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A1 Resumo: Espaços topológicos, métricos, normados

Espaço topológico: dupla (X, τ): X conjunto, τ topologia: uma famı́lia
de subconjuntos de X, chamados de “abertos”, tal que

• X, ∅ ∈ τ
• se {Ai}i∈I ⊆ τ então

⋃
Ai ∈ τ (reuniões quaisquer)

• se {Ai}i=1,..,n ⊆ τ então
⋂
Ai ∈ τ (interseções finitas)

Espaço métrico: dupla (X, d): X conjunto, d métrica: uma função
d : X ×X → [0,∞) tal que

• d(x, y) = 0⇐⇒ x = y,

• d(x, y) = d(y, x), ∀ x, y ∈ X,

• d(x, z) ≤ d(x, y) + d(y, z), ∀ x, y, z ∈ X.

Podemos tomar em X a topologia induzida pela métrica: a gerada pelas bolas
abertas Bδ(x) = {y ∈ X : d(x, y) < δ}, onde A ⊆ X é aberto se para todo
x ∈ A existe rx > 0 tal que Brx(x) ⊂ A.

Espaço vetorial normado: dupla (X, ‖ ‖): X espaço vetorial 1,
‖ ‖ norma: uma função ‖ · ‖ : X → [0,∞) tal que

• ‖x‖ ≥ 0, ∀x ∈ X
• ‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ X
• ‖λx‖ = |λ|‖x‖, ∀λ ∈ K, ∀x ∈ X.
• ‖x‖ = 0⇔ x = 0,

Podemos tomar em X a métrica induzida pela norma d(x, y) := ‖x− y‖, e
a correspondente topologia.

Entre espaços topológicos podemos definir continuidade (de uma função),
logo a mesma definição vale em e.m. e em e.v.n.

1Conjunto X com uma soma interna (comutativa, associativa, com neutro e inverso) e um produto externo
com coeficientes num corpo K (associativo, distributivo e com identidade):

• x+ y = y + x, (x+ y) + z = x+ (y + z), ∀x, y, z ∈ X
• (λµ)x = λ(µx), (λ+ µ)x = λx+ µx, ∀x ∈ X, ∀λ, µ ∈ K
• λ(x+ y) = λx+ λy, ∀x, y ∈ X, ∀λ ∈ K
• 1x = x, ∀x ∈ X.
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A1.1 Algumas definições e propriedades em esp. top./mét.[Fol99, p.13]

Num espaço topológico (X, τ) definimos

• H ⊂ X é fechado se Hc é aberto.

• A união de todos os abertos contidos em G é chamada interior de G e é
denotado por G′ .

• A interseção de todos os fechados contendo G é o fecho de G e é denotado

por G .

• G ⊂ X é denso em X se G = X e nunca-denso em X se G
′
= ∅.

• X é separável se tem um subconjunto enumerável e denso.

• C ⊆ X é dito compacto se toda cobertura aberta de C possui uma
subcobertura finita.

se C ⊆
⋃
i∈I Ai onde {Ai} ⊆ τ então existe un subconjunto

finito de ı́ndices I0 ⊆ I tal que C ⊆
⋃
i∈I0 Ai

• A função f : (X, τX) → (Y, τY ) é cont́ınua se para todo V ∈ τY vale que
f−1(V ) ∈ τX .

Se τX , τY são induzidas por uma métrica, as definições podem
ser dadas usando as bolas abertas ou sequências.

Exerćıcios

Mostre as propriedades a seguir.

1. (G)c = (Gc)′ e Gc = (G′)c .

2. Se G é aberto e denso então Gc é nunca-denso.
Se G é fechado e nunca-denso então Gc é denso.
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A2 Espaços métricos

Espaço métrico é uma dupla (X, d) onde X é um conjunto e d é uma métrica:
d : X ×X → [0,∞) tal que

• d(x, y) = 0⇐⇒ x = y,

• d(x, y) = d(y, x), ∀ x, y ∈ X,

• d(x, z) ≤ d(x, y) + d(y, z), ∀ x, y, z ∈ X.

