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Abstract

Novelty detection is a binary task aimed at identifying whether a test sample
is novel or unusual compared to a previously observed training set. A typical
approach is to consider distance as a criterion to detect such novelties. How-
ever, most previous work does not focus on finding an optimum distance for
each particular problem. In this paper, we propose to detect novelties by ex-
ploiting non-linear distances learned from multi-class training data. For this
purpose, we adopt a kernelization technique jointly with the Large Margin
Nearest Neighbor (LMNN) metric learning algorithm. The optimum distance
tries to keep each known class’s instances together while pushing instances
from different known classes to remain reasonably distant. We propose a vari-
ant of the K-Nearest Neighbors (KNN) classifier that employs the learned
distance to detect novelties. Besides, we use the learned distance to perform
multi-class classification. We show quantitative and qualitative experiments
conducted on synthetic and real data sets, revealing that the learned met-
rics are effective in improving novelty detection compared to other metrics.
Our method also outperforms previous work regularly used for novelty de-
tection.
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1. Introduction1

Novelty detection can be defined as the task of recognizing that test data2

differ in some respect from the data that are available during training (Pi-3

mentel et al., 2014). A large number of applications are covered by novelty4

detection methods including fraud detection (Jyothsna et al., 2011), medi-5

cal diagnosis (Clifton et al., 2011), video surveillance (Diehl & Hampshire,6

2002), mobile robotics (Sofman et al., 2011), among many others. It is worth7

mentioning that novelty detection is similar to anomaly and outlier detection8

and one-class classification, although it originated from different application9

domains. We refer the readers to the excellent surveys on novelty (Pimentel10

et al., 2014) and anomaly (Chandola et al., 2009) detection as well as one-11

class classification (Khan & Madden, 2010) for more information.12

In general, novelty detection methods are applied when only data from13

a specific pattern is available, which is usually called the “normal” class,14

in contrast to novel data revealing a different pattern (“abnormal” class).15

In many real-world pattern recognition applications, however, many distinct16

patterns may be given during a training phase, and others may only appear17

over time (Faria et al., 2013).18

As remarked by Bodesheim et al. (2013), it is not always possible to define19

a complete set of classes and acquire training instances from each of them.20

According to that authors, in multi-class novelty detection, one wants to de-21

tect whether a test sample is a novelty or if it belongs to one of many available22

classes, no matter to which class. For instance, training visual recognition23

systems require the trainer to provide images displaying examples of objects.24

However, the potential number of classes of real-world objects visible in an25

image is virtually infinite, and thus it is not possible to enumerate and collect26

training samples from all types of objects. Another critical problem where27

this situation occurs is gesture recognition. Many methods represent gestures28

as sequences of trainable classes of key poses, where only a few key poses are29

selected for training (Miranda et al., 2014b; Lv & Nevatia, 2007). However,30

during a gesture execution, some unimportant poses (novelties) will also oc-31

cur in-between consecutive key poses. As a consequence, a key pose classifier32

must be capable of robustly identifying both: poses that are instances of a33

trained (normal) class; and unimportant poses that are not instances of any34

of the trained key pose classes, i.e. instances of abnormal classes.35
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It is worth emphasizing that the multi-class novelty detection problem36

is not well addressed by classifiers such as multi-class Support Vector Ma-37

chine (SVM) (Schölkopf & Smola, 2002), where the boundary of each class38

is estimated by only requiring that it properly separates the regions of the39

space representing the trained classes. Consequently, SVM may incorrectly40

classify an unimportant pose as an instance of a trained class, as shown in41

Fig. 1a. To overcome such issues, we aim to provide a multi-class classifica-42

tion solution that includes a novelty detection step to filter abnormal data.43

44

According to Pimentel et al. (2014), novelty detection methods can be45

classified as: (i) probabilistic, such as the Gaussian Mixture Models pro-46

posed in (Ilonen et al., 2006); (ii) reconstruction-based, in which we em-47

phasize the Kernel PCA (KPCA) approach (Hoffmann, 2007); (iii) domain-48

based, including the well-known one-class SVM (Schölkopf et al., 2001); (iv)49

(a) SVM boundary: the hyperplane (here
a line) that better separates both classes
is chosen as the boundary between them.
The green triangle is correctly classified as
an instance of the class of circles. However,
the red triangle is incorrectly classified as
an instance of the same class of circles, al-
though it is a novelty (or outlier).

(b) Distance-based novelty filter: by con-
sidering distances between an input in-
stance and training instances, the red tri-
angle can be recognized as an outlier and
filtered, since none of the training instances
are inside the circle of radius εc centered in
the red triangle. In contrast, the green tri-
angle can be recognized as an inlier of the
black circles class.

