β−1 > 0 ; β x ∈ C} 6= ∅.
2. p(0) = 0 F

Lema B3.5 [Propriedades do funcional de Minkowski].
p é um funcional sub-linear, C = {x ∈ X : p(x) < 1} e existe M > 0 tal que

0 ≤ p(x) ≤M‖x‖, ∀ x ∈ X .

�

Demonstração.

1. Seja x ∈ X

• por definição: 0 ≤ p(x)

• 0 ∈ C aberto: ∃ r > 0; B̄r(0) ⊂ C =⇒ r
‖x‖x ∈ C

• p(x) = inf{β−1 > 0 ; β x ∈ C} ≤ ‖x‖
r

=
1

r︸︷︷︸
M

‖x‖

2. x ∈ X : p(x) < 1 =⇒ ∃ 0 < β−1 < 1; βx ∈ C

• 0 ∈ C convexo: βx0 ∈ C =⇒ x = β−1(βx) + (1− β−1)0 ∈ C, i.e,
{x ∈ X : p(x) < 1} ⊂ C

• C aberto: x ∈ C \ {0} =⇒ ∃ r > 0; B̄r(x) ⊂ C

• (1 + ε)x ∈ C para algum ε > 0 suficientemente pequeno

• p(x) ≤ 1

1 + ε
< 1 =⇒ C ⊂ {x ∈ X : p(x) < 1}

3. Sejam x, y ∈ X e ε > 0

• propriedade direta de ı́nfimo: p(λx) = λp(x), λ ≥ 0

• p(x+ y) ≤ p(x) + p(y) é construtivo:

B11



AF-B 19 de setembro de 2025

x

p(x) + ε
,

y

p(y) + ε
∈ C pois: p

(
·

p(·) + ε

)
=

1

p(·) + ε
p(·) < 1

x

p(x) + ε
t+

y

p(y) + ε
(1− t) ∈ C, t ∈ [0, 1]

¿¿∃ t ∈ [0, 1];
x

p(x) + ε
t+

y

p(y) + ε
(1− t) =

x+ y

p(x) + p(y) + 2ε
??

Sim : t =
p(x) + p(y)

p(x) + p(y) + 2ε
∈ [0, 1]

x+ y

p(x) + p(y) + 2ε
∈ C =⇒ p

(
x+ y

p(x) + p(y) + 2ε

)
< 1 ∀ε

p(x+ y) ≤ p(x) + p(y) + 2ε ∀ε > 0

Observação. Se 0 /∈ C e y0 ∈ C, o Lema B3.5 continua válido após redefinir
o funcional de Minkowski como a seguir:

p(x) = inf{β−1 > 0 ; β (x− y0) + y0 ∈ C}, x ∈ X.

F
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Lema B3.6. Seja C ⊂ X um aberto convexo não vazio e x0 ∈ X \C. Então
existe f ∈ X∗ não nulo tal que f(x) < f(x0) para todo x ∈ C.

Em particular o hiperplano fechado de equação [f = f(x0)] separa C de {x0}
no sentido fraco. �

Demonstração. Podemos assumir 0 ∈ C.

Teorema Hahn-Banach real Sejam

• X um espaço vetorial real,

• p =?? um funcional sublinear em X,

• M =?? um subespaço vet. de X

• g =?? um funcional linear em M tal que g(x) ≤ p(x) para todo x ∈M .

Então existe um funcional linear f em X tal que f(x) ≤ p(x) para todo x ∈ X e

f |M = g.

• p := funcional de Minkowski de C que é sublinear

• M := Rx0 que é subespaço vet. de X (x0 ∈ X \ C)

• g : M → R : x 7→ g(x) = g(tx0) = t, t ∈ R 4

1. g é linear

Af. g(x) ≤ p(x) para todo x ∈M

• (T. H-B-real) ∃ f : X → R linear; f(x) ≤ p(x), x ∈ X e f |M = g. 5

• f(x) ≤ p(x)
LB3.5
< 1 = g(x0) = f(x0) para todo x ∈ C.

Af.1. f é limitado i.e., ∃ M > 0; |f(x)| ≤M ‖x‖ para todo x ∈ X

Prontos para demonstrar H-B-geométrico

4de fato queremos g(tx0) = tg(x0) onde g(x0) =: c. Mas para Af. valer precisa 0 < c ≤ 1 e para a penúltima
conclusão valer precisa c ≥ 1

5Note que f(x0) = g(x0) = 1 implicando o funcional não nulo.