Exemplo A2.1. X conjunto não vazio e d a métrica discreta:

d(x, y) =

{
1, x 6= y

0, x = y

(X, d) é espaço métrico. F

Seja K = C ou K = R.

Exemplo A2.2 (Espaço das funções limitadas).

B(X) := {f : X → K : f é limitada}

e
d(f, g) = sup{|f(x)− g(x)| : x ∈ X}

(B(X), d) é espaço métrico. F

Exemplo A2.3 (Espaços de sequências [Muj, p.5]).

`∞ =

{
x = (xj)j∈N ⊆ K : sup

j∈N
|xj| <∞

}
(A2.1)

d∞ (x, y) = sup
j∈N
|xj − yj| (A2.2)

`p =

{
x = (xj)j∈N ⊆ K :

∞∑
j=1

|xj|p <∞

}
, p ∈ [1,∞) (A2.3)

dp (x, y) =

( ∞∑
j=1

|xj − yj|p
)1/p

(A2.4)

(`∞, d∞) e (`p, dp) são espaços métricos. F
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A2.1 Desigualdades de Hölder e Minkowski

Lema A2.4. Sejam a, b ≥ 0, λ ∈ (0, 1). Então:

aλb(1−λ) ≤ λa+ (1− λ)b

com igualdade se e só se a = b. �

Lema A2.5 [Hölder]. Sejam p, q > 1:
1

p
+

1

q
= 1. Então, 2

xy ≤ 1

p
xp +

1

q
yq ∀x, y ≥ 0

∑
|ξjηj| ≤

(∑
|ξj|p

)1/p (∑
|ηj|q

)1/q

�

Lema A2.6 [Minkowski]. Seja p ≥ 1. Então(∑
|ξj + ηj|p

)1/p

≤
(∑

|ξj|p
)1/p

+
(∑

|ηj|p
)1/p

�

Num espaço métrico (X, d) temos:

• bola aberta Br(x) = {y ∈ X : d(x, y) < r}.

• bola fechada Br(x) = {y ∈ X : d(x, y) ≤ r}.

• esfera Sr(x) = ∂Br(x) = {y ∈ X : d(x, y) = r}.

• G ⊆ X é aberto se para todo x ∈ G existe rx > 0 tal que Brx(x) ⊆ G.

• uma sequência (xn) ⊂ X é convergente com limite x ∈ X se
d(xn, x)

n→∞−→ 0. (Escrevemos xn
n→∞−→ x ou limn→∞ xn = x) .

• C ⊆ X é compacto se e só se toda sequência em C tem uma subsequência
convergente a um ponto de C.

2Se a soma é finita, também vale para p = 1 considerando q =∞ no seguinte sentido:

|ξ · η| ≤
∑
|ξjηj | ≤

(∑
|ξj |
)

(max |ηj |) =: ‖ξ‖1 ‖η‖∞
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Exerćıcios

Num espaço métrico (X, d), mostre as propriedades a seguir.

Exerćıcio A2.7. G é fechado se e só se para toda sequência {xn} ⊆ G
que converge a algum x ∈ X, vale x ∈ G. F

Exerćıcio A2.8. x ∈ G′ se e só se existe Br(x) ⊆ G. F

Exerćıcio A2.9. São equivalentes:
– x ∈ G,
– Br(x) ∩G 6= ∅, ∀r > 0,
– existe uma sequência (xn) ⊆ G: xn → x. F

A2.2 Completeza

Definição A2.10. Um esp. métrico (X, d) é completo se toda sequência
(xn) ⊆ X de Cauchy converge a um ponto x ∈ X.

F

Uma sequência (xn) em um espaço métrico (X, d) é dita ser de
Cauchy se d(xn, xm)→ 0 quando min {n,m} → ∞:

∀ε > 0 ∃N : n,m > N =⇒ d(xn, xm) < ε

Exerćıcios

Exerćıcio A2.11. Seja (X, d) um espaço métrico e (xn) ⊂ X uma
sequência.

(a) se (xn) é convergente então é de Cauchy.

(b) se (xn) é de Cauchy e alguma sub-sequência dela é convergente, então
a sequência inteira é convergente. F

Seja (X, d) um esp. métrico. Um subconjunto Y de X é completo se o espaço
métrico (Y, d) é completo.
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Exerćıcios

Exerćıcio A2.12.