Fig. 1: SVM classifier limitations in a simple binary classification problem and the advan-
tages of employing a distance-based novelty filter: black circles and grey squares represent
training instances of two classes, and triangles represent input instances to be classified.
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information-theoretic (Keogh et al., 2007); and (v) distance-based. We focus50

on the latter, more specifically on KNN approaches. Although a few novelty51

detection methods are based on the distance to the K-nearest neighbors, as52

in (Zhang & Wang, 2006), not much attention has been given to learning53

more sophisticated metrics.54

In the last decade, the multi-class novelty detection problem has received55

special attention from researchers. In (Faria et al., 2013), an evaluation ap-56

proach for multi-class data streams novelty detection problems was proposed.57

Also focused on data streams, de Faria et al. (2016) proposed an algorithm58

for novelty detection that addresses the problem as a multi-class task.59

More related to our work, Bodesheim et al. (2013) presented a kernel null60

space based discriminant analysis for novelty detection known as KNFST,61

which still achieves state-of-the-art performance. To improve the scalability62

of the KNFST method, an incremental version was later proposed by (Liu63

et al., 2017), reducing computing time with similar accuracy.64

We propose a multi-class novelty detection method that employs a non-65

linear distance learned from data to both detect novelties and classify normal66

samples from multi-class datasets. To the best of our knowledge, non-linear67

distances have never been employed for novelty detection. The optimum68

distance is found using a kernelized extension of the Large Margin Near-69

est Neighbor (LMNN) algorithm (Weinberger et al., 2006), named Kernel70

Large Margin Nearest Neighbors (KLMNN) (Chatpatanasiri et al., 2010)).71

Such distance tries to keep instances of the same class nearby while push-72

ing instances with different labels and novelties to remain reasonably dis-73

tant. Consequently, it provides relevant information for novelty detection,74

and also for multi-class classification. Firstly, novelty detection is performed75

by a variation of the well-known KNN classifier, using the learned distance76

and distance thresholds also learned from data. Then, normal samples are77

classified by a different proposed variant of the KNN classifier that also em-78

ploys the learned distance and thresholds. It is worth mentioning that our79

solution is also suitable for anomaly and outlier detection.80

We performed experiments to show that non-linear learned distances in-81

deed outperform the use of other distances such as linear learned distances82

(LMNN) and the Euclidean distance when adopted by the same classifier.83

We also show results of comparisons revealing that our method outperforms84

previous work on novelty detection.85
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2. Non-linear metric learning86

In this section, we review metric learning concepts and techniques that87

we employ in the proposed method. First, we introduce the Mahalanobis88

distance and give some key insights on how it could be used for novelty89

detection (Section 2.1). Then, we describe how to learn linear metrics from90

training data (Section 2.2) using the LMNN algorithm (Weinberger et al.,91

2006; Weinberger & Saul, 2009), in such a way that each instance is nearest92

to instances of its class than to instances of other classes. Finally, we briefly93

describe the KLMNN algorithm (Chatpatanasiri et al., 2010): a non-linear94

version of the LMNN algorithm built over the KPCA (Section 2.3).95

2.1. Transforming the space with the Mahalanobis distance96

Given a set X = {xi} ⊂ Rn of data points, the original Mahalanobis97

distance is defined using the covariance matrix C of X . However, in the98

metric learning literature, many methods aim to compute a distance given99

in the form:100

dM(xi,xj) = (xi − xj)
>M (xi − xj), (1)

where M is some positive semi-definite matrix found by optimization, instead101

of C. Distance functions from this class of functions can be adequately102

represented by its matrix M, and are usually called generalized Mahalanobis103

distance.104

A key insight for such distances is that matrix M can be factorized by105

using Cholesky decomposition as M = G>G, where a linear transformation106

is G. Consequently, we have107

dM(xi,xj) = ‖Gxi −Gxj‖22 , (2)

which means that any generalized Mahalanobis distance is just the squared108

Euclidean distance applied to linearly transformed data. Thus, the problem109

of learning an optimal metric for a specific problem can be reduced to the110

problem of optimally deforming the feature space Rn, before applying the111

squared Euclidean distance. It is worth mentioning that distinct features112

may be concatenated to form the data points xi ∈ Rn, including continuous,113

binary, and categorical data as well. In particular, binary features may be114

represented by an integer with two possible values (for instance, 0 and 1),115

and categorical features may be one-hot encoded.116

In this paper, we require such distances to be learned from data, satis-117

fying specific constraints. In what follows, we describe such constraints and118
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appropriate metric learning techniques we adopted to solve the constrained119

optimization problem.120

2.2. Large Margin Nearest Neighbor (LMNN)121

The LMNN algorithm was originally presented with the goal of improv-122

ing k-NN classification accuracy (Weinberger et al., 2006). The algorithm123

receives as input a labeled dataset P = {(x1, c1), . . . , (xm, cm)} with xi ∈ X124

