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Análise - SMA380, Ana Peron

• Programa Resumido: Sequências e séries numéricas. Continuidade. Dife-

renciabilidade. Integral de Riemann. Sequências e séries de funções.

• Objetivos: Familiarizar o aluno com as técnicas de Análise Matemática.

• Conteúdo Programático:
- Convergência; Critérios para convergência e divergência; Convergência abso-

luta e condicional de uma série; Reordenação de uma série, Critério de Cauchy

e de Dirichlet; Séries de potências.

- Continuidade: Limites de funções reais; Funções cont́ınuas; Funções cont́ınuas

em conjuntos compactos; Continuidade uniforme; Descontinuidades.

- Diferenciabilidade: a derivada e suas propriedades; Teorema do Valor Médio;

Fórmula de Taylor; Continuidade e diferenciação de séries de potências.

- Integral de Riemann; Teorema fundamental do cálculo.

- Sequências e séries de funções; Relação entre convergência uniforme e conti-

nuidade; Derivação e integração; Séries de Taylor.

• Referências:

• Elon Lages Lima. Curso de Análise, vol. 1

• Walter Rudin. Principles of Mathematical Analysis
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A1 Pré-requisitos

A1.1 Propriedades de Conjuntos

Prinćıpio de Indução (fraca)
Seja1 U ⊆ N com as propriedades:

• 1 ∈ U ,

• ∀ k ∈ N vale “se k ∈ U então k + 1 ∈ U”.

Então U = N.

Prinćıpio de Indução (fraca) (para afirmações)
Seja p(n) uma afirmação sobre n ∈ N tal que

• p(1) é verdade,

• ∀ k ∈ N vale “se p(k) é verdade então p(k + 1) é verdade”.

Então p(n) é verdade ∀n ∈ N

Prinćıpio de Indução (forte) (para afirmações)
Seja p(n) uma afirmação sobre n ∈ N tal que

• p(1) é verdade,

• ∀ k ∈ N vale “se p(1)...p(k) são verdade então p(k + 1) é verdade”.

Então p(n) é verdade ∀n ∈ N

Variantes (outro ponto inicial)
Seja p(n) uma afirmação sobre n ∈ N tal que

• p(n0) é verdade,

• ∀ k ≥ n0 vale “se p(k) é verdade então p(k + 1) é verdade”.
(ou “se p(n0)...p(k) são verdade então p(k + 1) é verdade”.).

Então p(n) é verdade ∀n ≥ n0.

1Neste curso o conjunto dos naturais N é entendeido como {1, 2, 3, 4, ...}: para inclúır o 0 escreveremos N∪{0}
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Etapas de uma prova por indução (fraca):

• Provar o caso base p(1).

• Provar o passo de indução:

� assumir a Hipótese de Indução p(k) [ou p(1)...p(k)];

� provar p(k + 1) usando apenas p(k) [ou p(1)...p(k)];

• Concluir pelo prinćıpio de indução.

A1.2 Propriedades de Números Reais

A1.2.1 Axiomas de corpo: adição, multiplicação, distributividade. Corpo orde-
nado. Valor absoluto. Números reais: corpo ordenado completo

A1.2.2 Definições e propriedades de sup, inf

Dado um conjunto A ⊆ R,

• supremo de A: sup A é o menor S ∈ R tal que S ≥ a para todo a ∈ A;

quando A não for limitado superiormente diremos sup(A) = +∞

• ı́nfimo de A: inf A é o maior I ∈ R tal que I ≤ a para todo a ∈ A;
quando A não for limitado inferiormente diremos inf(A) = −∞

Para indicar inf e sup de imagens, é usual escrever inf
x∈Df

f(x) para indicar

inf{f(x) : x ∈ Df}

•

Propriedade Supremo Ínfimo

Aditividade sup(A+B) = sup(A) + sup(B) inf(A+B) = inf(A) + inf(B)

