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A1l Resumo: Espacos topolégicos, métricos, normados

Espaco topolégico: dupla (X, 7): X conjunto, 7 topologia: uma familia
de subconjuntos de X, chamados de “abertos”, tal que

e X Qer

e se {A;}icr C 7 entdo | JA; € 7 (reunides quaisquer)

o se {A;}iz1..n C 7 entdo [ A; € 7 (intersegoes finitas)

Espaco métrico: dupla (X, d): X conjunto, d métrica: uma funcao
d: X x X —[0,00) tal que

o d(z,y) =0<= 2z =y,
o d(x,y) =d(y,r),Vz,y € X,
o d(z,2) < d(a,y) +d(y.2), ¥ 2,y,2 € X.

Podemos tomar em X a topologia induzida pela métrica: a gerada pelas bolas
abertas Bs(z) = {y € X : d(z,y) < 0}, onde A C X ¢é aberto se para todo
x € A existe r, > 0 tal que B, (z) C A.

Espago vetorial normado: dupla (X, | ||): X espaco vetorial !,
| || norma: uma fungao || - | : X — [0,00) tal que

lzl =0, VreX

o lz+yll <llzll +llyll, VzyeX

o [zl =[Alllzl, VAeK VzelX

o o] =0z =0,

Podemos tomar em X a métrica induzida pela norma d(x,y) = ||z — y||, e

a correspondente topologia.

Entre espagos topoldgicos podemos definir continuidade (de uma funcgao),
logo a mesma definicao vale em e.m. e em e.v.n.

!Conjunto X com uma soma interna (comutativa, associativa, com neutro e inverso) e um produto externo
com coeficientes num corpo K (associativo, distributivo e com identidade):

e zt+y=y+z, (+y+z=x+Wy+z2), VryzelX

o (M) =Apzx), A+pzr=A+pr, VeeX, VipekK
e Mz+y) =X x+dy, VoyeX, VIeK

o lx=x, VzelX.
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Al.1 Algumas defini¢des e propriedades em esp. top./mét.[Fo19% p-13]
Num espago topologico (X, 7) definimos

e H C X é fechado se H¢ é aberto.

e A uniao de todos os abertos contidos em G é chamada interior de G e é

denotado por | G’ |.
e A intersecao de todos os fechados contendo G é o fecho de G e é denotado

por |G |.
e G C X édenso em X se G = X e nunca-denso em X se 5/ = (.

e X ¢é separavel se tem um subconjunto enumeravel e denso.

e (' C X ¢ dito compacto se toda cobertura aberta de C' possui uma
subcobertura finita.

se C' C |J,cg Ai onde {A;} C 7 entdo existe un subconjunto
finito de indices Iy C Z tal que C' C Uielo A;
e A funcao f: (X,7x) — (Y, 7y) é continua se para todo V € 1y vale que

f_l(V) € Tx.

Se Tx, Ty sao induzidas por uma métrica, as definicoes podem
ser dadas usando as bolas abertas ou sequéncias.

Mostre as propriedades a seguir.

1. (@)C = (G°) e Ge = (G"° .
2. Se GG é aberto e denso entao G¢ é nunca-denso.
Se GG é fechado e nunca-denso entao G¢ é denso.
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A2 Espacgos métricos

Espacgo métrico é uma dupla (X, d) onde X é um conjunto e d é uma métrica:

d: X x X —[0,00) tal que

o d(z,y) =0z =y,
e d(z,y) =d(y,z),V z,y € X,
¢ d(LE,Z) < d(iU,y)‘i‘d(y,Z), vxayaz € X.

Exemplo A2.1. X conjunto nao vazio e d a métrica discreta:

1, z#y
d(x’w:{o r=y

(X, d) é espago métrico.
Seja K= C ou K =R.
Exemplo A2.2 (Espago das fungoes limitadas).
B(X):={f: X —-K: f élimitada}

d(f,9) = sup{|f(z) — g(z)| : v € X}
(B(X),d) é espago métrico.