and labels ci ∈ C, where C is a set of classes.125

The aim is to find a generalized Mahalanobis distance that tries to keep126

instances of the same class as nearest neighbors, while repelling instances127

from different classes (impostors). More specifically, the aim is to minimize128

L(M) =
∑

(i,j)∈S

dM(xi,xj) + λ
∑

(i,j,k)∈R

[1 + dM(xi,xj)− dM(xi,xk)]+, (3)

where [·]+ = max(·, 0) and λ ∈ R is a multiplier associated with the penalty129

term. S is the set of all pairs (i, j) where xj is one of the K nearest neighbors130

in the same class as xi andR is the set of all tuples (i, j, k) such that (i, j) ∈ S131

and xk is an instance from a different class. For more details, see (Weinberger132

& Saul, 2009). Moreover, we highlight three key insights:133

1. According to the authors, KNN classification is improved when a learned134

distance function is employed (Weinberger et al., 2006). By attract-135

ing nearest neighbors from instances of the same class while repelling136

nearest neighbors from distinct classes, the learned linear transforma-137

tion G tends to better separate clusters of data points according to138

their classes. This behavior can be observed in Fig. 2;139

2. To the best of our knowledge, this strategy has never been experimented140

for novelty, anomaly, or outlier detection;141

3. As already mentioned, the learned Mahalanobis distance is just a squared142

Euclidean distance calculated over data previously transformed by G.143

However, a linear transformation of the feature space may not be suffi-144

cient to evaluate distances in a high-dimensional space correctly. In or-145

der to overcome this limitation, Chatpatanasiri et al. (2010) proposed146

KLMNN as a non-linear extension for the LMNN.147

2.3. Kernel Large Margin Nearest Neighbor (KLMNN)148

The KLMNN approach (Chatpatanasiri et al., 2010) relies on the kernel149

trick in KPCA derivation. The main advantage of this non-linear extension150
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Fig. 2: Visualizing how LMNN and KLMNN improve data clusters: on the left, a t-
SNE projection (Van Der Maaten, 2014) of a small training set composed of instances
from 11 classes. After linearly transforming the data using LMNN (center), clusters are
better separated from each other. Even better results, with more disjunct and spherical
clusters, are achieved when the non-linear transformation computed using KLMNN is
applied (right). Note that a multidimensional projection was applied because the dataset
lies in R17.

is that it does not require the derivation of new mathematical formulas from151

the original LMNN formulation.152

The first step of the framework is to (non-linearly) project the input
dataset X using the KPCA (Schölkopf et al., 1997). It is known that there
exists a non-linear, possibly very-high-dimensional mapping Φ: Rn 7→ RN

capable of transforming X into a linearly separable set in a higher dimensional
feature space RN (J. Mercer, 1909). By applying kernelization, the KPCA
implicitly uses the unknown map Φ to diagonalize the covariance matrix of
the transformed data, given by

C̃ =
1

m

m∑
i=1

Φ(xi)Φ(xi)
> .

Note that the number of eigenvectors of C̃ equals to |X |, which is in general153

much higher than n. Thus, it is expected that many eigenvalues of C̃ will154

be very small, and consequently, a dimensionality reduction strategy may155

be applied. Following this idea, a transformed set X̃ can be computed by156

projecting the data points over the most relevant eigenvectors of X̃ . From157

now on, we will denote the complete KPCA projection step by Π : X → X̃ . In158
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the following step, the original LMNN algorithm is applied to the transformed159

data to find the Mahalanobis matrix M. Finally, from Equation (2), the non-160

linear learned distance is given by161

d̃M(xi,xj) = ‖GΠ(xi)−GΠ(xj)‖22 . (4)

It is worth mentioning that the parameters of the KPCA projection must162

be kept to calculate distances between unprojected points. The superiority of163

using the non-linear composition G◦Π to improve data clusters configuration,164

in comparison with the simple linear transformation from LMNN, can be seen165

in Fig. 2. It is also worth mentioning that, we compute KPCA using the166

Gaussian kernel with a σ hyperparameter tuned according to the procedure167

described in Section 4.1. For more details about the kernelization, we refer168

the reader to the papers (Schölkopf et al., 1997; Chatpatanasiri et al., 2010).169

