
Sketch-based Adaptive Mesh Augmentation
using Stellar Operators

Afonso Paiva
ICMC–USP

apneto@icmc.usp.br

Ronan Amorin
University of Calgary

rmamorim@ucalgary.ca

Luiz Velho
IMPA

lvelho@impa.br

Mario Costa Sousa
University of Calgary
smcosta@ucalgary.ca

Fig. 1. Overview of our modeling framework: The sketching stage allows the graphic designer to place feature curves (red stroke) on
the surface of the mesh (left); The adaptive mesh refinement stage increases the mesh resolution around the features (middle); Finally,
the feature creation displaces vertices to create a surficial feature (right).

Abstract—In this paper we present a new method for modeling
and editing surface detail using free-form curves and a natural in-
terface. It combines in a original way an adaptive multiresolution
mesh structure with a simple, intuitive sketch-based interface.
One of the novel contributions of this work is the curve sensitive
mesh resolution control, which allows the definition of a rich set of
operators that locally modify the surface geometry. Furthermore,
the present framework provides the basic functionality to build
a complete feature based modeling system.

Keywords- sketch-based modeling, adaptive meshes, sketching,
silhouette, multiresolution, geometric modeling.

I. INTRODUCTION

An important class of sketch-based interface and model-
ing (SBIM) operations is known as surficial augmentation. The
goal is to allow users to add details over an existing model
by sketching features on its surface. These features can repre-
sent creases, convex/concave regions, geometry representing a
particular material property [1].

One important goal and challenge of surficial SBIM aug-
mentation is to preserve the original modeling intent expressed
by user’s the 2D sketch input (”What You Sketch Is What You
Get”). This must be efficiently and effectively mapped over
the existing surface, resulting in new features that preserve

the original quality of the mesh and the surficial augmenting
intention.

Different surficial SBIM augmentation strategies have been
proposed, including subdivision surfaces [2], [3], implicit
surfaces [4] and silhouettes [5], [6].

A. Contributions

The main contribution of this paper is provide a simple
and intuitive interface between sketch-based techniques and
adaptive multiresolution meshes to create a robust and compact
mesh augmentation system. In particular,

• We build on the adaptive multiresolution structure pro-
vided by semi-regular 4-8 meshes to create an uni-
fied framework for mesh augmentation using scheduled
simplification, refinement stellar operations and different
sketch styles to accomplish mesh augmentation;

• Our system allows to easily introduce new features on a
mesh in an efficient manner. This efficiency is achieved
through by coupling the sketching process into a mesh
refinement process. During the mesh augmentation de-
velopment, we adapt the mesh resolution only in the
vicinity of the user’s sketches; it allows the concentration
of computational effort where it is needed;

mailto:apneto@icmc.usp.br
mailto:rmamorim@ucalgary.ca
mailto:lvelho@impa.br
mailto:rmamorim@ucalgary.ca

• Our method introduces new strategies in the geometry
adjustment stage, such as a vertex snapping process suited
to semi-regular meshes and simple refinement criteria
without compute intersections between edges and the
user’s sketches;

• We can localize the effects of the feature creation process,
and adjusting vertices positions to create sharp features
while elsewhere preserving the quality of the input mesh.

II. RELATED WORK

Khodakovsky and Schröder [7] provide a method to enable
the creation and control of fine-level feature lines using a non
adaptive multiresolution mesh based on Loop’s subdivision
scheme. In order to accomplish the feature creation in this
framework, it is essential to force the feature curves constrains
at each level of the multiresolution tree. Both the surface and
the feature curves are needed to represent the resulting surface.
Finally, the entire mesh is subdivided one or more times to
achieve quality mesh with the new features.

Biermann et al. [2] present a technique to create sharp
features from feature strokes over quadrilateral subdivision
surfaces. The input strokes are projected on the mesh’s pa-
rameter space. Snapping is then processed in parameter space
to align the mesh edges with the input strokes. A resampling
is then performed so the augmentation can be seen in the
actual mesh. However, in their framework, they create an
adaptive quadrilateral mesh using a reparametrization process
on Catmull-Clark surfaces.

