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Fig. 1. Segmentation of a von Kármán vortex street generated by a cylindrical object (dark gray): our method takes as input a discrete vector field
(represented by the LIC) and produces as result a classification of the cells of the underlying grid. Cells belonging to the same class define the regions of
the vector field which share similar flow behavior such as vortical structures (purple) and saddle points (yellow).

Abstract—The difficulty to understand the complex behavior
of vector fields makes its visual segmentation an area of constant
interest in scientific visualization. In this paper, we present a novel
interactive segmentation framework for discrete vector fields.
In our method, the vector field domain is partitioned into multiple
regions with same flow patterns. In order to accomplish this task,
feature vectors are extracted from streamlines and mapped to a
visual space using multidimensional projection. The interactivity
with projected data in the visual space improves the results of
the segmentation according to user’s knowledge. The provided
results and comparisons show the flexibility and effectiveness of
our framework.
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I. INTRODUCTION

Visualizing and analyzing the behavior of vector fields help
to provide insight about the underlying physical phenomena.
However, achieving a consistent interpretation of vector fields
and its structures is not straightforward, leveraging the devel-
opment of distinct methodologies such as flow visualization
and segmentation methods [1]. In particular, vector field seg-
mentation, which is the focus of this work, has gained great
interest in the last decade, mainly motivated by the capability

of most segmentation methods in identifying regions of similar
flow behavior, thus facilitating the recognition of structures
such as vortices, saddle points, sources and sinks.

Vector field segmentation methods can be grouped and
organized in three main categories: topology-based, geometry-
based and methods based on feature spaces.

Topology-based methods rely on the detection and clas-
sification of critical points from which one can compute
separatrix curves that bound the different regions of the vector
field [2], [3]. Effective and robust approaches are available for
two-dimensional flows [4], [5]. However, the computational
implementation of these methods are quite intricate, they
are computationally expensive and, with very few exceptions
(e.g., [6]), they do not allow for user intervention during the
segmentation process.

Geometry-based methods make use of geometric attributes
of the vector field in order to identify regions with similar
flow behavior. The technique proposed by Li et al. [7] is a
typical representative of geometry-based vector field segmen-
tation method, which relies on Green functions to perform
a discrete Helmholtz-Hodge decomposition that drives the
flow segmentation. Geometric properties of streamlines have



Fig. 2. Pipeline of our vector field segmentation framework.

been used by Kuhn et al. [8] to identify regions of the
flow with similar streamlines. The segmentation is performed
by clustering streamlines based on an energy minimization
procedure. Besides being computationally intricate, Li’s and
Kuhn’s methods do enable user intervention to assist the
segmentation process.

Methods based on attribute space rely on features extracted
from a vector field in order to identify regions of similar
flow behavior. Daniels et al. [9], for instance, introduced a
methodology for interactive exploration of 2D vector fields
in which the whole vector field is mapped to an attribute
space and then projected onto a two-dimensional visual space
where the user can interact. However, this approach though,
cannot accurately identify regions of similar flow. Rössl
and Theisel [10] proposed a streamline segmentation method
where multidimensional scaling is used to embed streamlines
into a feature space. The embedding relies on the Hausdorff
distances between streamlines, which demands the computa-
tion of the full distance matrix between all the streamlines
sampled in the domain. User interaction is another issue in
their approach.

This paper presents a novel vector field segmentation frame-
work which comprises a set of traits difficult to be found in
other methodologies. Similar to Kuhn et al. [8] and Rössl and
Theisel [10] methods, we focus on streamlines to accomplish
the segmentation; however, in our method the streamlines
are embedded in a feature space, thus allowing the use of
Euclidean distance to compute their similarity. Moreover,
our method enables interactive mechanism, allowing the user
to incorporate his/her knowledge about the field into the
segmentation process. Therefore, our technique combines the
good properties of streamline-based segmentation methods
with the flexibility of interactive techniques for vector field
segmentation. Figure 1 shows our framework in action, regions
with same flow behavior are dyed with the same color, even
if they are not geometrically close.

In summary, the main contributions of this paper are:
• This paper introduces a new mechanism to embed stream-

lines in attribute spaces;
• An interactive framework using multidimensional projec-

tion that allows for user intervention during the segmen-
tation process;

• Our method can be applied to 2D and 3D vector fields.

We show the effectiveness of our method in a set of experi-
ments and comparisons with state-of-the-art techniques.