B13
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Teorema Hahn-Banach - Formas Geométricas Seja X um espaço vetorial normado real e
sejam A,B ⊆ X dois conjuntos convexos, não vazios e disjuntos.

FG1 Se A é aberto então existe um hiperplano fechado que separa A e B no sentido fraco.

FG2 Se A é fechado e B é compacto, então existe um hiperplano fechado que separa A e B no sentido
forte.

Prova do Teorema H-B -FG1.
Queremos: f ∈ X∗ e α ∈ R; f(x) ≤ α, x ∈ A e f(x) ≥ α, x ∈ B

Lemma Seja C =?? ⊂ X um aberto convexo não vazio e x0 =?? ∈ X \ C. Então

existe f ∈ X∗ tal que f(x) < f(x0) para todo x ∈ C.

• C := A−B = {x− y : x ∈ A, y ∈ B} 6= ∅ (pois A,B 6= ∅)

Af1. C é aberto (pois A é aberto)

Af2. C é convexo (pois A,B são convexos)

Af3. x0 = 0 /∈ C (pois A ∩B = ∅)

• ∃ f ∈ X∗ tal que f(x− y) < f(0) = 0 para todo x ∈ A, y ∈ B

• f(x) < f(y) para todo x ∈ A, y ∈ B =⇒ sup
x∈A

f(x) ≤ inf
y∈B

f(y)

• tome α ∈ R : sup
x∈A

f(x) ≤ α ≤ inf
y∈B

f(y)

Prova do Teorema H-B -FG2.
Queremos: f ∈ X∗, α ∈ R e ε > 0; f(x) ≤ α−ε, x ∈ A e f(x) ≥ α+ε, x ∈ B

Usaremos o T. H-B-1FG aplicado ao conjunto C = A − B e um adequado conj.

aberto (convexo, não vazio) que não intercepte C. Depois trabalhar para encontrar

α e ε.

• 0 /∈ C := A−B 6= ∅ e é convexo

Af1. C é fechado (pois A é fechado e B compacto)

• 0 ∈ X \ C é aberto =⇒ ∃ r > 0; Br(0) ∩ C = ∅

B14
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• (T.H-B-1FG) ∃ f ∈ X∗, c ∈ R; f(x − y) ≤ c ≤ f(rz), x ∈ A, y ∈ B,
z ∈ B1(0)

• f(x)− f(y) ≤ f(rz), x ∈ A, y ∈ B, z ∈ B1(0)

Af2. f(x)− f(y) ≤ − r
R
‖f‖X∗ , x ∈ A, y ∈ B, para algum R > 1

‖f‖X∗ = sup
‖x‖=1

|f(x)| = sup
‖x‖=1

f(x) =⇒

∃{zn} ⊂ S1(0); f(zn)→ ‖f‖X∗ , n→∞

tome R > 1 =⇒ −zn
R
∈ B1(0),∀n

f(x)− f(y) ≤ f
(
− r
R
zn

)
= − r

R
f(zn), x ∈ A, y ∈ B

• tome ε =
r ‖f‖X∗

2R

• f(x) + ε ≤ f(y)− ε, x ∈ A, y ∈ B =⇒ sup
x∈A

f(x) + ε ≤ inf
y∈B

f(y)− ε

• tome α ∈ R : sup
x∈A

f(x) + ε ≤ α ≤ inf
y∈B

f(y)− ε

Exerćıcios

Exerćıcio B3.7. Mostre que se C também é equilibrado (i.e. λx ∈ C
∀x ∈ C, λ ∈ K, |λ| = 1) então p é uma seminorma.
Se além disso C é limitado então p é uma norma. F

Exerćıcio B3.8. Faça o exerćıcio 1.14 (p. 23-24) do [Bre11] (soma de
subespaços fechados e separação).a F

apara convexos quaisquer disjuntos pode não existir hiperplano fechado que os separem, enquanto
que em dimensão finita sim.

B15



AF-B 19 de setembro de 2025

B4 Consequências do Teorema de Baire Aula 7

B4.1 Prinćıpio da Limitação Uniforme

Teorema B4.1 [da Limitação Uniforme - Banach-Steinhaus].
Sejam X espaço de Banacha, Y e.v.n e A ⊆ L(X, Y ). Se supT∈A ‖Tx‖ <
∞ para todo x ∈ X, então supT∈A ‖T‖ <∞. �

aÉ suficiente assumir que X,Y sejam e.v.n e que sup
T∈A
‖Tx‖ < ∞ valha para x em subconjunto de

segunda categoria

Demonstração.