Multiplicação (k > 0) sup(k ·A) = k · sup(A) inf(k ·A) = k · inf(A)

Multiplicação (k < 0) sup(k ·A) = k · inf(A) inf(k ·A) = k · sup(A)

Monotonicidade A ⊆ B =⇒ sup(A) ≤ sup(B) A ⊆ B =⇒ inf(A) ≥ inf(B)
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A1.3 Propriedades da Topologia da Reta

A1.3.1 Conjuntos abertos, fechados, compactos

A1.3.2 Definição de ponto de acumulação

Dado um conjunto A ⊆ Rn e um ponto x0 ∈ Rn, dizemos que
x0 é ponto de acumulação de A (p.a. de A) se

∀ δ > 0 ∃x ∈ A com x 6= x0 tal que |x− x0| < δ
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A2 Sequência numérica real

Sequências numéricas reais são funções de domı́nio N † e contradomı́nio R
Usamos diferentes notações:

a : N → A : n 7→ a(n) = an; {an}n∈N ; (an)n∈N

onde N ⊆ N ∪ {0} e A ⊂ R:

a = {an}∞n=1 a = (an)
∞
n=0 a = {an}∞n=n0

• a é sequência

• an são os termos da sequência a

Exemplo A2.1.

1. an = n;

2. an = 1
n ;

3. an = (−1)n;

4. an = log(n− 2);

5. an = 2n;

6. an = ln(1 + n);

F

A2.1 Definições (análogas a funções)

Seja a = {an}n∈N uma sequência numérica real.

• Imagem de a é o conjunto {y ∈ R : ∃n ∈ N : an = y}.

• Gráfico de a é o conjunto {(n, y) ∈ N × R : y = an}. (Ver Geogebra)

• a é limitada superiormente se
existe L ∈ R tal que an < L para todo n ∈ N .

• a é limitada inferiormente se
existe L ∈ R tal que an > L para todo n ∈ N .

• a é limitada se valem ambas:
existe L ∈ R tal que |an| < L para todo n ∈ N .

1†(ou subconjuntos de N, ou de N ∪ {0})
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• a é crescente se n, k ∈ N e n < k implica an ≤ ak.

• a é estritamente crescente se n, k ∈ N e n < k implica an < ak.

• a é decrescente se n, k ∈ N e n < k implica an ≥ ak.

• a é estritamente decrescente se n, k ∈ N e n < k implica an > ak.

• a é monótona se vale uma das anteriores.

Observação A2.2.

1. Em geral, a representação geométrica de uma sequência é feita na reta real.

2. Não confundir a notação de sequência {an}n∈N = {a1, a2, . . .} com o con-
junto imagem a(N), o qual pode ser finito, por exemplo, se an = 1, ∀n ∈ N:

{1, 1, 1, . . .} a(N) = {1} .

3. Nem toda sequência pode ser vista como restrição de uma função definida
em R.

F

Exemplo A2.3.

1. an = n;

2. an = 1
n ;

3. an = (−1)n;

4. an = 1;

5. an =
1

n!
; n ≥ 0

6. an =
nn

n!
; n ≥ 1

F
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A2.2 Limites de sequências

Para sequências, apenas faz sentido a noção de limite para n → ∞, o qual é
definido como para funções:

Seja a : N → R (com N ⊆ N ∪ {0} não limitado) uma sequência:

• lim
n→+∞

an = L (an → L) significa2

∀ ε > 0 ∃ (n0 ∈ N) H ∈ R tal que n ∈ N e (n ≥ n0)
n > H implica |an − L| < ε

• lim
n→+∞

an = +∞ (an → +∞) significa

∀M ∈ R ∃ (n0 ∈ N) H ∈ R tal que n ∈ N e (n ≥ n0)
n > H implica an > M

• lim
n→+∞

an = −∞ (an → −∞) significa

∀M ∈ R ∃ (n0 ∈ N) H ∈ R tal que n ∈ N e (n ≥ n0)
n > H implica an < M

Definições espećıficas para sequências:

• seq. convergente: se lim
n→+∞

an existe e é finito

• seq. divergente: se lim
n→+∞

an é infinito (=∞ ou −∞)

• seq. oscilante: se lim
n→+∞

an não existe nem é infinito

• seq. não convergente: se lim
n→+∞

an não existe ou é infinito

• dizemos que uma propriedade de uma sequência vale definitivamente se

∃H ∈ R tal que se n ∈ N e n > H então a propriedade vale

• dada uma sequência a de domı́nio N, seja n : N → N : k 7→ nk uma seq.
estritamente crescente, então a seq. composta

a ◦ n : k 7→ ank é dita subsequência de a

2Se a seq. é a valores em Rk então a definição fica análoga com L ∈ Rk e a norma no lugar do módulo.
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A2.2.1 Cálculo de limites

Propriedades: valem todas as propriedades dos limites no infinito de funções
de variável real (limite da soma, do produto, da razão, teoremas de unicidade
do limite, de conservação do sinal, da composta, de comparação e confronto).

CUIDADO: a regra de l’Hôpital não faz sentido para sequências!!

A saber, se lim
n→∞

an e lim
n→∞

bn existem , então

• lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn ;

• lim
n→∞

(anbn) = lim
n→∞

an lim
n→∞

bn ;

• lim
n→∞

an
bn

=
limn→∞ an
limn→∞ bn

, se lim
n→∞

bn 6= 0 ;

• se lim
n→∞

an = L e lim
n→∞

an = M , então L = M ;

• se lim
n→∞

an = L > 0 (resp. < 0), então an > 0 (resp. < 0) definitivamente ;

• (Composta) se an ∈ Df definitivamente, lim
n→∞

an = L e lim
x→L

f(x) = M

então lim
n→∞

f(an) = M 3 ;

• (Comparação) Se an ≤ bn definitivamente, então lim
n→∞

an ≤ lim
n→∞

bn ;

• (Confronto) Se an ≤ cn ≤ bn definitivamente e lim
n→∞

an = lim
n→∞

bn = L ,

então ∃ lim
n→∞

cn = L.

Exemplo A2.4.

1. (Sequência geométrica)

{qn} :


→ 0 se q = 0 ou q ∈ (−1, 1),

→ 1 se q = 1,

oscila se q ≤ −1,

→ +∞ se q > 1,

2. lim
n→∞

n2 + n− 3

n+ 1

3. lim
n→∞

sinn

n
F

3Rećıproca não vale: f(x) = sin 1
x e an = 1

nπ
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Relação com funções: 4

Teorema A2.5. Sejam f : Df → Rk com N ⊆ Df e an := f(n), n ∈ N.
Se lim

x→∞
f(x) = L então ∃ lim

n→∞
an = L �

Exemplo A2.6.

1. lim
n→∞

en

n
2. lim

n→∞
n
√
n F

NOTA: não vale a rećıproca: considere f(x) = cos(2πx) e an =
f(n): assim ∃ lim

n→∞
an = 1 enquanto 6 ∃ lim

x→∞
f(x)

Porém vale:

Teorema A2.7. Seja f : Df → Rk, então:

lim
x→x0

f(x) = L

se e só se

para toda seq. {an}∞n=1 ⊆ Df \ {x0} tal que an → x0 vale lim
n→∞

f(an) = L

�

Em particular:

Teorema A2.8. A sequência {an} converge a L se e só se

toda sua subsequência converge a L .5

�

Exemplo A2.9.

1. lim
n→∞

[
(−1)n +

1

n

]
2. lim

x→0
sin

1

x
F

4Todas as afirmações aqui valem também se o valor do limite é ±∞ no lugar de L. Neste curso k = 1.
5 lim
n→+∞

an = a se só se lim
n→+∞

a2n = lim
n→+∞

a2n+1 = a.
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A2.3 Propriedades novas

Proposição A2.10.