II. THE PROPOSED APPROACH

As illustrated in Figure 2, the proposed vector field segmen-
tation method comprises three main steps: feature extraction,
multidimensional projection and clustering. In the first step,
features are extracted from streamlines defined by the vector
field. More precisely, each streamline is associated to a feature
vector in a high-dimensional attribute space.

The high-dimensional data is then projected onto a visual
space using a multidimensional projection method in the sec-
ond step of the proposed pipeline. The projected data is finally
clustered and the resulting clusters provide the vector field
segmentation. As we clarify in the following, the advantages of
clustering in visual space are twofold. The user can visualize
sets of similar streamlines, which helps to identify the number
of clusters as well as particular structures in the vector field.
Moreover, the user can interact with the projected data, making
it possible to interactively modify clusters and/or define new
ones.

Next, we detail each step of our framework.

A. Feature extraction

The proposed approach relies on features computed on
streamlines to segment a given vector field. The feature com-
putation is made up of three main steps: streamline integration,
attribute interpolation, and feature vector construction.

Streamline integration Let G be a grid and V be a vector
field defined in each node of G; that is, each grid node has
a vector V associated to it. We sample streamlines in G
so as to ensure that each cell cij ∈ G is intersected by at
least one streamline. The sampling procedure is performed as
follows: starting from the top leftmost cell c00 we integrate
a streamline starting from the center of c00 using Heun’s
predictor-corrector method with adaptive time step. Bilinear
interpolation is employed to interpolate the vector field in each
integration step when the differential equation that defines
the vector field is not available. After integrating the first
streamline, we traverse the cells in G left-right/top-down
verifying if each cell cij has been intersected by a streamline,
skipping to the next cell if true. If not, that is, if cij does not
intersect any streamline, we sample a new streamline from the



center of cij , performing the integration in both forward and
backward directions.

At the end of the streamline sampling process, we guarantee
that every cell in G is intersected by at least one streamline.
Moreover, the number of streamlines integrated during the
sampling process is typically much smaller than the number
of cells in G, as a single streamline tends to intersect many
cells and intersected cells are not sampled during the process.

Attribute interpolation Once streamlines have been sampled,
differential and geometric attributes of the vector field are
interpolated onto the streamlines as follows. Let S be a
streamline and si be a point in S given by the integration
process described above. We associate a set of attributes
derived from the vector field to each point si. More precisely,
curvature, magnitude, vorticity and divergence of velocity are
computed in each node of the grid G and then interpolated
in si using bicubic interpolation. Curvature and vorticity are
computed as proposed by McLoughlin et al. [11] and Post et
al. [1], while the divergence is given by finite differences.

Feature vector construction In order to assign a single
feature vector for a streamline S, an attribute value ai is
computed at each point si ∈ S. These values are quantized in
m bins to generate a frequency histogram. The bin intervals
are determining as follows

[amin + i h, amin + (i+ 1)h] , i = 0, . . . ,m ,

where h = (amax − amin)/m with amin = min{ai} and
kmax = max{ai}. The resulting histogram is created concate-
nating the attribute histograms into a 4m-dimensional feature
vector associated to each streamline (Figure 3). In other words,
each streamline is represented by a 4m-dimen-sional point in
an feature space. After applying the procedure above to all
sampled streamlines, we normalize each histograms dividing
it by the number of sample points in the corresponding
streamline.

Fig. 3. Mapping each streamline to a histogram of attributes.

B. Multidimensional projection

The main advantage of converting streamlines into feature
vectors embedded in a high-dimensional space is that Eu-
clidean distance can be used to compare streamlines, thus
allowing the application of well known clustering algorithms
to group streamlines according to their similarity. Moreover,
embedding streamlines in an attribute space also enables the
use of multidimensional projection to visualize the similarity
relations between the streamlines. More precisely, multidimen-
sional projection methods such as LAMP [12] can project data
from a high-dimensional attribute space to a two-dimen-sional
visual space such that points that are close in the attribute
space are projected close to each other in the visual space.

The multidimensional projection step is responsible to map
high-dimensional data onto a two-dimensional visual space.
In our implementation we are employing the multidimensional
projection technique called LAMP (Local Affine Multidimen-
sional Projection). Besides preserving neighborhood structures
quite well as demonstrated in [12], the LAMP technique
enables a very flexible mechanism to interactively modify the
projection according to user interventions, which can be a
helpful feature for manual cluster selection.

