
Colorization by Multidimensional Projection
Wallace Casaca∗, Erick Gomez-Nieto∗, Cynthia O. L. Ferreira†, Geovan Tavares†

Paulo Pagliosa‡, Fernando Paulovich∗, Luis Gustavo Nonato∗ and Afonso Paiva∗

∗ICMC, USP, São Carlos
† Dept. of Mathematics, PUC-Rio, Rio de Janeiro

‡FACOM, UFMS, Campo Grande

Fig. 1. Our approach takes as input a grayscale image and a set of colored pixels picked out from a source color image (left). Pixels in the grayscale
image are mapped to a feature space producing high-dimensional data instances which are projected to a visual space using an interactive multidimensional
projection method (middle left). User can then interact with projected data so as to untangle clusters (middle right) and thus improving colorization result
(right).

Abstract—Most image colorization techniques assign colors
to grayscale images by embedding image pixels into a high-
dimensional feature space and applying a color pattern to each
cluster of high-dimensional data. A main drawback of such
approach is that, depending on texture patterns and image
complexity, clusters of similar pixels can hardly be defined
automatically, rendering existing methods prone to fail. In this
work we present a novel approach to colorize grayscale images
that allows for user intervention. Our methodology makes use of
multidimensional projection to map high-dimensional data to a
visual space. User can manipulate projected data in the visual
space so as to further improve clusters and thus the colorization
result. Different from other methods, our interactive tool is easy
of use while still being flexible enough to enable local color
modification. We show the effectiveness of our approach through
a set of examples and comparisons against existing colorization
methods.

Keywords-Image colorization; image processing; multidimen-
sional projection, high dimensional data.

I. INTRODUCTION

Colorization is a computer-assisted process by which color
is imparted to black-and-white films or to grayscale images.
It has been widely used in photo processing and scientific
illustration, to modernize black-and-white films and to restore
damaged color films. Traditionally, colorization is tedious,
time consuming and requires artistic skills to precisely add
appropriate colors to a grayscale image.

Aiming at making the colorization process simpler and
less laborious, several computational systems and tools have
been proposed in the last decade, which can be roughly

divided into two classes: example-based and scribble-based.
Example-based methods accomplish the colorization process
by matching the luminance of the grayscale image with
the luminance of a source color image used to drive the
colorization. In practice, user picks out regions (swatches) on
the target grayscale image and matches those regions with
color patterns in the source color image. A typical example-
based colorization scheme was proposed by Welsh et al. [1],
which combines image analogies [2] and color transfer [3] to
colorize a grayscale image. Irony et al. [4] improve Welsh’s
method by using a segmented reference image and a texture
matching scheme [5] to better colorize regions with similar
textures. In a more recent work, Liu et al. [6] make use
of multiple reference images retrieved from the Internet to
guide the colorization process and mitigate problems related
to environment illumination. Example-based methods end up
being very sensitive to the source color image employed to
drive the colorization process while still performing poorly in
images with complex textured patterns.

In scribble-based methods the user drives the colorization
by defining colored strokes onto the grayscale image. The
classical work by Levin et al. [7] is a good representative of
scribble-based approach. Levin’s method aims at optimizing
the color of all image pixels using the scribbles as constraints.
Although it shows good results for various types of images,
Levin’s method tends to propagate colors beyond the texture
boundaries, thus resulting in unpleasant colorizations. The
technique proposed by Huang et al. [8] employs adaptive edge
detection so as to prevent colors from going beyond region
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Fig. 2. Projcolor pipeline.

boundaries. Further improvements have been proposed by
Yatziv and Sapiro [9], who present a faster scribble-based color
optimization technique that relies on chrominance blending to
perform the colorization, and by the authors of [10], [11],
which employ texture continuity to colorize manga-cartoons
and natural images, respectively. Despite the good results,
all existing scribble-based approach require intensive user
intervention, especially when the image contains complex
structures or has different kinds of textures, which can demand
lots of scribbles until acceptable outcomes are reached.