• Um subconjunto fechado de um espaço métrico completo é completo.

• Um subconjunto completo de um espaço métrico qualquer é fechado.

• Em um esp. métrico: compacto =⇒ completo =⇒ fechado. F

Exerćıcio A2.13. Considere X = C([0, 1],R) e as métricas

dI(f, g) =

ˆ 1

0

|f(x)− g(x)|dx, dU(f, g) = max
x∈[0,1]

{|f(x)− g(x)|} .

Mostre que (X, dI) não é completo e que (X, dU) é completo. F

Exerćıcio A2.14.

• (Qn, d) não é completo (d a distância Euclideana de Rn)

• (`p, dp) é completo para p ∈ [1,∞]

F

A2.3 Contrações [Che01, p.176] [Car, p.17]

Teorema A2.15 [do Ponto Fixo de Banach]. Seja (X, d) um
espaço métrico completo e f : X → X uma contração. Então existe e
é único um ponto fixo de f . �

– f é contração se ∃L < 1: d(f(x), f(y)) ≤ Ld(x, y) ∀ x, y ∈ X
(em particular, f é Lipschitz de constante L e cont́ınua ).
– x ∈ X é ponto fixo de f se f(x) = x

Exemplo A2.16. Seja f : I ⊂ R→ R uma função derivável no intervalo I.
Então, f é uma contração se e somente se existe L < 1 tal que 3

|f ′(x)| ≤ L, x ∈ I.

3Em particular, f(x) = cos(x), x ∈ R, não é contração enquanto f(x) = 2025
2026 cos(x) é.
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F

APLICAÇOES

É usado para provar o Teorema de Existência e Unicidade para Problemas
de Cauchy em EDOs (Picard-Lindelöf) e também o Teorema da Função
Impĺıcita [Bry85, p.84], dentre outros.
É utilizado também em probabilidade estat́ıstica, compreensão de imagens,
etc.

Exerćıcios

Exerćıcio A2.17. Seja X espaço de Banach. Mostre que se f :
Br(p) ⊂ X → X é uma contração de constante L < 1, e além disso,
se d(p, f(p)) < (1−L)r então f possui um único ponto fixo em Br(p). F

Exerćıcio A2.18. Sejam K : [0, 1] × [0, 1] × K → K e g : [0, 1] → K
funções cont́ınuas dadas. Além disso, seja K(s, t, w) Lipshitz cont́ınua em
w, uniformemente com respeito a s, t, ou seja, existe L > 0 :

|K(s, t, w)−K(s, t, v)| ≤ L|w − v|, ∀s, t ∈ [0, 1].

Encontre hipóteses sobre o parâmetro λ ∈ K para obter existência e uni-
cidade da solução da equação integral.

f(t)− λ
ˆ 1

0

K(s, t, f(s))ds = g(t), t ∈ [0, 1].

F

Exerćıcio A2.19 (Teorema da função impĺıcita). Seja F : I ×R→ R
cont́ınua. Se existem m,M > 0 tais que

0 < m ≤ ∂F

∂x
≤M, (t, x) ∈ I × R,

então existe um única função cont́ınua x : I → R tal que F (t, x(t)) = 0,
para todo t ∈ I, ou seja, a equação F (x, t) = 0 define implicitamente uma
única função cont́ınua x em termos de t. F

A8
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A2.4 Baire

Seja (X, d) um espaço métrico. Aula 2

Definição. Um conjunto A ⊂ X é dito
de primeira Categoria em X (magro em X) se A é união enumerável de
conjuntos nunca-densos,
de segunda Categoria em X (não-magro em X) em caso contrário. F

• A ⊂ X é denso em X se A = X

• A ⊂ X é nunca-denso em X se A
′
= ∅.

Exemplo A2.20.

• X é sempre denso em X pois X
′
= X ′ = X

• Q é denso em R e é nunca-denso em R2

• {p} é nunca-denso em R ou em Q

• Q é de 1a categoria em R ou em Q (não é e.m. completo, Teorema A2.21)

F

Teorema A2.21 [das categorias de Baire]. Todo espaço métrico
completo é de segunda categoria nele mesmo. [Car, prova:p.36] �

Proposição A2.22. (X, d) é de segunda categoria nele mesmo é equivalente
a

• em qualquer representação de X como união enumerável de conjuntos fe-
chados, pelo menos um deles contém uma bola.