(a) Sequências convergentes são limitadas;

(b) o limite independe dos “primeiros termos”: se mudarmos um número finito
de termos o limite não muda;

(c) * Se {an} é uma sequência crescente então ela converge ou diverge a +∞
(não pode oscilar);
além disso, lim

n→∞
an = sup{an : n ∈ N}.

(d) * Se {an} é uma sequência decrescente então ela converge ou diverge a
−∞ (não pode oscilar);
além disso, lim

n→∞
an = inf{an : n ∈ N}.

( * Vale também se for apenas definitivamente crescente / decrescente).

(e) Em particular, sequências monótonas e limitadas são convergentes.

Exemplo A2.11.
•
O número e

Considere an =
(
1 + 1

n

)n
e bn =

(
1 + 1

n

)n+1
:

Vale:

• an ≤ bn para todo n ∈ N;

• an é crescente, bn é decrescente (parte dif́ıcil!);

• logo ambas são limitadas e convergem;

• bn − an = an/n→ 0, logo o limite é o mesmo.

O limite obtido é o número de Nepero e .a

aJohn Napier (Giovanni Nepero, em italiano)

• a1 =
√

2, a2 =
√

2
√

2, . . . , an =
√

2an−1

F
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(f) Critérios da razão e da raiz para sequências:

(i) Se an 6= 0 e

∣∣∣∣an+1

an

∣∣∣∣ ≤ q < 1 (definitivamente) então lim
n→∞

an = 0

(ii) Se an 6= 0 e

∣∣∣∣an+1

an

∣∣∣∣ ≥ Q > 1 (definitivamente) então lim
n→∞
|an| =∞

(iii) Se n
√
|an| ≤ q < 1 (definitivamente) então lim

n→∞
an = 0

(iv) Se n
√
|an| ≥ Q > 1 (definitivamente) então lim

n→∞
|an| =∞. �

Observação. Pedir

∣∣∣∣an+1

an

∣∣∣∣ < 1 não é suficiente! F

(g) Critérios da razão e da raiz para sequências com limite:

(i) Se an 6= 0 (def.) e lim
n→+∞

∣∣∣∣an+1

an

∣∣∣∣ = q < 1 então lim
n→∞

an = 0

(ii) Se an 6= 0 (def.) e lim
n→+∞

∣∣∣∣an+1

an

∣∣∣∣ = Q > 1 então lim
n→∞
|an| =∞

(iii) Se lim
n→+∞

n
√
|an| = q < 1 então lim

n→∞
an = 0

(iv) Se lim
n→+∞

n
√
|an| = Q > 1 então lim

n→∞
|an| =∞.

(v) Se o limite da razão ou o limite da raiz n-ésima for igual a 1, o critério
é inconclusivo:

an = 1 ; an =
1

n
ou

1

n2
; an = n ou n2 ; an = (−1)n

Exerćıcio A2.12. Discuta a convergência das sequências

an =
3n

n!
, an =

nn

n!

F
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Observação A2.13.

1. Nem sempre existe lim
n→+∞

∣∣∣∣an+1

an

∣∣∣∣, mas sempre podemos verificar se

∣∣∣∣an+1

an

∣∣∣∣ é ≤ q < 1 ou ≥ Q > 1.

an+1 =

{
1
2an, n par
1
3an, n impar

a1 = c

2. Pode ocorrer de

∣∣∣∣an+1

an

∣∣∣∣ não ser ≤ q < 1 e ainda an → 0.

an =

{
1
n , n par
1
n2 , n impar

3. Se n
√
an → 1+ (i.e., n

√
an não é ≤ q < 1 definitivamente) , então an não converge a 0. F

A2.4 Sequências definidas por recorrência

Dizemos que uma sequência é definida por recorrência quando são dados
alguns termos iniciais e uma regra para gerar os termos seguintes.