Olsen et al. [3] present a method for augmenting an existing
quadrilateral mesh with variable-scale sharp features. No spe-
cial subdivision rules are required to enhance the augmented
mesh. They use adaptive subdivision allowing the mesh com-
plexity to increase only in the vicinity of the features, thus
avoiding the need for global subdivision to create high-quality
features. Their approach focus on Catmull-Clark surfaces
with operators for interior feature lines augmentation. Our
framework handles triangular meshes using stellar operators
producing vertices with low valence. Our vertex snapping is
performed in coarse resolution which automatically adapted
to fine resolution without the need to recompute the entire
process. Moreover, due to the stellar operators, the use of
templates is not necessary.

Nealen et al. [5] present a view-dependent sketch-based
approach for editing and deforming surface meshes. A set
of vertices (handle) is selected by silhouette selection and
cropping, or by sketching directly onto the surface. Editing
is then processed by sketching a new, view-dependent handle
position or by indirectly affecting differential properties along
the sketched curve. The fundamental idea of their approach
is to satisfy linear modeling constraints while preserving
differential properties of the original mesh geometry. Their
approach does not use any multi-resolution adaptive scheme.
Shape features are generated by solving a linear system in
the least-square sense. Our method is matrix-free and feature
smoothing/sharpening is controlled by evaluating a simple
scalar-valued function during vertex displacement. Our goal,

however, is not to deform the mesh for preserving its local
details but to augment it with new shape features and details.

Gingold and Zorin [8] present a sketch-based modeling
technique based on editing shaded images of 3D models. The
3D models are automatically changed to reflect the modifi-
cations made in the 2D image. The features are included in
the model by solving a quadratic surface optimization problem
with linear constraints that approximates the user 2D stroke
shading modification in the 3D model. Their approach uses an
adaptive subdivision to refine the stroke area.

De Araújo and Jorge [9] present a system to create and
edit free-form shapes from large point datasets. This is ac-
complished by re-polygonizing only the local changed parts
of the model being created or edited. This approach relies on
the curvature information extracted directly from the implicit
surface. The Multi-level Partition of Unity Implicits (MPU) is
used to convert point clouds into implicit surfaces. This MPU
data structure was modified to allow local re-polygonizations
and therefore permitting the handling of large datasets of
points. Their approach is based on the re-polygonization of
the implicit representation instead of working directly on the
mesh as our approach.

Takayama et al. [10] present a 3D surface geometry cloning
tool capable of cloning features of different topologies such as
a handle, on high resolution meshes, in real-time using a brush.
The tool allows the combination of features from different
models filling gaps and cloning arbitrary surface geometric
details. The proposed formulation guarantees a C1 connection
of the geometry cloned in the target surface. heir approach
explores the regular 2D domain provided by local surface
parametrization and solving in GPU the related variational
problem.

III. THE METHOD

Our mesh modeling framework consists of three stages
(Figure 1). The sketching stage, described in Section III-A,
handles the graphic designer’s sketch input to create feature
curves. The adaptive mesh refinement stage, detailed in Sec-
tion III-B, uses the sketch input to increase the mesh resolution
in the region of interest during the modeling of the features.
Finally, the feature creation stage presented in Section III-C
uses vertices in the high-resolution regions of the mesh to
approximate each features, and then displaces these vertices
to create surficial features on the mesh.

The input to our framework is a triangle mesh represented
by a simplicial cell complex M = (V,E, F) formed by a
list of 3D vertices vi = (vxi , v

y
i , v

z
i) ∈ V , a list of edges

e = (vi,vj) ∈ E and a list of faces f = (vi,vj ,vk) ∈ F .
We use a semi-regular 4-8 mesh structure based on stellar oper-
ations [11] for the adaptive mesh refinement stage. This allows
us to increase the resolution of the mesh in a neighborhood
around the features. After mesh refinement stage, features are
created by displacing the surface along the sketch.

In our method, the surface displacement is made in two
ways: the vertices in the neighborhood of the sketch are
displaced along the normal direction or the vertices in the

neighborhood of the surface silhouette are displaced to new
sketch shape for this silhouette (see Figure 2).

Fig. 2. Surface displacement: (top row) The vertices close to the sketches
(red strokes) are displaced along the normal direction to produce the effect
of arteries of the heart. (bottom row) The vertices in silhouette are displaced
to new desired silhouette of a famous character (green stroke).

A. Drawing sketches

This sketching system uses a standard mouse device for
input. Initially, the strokes are represented by an ordered
sequenced of 2D points in window coordinates. To avoid
irregular spacing between samples in a raw input stroke,
we resample the input data on-the-fly by discarding any
sample within a threshold distance of earlier samples. After
the resampling, the input stroke is smoothed using Chaikin
subdivision scheme [12].