Exemplo A2.3 (Espagos de sequéncias M1 P-5]),

(. = {x = (zj)jeny C K sup|z;| < oo}
— jeN

doo (7,y) = sup|z; — yj

jeN

(, = {x(%‘)jeNQKi Z$j|p<00}, p € [1,00)

J=1

00 1/p
dy (z,y) = <Z |z — yjp>

j=1
(U, doo) € (€, dy) slo espagos métricos.

A4
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A2.1 Desigualdades de Holder e Minkowski
Lema A2.4. Sejam a,b>0, X\ € (0,1). Entao:
a*b N < Xa+ (1 —\)b

com igualdade se e s6 se a =b. <

1 1
Lema A2.5 [Holder]. Sejam p,q > 1: —+ - = 1. Entao, *
p 4q

1 1
vy < 2P +-y?  Vr,y>0
p q

> 1&gl < <Z |§j\p> ” (Z lmlq> v <

Lema A2.6 [Minkowski]. Seja p > 1. Entdo

(Z €5 + ”’7j|p) "< (Z \§j|p)1/p + <Z |”'Ij|p) ” <

Num espago métrico (X, d) temos:

e bola aberta B,(z) ={y € X : d(z,y) <r}.
e bola fechada B,(z) = {y € X : d(x,y) <r}.
e esfera S.(v) =0B,(v) ={y € X : d(z,y) =r}.

e G C X é aberto se para todo x € G existe r, > 0 tal que B, (z) C G.

e uma sequéncia (z,) C X é convergente com limite = € X se
n—oo n—oo .
d(x,,r) — 0. (Escrevemos x,, — x ou lim,,_,o, x, = T) .

e (' C X é compacto se e s0 se toda sequencia em C' tem uma subsequéncia
convergente a um ponto de C.

2Se a soma é finita, também vale para p = 1 considerando ¢ = oo no seguinte sentido:

€nl <D leml < (D2 16l) (maxlnsl) = il Inlloo
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Num espago métrico (X, d), mostre as propriedades a seguir.

Exercicio A2.7. G é fechado se e s6 se para toda sequéncia {z,} C G

que converge a algum x € X, vale z € G. *
Exercicio A2.8. z € G’ se e s6 se existe B,(z) C G. *
Exercicio A2.9. Sao equivalentes:

-z € G,

— B.(zx)NG # 0, Vr > 0,

— existe uma sequéncia (z,) C G: x, — x. *

A2.2 Completeza

Definigao A2.10. Um esp. métrico (X, d) é completo se toda sequéncia

(x,) € X de Cauchy converge a um ponto = € X.
*

Uma sequéncia (x,) em um espaco métrico (X,d) ¢é dita ser de
Cauchy se d(z,, ;) — 0 quando min {n,m} — oc:

Ve >03dN: n,m>N = d(z,,x,) <€

Exercicio A2.11. Seja (X,d) um espago métrico e (x,) C X uma
sequencia.

(a) se (x,) é convergente entdao é de Cauchy.

(b) se (x,) é de Cauchy e alguma sub-sequéncia dela é convergente, entao
a sequencia inteira é convergente. *

Seja (X, d) um esp. métrico. Um subconjunto Y de X é completo se o espago
métrico (Y, d) é completo.
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Exercicio A2.12.
e Um subconjunto fechado de um espaco métrico completo é completo.
e Um subconjunto completo de um espaco métrico qualquer é fechado.

e Em um esp. métrico: compacto = completo = fechado. *

Exercicio A2.13. Considere X = C([0, 1], R) e as métricas

Ai.9) = [ 1@ = gallde. dulfg) = max {17(e) — g(o)]}-

Mostre que (X, d;) nao é completo e que (X, dy) é completo. *
Exercicio A2.14.
e (Q",d) nao é completo (d a distancia Euclideana de R")

e ({,,d,) é completo para p € [1, 0]

A2.3 Contracoes [Che0l, p.176] [Car, p.17]

Teorema A2.15 [do Ponto Fixo de Banach]. Seja (X,d) um
espaco métrico completo e f : X — X wma contracao. Entdao existe e
¢ unico um ponto fizo de f. <

— f écontragao se AL < 1: d(f(x), f(y)) < Ld(z,y) V x,y € X
(em particular, f é Lipschitz de constante L e continua ).