• toda interseção enumerável de abertos densos em X é não vazia

Se (X, d) é esp. métrico completo, também vale que toda interseção enumerável
de abertos densos em X é densa em X. �

Demonstração. Exerćıcio.
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A3 Espaços Vetoriais Normados

A3.1 Preliminares

Precedente

Sempre é posśıvel definir uma norma em um espaço vetorial?

Definição. Uma base de Hamel para um espaço vetorial X sobre o corpo
K, é um conjunto B ⊆ X cujos elementos são linearmente independentes e tal
que todo elemento de X é combinação linear (finita) de elementos de B:

podemos escrever B = {xi, i ∈ I}: então cada x ∈ X pode ser
escrito (de modo único!), na forma

x =
∑
i∈Jx

aixi com {ai}i∈Jx ⊆ K

onde Jx é um subconjunto finito de I.

F

Exemplo. Se X é o espaço de todos os polinômios definidos em R, então
B = {1, x, x2, . . .} é uma base de Hamel de X. F

Definição. X tem dimensão n ∈ N se a base de Hamel tem n elementos
X tem dimensão infinita se ela for infinita. F

Exemplo. O espaço de todos os polinômios definidos em R tem dimensão
infinita e o espaço dos polinômios de grau no máximo n tem dimensão finita
n. F

Teorema A3.1. Todo espaço vetorial possui uma base de Hamel.
[Fri70, prova:p.131..][Che01, p.32] �
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Lema de Zorn Se X é um conjunto parcialmente ordenado e
todo subconjunto totalmente ordenado de X tem um limitante
superior então X tem um elemento maximal.

Conjunto parcialmente ordenado: com uma
relação de ordem ”�”(reflexiva, antisimétrica e transitiva)
(reflexiva x � x
antisimétrica x � y e y � x =⇒ x = y
transitiva x � y e y � z =⇒ x � z)
Conjunto totalmente ordenado: com uma
relação de ordem ”�” tal que dados x, y quaisquer
x � y ou y � x
Limitante superior de Y ⊆ X: l ∈ X t.q. y � l
para todo y ∈ Y .
m ∈ X é elemento maximal de X: x ∈ X e m � x

=⇒ m = x.

São afirmações equivalentes (Prinćıpios da teoria dos conjuntos)
Lema de Zorn,
Prinćıpio da Boa Ordenação,
Prinćıpio Maximal de Hausdorff,
Axioma da Escolha

Definição. Uma norma em um e.v. X é uma função ‖ · ‖ : X → [0,∞) tal
que

• ‖x‖ ≥ 0, ∀x ∈ X
• ‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ X
• ‖λx‖ = |λ|‖x‖, ∀λ ∈ K, ∀x ∈ X.
• ‖x‖ = 0⇔ x = 0,

F

Corolário A3.2. Todo e.v. pode ser normado. �
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Demonstração. Fixada uma base de Hamel em um e.v. X, podemos definir a
seguinte norma em X (verifique!): |‖ · ‖|∞ : X → R por

|‖x‖|∞ = max
i∈Jx
|ai| quando x =

∑
i∈Jx aixi.

Exerćıcios

Exerćıcio A3.3. Mostre que |‖x‖|p =
(∑

i∈Jx |ai|
p
)1/p

também define
uma norma em X. F

Exerćıcio A3.4 (EA2). Mostre que (X, |‖·‖|∞) não pode ser completo
se X tem dimensão infinita (construa uma série absolutamente convergente
que não convirja! (veja Teorema A3.12)) F

A3.2 Definição e exemplos

Espaço vetorial normado é uma dupla (X, ‖ ‖) onde X é um espaço vetorial,
e ‖ ‖ é uma norma.

Sempre consideraremos esp. vetoriais sobre o corpo K = C ou K = R.