In order to create the feature curves, the next step consists
in transforming the input strokes from window coordinates to
object/world coordinates by unprojecting each stroke sample
into 3D space. This reverse projection can be done using the
depth buffer and computing the inverse of modeling and view-
ing transformation matrix of the rendering API. In OpenGL
API, the function gluUnProject() performs this task.

In our framework, the feature curve C is interpreted as a
parametric curve of 3D points pi, i.e., C = {p0,p1, . . . ,pn}.
The output of sketching stage is a set of feature curves gener-
ated through two processes: surficial sketching and silhouette
sketching.

1) Surficial sketching: This process allows the graphical
designers to sketch features on the surface of the model. After
a sketch has been projected onto a surface, features are created
by displacing the surface along the sketch. Usually the surface

is displaced along the normal direction, suitable for creating
details such as arteries and veins (see Figure 2.a).

2) Silhouette sketching: The main goal of this view-
dependent sketch style is detecting the silhouette edges of the
input surface and then sketch a new shape for this silhouette
(see Figure 2.b). There are several strategies for silhouette
detection in non-photorealistic rendering literature [13].

In order to compute a set of sample points S at the silhouette
of a triangle mesh, we use object space silhouette edge
detection algorithm proposed by Hertzmann and Zorin [14].
We select an edge e = (vi,vj) ∈ E which satisfies:

〈vi − c,ni〉 〈vj − c,nj〉 ≤ 0 ,

where c is the viewpoint, ni and nj are the vertex normals of
vi and vj , respectively. A silhouette point psil and its corre-
sponding normal nsil is computed by a linear interpolation:

psil = (1− α)pi + αpj

nsil = (1− α)ni + αnj

with α = 〈vi − c,ni〉 / (〈vi − c,ni〉 − 〈vj − c,nj〉).
During silhouette sketch editing, the user first click the

mouse button at a starting point p0 on the surface and drag
the mouse to draw a new shape for the silhouette. To finish
the drawing and create an end point pn, the user release the
mouse button on the surface model. Then, we find the closest
points psil

0 and psil
n in S from p0 and pn, respectively. Finally,

we project the silhouette sketch onto plane determined by the
points psil

0 , psil
n and psil

+ = 0.5(psil
0 + psil

n + nsil
0 + nsil

n).
For our adaptive mesh refinement stage (Section III-B), it is

important to note that the sketching stage must determine
which face f ∈ F the feature falls on surface, in other words,
we must project the surficial and silhouette sketch onto input
surface to produce a feature curve C on the surface. This
projection can determined by an intersection test between ray
and triangle [15], a very popular tool in ray-casting methods.
The details of our multiresolution mesh structure will be
discussed in the next section.

B. Adaptive Multiresolution Meshes

In order to perform the sketch-based modeling operations
described in Subsection III-A using a representation oblivious
strategy, as if we were working on a continuous deformable
surface.

Recall that the above operations add shape features to the
surface and, furthermore, notice that in order to create such
features we need to deform the surface by a warping which is
guided by the sketches in their regions of influence.

Since the surface in our system is represented by a triangle
mesh, in order to accomplish our goal, we need to model
a dynamic adapted mesh. To this end, we have chosen to
adopt the framework introduced in [11], that applies the
theory of stellar operators to create a variable resolution mesh
representation.

For the sake of completeness we will review in this section
the main concepts of variable resolution meshes and describe

how they are employed to build the adaptive dynamic mesh
library used in the system.

A multiresolution mesh is a monotonic sequence of sim-
plicial complexes H = (M0,M1, . . . ,Mk), with increasing
resolution, i.e., the mesh sizes, |Mi| ≤ |Mj |, for i < j and the
meshes Mi ∈ H are equivalent triangulations of a surface S.
When a multiresolution mesh structure allows the resolution
of the mesh to vary locally over the surface, it produces a
variable-resolution triangulation [16]. The key to build mesh
structures with this property is the ability to perform local
refinement and simplification operations on the mesh. The
theory of stellar subdivision provides such operators [17].

For the case of 2D meshes, the basic stellar operators are:
the face split and its inverse face weld; and the edge split
and its inverse edge weld. Variable resolution schemes modify
a mesh locally using a sequence of these operations. These
operations are illustrated in Figure 3.

Fig. 3. Stellar operators on a mesh.