—x € X é ponto fixo de fse f(z) ==z

Exemplo A2.16. Seja f: I C R — R uma fungao derivavel no intervalo I.
Entdo, f é uma contracdo se e somente se existe L < 1 tal que 3

f(x)| <L, zel

SEm particular, f(z) = cos(z), z € R, ndo é contracdo enquanto f(z) = 2322 cos(z) é.
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*

APLICACOES

E usado para provar o Teorema de Existéncia e Unicidade para Problemas
de Cauchy em EDOs (Picard-Lindel6f) e também o Teorema da Fungao
Implicita [Pv8% P84 dentre outros.

E utilizado também em probabilidade estatistica, compreensao de imagens,
etc.

Exercicio A2.17. Seja X espago de Banach. Mostre que se f :
B.(p) € X — X é uma contracao de constante L < 1, e além disso,
se d(p, f(p)) < (1—L)r entdao f possui um tunico ponto fixo em B,(p). %

Exercicio A2.18. Sejam K : [0,1] x [0,1]] x K —-Keg:[0,1] - K
fungoes continuas dadas. Além disso, seja K (s,t,w) Lipshitz continua em
w, uniformemente com respeito a s, t, ou seja, existe L > 0 :

|K(s,t,w) — K(s,t,v)| < Llw—v|, Vs,te€l0,1].

Encontre hipoteses sobre o parametro A € K para obter existéncia e uni-
cidade da solucao da equacao integral.

f(t) — )\/0 K(s,t, f(s))ds = g(t), te]0,1].
*

Exercicio A2.19 (Teorema da funcao implicita). Seja F: I xR — R
continua. Se existem m, M > 0 tais que

OF
O<m§%§M, (t,l’)E]XR,

entdo existe um tunica fungdo continua = : I — R tal que F(¢,z(t)) = 0,
para todo t € I, ou seja, a equacao F'(x,t) = 0 define implicitamente uma
unica funcao continua x em termos de ¢. *

A8



AF-A 23 de outubro de 2025

A2.4 Baire

Seja (X, d) um espago métrico. Aula 2

Definicao. Um conjunto A C X é dito

de primeira Categoria em X ( ) se A é unido enumeravel de
conjuntos nunca-densos,
de segunda Categoria em X ( ) em caso contrario. %

e AC X édensoem X se A=X

e A C X énunca-denso em X se A = 0.

Exemplo A2.20.
e X ¢é sempre denso em X pois X =X=X
e Q é denso em R e é nunca-denso em R?
e {p} é nunca~-denso em R ou em Q

e Q é de 1a categoria em R ou em Q (ndo é e.m. completo, Teorema A2.21)

*

Teorema A2.21 [das categorias de Baire]. Todo espaco métrico
completo € de sequnda categoria nele mesmo. (€07 prova:p-56] <

Proposicao A2.22. (X, d) é de seqgunda categoria nele mesmo € equivalente
a

e cm qualquer representacao de X como uniao enumerdvel de conjuntos fe-
chados, pelo menos um deles contém uma bola.

e toda intersecao enumerdvel de abertos densos em X € nao vazia

Se (X, d) € esp. métrico completo, também vale que toda intersecdo enumerdvel
de abertos densos em X € densa em X. <

Demonstracao. Exercicio. [
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A3 Espacos Vetoriais Normados

A3.1 Preliminares

Sempre ¢ possivel definir uma norma em um espaco vetorial?

Definicao. Uma base de Hamel para um espaco vetorial X sobre o corpo
K, é um conjunto B C X cujos elementos sao linearmente independentes e tal
que todo elemento de X é combinagao linear (finita) de elementos de B:

podemos escrever B = {x;, ¢ € Z}: entao cada x € X pode ser
escrito (de modo tnico!), na forma

x = Z a;x; com {ai}iejx CK
€Ty

onde J, é um subconjunto finito de Z.
*

Exemplo. Se X ¢é o espaco de todos os polinomios definidos em R, entao
B ={1,z,2%, ...} é uma base de Hamel de X. *

Definicao. X tem dimensao n € N se a base de Hamel tem n elementos
X tem dimensao infinita se ela for infinita. ) ¢

Exemplo. O espaco de todos os polinomios definidos em R tem dimensao
infinita e o espaco dos polindmios de grau no maximo n tem dimensao finita

n. *

Teorema A3.1. Todo espaco vetorial possui uma base de Hamel.
[Fri70, prova:p.131..][Che01, p.32] b

A10
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Lema de Zorn Se X ¢é um conjunto parcialmente ordenado e
todo subconjunto totalmente ordenado de X tem um limitante
superior entao X tem um elemento maximal.