Teorema de Baire. Todo espaço métrico completo é de 2a. categoria nele mesmo.

X é de 2a. categoria nele mesmo se e só se (X = ∪NFi, Fi fechados =⇒ ∃ i;F ′i 6= ∅ )

Queremos: sup
T∈A
‖T‖ <∞⇔ ‖T‖= sup

‖x‖≤1
‖Tx‖ <∞,∀T ∈ A⇔ ‖Tx‖ ≤ c, ‖x‖ ≤ 1,∀T ∈ A

• X = {x ∈ X : supT∈A ‖Tx‖ <∞} é de 2a. categoria nele mesmo (Banach)

Af.1. Fn := {x ∈ X : ‖Tx‖ ≤ n,∀ T ∈ A}, n ∈ N, é fechado

Af.2. X = ∪NFn

• ∃ n0;F
′
n0
6= ∅, i.e., existe x0 ponto interior de Fn0

• ∃ r > 0; B̄r(x0) ⊂ Fn0

Sejam x ∈ X : ‖x‖ ≤ 1 e T ∈ A

• T (x) =
1

r
T (x0 + rx− x0) com x0 + rx ∈ B̄r(x0) ⊂ Fn0 e x0 ∈ Fn0

Af.3. ‖T (x)‖ ≤ 2n0
r
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Corolário B4.2. Sejam X, Y como no Teorema e {Tn} ⊂ L(X, Y ) tal que
{Tnx} converge para cada x ∈ X. Se T : X → Y é definida por

Tx = lim
n→∞

Tnx,

então T ∈ L(X, Y ) e ‖T‖ ≤ lim inf ‖Tn‖ . �

Observação.
• Tn convergir pontualmente a T não implica ‖Tn‖ → ‖T‖.

Tn : `p︸︷︷︸
Banach

→ R : x = (x1, x2, . . .) 7→ Tnx = xn

Tn é linear e limitada

Tnx→ 0 = Tx, ∀x ∈ `p; ‖Tn‖ = 1,∀n e ‖T‖ = 0

• O Prinćıpio da limitação uniforme pode não valer se X não for Banach.

Tn : (c00, ‖ · ‖∞)︸ ︷︷ ︸
não Banach

→ (`∞, ‖ · ‖∞) : x 7→ Tnx = (0, . . . , 0, nxn, 0, . . .)

Tn é linear e limitada

sup
n
‖Tnx‖∞ <∞, ∀x ∈ X e sup

n
‖Tn‖ =∞.

F
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Corolário B4.3. Se X é um e.v.n. sobre K e B ⊂ X, suponha que φ(B) =
{φ(x), x ∈ B} seja limitado ∀ φ ∈ X∗. Então B é limitado. �

Demonstração.
Temos: φ(B) é limitado para cada φ ∈ X∗ ⇐⇒ |φ(x)| ≤ kφ,∀x ∈ B
Queremos: B é limitado ⇐⇒ ‖b‖X ≤ c, ∀b ∈ B

‖b‖X = max
φ∈X∗
‖φ‖X∗=1

|φ(b)|

Teorema da Limitação Uniforme Sejam X̃ =?? espaço de Banach, Y =?? e.v.n

e A =?? ⊆ L(X̃, Y ); sup
T∈A
‖Tx‖ <∞ para todo x ∈ X̃, então sup

T∈A
‖T‖ <∞.

• X̃ = X∗ é Banach

• Y = K

• A = {Tb : X∗ → K : φ 7→ Tb(φ) = φ(b)}b∈B é subconj. de L(X∗,K):

pois: Af.1. para cada b ∈ B, Tb é limitada

Af.2 sup
b∈B
‖Tbφ‖ <∞ para todo φ ∈ X∗ (φ(B) é limitado)

• sup
b∈B
‖Tb‖ <∞ (T. Limit. Unif.)

Af.3 B é limitado

Corolário B4.4. Seja X um espaço de Banach e B ⊂ X∗, suponha que
{φ(x), φ ∈ B} seja limitado ∀ x ∈ X. Então B é limitado. �

Demonstração. Exerćıcio.