A powerful structure for variable resolution meshes is
the Regular Binary Multitriangulation (RBM). The RBM is
formed by applying edge splits to an initial coarse mesh M0,
called base mesh, that is a triangulated quadrangulation, or tri-
quad mesh, such that this subjacent semi-regular subdivision
structure is always maintained. In particular, the RBM is the
mathematical abstraction used for the dynamic adapted mesh
library in [11] and adopted in our system.

Given a sketch curve C, we define a simple criterion for
adaptive mesh refinement based on the distance between C
and the vertices vi ∈ V as follows:

if dist (vi, C) < r then refine all triangles in si,

where r is a user threshold parameter and si is the vertex star
of vi. Figure 4 illustrates this refinement process.

In our system, we generate the base mesh using first a
mesh simplification algorithm, such as the Four-Face Cluster
method of [18], and then imposing the tri-quad structure as
described in [19]. The surface sampling can be done efficiently
through a hierarchical parametrization which is built during the
simplification process, similar to the method of [20]. Finally,
the tests for refinement and simplification of the mesh are
dependent of the surface adaptation to the geometry of the
features created while the surface is deformed, as will be
discussed in the next section.

C. Feature Generation
Feature generation is the most important stage in our mesh

modeling framework. In this stage, the visible feature is actu-

(a) (b)
Fig. 4. Adaptive mesh refinement: (a) The sketch curve (red stroke) defines a
mesh refinement region (yellow region). (b) The mesh adaptivity is performed
in the refinement region.

ally generated by displacing vertices in the mesh. We divide
feature generation into two steps. First step is called vertex
snapping, this step consists in selecting which vertices will be
displaced and create a geometry adjustment to approximate
sharp features from these vertices. Second step is called vertex
displacement, in this step; we displace the selected vertices to
create a visually perceptible feature.

1) Vertex snapping: The inputs to this stage of our frame-
work are a multiresolution adaptive mesh from mesh refine-
ment stage, and a set of feature curves. From these inputs,
we determine a sequence of intersection points between edges
e ∈ E and each feature curve.

(a) (b)

Fig. 5. Vertex snapping strategy: (a) Snap-to-curve uses the intersections
points (red) between incident edges of a vertex vi and the feature curve
(dashed red curve). (b) The vertex vi is moved to closest intersection point p̃.

In order to create sharp features on surfaces, we adopt a ver-
tex snapping strategy inspired in the snap-to-curve approach
proposed by Biermann et al. [2]. First, our algorithm traverses
each vertex vi ∈ V taking its incident edges which have an
intersection point with a feature curve. Then, we compute
the closest intersection point p̃ from vi. Finally, the vertex
vi is moved to p̃. This snapping strategy is illustrated in
Figure 5. Another advantage of our vertex snapping approach
is to preserve the semi-regular structure of the mesh. This
structural invariance allows us to increase the resolution of
the mesh without recomputing the snapping (see Figure 6).

To alleviate the mesh distortion introduced in the vertex
snapping process at the faces f ∈ F surrounding the features.
We use a vertex smoothing technique similar to the one used
by Botsch and Kobbelt [21]: for each vertex vi ∈ V , the
barycenter bi of its star is computed. The vertex is then shifted

Fig. 6. Vertex snapping preserves the multiresolution structure of the mesh:
the resolution increases in a neighborhood of the feature curve (red stroke)
from coarse (left) to fine level (right).

tangentially towards bi, which is updated by:

vi = vi + (di − 〈di,ni〉ni) ,

where di = bi − vi. The tangential movement avoids strong

Fig. 7. Creation of a sharp feature combining vertex snapping and vertex
displacement: Mesh and curve without vertex snapping (top). Mesh and curve
with vertex snapping (bottom).

shrinking, and the relaxation towards bi improves the aspect
ratio of the triangles. Figure 7 demonstrates the result of this
snapping strategy for a free-form sharp feature generation.

2) Vertex displacement: After the snapping stage, we create
visually perceptible features moving the vertices along the
sketch. In our system, the vertices can be displaced in two
ways: along direction of the surface normal or along direction
of the silhouette sketching.

To perform the displacement along the surface normal, we
adopt the same approach proposed by Olsen et al. [3]. The user
can control the displacement profile of each curve through a
reduced set of intuitive scalar parameters, including width r,
height h, and sharpness s. The width parameter r determines
the radius of region of interest around a feature curve C, i.e.,
the parameter r specifies the vertices to displace. The height h
is a scaling parameter for the vertex normals along the feature.