Proposição A3.5. Todo espaço vetorial normado (X, ‖·‖) é um espaço
métrico com a métrica induzida pela norma: d(x, y) := ‖x− y‖. �

Demonstração. Exerćıcio. [Fri70, p.125]
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Exemplo A3.6 (Exemplos uteis - Espaços de sequências [Muj, p.5]).
Seja x = (xj)j∈N uma sequência em K e defina

‖x‖∞ := sup
j∈N
|xj| ‖x‖p :=

( ∞∑
j=1

|xj|p
)1/p

.

`∞ = {x = (xj)j∈N ⊆ K : ‖x‖∞ <∞} (A3.1)

c = {x = (xj)j∈N ⊆ K : xj converge} (A3.2)

c0 = {x = (xj)j∈N ⊆ K : xj → 0} (A3.3)

c00 = {x = (xj)j∈N ⊆ K : xj 6= 0 para finitos ı́ndices} (A3.4)

são espaços vetoriais e ‖·‖∞ é uma norma neles.

`p =
{
x = (xj)j∈N ⊂ K : ‖x‖p <∞

}
, p ∈ [1,∞) (A3.5)

é espaço vetorial e ‖·‖p é uma norma nele. F

c00 ⊂ c0 ⊂ c ⊂ `∞

Observação A3.7. Com a mesma construção podemos considerar espaços
de sequencias em X, sendo X um e.v.n: por exemplo

`p(X) :=
{
x = (xj)j∈N ⊆ X : ‖x‖p <∞

}
(A3.6)

com a norma ‖x‖p :=
(∑∞

j=1 ‖xj‖
p
X

)1/p

(ou ‖x‖∞ := supj∈N ‖xj‖X) F

Também podemos considerar produto cartesiano de e.v.n: X1 ×X2 × ...×Xn

com a norma

‖x‖p,X1×...×Xn
:=

(
n∑
j=1

‖xj‖pXj

)1/p

, p ≥ 1

ou
‖x‖∞,X1×...×Xn

:= max
j=1,..,n

‖xj‖Xj
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Exemplo A3.8 (Espaço de funções). Dado espaço de medida (completa)
(Ω,Σ, µ) definimos

Lp(Ω,Σ, µ) =
{
f : Ω→ K mensuravel : ‖f‖p <∞

}
(A3.7)

onde ‖f‖p :=


(ˆ

Ω

|f |pdµ
)1/p

se p ≥ 1

supess
x∈Ω

|f(x)| se p =∞

Lema A3.9 [Hölder]. Sejam p, q > 1:
1

p
+

1

q
= 1.

Se f ∈ Lp(Ω,Σ, µ) e g ∈ Lq(Ω,Σ, µ) então fg ∈ L1(Ω,Σ, µ) e

‖fg‖1 ≤ ‖f‖p ‖g‖q �

Lema A3.10 [Minkowski]. Seja p ≥ 1. Se f, g ∈ Lp(Ω,Σ, µ) então f+g ∈
Lp(Ω,Σ, µ) e

‖f + g‖p ≤ ‖f‖p + ‖g‖p �

Se
Lp(Ω,Σ, µ) := {[f ] : f ∈ Lp(Ω,Σ, µ)} (A3.8)

onde [f ] é a classe de equivalência de f com respeito à relação de equivalência
“f ∼ g se f = g q.t.p”, então ‖ ‖p é norma para Lp. F

A3.3 de Banach

Definição. Um espaço vetorial normado que é completo com a métrica in-
duzida pela norma é dito um espaço de Banach. F

Teorema A3.11. Todo espaço vetorial normado pode ser imerso (densa-
mente) em um espaço de Banach (o seu completamento). O completamento é
único a menos de isometrias. [Car, prova:p.19..] [Muj, prova:p.23..] �

isometria: T : X → Y : linear tal que ‖Tx‖Y = ‖x‖X , ∀x ∈ X

A14
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Esboço da prova: • Existência: X = e.v.n