Exerćıcios

Exerćıcio B4.5. Faça o exerćıcio 2.4 (p. 49) do [Bre11] (Forma bili-
near). F
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B4.2 Teorema da Aplicação Aberta

• X, Y e.m.: uma função T : X → Y é cont́ınua ⇐⇒
T−1(O) é aberto em X para todo aberto O de Y

• se ainda T possui inversa T−1 : Y → X cont́ınua, então
(T−1)−1(O) = T (O) é aberto em Y para todo aberto O de X

• T linear bijetora =⇒ ∃ T−1 linear mas não necessariamente cont́ınua,
ou ainda, nem sempre imagem de aberto em X é aberto em Y

Definição B4.6. Uma aplicação aberta é uma aplicação T : X → Y tal
que se A ⊆ X é aberto então T (A) ⊆ Y é aberto. F

Teorema B4.7 [da aplicação aberta]. Sejam X e Y espaços de

Banach. Se T ∈ L(X, Y ) é sobrejetora, então T é aberta . �

Demonstração. Segue da Proposição [3]:

Lema [1]. Sejam X e.v.n. e Y espaço de Banach. Se T ∈ L?(X, Y ) é
sobrejetora, então existe r > 0 tal que

BY
2r(0) ⊂ T (BX

1 (0)). (B4.1)

�

Lema [2]. Sejam X espaço de Banach e Y e.v.n.. Se T ∈ L(X, Y ) e
existe r > 0 tal que (B4.1) vale, então

BY
r (0) ⊂ T (BX

1 (0)). (B4.2)

�

Proposição [3]. Sejam X e Y espaços de Banach. Se T ∈ L(X, Y ) é

sobrejetora, então existe r > 0 tal que BY
r (0) ⊂ T (BX

1 (0)) ( (B4.2) vale). �

Demonstração. Segue diretamente dos Lemas [1] e [2].
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B4.2.1 Demonstração do TAA

Demonstração do Teorema da Aplicação Aberta:
X,Y Banach, T ∈ L(X,Y ) sobrejetora =⇒ T é aberta

• Pela Prop. 3, existe r > 0 tal que BY
r (0) ⊂ T (BX

1 (0))

• O ⊂ X aberto e y ∈ T (O)

Queremos: y ponto interior de T (O): B?(y) ⊂ T (O)

• y = Tx para algum x = xy ∈ O

• O aberto: ∃ ry > 0; BX
ry

(x) ⊂ O

• x+BX
ry

(0) = BX
ry

(x) ⊂ O

• T linear: T (x) + T (BX
ry

(0)) = T (x+BX
ry

(0)) ⊂ T (O)

• T (O) ⊃ T (x) + T (BX
ry

(0)) = y + T (BX
ry

(0))
T lin.

= y + ry T (BX
1 (0))

⊃ y + ry B
Y
r (0) = y + ryrB

Y
1 (0) = BY

ryr
(y)

De fato a prova acima nos fornece:

T ∈ L?(X,Y ) e existe r > 0 tal que BY
r (0) ⊂ T (BX

1 (0)) =⇒ T aberta

Exerćıcios

Exerćıcio B4.8. Mostre que T ∈ L?(X, Y ) é aberta se e só se existe
r > 0 tal que BY

r (0) ⊆ T (BX
1 (0)) F
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B4.2.2 Demonstrações Lemas técnicos Aula 8

Demonstração do Lema [1].
X e.v.n.,Y Banach, T ∈ L?(X,Y ) sobrejetora =⇒ ∃ r > 0; BY

2r(0) ⊂ T (BX
1 (0)).

Teorema de Baire. Todo espaço métrico completo é de 2a. categoria nele mesmo.

X é de 2a. categoria nele mesmo se e só se (X = ∪NFi, Fi fechados =⇒ ∃ i;F ′i 6= ∅ )

• (x ∈ X ⇒ x ∈ Bn(0), n ≥ ‖x‖) =⇒ X = ∪NBX
n (0)

• Y
T sobrej.