Conjunto parcialmente ordenado: com uma
rela(;éo de ordem ” ‘_<” (reﬂexiva, antisimétrica e transitiva)
(reflexiva © < @

antisimétrica r <yey v = xr =y
transitiva x <yey Xz = = X 2)

Conjunto totalmente ordenado: com uma
relacao de ordem " =" tal que dados x,y quaisquer
ryouy

Limitante superior de Y C X: [ € X t.q. y <1
para todo y € Y.

m € X é elemento maximalde X: z€ Xem <z
= m = .

Sao afirmagoes equivalentes (Principios da teoria dos conjuntos)
Lema de Zorn,

Principio da Boa Ordenacao,

Principio Maximal de Hausdorff,

Axioma da Escolha

Definicao. Uma norma em um e.v. X é uma fungao ||| : X — [0, 00) tal
que
o [z 20, VxeX
o o +yl <l +lyll, YVryeX
o Az =|A||lz]|, VAeK, VzeX.
o [[z]| =0z =0,
*
Corolario A3.2. Todo e.v. pode ser normado. <

All



AF-A 23 de outubro de 2025

Demonstracao. Fixada uma base de Hamel em um e.v. X, podemos definir a

seguinte norma em X (verifique!): ||| - |||oc : X — R por
||| = max |a;| quando ¥ =} ;. , a;x;.

Exercicio A3.3. Mostre que |||z]|[, = (X,c/ lail?) 7 também define
uma norma em X. *

Exercicio A3.4 (EA2). Mostre que (X, ||||||c) nao pode ser completo
se X tem dimensao infinita (construa uma série absolutamente convergente
que nao convirjal (veja Teorema A3.12)) *

A3.2 Definicao e exemplos

Espaco vetorial normado é uma dupla (X, || ||) onde X é um espago vetorial,
e || || ¢ uma norma.

Sempre consideraremos esp. vetoriais sobre o corpo K = C ou K = R.

Proposicao A3.5. Todo espaco vetorial normado (X, ||-||) € um espago
métrico com a métrica induzida pela norma: d(z,y) = ||z — y||. <

Demonstracio. Exercicio. 1170 p-125] ]

A12



AF-A 23 de outubro de 2025

Exemplo A3.6 (Exemplos uteis - Espagos de sequéncias [Muj, p'5]).
Seja ¢ = (z;)jeny uma sequéncia em K e defina

(o = {2 =(z;)jen CK: [z], < o0} (A3.1)
[¢ ={z=(7))jen CK: z; converge} (A3.2)
E ={r = (2j)jen CK: z; = 0} (A3.3)

[cop = {x = (7;)jen CK: x; # 0 para finitos indices} (A3.4)

sao espacos vetoriais e |||, ¢ uma norma neles.

4, = {a: — (z;)jen CK: ]|, < oo}  pel, o) (A3.5)

¢ espago vetorial e [|-]|, ¢ uma norma nele. *

coo C cg C e C Ly

Observacao A3.7. Com a mesma construcao podemos considerar espacos
de sequencias em X, sendo X um e.v.n: por exemplo

0,(X) = {a: — (2;);en C X ||, < oo} (A3.6)

/
com a norma o, = (252 ;1) (0 [l = supjen 1) *

Também podemos considerar produto cartesiano dee.v.n: | X7 X Xo x ... x X,

com a norma
n 1/p
”‘er,Xlx...xXn = (Z |%’||§(J> , p=>1

j=1
ou

e

HxHoo,Xlx...XXn = Iglla},(n ”xjHXj

A13
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Exemplo A3.8 (Espaco de fungoes). Dado espaco de medida (completa)
(2, %, u) definimos