1. C := conjunto das sequências de Cauchy em X é um e.v.

2. ‖x‖C := lim
n→∞
‖xn‖, onde x = {xn} ∈ C é uma semi-norma4 em C

3. x = {xn}, y = {yn} ∈ C: x ∼ y ⇐⇒ limn→∞ ‖xn − yn‖C = 0

4. X̃ := {x̃ = [x] : x ∈ C} = conj. classes de equivalências e defina (espaço quociente)

x̃+ ỹ := [x+ y], λ · x̃ := [λx], ‖x̃‖∼ := ‖x‖C , para algum x ∈ x̃

5. (X̃, ‖ · ‖∼) é um e.v.n

6. σ : X → X̃ : x 7→ σ(x) = [{x, x, . . .}], σ é uma isometria

7. σ(X) é denso em X̃

8. (X̃, ‖ · ‖∼) é Banach

• Unicidade:

Se (X̂, ‖ · ‖ ̂) é um e.v.n completo tal que existe uma isometria T : X → X̂ de
modo que T (X) é denso em X̂, então:

1. ∀ x̂ ∈ X̂, ∃x =: {xn} ⊂ X tal que T (xn)→ x̂ e x é de Cauchy

2. x̃ := [x] ∈ X̃

3. γ : X̂ → X̃ : x̂ 7→ x̃ é uma isometria.

Duas normas em X, ‖ · ‖1 e ‖ · ‖2 são normas equivalentes se existem
c, C > 0 tais que

c‖x‖1 ≤ ‖x‖2 ≤ C‖x‖1 ∀ x ∈ X.
Elas induzem a mesma topologia.

4uma seminorma deve satisfazer as propriedades de norma exceto a condição ‖x‖ = 0 =⇒ x = 0
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Teorema A3.12. Um espaço vetorial normado é completo (de Ba-
nach) se e somente se toda série absolutamente convergente é conver-
gente. �

Uma série
∑∞

n=1 xn é dita convergente em X se sN :=
N∑
n=1

xn →

x quando N →∞

e absolutamente convergente se
∞∑
n=1

‖xn‖ é convergente.

Em vista da estrutura de e.v.n. podemos definir

• C ⊂ X é um conjunto convexo: se

tx+ (1− t)y ∈ C para todo x, y ∈ C e t ∈ [0, 1]

• S ⊂ X é um subespaço: se

0 ∈ S, x, y ∈ S =⇒ x+ y ∈ S, x ∈ S =⇒ λx ∈ S ∀λ ∈ K

Exerćıcios

Exerćıcio A3.13. Mostre que bolas abertas e fechadas e subespaços
são conjuntos convexos. F

Exerćıcio A3.14. Mostre que

• Se S é um subespaço próprio de um e.v.n. X, então S ′ = ∅

• Se S é um subespaço fechado de um espaço de Banach então S é um
espaço de Banach.

F
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A3.3.1 Exemplos de Banach Aula 3

Teorema A3.15. (sendo K completo) `p é Banach para p ∈ [1,∞]. �

Exemplo A3.16. SeX,X1, .., Xn são Banach então `p(X) eX1×X2×...×Xn

são Banach, em particular Kn é Banach (com todas as normas vistas) F

Exerćıcios

Exerćıcio A3.17. Prove que

• para p ∈ [1,∞), o fechoa de c00 em `p é `p

• o fechoa de c00 em `∞ é c0.

• c0 e c são fechados em `∞, logo são espaços de Banach com a norma
infinito (note que c, c0 6⊆ `p se p <∞).

• c00 não é completo com nenhuma das normas vistas (é um subespaço
não fechado)

• mostre que se 1 ≤ p < q ≤ ∞ e x ∈ `p ∩ `q então ‖x‖q ≤ ‖x‖p.
Conclua que `p ⊂ `q. F

aÉ também o completamento

Exemplo A3.18 (Espaço das funções limitadas). Sejam X um conjunto
não vazio e B(X) = {f : X → K : f é limitada}

(B(X), ‖·‖), onde ‖f‖ := sup
x∈X
|f(x)|, é Banach

F

Exemplo A3.19 (Espaço das funções cont́ınuas). Sejam X um espaço to-
pológico compacto e C(X) = {f : X → K : f é cont́ınua}

(C(X), ‖·‖), onde ‖f‖ := sup
x∈X
|f(x)|, é Banach

F
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Exemplo A3.20 (Espaço das funções cont́ınuas e limitadas). Sejam X um
espaço topológico e CB(X) = {f : X → K : f é cont́ınua e limitada}