= T (X) = T (∪NBX
n (0)) = ∪NT (BX

n (0)) = ∪N T (BX
n (0))

• Y é de 2a. categoria nele mesmo (Y Banach)

• ∃ m ≥ 1; T (BX
m(0))

′
6= ∅ =⇒ ∃ z ∈ T (BX

m(0))
′

e

∃ R > 0; BY
R (z) ⊂ T (BX

m(0))

• BY
R (0) = −z +BY

R (z) ⊂ −z + T (BX
m(0))

Af.1. −z ∈ T (BX
m(0))

• BY
R (0) ⊂ T (BX

m(0)) + T (BX
m(0))

Af.2. T (BX
m(0)) é convexo (T linear)

Af.3. T (BX
m(0)) + T (BX

m(0)) = 2T (BX
m(0))

• BY
R (0) ⊂ 2T (BX

m(0))
T linear

= 2mT (BX
1 (0))

• BY
R/2m(0) ⊂ T (BX

1 (0)) (2r = R/2m)
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Demonstração do Lema [2].
X espaço de Banach, Y e.v.n., T ∈ L(X,Y ),∃ r > 0; BY

2r(0) ⊂ T (BX
1 (0)) =⇒ BY

r (0) ⊂ T (BX
1 (0)).

• y ∈ BY
r (0)

Queremos: x ∈ BX
1 (0); Tx = y

• BY
2r(0) ⊂ T (BX

1 (0))
T linear
=⇒ BY

r/2n(0) ⊂ T (BX
1/2n+1(0)), ∀n ≥ 0

• y ∈ T (BX
1/2(0)), i.e., (n = 0)

∀ε > 0,∃x ∈ BX
1/2(0); ‖y − Tx‖ < ε

ε = r
2 : ∃x1 ∈ BX

1/2(0); ‖y − Tx1‖ < r
2 =⇒

y − Tx1 ∈ BY
r/2(0)

(n=1)
⊂ T (BX

1/22(0))

ε = r
22 : ∃x2 ∈ BX

1/22(0); ‖y − Tx1 − Tx2‖ < r
22

...

• ∃ {xn}n≥1 ⊂ X; ‖xn‖ < 1
2n e ‖y − T (x1 + . . .+ xn)‖ < r

2n

•
∑∞

n=1 ‖xn‖ <
∑∞

n=1

1

2n
= 1

T.A3.12
=⇒

X Banach

∑∞
n=1 xn é convergente em X

• zn :=
n∑
j=1

xj, x := lim
n→∞

zn =
∞∑
n=1

xn é tal que x ∈ BX
1 (0) e

‖y − Tzn‖
n→∞→ 0 =⇒ y = lim

n→∞
Tzn

T cont́ınua
=⇒
zn→x

y = Tx

Corolário B4.9 [Teorema da Aplicação Inversa].
Sejam X e Y são espaços de Banach. Se T ∈ L(X, Y ) é bijetora, então

T−1 ∈ L(Y,X); isto é, T é um isomorfismo .
�

Demonstração. Ver p. B19.
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Exerćıcios

Exerćıcio B4.10. Sejam X e.v. munido de duas normas ‖ ‖1 , ‖ ‖2. Se
(X, ‖ ‖1) e (X, ‖ ‖2) são Banach e existe C: ‖x‖2 ≤ C ‖x‖1 em X, então
as normas são equivalentes. a

F

Exerćıcio B4.11. Sejam X e Y espaços de Banach e T ∈ L(X, Y )
sobrejetora. Mostre que existe C > 0 tal que para cada y ∈ Y pode-se
encontrar x ∈ X tal que

‖x‖ ≤ C‖y‖ e y = Tx. F
aconsidere T : (X, ‖ ‖1)→ (X, ‖ ‖2) : x 7→ x e use T.A.I B4.9

B4.3 Teorema do Gráfico Fechado

Definição B4.12. Uma aplicação fechada é uma aplicação T : X → Y

tal que o seu gráfico GT = {(x, y) ∈ X × Y : y = Tx} é um conjunto fechado
em X × Y .

A condição pode ser escrita como

se (xn, T (xn))→ (x, y) ∈ X × Y então y = T (x) (B4.3)

F

Observação B4.13. Sejam X e Y são espaços métricos e T : X → Y uma
aplicação. Se T é cont́ınua, então T é fechada.

Exemplo. f : R→ R : x 7→

{
1
x x 6= 0

0 x = 0
é fechada e não cont́ınua F

Para “a rećıproca”: F
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Teorema B4.14 [do gráfico fechado]. Se X e Y são espaços de
Banach e T ∈ L?(X, Y ) é fechada então T é cont́ınua. �

Demonstração.

Queremos: T cont́ınua, i.e., T limitada, i.e, ‖Tx‖Y ≤ c ‖x‖X (c > 0)

(X, ‖ ‖1) e (X, ‖ ‖2) Banach, ∃ C: ‖x‖1 ≤ C ‖x‖2 emX =⇒ normas são equivalentes.