LAMP uses a set of control points to perform the mapping
of a set of high-dimensional data X to the visual two-
dimensional space. The set of control points is typically a
small subset XS ⊂ X whose counterpart YS in the visual
space is known a priori (XS can be mapped to the visual space
using distance preserving optimization scheme as proposed by
Tejada et al. [13]). The mapping of each instance x ∈ X to a
point y in the visual space is carried out by finding the best
affine transformation y = fx(p) = pR+ t that minimizes∑

i

αi‖fx(xi)− yi‖2 subject to R>R = I, (1)

where the matrix R and vector t are unknowns, I is the identity
matrix, xi ∈ XS is the i-th control point, yi ∈ XS is the
mapping of xi in the visual space, and αi = 1/‖xi − x‖2
is a scalar weight. The orthogonality constraint R>R = I
enforces that the resulting affine transformation behaves like
a rigid transformation, thus preserving distances as much
as possible and ensuring that errors introduced during the
positioning of control points are not drastically propagated
during the projection step. The minimization problem (1) can
be expressed in matricial form (see [12] for details):

minimize ‖AR−B‖F subject to R>R = I, (2)

where ‖·‖F is the Frobenious norm, and A and B are matrices
whose rows correspond to the coordinates of each control
point in the high-dimensional and visual spaces, respectively.
When a user manipulates control points in the visual space
he/she also changes entries in the rows of matrix B, thus
tuning the mapping R to cope with the user intervention.
More precisely, when a control point is moved in the visual
space the data in its neighborhood is moved together, what
allows for controlling neighborhood structures in the visual
space. This flexibility will be exploited in our context to enable



Fig. 5. Visualization pipeline.

Fig. 4. Exploring structures in the vector field through user interaction in
visual space (bottom).

the user with exploratory tools towards vector field interactive
analysis.

As we expect that streamlines with similar shape will
give rise to similar feature vectors, that is, their embedded
counterparts are close to each other in the attribute space,
the multidimensional projection should generate layouts where
similar streamlines will be grouped together, allowing the user
to interact with the layout towards exploring and visually
mining structures of interest in the vector field.

Figure 4 shows a vector field where the highlighted regions
correspond to the group of streamlines selected by the user.
This example clearly shows the powerfulness of using mul-
tidimensional projection as an interactive tool in our context.

C. Clustering

The last step of our algorithm is to group the streamlines
according to their similarity. This is accomplished by clus-

tering the projected feature vectors in the two-dimensional
visual space. Clusters can be defined interactively by the
user or automatically by applying a clustering algorithm, such
as k-means. In our framework, the visual space is clustered
by Ward’s minimum-variance method [14], a hierarchical
clustering mechanism.

In order to highlight the regions in G containing similar
streamlines, the information about the clusters is transferred
back to G. This is performed in a straightforward way using
the information of intersection (stored in the feature extraction
step) between the cells cij ∈ G and the streamlines. Since each
streamline has a label that identifies which cluster it belongs
to, a voting process is used in each cell cij and bind to cij
the most frequent label of the streamlines that intersect cij .

III. RESULTS AND COMPARISONS

To generate the examples presented in this section we used
a time step δt = 0.05 for streamline integration and frequency
histograms with 10 bins for each attribute in all datasets. As
discussed in the last section, the features used to generate the
feature vectors are: curvature, magnitude of vorticity, magni-
tude and divergence of velocity. In the following experiments,
our main goal is to segment the regions in the vector field
with different features, such as rotational, curvilinear, laminar,
turbulent flow, etc.

The segmentation process produces a labeling of the grid
cells, where cells with similar flow pattern have the same label
(color code). Figure 1 shows the effectiveness of our technique
to segment the von Kármán vortices (blue regions) and the
flow structures around a cylinder. Our framework assigns dis-
tinct colors to represent distinct clusters and applying the LIC
(line integral convolution) method [15] for visualization. In or-
der to improve the quality of the visualization, we smooth the
segmentation result in the grid using Garcia’s technique [16]
before applying LIC. Figure 5 shows the visualization pipeline
used to generate the results presented in this paper.

Next experiment, we take advantage of the user interaction
enabled by LAMP. Figure 6 presents the vector field seg-
mentation before and after the user driven control points (red



Fig. 6. User interaction with the control points in visual space (right) to
improve the segmentation.

points) arrangements. Notice that the segmentation changes
substantially after repositioning the control points in the visual
space, illustrating the flexibility enabled by our framework to
interactively intervene in the segmentation process resulting in
well defined regions delimited by the vector field singularities
(sources and sinks).