In this work we propose a new approach for colorizing
grayscale images that relies on interactive multidimensional
projection to replace the intensive user-driven scribble mecha-
nism by a simple drag-and-drop manipulation of the badly col-
orized pixels. This novel interactive scheme, called Projcolor,
operates from example-based as well as color scribbles, de-
manding just a few user interventions to correct imperfections
in regions poorly colorized. Moreover, as the multidimensional
projection allows for visualizing the neighborhood structure of
the pixels under colorization, the user can control color prop-
agation in an accurate and intuitive manner, a trait not present
in other methods proposed in the literature. As we shall show,
by interacting with the multidimensional projection the user
can colorize complex textured regions quite easily, respecting
region edges and avoiding introducing new scribbles. Since
the user can accurately control the colorization process, our
approach is less sensitive to the source color image.

Contributions In summary, the main contributions of this
work are:

• the introduction of interactive multidimensional projec-
tion in the context of image colorization;

• a pixel neighborhood manipulation scheme to drive the
colorization process;

• an efficient system that allows for colorizing grayscale
images in an intuitive and accurate manner.

II. MULTIDIMENSIONAL PROJECTION-BASED
COLORIZATION

As illustrated in Fig. 2, the proposed colorization pipeline
comprises four main steps, namely, input color data, feature
extraction/selection, multidimensional projection, and image
colorization. In our framework, the color data can be provided
in two distinct ways: color swatches picked out from a RGB
image, or color scribbles brushed by the user. Similar to Welsh
et al. [1], the color data and the grayscale image are converted
from RBG color and Grayscale space to the independent lαβ
space, where l is the luminance channel and α, β are two
chromatic channels. During the feature extraction stage, each
pixel of the grayscale image is mapped to a point in a high-
dimensional space whose coordinates correspond to statistics
measures and texture attributes computed from luminance
and gray values in the neighborhood of the pixel. The high-
dimensional data is project to a two-dimensional visual space
so as to preserve neighborhood structures as much as possible.
Colorization is then performed based on information computed
from the projected data. Badly colored regions can be updated
by interacting with the projected data in the visual space. In
other words, neighborhood structures in the visual space can
be modified by the user so as to generate better colorization.
Details of each stage of the pipeline are presented in the
following subsections.

A. Feature Extraction/Selection

Given a grayscale image H , the feature extraction step
aims at mapping each pixel from H to a point in a high-
dimensional feature space X ⊂ RN . In more mathematical
terms, we build a mapping f : H → X that assigns to
each pixel p ∈ H a point f(p) ∈ RN called feature vector.
The coordinates of f(p) are given by local feature descriptors
computed in a neighborhood of p. In our implementation we
are using Gabor [12], first order moment [13], local binary
patterns and their variants [14], [15], scale invariant feature
transforms [16], [17], and ordinary statistical/morphological
measures [18].



In practice, features resulting from distinct extractors can
be highly correlated and it is not necessary to keep all
of them in the feature vector. Removing unnecessary data
reduces the dimensionality of the feature space while still
untangling clusters, thus impacting positively in the result of
the colorization process. We handle unnecessary features by
applying the well known learning-based feature selection tool
called WEKA [19]. WEKA computes the correlation among
features (see [20]) and ranks the more relevant ones. In our
tests, about 20% of features are kept after filtering them out
using WEKA.

B. Multidimensional Projection

The multidimensional projection step is responsible to map
high-dimensional data generated during the feature extrac-
tion/classification step onto a two-dimensional visual space.
In our implementation we are employing the multidimen-
sional projection technique called LAMP (Local Affine Multidi-
mensional Projection) [21]. Besides preserving neighborhood
structures quite well, the LAMP technique enables a very
flexible mechanism to interactively modify the projection
according to user interventions, which is an important charac-
teristic in the context of this work.

LAMP uses a set of control points to perform the mapping
of a set of high-dimensional data X to the visual two-
dimensional space. The set of control points is typically a
small subset XS ⊂ X whose basic information in the visual
space is known a priori (XS can be mapped to the visual space
using distance preserving optimization scheme such as [22]).
The mapping of each instance x in X to visual space is carried
out based on the linear mapping Tx that minimizes (see [21]
for details):

‖ATx −B‖F subject to TT⊥ = I, (1)

where ‖ · ‖F is the Frobenious norm, T⊥ is the transpose of
T , I is the identity matrix, and A and B are matrices whose
rows correspond to the coordinates of each control point in the
high-dimensional and visual space, respectively. The constraint
TT⊥ = I is imposed to ensure that distances are preserved as
much as possible during projection. When a user manipulates
control points in the visual space s/he also changes entries in
the rows of matrix B, thus tuning the mapping Tx to cope
with the user intervention. More precisely, when a control
point is moved in the visual space the data in its neighborhood
is moved together, what allows for controlling neighborhood
structures in the visual space.