The shape of a feature profile can be adjusted by the
sharpness parameter s ∈ [0,∞), according to function Φ(x) =

φ(dist(x,C)
r), where

φ(x) =

{
(1− x)

s
, x ∈ [0, 1)

0 , otherwise (1)

The vertex vi is moved to a new position by:

vi = vi + Φ(vi)Ni , (2)

where Ni = hni denotes the scaled vertex normal direction.
Figure 8 show the effect of sharpness parameter s on the
feature profile.

Fig. 8. The effect of varying the feature sharpness and the profiles of the
displacement function (Equation 1): (top row) Original mesh (left); using
s = 0.3 to create a smooth feature (right). (bottom row) Original mesh (left);
using s = 1.5 to create a sharp feature (right).

The displacement along the silhouette sketching is com-
puted replacing the scaled vertex normal Ni in Equation 2 by
the direction si = si − pi, where pi ∈ C is the closest point
from a vertex vi ∈ V and si is its corresponding point at the
silhouette sketch.

IV. RESULTS & DISCUSSION

We experiment the modeling framework described in this
work on various models. In particular, the augmentation effect
on the mesh and the multiresolution adaptive structure of
our system are clearly illustrated in Figure 9: (a) The user
draws feature curves (red and yellow strokes) on a surface.
(b) The refinement stage increases the mesh resolution around
the features. (c) Then, the geometry of the mesh is modified
to create surficial features. In our experiments, the generation
of sharp features is a delicate task and the vertex snapping

process is necessary even in high resolution regions around
the features as shown in Figure 9 (top row).

(a) (b) (c)

Fig. 9. Sketching on sphere (top row) and on a surface with complex
topology, such as the bitorus surface (bottom row): (a) Sketching on original
mesh; (b) Adaptive mesh refinement stage; (c) Feature generation stage.

The proposed framework provides a wide range of mesh
augmentations just changing the sign of the height parame-
ter h. Figures10.a demonstrates that negative values of h for
the features (yellow strokes)leads an inward surface displace-
ment, while Figure 10.b shows that positive values of h induce
an outward surface displacement in a local vicinity of the
feature curves (red strokes).

Figure 11 illustrates the results of the silhouette sketching
of the proposed method. Figure 11.a shows how our system
can be used to create medium-scale silhouette features on a
handmade sculpture model. Figure 11.b presents the ability of
our method to blend a silhouette sketch with the input mesh.

The proposed method can be used for terrain design which
include hand-drawing directly on the terrain mesh to create
hills, valleys and other features. We performed experiments
over two terrain 4-8 meshes. In the first experiment, the input
is a triangular mesh representing the terrain model. A 4-8 mesh
is first generated directly from the given mesh (Figure 12).
For a triangular mesh this conversion is accomplished by
pairing triangles, the unpaired triangles are subdivided using
a barycentric subdivision, adding 3 new triangles [22]. In the
second experiment, the input is a height-map of the terrain
model. Figure 13 illustrates the process. A standard 3D planar
mesh grid is first generated, with constant X,Y spacing and
Z modulated after the grayscale intensities of the height-map
image. This results in a regular quad base mesh which is ideal
to be converted in a 4-8 mesh. The quad mesh triangulation
is straightforward and generates triangles with a good aspect
ratio. The semi-regular structure is essential in the refining

process since the stellar operators rely on this regularity.
Figure 14 shows results for another height-map and 3 strokes
for the 4-8 mesh augmentation. Note that the base mesh in both
examples are a coarse approximation to the original height-
map image. The user can adjust the resolution of the base mesh
for experimenting with both coarse and fine approximations.
This approach is useful when the terrain design requirement
is to capture the overall shape of a given terrain, and allowing
the user to augment new shape features.

Results presented in this paper were generated on a
1.86GHz Centrino with 2GB of RAM. Table I describes some
usage statistics recorded while producing the results. The
reported timings include the time tref spent to refine the
mesh, the time tsnap spent snapping the vertices, and the time
tfeat spent applying the features by the system, as well as the
number of faces of the input model #4in and the number
of faces of the augmented model #4out. The entire time
required to augment a mesh depends on both the number and
complexity of feature curves, as well as the complexity and
the resolution of the input mesh. Based on our experiments
and observations, the potential bottleneck in our approach is
due to the vertex snapping stage.

