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Al Pré-requisitos

A1l.1 Propriedades de Conjuntos

Principio de Indugao (fraca)
Seja! U C N com as propriedades:

el cU,
eVkeNvale “sekeUentaok+1e€U”.
Entao U = N.

Principio de Indugao (fraca) (para afirmagoes)
Seja p(n) uma afirmagao sobre n € N tal que

e p(1) é verdade,
e Vk € N vale “se p(k) é verdade entao p(k + 1) é verdade”.

Entao p(n) é verdade Vn € N

Principio de Indugao (forte) (para afirmacoes)
Seja p(n) uma afirmagao sobre n € N tal que

e p(1) é verdade,
e VEk € N vale “se p(1)...p(k) sao verdade entao p(k + 1) é verdade”.

Entao p(n) é verdade Vn € N

Variantes (outro ponto inicial)
Seja p(n) uma afirmacao sobre n € N tal que

e p(ng) é verdade,

o Vk > ngvale “se p(k) é verdade entao p(k + 1) é verdade”.
(ou “se p(ng)...p(k) sdo verdade entdo p(k + 1) é verdade”.).

Entao p(n) é verdade Vn > ny.

I'Neste curso o conjunto dos naturais N é entendeido como {1,2,3,4,...}: para incluir o 0 escreveremos NU{0}
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Etapas de uma prova por indugao (fraca):
e Provar o caso base p(1).
e Provar o passo de inducao:

m assumir a Hipdétese de Inducao p(k) [ou p(1)...p(k)];

m provar p(k + 1) usando apenas p(k) [ou p(1)...p(k)];

e Concluir pelo principio de inducao.

A1.2 Propriedades de Numeros Reais

A1.2.1 Axiomas de corpo: adigao, multiplicacao, distributividade. Corpo orde-
nado. Valor absoluto. Numeros reais: corpo ordenado completo

A1.2.2 Definigoes e propriedades de sup, inf

Dado um conjunto A C R,

e supremo de A: |sup A|é o menor S € R tal que S > a para todo a € A;
quando A nao for limitado superiormente diremos sup(A) = 400

e infimo de A: |inf A|é o maior I € R tal que I < a para todo a € A;

quando A nao for limitado inferiormente diremos inf(A) = —oo
Para indicar inf e sup de imagens, é usual escrever ing f(x) | para indicar
xrEly
inf{f(z): v € Dy}
Propriedade Supremo Infimo
Aditividade sup(A + B) = sup(A) + sup(B) | inf(A + B) = inf(A) + inf(B)
® | Multiplicagao (k > 0) | sup(k- A) =k - sup(A) inf(k-A) =k -inf(A)
Multiplicagao (k < 0) | sup(k- A) = k - inf(A) inf(k-A) =k -sup(A4)
Monotonicidade ACB = sup(4) <sup(B) | AC B = inf(A) > inf(B)
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A1.3 Propriedades da Topologia da Reta
A1.3.1 Conjuntos abertos, fechados, compactos

A1.3.2 Definicao de ponto de acumulacao

Dado um conjunto A C R" e um ponto xy € R", dizemos que
zo é ponto de acumulagao de A (p.a. de A) se

V>0 3Ix € A com x # x¢ tal que |x —x¢| <9

Peron €& Massa A5



AR-A 10 de fevereiro de 2026

A2 Sequéncia numérica real

Sequéncias numéricas reais sdo funcées de dominio N T e contradominio R
Usamos diferentes notagoes:

a: N — A:nw— a(n) = ap; {an bnen; (an)nen

onde NCNU{0} e ACR:

_ o0 _ o0 . o0
a = {an}n:1 a = (an)nzo a = {CLN}n:no
e o é sequéncia
e a, sao os termos da sequencia a

Exemplo A2.1.

1. a, =n; 4. a, = log(n — 2);

2. a, = %; 5. ap = 2"

3. an, = (—=1)" 6. a, = In(1 4+ n);

*

A2.1 Definigoes (anilogas a fungoes)
Seja a = {ay }neny uma sequéncia numérica real.

e Imagem de a é o conjunto {y e R: Ine N : a, = y}.

e Grafico de a é o conjunto {(n,y) € N xR: y=a,}. ( )

e ¢ é limitada superiormente se

existe L € R tal que a,, < L para todon € N.
e o é limitada inferiormente se

existe L € R tal que a,, > L para todon € N.
e ¢ é limitada se valem ambas:

existe L € R tal que |a,| < L para todon € N.