3. Multi-class novelty detection and classification170

In this section, we present a multi-class novelty classifier that may also171

be employed to provide multi-class classification of normal data. Here, we172

mainly consider novelties (or abnormal data) or instances from classes not173

included in the training set. If a test instance is classified as a novelty, it is174

filtered. Otherwise, it follows for multi-class classification.175

3.1. Novelty classifier training176

Following the supervised learning approach, the proposed novelty classi-177

fier is trained from a labeled dataset P (defined in Section 2.2). The training178

phase is comprised of two steps: non-linear metric learning and distance179

threshold estimation.180

3.1.1. Non-linear metric learning181

In the first step, the KLMNN framework (Section 2.3) is employed to learn182

a non-linear distance function d̃M from P . From another perspective, a non-183

linear transformation of the feature space Rn is learned better to reposition184

inliers (normal data) in well-defined clusters and isolate outliers (abnormal185

data).186

Consequently, we expect inliers to be near the K nearest neighbors of187

their corresponding classes, and far from instances of other normal classes,188

as illustrated in Fig. 2 (right). Besides, our central hypothesis is that inliers189
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Fig. 3: Visualizing the behavior of abnormal classes after non-linearly transforming the
space using instances from 10 trained classes, through t-SNE projections: instances from
each inlier class are attracted to its representative cluster, while instances from two un-
trained classes (4 and 5) are isolated, as indicated by the arrows. In particular, instances
of untrained class 4 are the only ones that are not well clustered, since classes 4 and 5
instances are not considered in the distance learning optimization (Equation (3)).

should become far from instances of abnormal classes (outliers) because it190

is expected that such outliers would lie outside the attracting region of each191

class. This idea is visually validated in the projection shown in Fig. 3, where192

outliers from two untrained (abnormal) classes are far from the regions of193

ten trained classes.194

3.1.2. Distance threshold estimation195

We propose a distance-based filter to detect and filter novelties composed196

of data from untrained classes and/or noise. To evaluate if a point x is an197

inlier of a specific class c, we take into account the distance from x to its198

K-nearest neighbors, considering only training instances from c.199

Since classes may be represented by point sets with different density, we
compute distance thresholds individually for each class. Considering the set
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X c = {xi | (xi, c) ∈ P}, i.e. the instances of class c in the training set P .

For each xc
i ∈ X c, we use d̃M to find the distance dci from xc

i to its K-nearest
neighbors in X c. The distance threshold for class c is set to

εc = τ [mean(Dc) + std(Dc)] with Dc = {dci | i = 1, . . . , |X c|} ,

where mean(Dc) and std(Dc) are respectively the arithmetic mean and stan-200

dard deviation of Dc, and τ ∈ R is a tolerance to strengthen or soften the201

novelty classifier. We empirically found that τ = 1.2 showed good results,202

although a cross-validation procedure could be applied for better tuning,203

as discussed in Section 4.1.204

3.2. Novelty filtering205

Let x ∈ Rn be an input instance (from an unseen example) and its neigh-206

borhood N c(x) =
{

xi ∈ X c | d̃M(x,xi) < εc

}
. An input instance x is con-207

sidered to be an outlier of class c if |N c(x)| < κ, where κ ≤ K is an integer208

hyperparameter. Consequently, x is filtered as a novelty if x is an outlier for209

all trained classes. Only instances that pass this step will be considered for210

classification.211

Fig. 1b depicts an example where a red instance would be filtered as a212

novelty since no training instance is inside its circle.213

3.3. Inlier classification214

We propose a modified KNN method to classify inlier instances, making215

use of the distance thresholds estimated in the training phase. We aim to216

take into account the density of each set X c for classification. For instance,217

we consider that compact clusters, such as the cluster representing class 11218

of Fig. 2 (right), should only influence classification if an instance is very219

near the cluster. On the opposite, the larger spread of class 8 data implies a220

larger influence region.221

Given an input instance x, let K(x) ⊂ P be the set of the K nearest valid
neighbors of x, defined as

K(x) = {(xi, ci) ∈ P | d̃M(x,xi) < εc} .

To find K(x), we recursively search for the Ki nearest neighbors of x using222

a k-d tree data structure built over P . We initiate the search with K1 = K,223

and stop if at least K nearest neighbors are valid. Otherwise, the search224

continues for the Ki+1 nearest neighbors with Ki+1 = 2Ki, until the condition225

is satisfied. Thus, x is classified as the mode of the labels of K(x).226
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4. Experiments227

In this section, we describe experiments thoroughly performed on syn-228

thetic and real datasets to validate, evaluate, and compare the proposed229

methodology to well-established methods available in the literature. We pro-230

vide experiments setup details in Section 4.1. Simulation studies on synthetic231

data are described in Section 4.2, including computational performance eval-232

uations. Then, the results of a comparison between our method and other233

novelty detection approaches on real datasets are revealed in Section 4.3.234

Finally, in Section 4.5, we described a simple proof-of-concept visual experi-235