(a)

(b)

Fig. 11. Silhouette sketching: (a) The Fertility model (left) is modified with
medium-scale silhouette features (right). (b) The tongue of a stylized dog head
model (left) can be augmented according to silhouette feature generated by
our method (right).

(a) (b)
Fig. 10. Surficial displacement: (a) Inward surface displacement, features curves (yellow strokes) are placed onto Victorian chair model (left) to create a
more comfortable appearance (right); (b) Outward surface displacement, the alien head mesh (left) is augmented to produce an ear structure (right).

Fig. 12. Different views of before and after augmenting a 4-8 mesh generated directly from a given triangular mesh of the Grand Canyon model.

Fig. 13. Sketch-based augmentation pipeline over a terrain model generated from a height-map of the Grand Canyon.

V. CONCLUSION & FUTURE WORK

In this paper, we have presented a novel modeling frame-
work for augmenting an input mesh model using different
sketch-based techniques with multiscale control of the sharp
features. Our method combines the sketching process into a
hierarchical adaptive mesh refinement process based on stellar
theory. We do not require any kind of special subdivision
rules to further enhance the augmented mesh; and finally,
the adaptive mesh refinement allows the mesh resolution to
increase only in the vicinity of the feature curves.

In terms of future work, one natural extension of the
techniques introduced in this paper is to use the curves created

by the user in the sketch based deformation as “first class”
elements in the modeling system. That implies in considering
these curves as handles, which define, parametrize and control
features of the model. In this case, it would be instrumental
to represent such handles as subdivision curves that lie on the
surface and can be edited as a free-form element. One way
to implement functionality is through geodesic subdivision as
proposed by Morera et al. [23].

Silhouette detection in our system is made in object space.
However, the silhouette path on the mesh might fold onto itself
when projected to image space. To avoid this problem and
improve the performance of our system, we can explore the

TABLE I
SOME STATISTICS AND TIMINGS (IN SECONDS) OF OUR SYSTEM.

model fig #4in #4out tref tsnap tfeat

Bull 1 19k 21k 0.06 1.85 0.02
Heart 2 15k 19k 0.09 1.64 0.06
Ear 2 5k 8k 0.06 1.13 0.08
Head I 8 9k 16k 0.09 0.72 0.09
Head II 8 9k 11k 0.06 0.69 0.06
Sphere 9 0.7k 3k 0.01 0.17 0.02
Bitorus 9 3k 7k 0.05 1.21 0.04
Chair 10.a 6k 8k 0.05 1.32 0.03
Alien 10.b 7k 9k 0.04 0.74 0.03
Fertility 11.a 13k 17k 0.16 2.11 0.09
Dog 11.b 28k 35k 0.37 3.51 0.22
Canyon 12 9k 19k 0.18 2.81 0.08
Canyon 13, 0.7k 3.2k 0.02 0.34 0.01
Moonscape 14 0.7k 5.2k 0.03 0.43 0.03

image space silhouette detection algorithms as described by
Zimmermann et al. [6].

Another extension would be the creation of other sketch op-
erators such as brush strokes for mesh smoothing or flattening.

Finally, our sketching interface could be improved. Rather
than having user-tunable parameters such as height and sharp-
ness, we can predefine wide range of expressive strokes,
where each stroke would represent some preset combination
of feature parameters.

ACKNOWLEDGMENT

We would like to thank Emilio Vital Brazil for his useful
discussions and advice. We also thank the anonymous review-
ers for their careful and valuable comments and suggestions.
This research was supported by grants from the Brazilian
funding agencies CNPq, FAPESP, INCT-MACC, and by the
Alberta Innovates Academy (AITF) / Foundation CMG Indus-
trial Research Chair in Scalable Reservoir Visualization.

REFERENCES

[1] L. Olsen, F. Samavati, M. Sousa, and J. Jorge, “Sketch-based modeling:
A survey,” Computer & Graphics, vol. 33, no. 1, pp. 85–103, 2009.

[2] H. Biermann, I. M. Martin, D. Zorin, and F. Bernardini, “Sharp features
on multiresolution subdivision surfaces,” in 9th Pacific Conference on
Computer Graphics and Applications, 2001, pp. 140–149.

[3] L. Olsen, F. F. Samavati, M. C. Sousa, and J. A. Jorge, “Sketch-
based mesh augmentation,” in Eurographics Workshop on Sketch-Based
Interfaces and Modeling, 2005, pp. 43–52.