T (ou subconjuntos de N, ou de NU {0})
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e o é crescente se n,k € N e n < k implica a, < ay.

e o é estritamente crescente se n,k € N e n < k implica a,, < ai.

e o é decrescente se n,k € N e n < k implica a,, > ay.

e o é estritamente decrescente se n,k € N e n < k implica a,, > ai.

e ¢ ¢ monotona se vale uma das anteriores.

Observacao A2.2.
1. Em geral, a representacao geométrica de uma sequéncia é feita na reta real.

2. Nao confundir a notacdo de sequéncia {a,}nen = {a1,a9,...} com o con-
junto imagem a(N), o qual pode ser finito, por exemplo, se a,, = 1, Vn € N:

1,1,1,...}  a(N)={1}.

3. Nem toda sequéncia pode ser vista como restricao de uma funcao definida

em R.
*
Exemplo A2.3.
1. a, =n; 4. a, = 1;
5 _ L >0
n?’L
3. an, = (=1)"; 6. an="1in=1
*
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A2.2 Limites de sequéncias

Para sequéncias, apenas faz sentido a nocao de limite para n — oo, o qual é
definido como para funcoes:
Sejaa: N - R (com N C NU{0} ndo limitado) uma sequéncia:

e lim a,=L (a,— L) significa®
n—-+00

Ve>0d, .,HeRtalquene Ne,.,, n>H implica |a, — L| < ¢

e lim a,=+oc0 (a, — +00) significa
n——+00

VMeR3, ., HeRtalqueneNe,., , n>Himplicaa, >M

e lim a,=—-00 (a,— —o0) significa
n—-+00

vVMeR3, ., HeRtalqueneNe,., , n>Himplicaa, <M

Definicoes especificas para sequeéncias:

e seq. convergente: se lim a, existe e é finito
n—-+00

e seq. divergente: se lim a, é infinito (= co ou —o0)
n—+00

e seq. oscilante: se lim a, nao existe nem ¢ infinito
n—-+00

e seq. nao convergente: se lim a, nao existe ou é infinito
n—+00

e dizemos que uma propriedade de uma sequéncia vale definitivamente se

dH € R tal que se n € N e n > H entao a propriedade vale

e dada uma sequencia a de dominio N, seja n : N — N : k — n; uma seq.
estritamente crescente, entao a seq. composta

aon:kw— ay, édita subsequencia de a

2Se a seq. é a valores em R” entdo a definicdo fica andloga com L € R¥ e a norma no lugar do médulo.

Peron & Massa A8



AR-A 10 de fevereiro de 2026

A2.2.1 Ca&lculo de limites

Propriedades: valem todas as propriedades dos limites no infinito de funcoes

de variavel real (limite da soma, do produto, da razao, teoremas de unicidade
do limite, de conservagao do sinal, da composta, de comparacao e confronto).

CUIDADO: a regra de I'Hopital nao faz sentido para sequéncias!!

A saber, se | lim a, e lim b, existem |, entao

n—oo n—oo

lim (a, +b,) = lim a, + lim b,,;

n—oo n—oo n—oo
lim (a,b,) = lim a, lim b, ;
n—oo n—oo n—oo
.a, lim, .y a, )
lim — = ————, se lim b, # 0;
n—oo b, lim,,_ by, n—00

se lim a, = L e lim a, = M, entao L = M ;
n—oo n—0o0

se lim a, = L > 0 (resp. < 0), entao a,, > 0 (resp. < 0) definitivamente ;

n—oo
(Composta) se a, € Dy definitivamente, lim a, = L e lim f(z) = M

n—00 z—L
entao lim f(a,) = M 3;
n—o0

(Comparacgao) Se a,, < b, definitivamente, entao lim a, < lim b, ;
n—oo n—o0

(Confronto) Se a, < ¢, < b, definitivamente e lim a, = lim b, = L,
n—oo n—oo

entao 4 lim ¢, = L.
n—o0

Exemplo A2.4.

1.