ment focused on gesture recognition applications.236

4.1. Experiments Setup237

We intended to answer the following research questions in our experi-238

ments:239

Q.1 How does the proposed novelty detection method perform on linearly240

and non-linearly separable data?241

Q.2 How does the proposed method accuracy behave when the number of242

training instances increases?243

Q.3 Is the proposed method robust to the curse of dimensionality?244

Q.4 How does the proposed method compares to well established and state-245

of-the-art novelty methods?246

Q.5 How does the proposed method training time increase when the number247

of training instances and/or the number of features increase?248

Q.6 How does the proposed method perform on real noisy datasets?249

To answer such questions, we adopted two specific protocol for cross-250

validation and hyperparameters tuning, and two appropriate error metrics,251

which we detail next. Then, we briefly describe the compared methods.252

Cross-validation protocols. We aim to evaluate how novelty classifiers, in-253

cluding ours and other compared methods, perform to discriminate data from254

trained (normal) classes and data from classes that are not included in the255

training set (abnormal). For this purpose, we propose two cross-validation256

protocols: the first for simulation studies in synthetic datasets and the second257

for experiments on real datasets.258
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P.1 To conduct simulation studies on each synthetic dataset, we build a su-259

pervised training set Pt, representing the negative class (no novelties),260

comprised of synthetically generated instances of each normal class and261

including their corresponding labels. We define negative classes using262

analytical models, which we detail in Section 4.2. It is worth emphasiz-263

ing that data from at least two classes is required to learn the non-linear264

metrics. To tune the hyperparameters, random samples from an ab-265

normal/positive class are synthetically generated to compose Pu. We266

then perform a uniform grid search with ten validation experiments per267

hyperparameter configuration using data from Pt and Pu. The hyper-268

parameter configuration with the best average performance in the ten269

experiments is selected for the evaluation. Finally, a different test set270

is composed of synthetic data uniformly sampled from the analytical271

model (negative class) and the feature space (positive class). More de-272

tails on the error metrics and hyperparameters tuning procedure follow273

at the end of this section. The number of samples employed for each274

experiment is detailed in Section 4.2.275

P.2 For real datasets, in each experiment, we exclude all instances of several276

classes randomly selected from the set of classes. More specifically, let277

C be the set of classes of a dataset P . We randomly sample a few278

classes from C to compose the trained class set Ct, and the remain-279

ing are included in the untrained class set Cu. We denote by Pu and280

Pt subsets of instances of P belonging to Cu and Ct, respectively. For281

cross-validation purposes, the training set is composed of a random282

split of 80% of the instances in Pt. The remaining instances of Pt are283

randomly included in the test set (20%). Besides, the test set receives284

the same ratios of instances (20%) from Pu. Each random selection285

of classes is repeated ten times so that different subsets of classes are286

considered normal/abnormal, and the random split for training/test is287

performed. For instance, in a skeleton body poses dataset (described288

in Section 4.3), we randomly exclude all instances of 9 key pose classes,289

using only data from the remaining nine key poses for training. In this290

manner, we can verify if poses from untrained classes are correctly fil-291

tered as novelties. In practice, if an individual performs a body pose292

which was not trained before (such as a pose similar to the instances of293

one of the nine excluded key pose classes), the classifier should succeed294

in filtering such pose as a novelty, instead of classifying it as one of the295
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trained key poses. To tune the hyperparameters, we performed a uni-296

form grid search with ten validation experiments per hyperparameter297

configuration. The hyperparameter configuration with the best aver-298

age performance in the ten experiments is selected, and the respective299

average score is used as a result of the final evaluation of the model.300

Error metrics. To evaluate the accuracy of the novelty detection classi-301

fiers, we adopted two appropriate metrics for binary classification problems:302

the F1 score and the Matthews correlation coefficient (MCC). As we describe303

next, both can be written in terms of TP (true positives); TN (true nega-304

tives), FP (false positive), and FN (false negatives). We consider abnormal305

data (novelties) to be a positive class and normal data to be the negative306

class. In both metrics, higher scores are better.307

• F1 score: a measure of accuracy of the classifier, defined as the har-
monic mean of precision and recall, as follows

F1 =
TP

TP + 0.5(FP + FN)
.

• Matthews correlation coefficient (MCC): a more informative measure
of accuracy for binary classifier, which is generally better than F1 score
for novelty detection problems, since it takes into account the balance
ratios of the four confusion matrix categories:

MCC =
TP · TN − FP · FN√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)
.