In our colorization framework, the input control points
are assigned through the pixels selected by the user-defined
strokes or swatches. User can then interactively manipulate
control points in the visual space based on the resulting
colorization. The flexibility to change projection according
to user manipulation of control points is exploited by the
proposed colorization application as described below.

C. Image Colorization

The colorization of a grayscale image relies on pixel classi-
fication carried out in the visual space, that is, after mapping
the high-dimensional data to the visual space using LAMP, a
clustering mechanism is employed to group pixels with similar
features (we apply the KNN classifier on the projected data).

Once “similar pixels” have been clustered, colors are asso-
ciated to each cluster from the information initially provided
by the user-defined strokes or swatches. More precisely, the
user associates a color pattern to a subset of pixels and that
color pattern is then propagated to all pixels in the cluster. The
propagation mechanism is accomplished as follows: given a
grayscale pixel pg and a user provided set of colored pixels Pc,
the lαβ color of pg is given by taking the α and β components
from pixel pc ∈ Pc that minimizes the distance function dl
defined by:

dl(lc, lg) = 0.5 (|lc − lg|+ |stdc − stdg|) , (2)

where lc and lg are the luminance values of pc and pg , respec-
tively. The values stdc and stdg are the standard deviations of
lc and lg , respectively. After processing the pixels in lαβ color
system, pixel conversion to RGB system is then performed in
order to produce the final color result. In our experiments we
use a pixel neighborhood of size 5 × 5 to compute standard
deviations of the pixel luminance.

D. User Manipulation of Clusters

One of the main contributions of Projcolor is to exploit
the flexibility provided by the multidimensional projection
scheme towards interactively manipulating projected data so
as to modifying clusters. When features extracted from dis-
tinct regions of an image are similar, pixels belonging to
those regions cannot be clearly separated either in the high-
dimensional space or in the projected space, since the mul-
tidimensional projection preserves neighborhood structures as
much as possible. LAMP, however, enables to user with an
interactive tool that allows for untangling data by manipulating
control points. In fact, if the coloring result is not satisfactory,
the user can select badly colored pixels, turning them into
new control points that can be interactively moved in the
visual space to better define clusters and thus to improve the
result of the colorization. Fig. 3 illustrates the user intervention
process where control points are defined by the user and then
dragged to different clusters within visual space. Since LAMP
also drags the neighborhood of the control points after user
interaction it is necessary to define just a few control points
to achieve satisfactory colorizations as shown in Fig. 3(b).

III. RESULTS AND COMPARISONS

Fig. 4 shows the result of colorizing the picture in Fig. 4(b)
taking as input the set of color pixels within the two boxes
(drawn by the user) in Fig. 4(a). The result of projecting
the high-dimensional data onto the visual space is shown
in Fig. 4(c). Notice that two clusters corresponding to the



(a) Pixels corresponding to projected data (left) lying within a user highlighted
regions are depicted in the grayscale image (right) and vice versa

(b) Badly clustered pixels defined as control points by the user (right top),
drag-and-drop manipulation of the corresponding pixels within projected data
(left) and the resulting colored image (right bottom)

Fig. 3. Illustration of user interaction with projected data and target image.

(a) Source image (b) Grayscale image (c) Multidimensional projection (d) Colorized image

Fig. 4. Multidimensional projection with example-based scheme.

sky and the trees are formed in the visual space. The clear
separation of clusters enables an accurate colorization without
user intervention as presented in Fig. 4(d).

The colorization example presented in Fig. 5 illustrates the
need of user intervention. Fig. 5(a) and (b) show the source
color image (and the color examples took from it) and the
grayscale image to be colored. Fig. 5(c) depicts the result of
the multidimensional projection from which the color image in
Fig. 5(d) is generated. Notice that pixel close the edge between
the panther and the background grass are not colored properly.
User can then select some of those badly colorized pixels (red
circles in Fig. 5(d)), which are made control points for the
multidimensional projection. Dragging the new control points
to the correct cluster changes the projection layout (Fig. 5(e))
and improves the resulting colorization, as shown in Fig. 5(f).

Fig. 6 illustrates the capability of Projcolor to perform
colorization based only on colored strokes, that is, the input is
color scribbles drawn by the user on each region s/he wants to
define a color. Color scribbles are simpler than example-based
colorization, as the user does not need to provide a colored
source image not a correspondence between them. Despite its
simplicity and ease of use, the stroke-based scheme results in
quite satisfactory colorizations.