(Sequéncia geométrica)

(0 seq=0o0uqe(—1,1), n24+n—3
2. lim ——

n — 1 seq=1, n—oo n+1
{¢"y: ¢
oscila  se g < —1, .
sinn

= +oo seqg>1, 3. lim

n—oo N

SReciproca ndo vale: f(z) =sinl ea, =-L

nim
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Relagao com funcgoes: *

Teorema A2.5. Sejam f: Dy — R* con NC Dy ea, := f(n), n € N.
Se lim f(z) =L entao 3 lim a, =L <

T—00 n—oo

Exemplo A2.6.

I lim & 2. lim {/n *
n—oo M

NOTA: nao vale a reciproca: considere f(z) = cos(27z) e a, =
f(n): assim 3 lim a, = 1 enquanto A lim f(x)
n—oo T—00

Porém vale:

Teorema A2.7. Seja f:D; — R* entdo:

lim f(z)=1L

T—X0

se e SO se

para toda seq. {an}ry C Dy \ {zo} tal que a, — o vale lim f(a,) =L

n—oo

<
Em particular:
Teorema A2.8. |A sequéncia {a,} converge a L| se e s se
toda sua subsequéncia converge a L |.5
<
Exemplo A2.9.
1 o1
1. lim |(=1)"+ — 2. lim sin — *
n—00 n x—0 Z

4Todas as afirmacdes aqui valem também se o valor do limite é 00 no lugar de L.

° lim a,=asesése lim as, = lim as,y1 = a.
n—-+o0o n—-+oo n—-+o00
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A2.3 Propriedades novas
Proposicao A2.10.
(a) Sequéncias convergentes sao limitadas;

(b) o limite independe dos “primeiros termos”: se mudarmos um nimero finito
de termos o limite nao muda,

(c) © Se{a,} é uma sequéncia crescente entao ela converge ou diverge a +00
(nao pode oscilar);
além disso, lim a, = sup{a, : n € N}.
n—oo

(d) © Se {a,} € uma sequéncia decrescente entdo ela converge ou diverge a
—o0 (nao pode oscilar);

além disso, lim a, = inf{a, : n € N}.
n—oo

(* Vale também se for apenas definitivamente crescente / decrescente).

(e) Em particular, sequéncias mondétonas e limitadas sao convergentes.

Exemplo A2.11.

[ )
O numero e

)n—|—1 .

Considere | a,, = (1 + %)n elb, = (1 4 %
Vale:

e a, <b, para todo n € N;
e a, ¢ crescente, b, ¢ decrescente (parte dificill);
e logo ambas sao limitadas e convergem;

e b, —a, =a,/n— 0, logo o limite é 0 mesmo.

O limite obtido é o | nimero de Nepero e |.¢

®John Napier (Giovanni Nepero, em italiano)

o a =200 =V2V2,...,a, = 2,1
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(f) Critérios da razao e da raiz para sequéncias:

(1) Se a, # 0 e fnt] < q < 1 (definitivamente) entio lim a, =0

an n—oo

(ii) Se a, #0 e nst] > Q > 1 (definitivamente) entao lim |a,| = oo
Qy, n—o0

(1ii) Se /|an| < q <1 (definitivamente) entao lim a, =0
n—oo

(iv) Se /|an| > Q > 1 (definitivamente) entdao lim |a,| = oc. <
n—oo
Observacgao. Pedir ol < 1 nao é suficiente! *
an

(9) Critérios da razao e da raiz para sequéncias

n+1 .1
= g <1 entdo lim a, =0
n—o0

(i) Se a, # 0 (def.) e lim

n—-+o0o an,

An+1

=@ > 1 entdo lim |a,| = o
n—o0

(ii) Se a, # 0 (def.) e lim

n—-4o0o an

(i1i) Se lim {/|a,| =q <1 entdo lim a, =0
n—00

n——+00
(iv) Se lim +/|a,| =@ > 1 entdo lim |a,| = cc.
n—+0o0 n—0o0
(v) Se o limite da razdo ou o limite da raiz n-ésima for igual a 1, o critério

€ 1mconclusivo:

Exercicio A2.12. Discuta a convergéncia das sequéncias
3" n'

a/n:_ a/n_

n!’ Tl
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Observacao A2.13.