In the following experiments, we consider the MCC as the reference error308

metric, although the F1 score is also shown.309

Hyperparameters tuning details. In all experiments, we tune hyperparame-310

ters of our approach, and also each compared methods to perform fair com-311

parisons. We applied uniform grid searches over the hyperparameters space312

of each method, considering the resulting MCC metric over validation data313

from the cross-validation approach. Our experiments revealed that such cal-314

ibration was crucial to achieve great results, as exemplified in Fig. 4: the315

non-linear classifier outperformed the other metrics only when the Gaussian316

kernel parameter (σ) was assigned to a value in a specific interval. For all317
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Fig. 4: Hyperparameter tuning on the real KGD dataset (see Section 4.3): outlier filtering
achieved better results when our non-linear metric was employed compared to the Eu-
clidean and linear metric. However, hyperparameter tuning was essential, since only when
kernel parameter σ in the interval [1.0, 1.8] were used for KPCA projection, resulting in
non-linear distance outperformed the other distances (note that the other distances do not
depend on σ).

KNN-based methods, we also performed cross-validation experiments to tune318

the hyperparameters K, κ, and τ for each dataset. For K and κ, we con-319

sidered all pairs of integers in the range [1, 5] where κ ≤ K. We evaluate320

50 equally spaced values in the range [0.5, 3.0] for τ . Tables 2 and 4 reveal321

results of tuning experiments on a synthetic and on a real dataset, respec-322

tively.323

Compared methods. We perform comparisons with well established previous324

work regularly used for novelty and anomaly detection: one-against-all multi-325

class SVM (Hsu & Lin, 2002) (MCSVM), in which an instance is classified as326

novelty if it does not belong to any trained class; one-class SVM (Schölkopf327

et al., 2001) (OSVM); KPCA for novelty detection (Hoffmann, 2007) (KP-328

CANOV); and Kernel Null Space Method (Bodesheim et al., 2013) (KNFST),329

which was recently enhanced by Liu et al. (2017) and still achieves state of330

the art accuracy. We also compare the usage of our proposed non-linear331

metrics (KLMNN) with linear (LMNN) and Euclidean (KNN) metrics. For332

all compared methods, we experimented with both the usual Gaussian and333

polynomial kernels. Regarding the KNFST, we adjust the kernel parame-334

ter and a decision threshold that varies from zero to the minimum distance335
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between the trained classes’ target points. For the KPCANOV, we adjust336

the kernel parameter and the number of relevant eigenvectors to the feature337

space’s error reconstruction. For the OSVM algorithm, we only adjust the338

kernel parameter. Already for MCSVM, both the kernel parameter and a339

posterior probability threshold are adjusted. Although this posterior proba-340

bility is not standard for SVM methods, it is an attractive way to estimate341

decision boundaries for support vector machines. More details can be found342

in the official documentation of the main libraries that implement SVM.343

4.2. Simulation studies on synthetic data344

To evaluate our novelty detection approach in different situations, we cre-345

ated simulation studies on four datasets depicted in Figures 5 and 6: three346

horizontal lines; three parabolas; three concentric circles; and four uniform347

distributions. Note that two datasets are linearly separable (horizontal lines348

and uniform distributions), and two are not linearly separable (parabola and349

concentric circles). The uniform distribution simulations will be employed350

to evaluate our novelty detection approach when the number of training ex-351

amples or the number of features grows. For the process of hyperparameters352

tuning and methods evaluation, we apply the cross-validation protocol P.1353

(see Subsection 4.1).354

In the first simulation, we created three classes with 25, 50, and 25 points355

from the sampling of 3 horizontal lines. Similarly, we created the simulation356

of parabolas and concentric circles. To assist the process of hyperparameters357

tuning, we added a fourth class of random samples composed of 192, 187,358

and 193 samples for the first, second, and third simulation, respectively.359

During the evaluation of hyperparameters, we noticed that the kernel-360

based methods presented better results with a polynomial kernel of type361

k(x,y) = (x · y + 1)d than the traditional Gaussian kernel. On the other362

hand, for OSVM and MCSVM, the Gaussian kernel was more advantageous.363

To study the best hyperparameters K and κ for KNN, LMNN and KLMNN364

methods, we chose to apply the protocol P.1 individually for different combi-365

nations of K and κ, so that the other hyperparameters are adjusted according366

to each combination.367

Table 1 summarizes the results, where we also show the value of the F1368

score. The best methods were KLMNN and KNFST, which achieved max-369

imum MCC and F1 scores in all simulation studies. KPCANOV performed370

well for the simulation of horizontal lines and parabolas, while for the sim-371

ulation of circles, the result was unsatisfactory. SVM-based methods were372
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Table 1: Comparison of the methods in 4 simulation studies (best results in bold).