[4] R. Schmidt, B. Wyvill, M. C. Sousa, and J. A. Jorge, “Shapeshop:
Sketch-based solid modeling with blobtrees,” in Eurographics Workshop
on Sketch-Based Interfaces and Modeling, 2005, pp. 53–62.

[5] A. Nealen, O. Sorkine, M. Alexa, and D. Cohen-Or, “A sketch-based
interface for detail-preserving mesh editing,” ACM Transactions on
Graphics, vol. 24, no. 3, pp. 1142–1147, 2005.

[6] J. Zimmermann, A. Nealen, and M. Alexa, “Sketching contours,”
Computers & Graphics, vol. 32, no. 5, pp. 486–499, 2008.

[7] A. Khodakovsky and P. Schröder, “Fine level feature editing for sub-
division surfaces,” in SMA ’99: Proc. of the fifth ACM symposium on
Solid modeling and applications, 1999, pp. 203–211.

[8] Y. Gingold and D. Zorin, “Shading-based surface editing,” ACM Trans.
Graph., vol. 27, pp. 95:1–95:9, August 2008.

[9] B. R. De Araujo and J. A. P. Jorge, “A calligraphic interface for
interactive free-form modeling with large datasets,” in Proc. of the 18th
Brazilian Symposium on Computer Graphics and Image Processing,
2005, pp. 333–340.

[10] K. Takayama, R. Schmidt, K. Singh, T. Igarashi, T. Boubekeur, and
O. Sorkine, “Geobrush: Interactive mesh geometry cloning,” Computer
Graphics Forum, vol. 30, no. 2, pp. 613–622, 2011.

Fig. 14. Sketch-based augmentation over a terrain model generated from a
moonscape heigh-tmap. Top row, the input height-map and the resulting 4-8
terrain mesh and a first stroke input. Middle row,the resulting augmentation
and the input of a second stroke. Bottom row, sketching a third stroke over
the augmented regions.

[11] L. Velho, “A dynamic adaptive mesh library based on stellar operators,”
Journal of Graphics Tools, vol. 9, no. 2, pp. 1–29, 2004.

[12] G. Farin, Curves and surfaces for CAGD: a practical guide. Morgan
Kaufmann, 2002.

[13] A. Hertzmann, “Introduction to 3d non-photorealistic rendering: Silhou-
ettes and outlines,” in SIGGRAPH Course Notes, 1999.

[14] A. Hertzmann and D. Zorin, “Illustrating smooth surfaces,” in Proc. of
SIGGRAPH 2000, 2000, pp. 517–526.

[15] T. Möller and B. Trumbore, “Fast, minimum storage ray-triangle inter-
section,” Journal of Graphics Tools, vol. 2, no. 1, pp. 21–28, 1997.

[16] L. Velho and J. Gomes, “Variable resolution 4-k meshes: Concepts and
applications,” Computer Graphics Forum, vol. 19, no. 4, pp. 195–214,
2000.

[17] T. Lewiner, H. Lopes, E. Medeiros, G. Tavares, and L. Velho, “Topolog-
ical mesh operators,” Computer Aided Geometric Design, vol. 27, no. 1,
pp. 1–22, 2010.

[18] L. Velho, “Mesh simplification using four-face clusters,” in Proc. of SMI
2001, 2001.

[19] L. Velho and D. Zorin, “4-8 subdivision,” Computer-Aided Geometric
Design, vol. 18, no. 5, pp. 397–427, 2001.

[20] A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin,
“MAPS: Multiresolution adaptive parameterization of surfaces,” in Proc.
of SIGGRAPH 98, 1998, pp. 95–104.

[21] M. Botsch and L. Kobbelt, “A remeshing approach to multiresolution
modeling,” in Symposium on Geometry Processing, 2004, pp. 185–192.

[22] L. Velho, “Semi-regular 4-8 refinement and box spline surfaces,” in Proc.
of the 13th Brazilian Symposium on Computer Graphics and Image
Processing, 2000, pp. 131–138.

[23] D. M. Morera, P. C. Carvalho, and L. Velho, “Modeling on triangulations
with geodesic curves,” The Visual Computer, vol. 24, no. 12, pp. 1025–
1037, 2008.

	Introduction
	Contributions

	Related Work
	The Method
	Drawing sketches
	Surficial sketching
	Silhouette sketching

	Adaptive Multiresolution Meshes
	Feature Generation
	Vertex snapping
	Vertex displacement

	Results & Discussion
	Conclusion & Future Work
	References