L,(,%,u) = {f : Q — K mensuravel = || f]], < oo} (A3.7)
|f1"d ) sep>1
onde | [|f]|, = (./
supess | f(x)| se p =00
z€el)

1 1
Lema A3.9 [Holder]. Sejam p,q > 1: ——l—— = 1.
p
Se feL,(2,5,u) ege L%, 1) entaofgeﬁl(Q Yo e

Ifglly < A1, Mlgll, <

Lema A3.10 [Minkowski]. Sejap > 1. Se f,g € L,(Q,X, 1) entao f+g €

L,(,2, 1) e
1f +all, < [I£1l, + llgll, <
Se
Lp(Q, 5, ) =A{[f]: feLp(Q,X,n)} (A3.8)
onde [f] é a classe de equivaléncia de f com respeito a relagdo de equivaléncia
“f ~gse f=gaqtp’, entao || ||, é norma para L. *

A3.3 de Banach

Definicao. Um espaco vetorial normado que é completo com a métrica in-
duzida pela norma ¢é dito um espaco de Banach. *

Teorema A3.11. Todo espago vetorial normado pode ser imerso (densa-
mente) em um espaco de Banach (o seu completamento). O completamento é
dnico a menos de isometrias. [Car, prova:p.19..] [Muj, prova:p.25..] P

isometria: 7': X — Y linear tal que |Tz||y = ||z||y, Vze X

Al4
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Esboco da prova: e Existéncia:

1. C' := conjunto das sequéncias de Cauchy em X é um e.v.

2. x|l = nh_)rgo |z, ||, onde x = {x,} € C é uma semi-norma* em C

. x={x,},y={y} € C: © ~y <= lim, o0 ||Tn — Ynllc =0

4. = conj. classes de equivaléncias e defina (espaco quociente)
T+y:=[r+yl, A T:=][\], |Z]|~ := ||z]|c, para algum x € T

5. (X, -]]~) é um e.v.n

6.0: X - Xz o) =[{z,2,...}],

7.

8

e Unicidade:

Se (X, -] -) é um e.v.n completo tal que existe uma isometria T : X — X de
modo que T'(X) é denso em X, entao:

1.Vée X, 3z = {x,} C X tal que T(x,) — & e x é de Cauchy

2. x:=[r]e X
3.

[l
Duas normas em X, || - ||y e || - || s8o normas equivalentes se existem

c,C > 0 tais que
clzly <zl < Cllzfly vV 2 e X.

Elas induzem a mesma topologia.

“uma seminorma deve satisfazer as propriedades de norma exceto a condicio ||z|| =0 =z =0

A15
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Teorema A3.12. Um espago vetorial normado é completo (de Ba-
nach) se e somente se toda série absolutamente convergente é conver-

gente. <
N

Uma série Y | x, é dita convergente em X se sy := E Ty —
n=1

x quando N — oo

oo

e absolutamente convergente se g |x,|| é convergente.

n=1

Em vista da estrutura de e.v.n. podemos definir

e (' C X é um conjunto convexo: se

tr+(1—t)y e C paratodoz,y e Cetel01]

e S C X é um subespaco: se

0esS, ryyeS=zx+yes, zeS=XIrecS ViekK

Exercicio A3.13. Mostre que bolas abertas e fechadas e subespagcos
sao conjuntos convexos. *

Exercicio A3.14. Mostre que
e Se S é um subespaco préprio de um e.v.n. X, entao S’ = ()

e Se S é um subespaco fechado de um espaco de Banach entao S é um
espaco de Banach.