simulation
studies

train / validation test
metrics

KNN-based methods compared methods

normal novelty normal novelty KNN LMNN KLMNN KNFST OSVM MCSVM KPCANOV

horizontal
lines

100 192 900 89 100
F1 0.14 1.00 1.00 1.00 0.15 0.14 0.99

MCC 0.25 1.00 1.00 1.00 0.26 0.26 0.99

parabolas 100 187 1 500 98 500
F1 0.31 0.31 1.00 1.00 0.23 0.16 0.99

MCC 0.30 0.30 1.00 1.00 0.32 0.24 0.99

concentric
circles

100 193 3 300 197 970
F1 0.16 0.16 1.00 1.00 0.10 0.17 0.25

MCC 0.26 0.26 1.00 1.00 0.18 0.22 0.35

unsatisfactory in all simulations. These results can be attested visually by373

Fig. 5, which shows the decision regions for each method in the three simu-374

lations. Any point outside these regions is considered abnormal data.375

For the simulation of horizontal lines, both linear (LMNN) and non-linear376

metric learning (KLMNN) were able to capture the exact distribution of377

the 3 lines. In this case, the MCC score was 1.0 for all tested K and κ378

combinations. On the other hand, for KNN the best result was only 0.25379

with hyperparameters K = 2 and κ = 1.380

Meanwhile, in the 3 parabolas simulation (Fig. 5, middle), we observed381

that the linear metric learning was insufficient to capture the correct distri-382

bution of the data. In this case, the best result for KNN and LMNN was383

0.3 when K = 1 and κ = 1. In turn, with non-linear metric learning, it was384

possible to capture the exact distribution of the 3 parabolas, regardless of K385

and κ values. These results can be checked in more detail in Table 2, where386

κ is defined as a function of K.387

Table 2: MCC of the KNN-based methods for different combinations of hyperparameters
K and κ in the 3 parabolas simulation. The scores for values of κ less than 1 are omitted
with symbol ∅. Best results in bold.

KNN LMNN KLMNN

K
κ κ κ

K K − 1 K − 2 K − 3 K K − 1 K − 2 K − 3 K K − 1 K − 2 K − 3

1 0.30 ∅ ∅ ∅ 0.30 ∅ ∅ ∅ 1.00 ∅ ∅ ∅
2 0.14 0.29 ∅ ∅ 0.07 0.29 ∅ ∅ 1.00 1.00 ∅ ∅
3 0.12 0.14 0.16 ∅ 0.12 0.16 0.29 ∅ 1.00 1.00 1.00 x
4 0.10 0.13 0.17 0.17 0.11 0.13 0.16 0.17 1.00 1.00 1.00 1.00
5 0.10 0.12 0.13 0.15 0.10 0.12 0.13 0.14 1.00 1.00 1.00 1.00
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Fig. 5: Decision regions of all methods on simulation studies 1, 2 and 3. Every point
belonging to the gray region is considered normal data, which indicates that they belong
to a class of the training data. On the other hand, any point outside the region is considered
novelty (abnormal class).
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As in the previous case, in the simulation of concentric circles, only the388

KLMNN succeeded to correctly determine the circles. In this case, all tested389

combinations (K,κ) resulted in an MCC score of 1.0. In turn, with KNN390

and LMNN, the results were unsatisfactory, with a better score of only 0.26391

for both methods when K = 2 and κ = 1.392

Fig. 6 shows another simulation study to evaluate the novelty detection393

performance of our KNN-based approach when we increase the number of394

training samples and the number of dimensions (features) as well. In this395

case, we create five classes with uniform probability distribution in 5 hy-396

percubes centered on the xy-plane of Rn. For instance, in R2 classes are397

composed of random points in squares of side 0.9 centered on (1.0, 0.5),398

(−0.5, 1.0), (−1.0,−0.5), (0.5,−1.0) and (0.0, 0.0). For the purpose of hy-399

perparameters tuning and methods evaluation, we select one class and con-400

sidered it as abnormal. In the first experiment, we fixed the number of401

dimensions at ten and varied the number of training samples by 100, 200,402

300, 400, 500, 750, 1000, 1500, and 2000. While in the second experiment,403

we fixed the number of training points and varied the number of dimensions404

from 2 to 20. Again, we adopted the protocol P.1 to adjust the hyperparam-405

eters, and the overall performance of novelty detection was calculated in a406

test set with 50K samples (40K from trained classes and 10K from the abnor-407

mal class). For both KNN, LMNN, and KLMNN, the other hyperparameters408

were adjusted with K = 3 and κ = 1. Fig. 7 depicts the results.409

-2 -1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
class 1
class 2
class 3
class 4
novelty

Fig. 6: Synthetic dataset with 5 hypercubes to evaluate the performance of the methods
when the number of samples grows and also when the number of dimensions grows.