Considere em X as normas:

• ‖x‖1 := ‖x‖X e ‖x‖2 := ‖x‖X + ‖Tx‖Y
• (X, ‖ ‖1) é Banach

• ‖x‖1 ≤ ‖x‖2

Af.1. (X, ‖ ‖2) é Banach (G(T ) fechado, (Y, ‖·‖Y ) Banach )

• ∃ c > 0: ‖x‖2 ≤ c ‖x‖1, ∀ x ∈ X

• ‖Tx‖Y ≤ ‖x‖X + ‖Tx‖Y ≤ c ‖x‖X

Exerćıcios

Exerćıcio B4.15. Mostre que se T é linear então (B4.3) é equivalente
a: se (xn, T (xn))→ (0, y) ∈ X × Y então y = 0 F

Exerćıcios

Exerćıcio B4.16 (EB3). Denote por X o espaço C([a, b],R) munido da

norma ‖x‖1 =
´ b
a |x(t)|dt, e por Y o mesmo espaço com a norma uniforme.

Mostre que a aplicação identidade x ∈ X 7→ x ∈ Y tem gráfico fechado,
mas não é cont́ınua. F

Exerćıcio B4.17 (EB4). Sejam X e Y espaços de Banach. Seja T :
X → Y uma aplicação tal que ϕ ◦ T ∈ X∗ para todo ϕ ∈ Y ∗. Prove que
T ∈ L(X, Y ). F

B24



AF-B 19 de setembro de 2025

B5 Mais alguns resultados

B5.1 Espaço quociente

Seja X um e.v. e M um subespaço. [Muj, p.26]

• x ∼ y : x− y ∈M é uma relação de equivalência em X;

• o espaço quociente X/M das classes de equivalência é um e.v. definindo

[x] + [y] = [x+ y], λ[x] = [λx]

• π : X → X/M : x 7→ [x] é dita mapa quociente, é linear e sobrejetora

Se X é normado definimos ‖[x]‖q := inf
x∈[x]
‖x‖X

Proposição B5.1. [TL80, p. 71] se X é e.v.n. e M é subespaço fechado então

• [x] = x+M e ‖[x]‖q = d(x,M)

• ‖ ‖q é uma norma em X/M

• Se X é completo, então X/M é completo também.

• π é cont́ınua e (pelo TAA-B4.7) aberta. (em particular π(BX) = BX/M).

�

B6 Soma de subespaços

Proposição B6.1. Seja X um espaço de Banach e M e N subespaços fe-
chados de X tais que M +N é fechado. Então existe C > 0 tal que:
para todo z ∈M +N , existem x ∈M, y ∈ N tais que

z = x+ y, e ‖x‖ , ‖y‖ ≤ C ‖z‖ .

Se M ∩N = {0} então x, y são únicos e z 7→ (x, y) é linear e cont́ınua. �

Definição B6.2. Seja X um espaço de Banach e M um subespaço fechado.
Um subespaço N é dito complemento topológico de M se N é fechado,
M ∩N = {0} e M +N = X. F

• Subespaços de dimensão finita (ou fechados e de codimensão finita) sempre
possuem complemento topológico.[Bre11, prova:p.38]
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B7 Outros exerćıcios

Exerćıcios

Exerćıcio (EB5). Sejam X e Y espaços de Banach e T : X → Y uma
aplicação linear. Prove a equivalência dos três resultados B4.14, B4.7 e
B4.9. (Sugestão: passe pelo quocienteX/N onde N = {x ∈ X : Tx = 0}.)

F

Notação. Uma notação frequentemente usada para funcionais é
〈φ, x〉 := φ(x) onde φ ∈ X∗ e x ∈ X.
Para maior clareza às vezes usa 〈φ, x〉X∗,X F

Exerćıcios

Exerćıcio. SejaX um espaço de Banach sobre o corpo K e T : X → X∗

um operador linear tal que 〈Tx, x〉 ≥ 0 para todo x ∈ X. Mostre que T é
cont́ınuo.
Dica: mostre que o gráfico é fechado. Suponha xn → 0 e Txn → φ. Mostre que φ(y) = 0 para

todo y ∈ X avaliando 〈T (xn − λy), (xn − λy)〉 com λ > 0

Mostre agora o caso em que 〈Tx, y〉 = 〈Ty, x〉 para todo x, y ∈ X F
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