*

A16
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A3.3.1 Exemplos de Banach Aula 3

Teorema A3.15. (sendo K completo) ¢, é Banach parap € [1,00]. <

Exemplo A3.16. Se X, Xj,.., X, sao Banach entao £,(X) e X1 x Xy x...x X,
sao Banach, em particular K" é Banach (com todas as normas vistas) *

Exercicio A3.17. Prove que
e para p € [1,00), o fecho® de ¢op em ¢, é £,
e 0 fecho” de ¢cop em l € cp.

e ¢y e c sao fechados em /.., logo sao espacos de Banach com a norma
infinito (note que ¢, co € ¢, se p < 00).

e oo nao é completo com nenhuma das normas vistas (é um subespago
nao fechado)

e mostre que se 1 < p < g < o0ex € {,NYL entdo |zf[, < [z,
Conclua que ¢, C £,. *

9% também o completamento

Exemplo A3.18 (Espaco das funcgoes limitadas). Sejam X um conjunto
nao vazio e B(X) ={f: X - K: f é limitada}

(B(X),[I-II);  onde [[f]| := su)glf(w)\, ¢ Banach
xre

*

Exemplo A3.19 (Espaco das fungbes continuas). Sejam X um espacgo to-
polégico compacto e C'(X) = {f: X — K: f é continua}

(COO, M), onde [If]| :=sup|f(x)|, ¢ Banach
HAS

A17
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Exemplo A3.20 (Espago das fungoes continuas e limitadas). Sejam X um
espago topoldgico e Cp(X) = {f: X — K: f é continua e limitada}

(Cp(X), [[l),  onde | f[|:= su)glf(ar)\, ¢ Banach
xre

Exercicio A3.21. Seja X um e.v.n. e suponha que existam F},, n € N,
subespacos fechados e proprios de X tais que X = |J,.nyFn - Use o
Teorema das categorias de Baire para mostrar que X nao é Banach.

Use este resultado para provar as afirmagoes

e 0 espaco vetorial real P de todos os polinémios (de uma varidvel
real com coeficientes em R) nao é completo com qualquer que seja a
norma.

e Se B é uma base de Hamel de um espaco de Banach de dimensao
infinita, entao B nao é enumeravel. *
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A4 Aplicagoes lineares

Sejam X,Y e.v.n. sobre K.

Definicao. Uma aplicagao (transformacao/operador) linear de X
em Y é uma funcao T : X — Y tal que

T(ax + By) = oT(x) + BT(y), VYr,ye X, a,fcK

Definimos®

Lo(X,Y)={T: X =Y :linear}

o espago das aplicagoes (transformagoes) lineares de X em Y

Exemplo. 1. Seja K € C([0,1] x [0, 1], K). Entao

K C([0.1]) = C(0,1]) : f > (CF)(s /Kst

é um operador integral linear.

2. Seja f € X = Cp([0,00),K). Entao

(LF)(s) = / Tt wdr, fex

é um operador linear, chamado transformada de Laplace.

3. Seja f € X ={f € C(R,K): [ |f(t)|dt,c0}. Entao

(Ff)(s) = / eI ()dt, f € X

é um operador linear, chamado transformada de Fourier.

®Cuidado, a defini¢do nao é universal: em [Fol99], [Car07] e [Muj] a notacdo £ é usada para o conjunto das
lineares, mas em [Brell] usa £ para o conjunto das lineares continuas/limitadas.
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Definicao.
T € L+(X,Y) é limitada se sup{||Tz||y : [|z]|x <1} < 0. *
Exemplo. 1. Os operadores integrais K, L, F sdo limitados.[#x02 p-176, 180, 183]

2. Seja C'([0,1],R) espago das fungdes diferencidveis em [0, 1] com a norma

[ flloe = sup [f(z)].
z€[0,1]
Entao, T : C1([0,1],R) = R : f — T(f) = f(1) é um operador linear nao
limitado.
*
Proposicao A4.1. SeT € L+(X,Y), sao equivalentes:
(a) T € (uniformemente) continua,
(b) T é continua em 0,
(c) T é limitada. <
Definimos®
L(X,)Y) ={T: X =Y :linear e limitada}
T pxyy = =inf{c =0 |[Tz]] < cflzfl, ¥V 2 € X}
T Ad.1
L — (D
ex ]l 2=
x#0
Observagao.
[ ) (L(X, Y), H . HL(X,Y)) é um e.v.1. [Fri?(), pag. 136}
o |Tz|| < ||T||L||z||, para todo x € X
*

6Cuidado, a definigao nio é universal: em [Fol99], [Car07] e [Muj] a notacdo L é como aqui, mas em [Brell]
usa L para o conjunto das continuas/limitadas.
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Proposicao A4.2. SeY € completo entao L(X,Y") é completo.