Posśıveis métodos de resolução:

• Método de iteração: calcular alguns ternos −− > chutar uma fórmula
fechada −− > verificar a fórmula por indução.

• Recorrência do tipo an = f(an−1) podem ser estudadas através do gráfico
de f : veja Recorrências em Geogebra.

• Para as “lineares a coeficientes constantes”:

an = C1an−1 + C2an−2 + ...+ Cran−r + g(n)

existe uma teoria, (veja aqui, pp5-7; compare com a teoria das EDOs
lineares a coef. constantes!).

Exemplo A2.14.

(a) a1 = 1, an = 2an−1 + 1 para n ≥ 2

(b) an =
√

2an−1, sendo a1 =
√

2 e a1 = 4

(c) (Fibonacci) a1 = 1, a2 = 1, an = an−1 + an−2 para n ≥ 3 F
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A2.5 Limites superior e inferior

Dada uma sequência limitada a : N→ R (|an| ≤ α), definimos:

• an := sup
k≥n

ak ; • an := inf
k≥n

ak .

Então an ≤ an , an é decrescente , an é crescente , em particular

−α ≤ a1 ≤ a2 ≤ a3 ... ≤ ... a3 ≤ a2 ≤ a1 ≤ α

e os limites
lim
n→∞

an, lim
n→∞

an

sempre existem (finitos).

Definimos

• lim sup
n→∞

an := lim
n→∞

an: limite superior (Ls) de an .

• lim inf
n→∞

an := lim
n→∞

an: limite inferior (Li) de an .

Se a sequência a : N→ R é limitada superiormente, então (an ≤ α) igualmente
podemos definir

lim sup
n→∞

an := lim
n→∞

an. (finito ou −∞)

Analogamente, se a : N→ R é limitada inferiormente (−α ≤ an)

lim inf
n→∞

an := lim
n→∞

an. (finito ou +∞)

Se a sequência não é limitada superiormente, dizemos

lim sup
n→∞

an = +∞.

Se a sequência não é limitada inferiormente, dizemos

lim inf
n→∞

an = −∞.
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Exemplo A2.15.

1. an = 1
n

2. an = n

3. an = (−1)n

4. an = sinn F

Propriedades: Se Li = lim inf
n→∞

an e Ls = lim sup
n→∞

an são finitos, então

(i) ∀ ε > 0 existe H ∈ R tal que n > H =⇒ an ≤ Ls+ ε ;

(ii) ∀ ε > 0 existe H ∈ R tal que n > H =⇒ Li− ε ≤ an .

Teorema A2.16. Dada uma sequência a : N→ R, temos que

(a) existe lim
n→∞

an = L se e só se lim inf
n→∞

an = lim sup
n→∞

an = L

(b) Se ank é uma subsequência de an então

Li = lim inf an ≤ lim inf ank ≤ lim sup ank ≤ lim sup an = Ls .

Logo se uma subsequência é convergente, seu limite L satisfaz L ∈ [Li, Ls].

(c) Existe uma subsequência que converge a Ls e uma que converge a Li. �

APLICAÇÃO

Teorema A2.17 [Teorema de Bolzano-Weiestrass].

Toda sequência limitada a : N→ Rk possui subsequência convergente.

�

Exemplo A2.18. an = sin nπ
4 F
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A2.6 Sequências de Cauchy

Uma sequência a : N→ Rk, é dita ser uma sequência de Cauchy se

∀ε > 0 existe H > 0: p,m > H =⇒ |ap − am| < ε

Exemplo A2.19. {an} =
{

1
n

}
é sequência de Cauchy F

Teorema A2.20.

(a) Toda sequência de Cauchy é limitada;

(b) uma sequência é convergente se e só se é de Cauchy.

�

Exerćıcio A2.21. Considere a sequência an =
n∑
i=1

1

i
.

Mostre que, para k ∈ N, vale
2k+1∑

i=2k+1

1

i
≥ 1

2
.

Conclua que an diverge. F
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