In order to attest the quality of the segmentation produced
by our method, we compare it against the method proposed
by Daniels et al. [9] which also makes use of feature vectors
extracted from properties computed in a neighborhood of each
grid cell using k-nearest neighbors (KNN) to visualize a vector
field. More precisely, we computed the curvature, divergence,
magnitude of velocity, and the intensity and direction of rota-
tion of the vectors in each grid cell, concatenating those prop-
erties so as to generate feature vector in a high-dimensional
space. Figure 7 left shows the resulting segmentation with
the features extracted as proposed by Daniels. Notice that

Fig. 7. Segmentation of the vector field from a smoke simulation. The left
image shows the result of Daniels’ method [9] using KNN with k = 30 for
the samples. The right image shows the result of our method. Clusters of the
points in visual space are shown on top-right.

Fig. 8. A comparison between Edge Maps [5] (top) and our method (bottom).

the quality of the segmentation is much worse than the one
produced by our methodology, as depicted in the right in
Figure 7. It is important to say that, in his original paper,
Daniels used a larger number of features, but we intend to
show here that, in contrast to our approach, Daniels’ method
does not work properly with a reduced number of features.

Figure 8 compares our approach against the Edge Maps
method [5] using a synthetic vector field. Besides Edge Maps
relies on topological properties of the vector field using their
critical points (colored spheres) to perform the segmentation
and it is considered the state-of-art in the context of vector
field segmentation, our approach is easy to implement and it
compares positively with Edge Maps.

Our framework can be easily extended to 3D discrete
vector fields. The visual metaphor adopted combines rendered
streamlines of each cluster to provide a more informative
visualization and a surface to highlight the transition zone
between distinct clusters. The surface is computed using the



Fig. 9. Segmentation of a 3D discrete vector field. From left to right, segmentation in two clusters of the entire dataset, visualization of a sub-region (blue)
and its surface of the transition zone between the clusters.

TABLE I
STATISTICS AND COMPUTATIONAL TIMINGS (IN SECONDS).

Fig. grid size # streamlines time
Fig. 1 197× 436 1117 44.30
Fig. 6 120× 120 961 12.58
Fig. 7 189× 189 247 11.59
Fig. 8 175× 175 702 11.98
Fig. 9 16× 14× 8 141 21.89

Marching Cubes algorithm in the scalar field generated by the
cluster labels and smoothed by Garcia’s method [16]. Figure 9
shows the segmentation using two clusters of a 3D vector field
that represents air currents over North America (dataset from
the MATLAB data library). In 3D case, we use an additional
information of torsion as described by McLoughlin et al. [11].

Computational performance is presented in Table I. Tim-
ings were measured in a 2.53 GHz Intel Core 2 Duo with
2GB RAM. MATLAB was used to implement the proposed
framework.

IV. DISCUSSION AND LIMITATIONS

Our framework can handle a large variety of datasets. It is
flexible as it permits the user to include the user knowledge
to improve the segmentation results. We use streamlines as
a sampling mechanism to generate feature vectors, which is
one of the main contributions of this work. Moreover, other
physical attributes, such as density and pressure could also be
used, when available, without changing the proposed pipeline.

The comparisons show that our framework can capture flow
structures quite nicely, generating results similar to highly
accurate topological methods. Our method is more robust than
the previous methods based on feature vectors to perform
vector field segmentation.

The main limitation of our method is the lack of theoretical
guarantees of the segmentation and in some cases artifacts can

(a) Noisy PIV data. (b) Smoothed PIV data.

Fig. 10. Segmentation of PIV data from PIVsuite [17].

be produced generating not well defined clusters, which arise
usually in noisy data.

Fig. 10 shows our method facing a noisy vector field
from particle image velocimetry (PIV) [18] data set. Spurious
results may be obtained in noisy vector fields (Fig. 10.a)
and a possible solution consists in applying a vector field
denoising process (Fig. 10.b). Notice that the features were
able to discriminate the turbulent from the laminar region after
smoothing step.



V. CONCLUDING REMARKS

In this paper we proposed a new method to segment and
reveal related regions on vector fields with support to user
interaction. Despite its simplicity, our method succeeds in
many scenarios from artificial to “real world” collected data.
In our tests, the proposed method achieved similar results as
a state-of-the-art technique. Our technique is automatically
extended to three-dimensional problems.

As future works tracking of features over time is an interest-
ing topic and the parallelism of the sampling process should
be used to speed-up gain. Another interesting topic for future
research is the use of topological information to improve the
multidimensional projection.