(CB(X), ‖·‖), onde ‖f‖ := sup
x∈X
|f(x)|, é Banach

F

Exerćıcios

Exerćıcio A3.21. Seja X um e.v.n. e suponha que existam Fn, n ∈ N,
subespaços fechados e próprios de X tais que X =

⋃
n∈N Fn . Use o

Teorema das categorias de Baire para mostrar que X não é Banach.
Use este resultado para provar as afirmações

• o espaço vetorial real P de todos os polinômios (de uma variável
real com coeficientes em R) não é completo com qualquer que seja a
norma.

• Se B é uma base de Hamel de um espaço de Banach de dimensão
infinita, então B não é enumerável. F
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A4 Aplicações lineares

Sejam X, Y e.v.n. sobre K.

Definição. Uma aplicação (transformação/operador) linear de X
em Y é uma função T : X → Y tal que

T (αx+ βy) = αT (x) + βT (y), ∀x, y ∈ X, α, β ∈ K.

F

Definimos5

L?(X, Y ) = {T : X → Y : linear}
o espaço das aplicações (transformações) lineares de X em Y

Exemplo. 1. Seja K ∈ C([0, 1]× [0, 1],K). Então

K : C([0, 1])→ C([0, 1]) : f 7→ (Kf)(s) =

ˆ 1

0

K(s, t)f(t)dt,

é um operador integral linear.

2. Seja f ∈ X = CB([0,∞),K). Então

(Lf)(s) =

ˆ ∞
0

e−stf(t)dt, f ∈ X

é um operador linear, chamado transformada de Laplace.

3. Seja f ∈ X = {f ∈ C(R,K):
´∞
−∞ |f(t)|dt,∞}. Então

(Ff)(s) =

ˆ
R
e−2πistf(t)dt, f ∈ X

é um operador linear, chamado transformada de Fourier.
F

5Cuidado, a definição não é universal: em [Fol99], [Car07] e [Muj] a notação L é usada para o conjunto das
lineares, mas em [Bre11] usa L para o conjunto das lineares cont́ınuas/limitadas.
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Definição.
T ∈ L?(X, Y ) é limitada se sup{‖Tx‖Y : ‖x‖X ≤ 1} <∞. F

Exemplo. 1. Os operadores integraisK, L, F são limitados.[Lax02, p.176, 180, 183]

2. Seja C1([0, 1],R) espaço das funções diferenciáveis em [0, 1] com a norma

‖f‖∞ = sup
x∈[0,1]

|f(x)|.

Então, T : C1([0, 1],R)→ R : f 7→ T (f) = f ′(1) é um operador linear não
limitado.

F

Proposição A4.1. Se T ∈ L?(X, Y ), são equivalentes:

(a) T é (uniformemente) cont́ınua,

(b) T é cont́ınua em 0,

(c) T é limitada. �

Definimos6

L(X, Y ) = {T : X → Y : linear e limitada}

‖T‖L(X,Y ) : = inf{c ≥ 0 : ‖Tx‖ ≤ c‖x‖, ∀ x ∈ X}

= sup
x∈X
x 6=0

‖Tx‖
‖x‖

= sup
‖x‖=1

‖Tx‖ (A4.1)

Observação.

• (L(X, Y ), ‖ · ‖L(X,Y )) é um e.v.n. [Fri70, pag. 136]

• ‖Tx‖ ≤ ‖T‖L‖x‖, para todo x ∈ X
F

6Cuidado, a definição não é universal: em [Fol99], [Car07] e [Muj] a notação L é como aqui, mas em [Bre11]
usa L para o conjunto das cont́ınuas/limitadas.
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Proposição A4.2. Se Y é completo então L(X, Y ) é completo.