Comparisons In order to confirm the effectiveness of Proj-
color we provide comparisons against Welsh’s [1] (example-
based) and Levin’s [7] (scribble-based) methods.

Fig. 7 compares Projcolor with both techniques mentioned
above. Colorization method proposed by Welsh et al. works
properly in images that do not contain complex texture patterns
and fails drastically when dealing with textures, as depicted in
Fig. 7(b). Otherwise, Projcolor generated a clear and pleasant
result as shown in Fig. 7(c). Fig. 7(d) shows the grayscale
image and two user defined scribbles on it. Fig. 7(e) and (f)
are the colorization produced by Levin’s method and Projcolor
respectively. Notice that our approach is much more robust
when dealing with textures. It is important to say that the
results presented in Fig. 7(e) and Fig. 8 were obtained using
the MATLAB code available on authors website (http://www.
cs.huji.ac.il/˜yweiss/Colorization/).

Fig. 8 brings another comparison between Projcolor and
Levin’s method. Fig. 8(b) and (c) are the resulting colorization
obtained from Levin’s method and Projcolor using only the
two color strokes depicted in Fig. 8(a). Notice that Levin’s
method does not generate a good colorization due to the
complexity of textured regions while Projcolor results in a
pleasant colorization. As shown in Fig. 8(d) and (e), Levin’s
approach produces better results when several strokes are

http://www.cs.huji.ac.il/~yweiss/Colorization/
http://www.cs.huji.ac.il/~yweiss/Colorization/


(a) Source image (b) Grayscale image (c) Multidimensional projection

(d) Colored image with flaws (e) User manipulated projection (f) Final colorization

Fig. 5. Neighborhood manipulation to further improving colorization.

(a) Target image and its color strokes (b) Projcolor result

Fig. 6. Colorization created from user-provided color strokes.

provided by the user. Projcolor, however, demanded just a
couple of user intervention to update clusters and reach the
nice result presented in Fig. 8(c), proving that Projcolor is
more robust when dealing with complex textured images.

Regarding computational times, Projcolor is quite similar
to the Welsh’s and Levin’s methods. The computational cost
increases proportionally to the number of swatches or scribbles
employed to color images, neighborhood sizes in feature
extraction step and the image size. In our experiments almost
all images were colorized in a few tens of seconds (our code
was implemented in MATLAB with support to Java routines).

IV. DISCUSSION AND LIMITATIONS

The comparisons presented in Section III clearly show the
effectiveness of the proposed coloring method, surpassing, in
requisites such as accuracy and flexibility, existing methods.
The local control of neighborhood structures enables the user
with a sharp control of color propagation within pixel clusters,
a characteristic not present in any other colorization method.

The good results when dealing with highly textured images
such as the one in Fig. 5 show the robustness of the proposed

approach. In fact, just a few interventions were needed to reach
a pleasant colorization result. As mentioned above, regarding
computational times, our method is comparable against two
other approaches. In fact, our approach is a bit faster than the
compared methods. Despite the good properties and results,
Projcolor also has limitations. Although LAMP allows for
controlling the extent neighborhoods are affected when manip-
ulating control points, properly setting the number of control
points that affects the projection is not a straightforward task,
being this an issue to be further investigated.

V. CONCLUSION

In this work we proposed the use of multidimensional
projection as basic tool for image colorization applications.
The evaluation we provided shows that Projcolor outperforms
existing techniques in terms of accuracy as well as flexibility.
Besides enabling a local modification of badly colored regions,
the proposed methodology turns out to be robust when dealing
with complex textured images. In summary, flexibility and
effectiveness render the proposed method one of the most
attractive alternatives in the context of image colorization.



(a) Grayscale (left) and source color image (right) (b) Welsh’s colorization from (a) (c) Projcolor colorization from (a)

(d) Selected region by scribbling (e) Levin’s colorization from (d) (f) Projcolor colorization from (d)

Fig. 7. Comparing Projcolor with Welsh’s and Levin’s methods.

(a) Grayscale image and color strokes (b) Levin’s colorization from (a)

(c) Projcolor colorization from (a)

(d) Adding new strokes (e) Levin’s colorization from (d)

Fig. 8. Comparing Projcolor and Levin’s methods.
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