ACKNOWLEDGMENT

This research is supported by FAPESP (#2011/22749-
8, #2013/07375-0, #2014/09546-9), CNPq (#305796/2013-
5, #302643/2013-3) and CAPES (DS-7486558/M, PROEX).
We would like to thank the anonymous reviewers for their
valuable comments and suggestions.

REFERENCES

[1] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch,
“Feature extraction and visualization of flow fields,” Eurographics 2002
STAR, pp. 69–100, 2002.

[2] K. Mahrous, J. Bennett, G. Scheuermann, B. Hamann, and K. I. Joy,
“Topological segmentation in three-dimensional vector fields,” IEEE
Trans. Vis. Comput. Graph., vol. 10, no. 2, pp. 198–205, 2004.

[3] R. Laramee, H. Hauser, L. Zhao, and F. Post, “Topology-based flow
visualization, the state of the art,” in Topology-based Methods in
Visualization, ser. Mathematics and Visualization. Springer, 2007, pp.
1–19.

[4] H. Bhatia, S. Jadhav, V. Pascucci, G. Chen, J. A. Levine, L. G. Nonato,
and P.-T. Bremer, “Edge maps: Representing flow with bounded error,”
in IEEE PacificVis 2011, 2011, pp. 75–82.

[5] ——, “Flow visualization with quantified spatial and temporal errors
using edge maps,” IEEE Trans. Vis. Comput. Graph., vol. 18, no. 9, pp.
1383–1396, 2012.

[6] R. Nascimento, J. Paixão, H. Lopes, and T. Lewiner, “Topology aware
vector field denoising,” in Sibgrapi 2010 (XXIII Conference on Graphics,
Patterns and Images), 2010, pp. 103–109.

[7] H. Li, W. Chen, and I.-F. Shen, “Segmentation of discrete vector fields,”
IEEE Trans. Vis. Comput. Graph., vol. 12, no. 3, pp. 289–300, 2006.

[8] A. Kuhn, D. J. Lehmann, R. Gaststeiger, M. Neugebauer, B. Preim, and
H. Theisel, “A clustering-based visualization technique to emphasize
meaningful regions of vector fields,” in VMV 2011, 2011, pp. 191–198.

[9] J. Daniels II, E. Anderson, L. Nonato, and C. Silva, “Interactive vector
field feature identification,” IEEE Trans. Vis. Comput. Graph., vol. 16,
no. 6, pp. 1560–1568, 2010.

[10] C. Rossl and H. Theisel, “Streamline embedding for 3D vector field
exploration,” IEEE Trans. Vis. Comput. Graph., vol. 18, no. 3, pp. 407–
420, 2012.

[11] T. McLoughlin, M. W. Jones, R. S. Laramee, R. Malki, I. Masters, and
C. D. Hansen, “Similarity measures for enhancing interactive streamline
seeding,” IEEE Trans. Vis. Comput. Graph., vol. 99, pp. 1–1, 2012.

[12] P. Joia, D. Coimbra, J. A. Cuminato, F. V. Paulovich, and L. G. Nonato,
“Local affine multidimensional projection,” IEEE Trans. Vis. Comput.
Graph., vol. 17, no. 12, pp. 2563–2571, 2011.

[13] E. Tejada, R. Minghim, and L. G. Nonato, “On improved projection
techniques to support visual exploration of multi-dimensional data sets,”
Information Visualization, vol. 2, no. 4, pp. 218–231, 2003.

[14] E. Rasmussen, “Clustering algorithms,” Information Retrieval: data
structures and algorithms, pp. 419–442, 1992.

[15] B. Cabral and L. C. Leedom, “Imaging vector fields using line integral
convolution,” in SIGGRAPH’93, 1993, pp. 263–270.

[16] D. Garcia, “Robust smoothing of gridded data in one and higher
dimensions with missing values,” Comput Stat. Data An., vol. 54, no. 4,
pp. 1167–1178, 2010.

[17] J. Vejrazka, “PIVsuite,” Institute of Chemical Process Fundamentals,
Prague, Czech Republic, Tech. Rep., 2014, http://www.mathworks.com/

matlabcentral/fileexchange/45028-pivsuite.
[18] R. J. Adrian and J. Westerweel, Particle Image Velocimetry. Cambridge

University Press, 2011.

http://www.mathworks.com/matlabcentral/fileexchange/45028-pivsuite
http://www.mathworks.com/matlabcentral/fileexchange/45028-pivsuite

	Introduction
	The Proposed Approach
	Feature extraction
	Multidimensional projection
	Clustering

	Results and Comparisons
	Discussion and Limitations
	Concluding Remarks
	References