. . An+1 . An+1| ,
1. Nem sempre existe lim nt , mas sempre podemos verificar se ntllg <g<lou>@>1.
n—+00 | Gp n
1
_J3an, npar B
ant+1 = 9] . ap =c
3an, M impar
An+1 ~ .
2. Pode ocorrer de nao ser < ¢ < 1 e ainda a, — 0.
Qn
1
=, mpar
an =14" i
~3, nimpar
3. Se {/a, — 1T (i.e., ¥/a, nao é < ¢ < 1 definitivamente) , entdao a, nao converge a 0. *

A2.4 Sequéncias definidas por recorréncia

Dizemos que uma sequéncia é definida por recorréncia quando sao dados
alguns termos iniciais e uma regra para gerar os termos seguintes.

Possiveis métodos de resolucao:

e Método de iteragao: calcular alguns ternos —— > chutar uma féormula
fechada —— > verificar a férmula por indugao.

e Recorréncia do tipo a, = f(a,_1) podem ser estudadas através do grafico
de f: veja

e Para as “lineares a coeficientes constantes”:
an = Crap—1 + Coap_g + ... + Cran—, + g(n)

existe uma teoria, (veja ; compare com a teoria das EDOs
lineares a coef. constantes!).

Exemplo A2.14.

(a) a1 =1, ay, = 20,1+ 1 paran > 2
(b) an = +/2a,_1, sendo a1 = V2 e a; =4
(¢) (Fibonacci) a; =1, as =1, ap = Qp—1 + Gp_o paran > 3 *
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A2.5 Limites superior e inferior

Dada uma sequéncia limitada a : N — R (|a,| < a), definimos:

e |, :=supay; e|a, ::glfak.
—  k>n — =n

Entao a, < a,, @, é decrescente, a, ¢ crescente, em particular
—aS a1 <a<a3..< .. @30S0 <o

e os limites

lim @, lim a,
n—oo n—oo —
sempre existem (finitos).
Definimos
e |limsupa, := lim a,: limite superior (Ls) de a, .
Nn—00 n—00
e |liminfa, := lim a,: limite inferior (Li) de a,, .
n—oo n—oo —

Se a sequéncia a : N — R é limitada superiormente, entao (a, < a) igualmente
podemos definir

limsupa, := lim a,. (finito ou —o0)
n—00 n—00

Analogamente, se a : N — R ¢ limitada inferiormente (-a < a,)

liminf a, := lim a,. (finito ou +00)
n—o0 n—,oo —

Se a sequéncia nao ¢ limitada superiormente, dizemos

lim sup a,, = +00.
n—o0

Se a sequéncia nao é limitada inferiormente, dizemos

lim inf a,, = —o0.
n—o0
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Exemplo A2.15.

l.a,=12 3. a, = (=1)"
2. a,=n 4. a, =sinn

Propriedades: Se Li = liminf a, e Ls = lim sup a,, sao finitos, entao
n—o0

n—oo

(i) Ve >0 existe H e Rtal quen > H — a, < Ls+¢;

(ii)) Ve > O existe H e Rtalquen > H = Li—e¢<a,.

Teorema A2.16. Dada uma sequéncia a : N — R, temos que

(a) | existe lim a, = L| se e so se
n—oo

liminf a,, = limsupa, = L
ey n—00

(b) Se a,, éuma subsequéncia de a, entao

Li = liminf a, <liminfa,, <limsupa,, <limsupa, = Ls.

Logo se uma subsequéncia € convergente, seu limite L satisfaz L € [Li, Ls].

(c) Existe uma subsequéncia que converge a Ls e uma que converge a Li.

<
APLICACAO
Teorema A2.17 [Teorema de Bolzano-Weiestrass].
Toda sequéncia limitada a : N — RF possui subsequéncia convergente.
<
Exemplo A2.18. a, =sin”f *
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A2.6 Sequéncias de Cauchy

Uma sequéncia a : N — R*, ¢ dita ser uma sequéncia de Cauchy se

Ve > 0 existe H > 0: ppm > H = |a, —an| <c¢

Exemplo A2.19. {a,} = {1} ¢ sequéncia de Cauchy *

Teorema A2.20.

(a) Toda sequéncia de Cauchy € limitada;

(b) uma sequéncia € convergente se e so se € de Cauchy.

<
n
, . : . 1
Exercicio A2.21. Considere a sequéncia a,, = Z -.
=1 !
2k+1 1 1
Mostre que, para k € N, val ->—.
que, p vale Y = >
=2k 41
Conclua que a,, diverge. *
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