Em particular | X* |:=L(X,K) (dito espaco dual de X) é sempre completo. <

Exercicio A4.3. Mostre que (A4.1) é de fato uma norma, que as for-
mulagoes em (A4.1) sdo equivalentes e que a definicdo de T limitada é

equivalente a pedir que os sup em (A4.1) sejam finitos. *
Exercicio A4.4. Mostre que se T € L(X,Y) e S € L(Y,Z) entao
SoT e (X, Z)e |SoT| <|[S] [T *

Exercicio A4.5. Sejam X um e.v.n. completo e A € L(X,X). Se
Al < 1, entdo I — A é inversivel e

(I o A)_l - ZAka
k=0

onde A¥ = Ao A¥1. A série acima é chamada série de Neumann para
(I—A)™L

Aplique o resultado acima com um escolha adequada de um espaco de
Banach X para encontrar a solugao dada pela série de Neumann para a
equacao integral abaixo:

z(t) = )\/01 e x(s)ds +v(t), te]0,1],

onde v : [0,1] — R é uma funcdo conhecida. Indique a condigdo para os
valores de A de forma que a solucao de fato exista. *
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A5 E.v.n. de dimensao finita

Definicao A5.1. Para e.v.n definimos

e isomorfismo (topolégico): T € L(X,Y) inversivel com T~ € L(Y, X)
logo 3¢,C>0:c|z]|x <||Tx|ly < Cllz||x, Ve € X.

e mergulho: T € L(X,Y) que é isomorfismo de X em T'(X)

e um isomorfismo/mergulho é dito isométrico se ||Tz||, = ||z]y, Vre X
*

Teorema A5.2. Todos os e.v.n. de dimensaon sobre K sao topologicamente
1somorfos entre st. <

Corolario A5.3. Os e.v.n. de dimensao n sobre K:

e tém todas as normas equivalentes

e tém uma unica topologia possivel
e sao todos Banach

e tém bolas fechadas sempre compactas (sao localmente compactos)

Um espago topolégico (X,7) € dito localmente compacto
quando para todo x € X existe A€ t:x € AeA é compacto.
Para e.v.n € equivalente a pedir que B1(0) seja compacta. <

Corolario A5.4. Subespacos de dimensao finita de um e.v.n sao fechados.
<

FEzxercicios: prova dos dois 1iltimos itens do corolario A5.3 e de A5.4. ]

Exercicio A5.5. Sejam X e Y e.v.n. com Y # {0}:
(i) Mostre que se X tem dimensao finita, entao L(X,Y) = L+(X,Y).

(ii) Mostre que se X tem dimensdo infinita, entdo existe um funcional
linear sobre X nao limitado, ou seja, L(X,Y) C L2(X,Y) *
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A5.0.1 Teorema de Riez Aula 4

Lema A5.6 [Lemma de Riesz]. Seja X um espago vetorial normado sobre
K e M C X um subespaco vetorial fechado. Entao, para cada 6 € (0,1), existe
y € X tal que

lyll=1 e dist(y, M) := inf ||y — x| > 0.
zeM

Teorema A5.7 [Riesz]. Seja X um espaco vetorial normado sobre K
tal que B1(0) = {z € X : ||z|| < 1} € compacta. Entdo X tem dimensdo
finita. <

Em um e.v.n. X temos entdo que Bi*(0) é compacta se e s se X tem
dimensao finita.

Equivalentemente:

Temos entao que um e.v.n é localmente compacto se e s6 se tem dimensao
finita.

Exercicio A5.8. Mostre que se M tem dimensao finita entao a desi-
gualdade no Lema também ¢é valida para 6 = 1.
Mostre que, em outros casos, ela pode nao ser valida com ¢ = 1 (contra-
exemplo em C([0,1];R) com a norma uniforme, considere as fungdes com

f(0)=0). *

Exercicio A5.9. Use o Teorema de Riesz para mostrar que se X é um
e.v.n. de dimensao infinita e se K C X é um compacto, entao K/ = 0. %
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