Em particular X∗ :=L(X,K) (dito espaço dual de X) é sempre completo. �

Exerćıcios

Exerćıcio A4.3. Mostre que (A4.1) é de fato uma norma, que as for-
mulações em (A4.1) são equivalentes e que a definição de T limitada é
equivalente a pedir que os sup em (A4.1) sejam finitos. F

Exerćıcio A4.4. Mostre que se T ∈ L(X, Y ) e S ∈ L(Y, Z) então
S ◦ T ∈ L(X,Z) e ‖S ◦ T‖ ≤ ‖S‖ ‖T‖. F

Exerćıcio A4.5. Sejam X um e.v.n. completo e A ∈ L(X,X). Se
‖A‖L < 1, então I − A é inverśıvel e

(I − A)−1 =
∞∑
k=0

Ak,

onde Ak = A ◦ Ak−1. A série acima é chamada série de Neumann para
(I − A)−1.
Aplique o resultado acima com um escolha adequada de um espaço de
Banach X para encontrar a solução dada pela série de Neumann para a
equação integral abaixo:

x(t) = λ

ˆ 1

0

et−sx(s)ds+ v(t), t ∈ [0, 1],

onde v : [0, 1] → R é uma função conhecida. Indique a condição para os
valores de λ de forma que a solução de fato exista. F
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A5 E.v.n. de dimensão finita

Definição A5.1. Para e.v.n definimos

• isomorfismo (topológico): T ∈ L(X, Y ) inverśıvel com T−1 ∈ L(Y,X)
logo ∃ c, C > 0 : c‖x‖X ≤ ‖Tx‖Y ≤ C‖x‖X , ∀x ∈ X.

• mergulho: T ∈ L(X, Y ) que é isomorfismo de X em T (X)

• um isomorfismo/mergulho é dito isométrico se ‖Tx‖Y = ‖x‖X , ∀x ∈ X
F

Teorema A5.2. Todos os e.v.n. de dimensão n sobre K são topologicamente
isomorfos entre si. �

Corolário A5.3. Os e.v.n. de dimensão n sobre K:

• têm todas as normas equivalentes

• têm uma única topologia posśıvel

• são todos Banach

• têm bolas fechadas sempre compactas (são localmente compactos)

Um espaço topológico (X, τ) é dito localmente compacto
quando para todo x ∈ X existe A ∈ τ : x ∈ A e A é compacto.
Para e.v.n é equivalente a pedir que B1(0) seja compacta. �

Corolário A5.4. Subespaços de dimensão finita de um e.v.n são fechados.
�

Exerćıcios: prova dos dois últimos itens do corolário A5.3 e de A5.4.

Exerćıcios

Exerćıcio A5.5. Sejam X e Y e.v.n. com Y 6= {0}:

(i) Mostre que se X tem dimensão finita, então L(X, Y ) = L?(X, Y ).

(ii) Mostre que se X tem dimensão infinita, então existe um funcional
linear sobre X não limitado, ou seja, L(X, Y ) ( L?(X, Y ) F
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A5.0.1 Teorema de Riez Aula 4

Lema A5.6 [Lemma de Riesz]. Seja X um espaço vetorial normado sobre
K e M ( X um subespaço vetorial fechado. Então, para cada θ ∈ (0, 1), existe
y ∈ X tal que

‖y‖ = 1 e dist(y,M) := inf
x∈M
‖y − x‖ ≥ θ.

�

Teorema A5.7 [Riesz]. Seja X um espaço vetorial normado sobre K
tal que B̄1(0) = {x ∈ X : ‖x‖ ≤ 1} é compacta. Então X tem dimensão
finita. �

Em um e.v.n. X temos então que B̄X
1 (0) é compacta se e só se X tem

dimensão finita.

Equivalentemente:

Temos então que um e.v.n é localmente compacto se e só se tem dimensão
finita.

Exerćıcios

Exerćıcio A5.8. Mostre que se M tem dimensão finita então a desi-
gualdade no Lema também é válida para θ = 1.
Mostre que, em outros casos, ela pode não ser válida com θ = 1 (contra-
exemplo em C([0, 1];R) com a norma uniforme, considere as funções com
f(0) = 0 ). F

Exerćıcio A5.9. Use o Teorema de Riesz para mostrar que se X é um
e.v.n. de dimensão infinita e se K ⊂ X é um compacto, então K ′ = ∅. F
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A2.8 Exerćıcio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A6
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A2.17 Exerćıcio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A9
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