The first experiment (Fig. 7, left), when the number of training samples410

grows, our both LMNN and KLMNN improves the performance of KNN411
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Fig. 7: Evaluation of methods with MCC when the number of training examples increases
(left) and when the number of dimensions increases (right). All experiments were evaluated
in a test set with 50K samples (40K normal and 10K novelty).

novelty detector, note that in the range 100 to 500 the MCC value it rises412

from approximately 0.66 to above 0.95 with KLMNN, reaching a value of413

0.99 with 1000 and 2000 training samples. However, our version of the KNN414

with Euclidean distance improves from 0.40 to just 0.55 in the same range415

of training data, reaching a maximum of 0.63 with 2000 training samples.416

For the other methods, MCSVM proved to be efficient in this experiment,417

reaching a score of 0.95 in almost all cases. This possibly occurs due to the418

simplicity of positioning and distribution of the classes, since the multi-class419

SVM calculates hyperplanes that best separate the classes from each other.420

OSVM is inefficient in the same task, achieving MCC values ranging around421

0.6, with a maximum value of 0.73. KNFST improves considerably in the422

range [100, 750], varying from 0.50 to 0.92, but it remained at the same level423

of 0.90 for experiments with more than 750 training samples. KPCANOV424

had the worst performance, with MCC of at most 0.53 remaining the score425

unchanged, even increasing the training samples.426

The second experiment (Figure 7, right), when the number of features427

grows, both linear and non-linear metrics mitigate the impact of the curse of428

dimensionality on the KNN. It is enough to note that in the KNN, the MCC429

metric varies from 0.99 in dimension 2 to 0.23 in dimension 20, while LMNN430

and KLMNN varied from 0.99 to 0.84 and 0.95, respectively. Regarding the431

compared methods, we see that both OSVM and KPCANOV had the same432
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problem as KNN with Euclidean distance. In contrast, KNFST remained433

relatively stable, with an MCC value of 0.85 in dimension 20. MCSVM is434

also stable, with a score always around 0.95 due to positioning characteristics435

and class distribution.436

Therefore, the experiments above presented provide answers to the ques-437

tions from Q.1 to Q.4 of our research (Section 4.1).438

Computational performance. We use the simulation depicted by Fig. 6 to439

measure the computational performance of our method and previous work.440

We aim to evaluate how training/evaluation times grow when the number441

of dimensions (features) and the number of training examples grows when442

evaluated on a set of 50K test samples. The experiments were performed443

on a single core 1.8GHz of an Intel Core i7-8550U processor and 8GB of444

RAM, without using GPU processing. All models were trained using Matlab445

R2018b on Windows 10. To measure training/evaluation time in terms of446

the number of training examples, we fixed the dimension to 10. As shown447

in the left chart of Fig. 8, both SVM-based approaches performed better448

than the other methods. KNN-based methods reached satisfactory results,449

although some additional time was required to learn the non-linear metrics450

of our KLMNN. It is worth noting that the state-of-the-art KNFST method451

performed similarly to KLMNN, in which case 2000 samples were trained in452

less than a minute. Contrastingly, KPCANOV required substantially higher453

training times and showed the worst growth pattern. The results of the ex-454

periments varying the number of features are shown in the right chart of455

Fig. 8. Here, we fixed the number of training examples to 800. Notably,456

all methods showed almost constant training times when the number of di-457

mensions varies. Specifically, in our KLMNN, the number of features only458

influences kernel computations, which do not substantially contribute to the459

total training time. Thus, answering the question Q.5.460

4.3. Experiments on real datasets461

We also experimented on four multi-class (more than two classes) datasets462

with different characteristics. All datasets contain noisy data. Two ac-463

cessible datasets were chosen from the UCI repository of machine learning464

databases (Dheeru & Karra Taniskidou, 2017): iris and glass. The small iris465

dataset contains three classes of 50 instances each, where each class refers466

to a type of iris plant, and four attributes represent each instance. Due to467

its simplicity, we chose this dataset to demonstrate that general multi-class468
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Fig. 8: Computational performance of the methods when the number of training examples
grows (left) and when the number of dimensions grows (right). All experiments were
evaluated on a test set with 50K samples (40K normal and 10K abnormal).

classifiers are not appropriate to handle data from untrained classes. The un-469

balanced glass is an extremely noisy dataset composed of instances of 6 types470

of glass (classes), where the number of instances of each class is, respectively:471

70, 76, 17, 13, 9 and 29, as depicted in glass. This dataset was adopted to472

investigate our method’s performance when dealing with low-quality data473

compared with the methods. The other experimented datasets are related to474

the gesture recognition problem, which strongly relies on multi-class novelty475

detection. The first one is a public gesture dataset for body key poses named476

KGD (Miranda et al., 2014a,b). This dataset is composed of instances from477

18 body key poses (classes), described by nine joint angles extracted from478

body skeletons, with approximately 11 instances per class. The second is a479

novel hand pose dataset representing signs of the Brazilian Sign Language480

(libras), and now made publicly available1. The dataset is composed of 20481

signs (classes) represented by 14 joint angles of hand skeletons captured from482

a Leap Motion sensor (Leap Motion, 2018), with approximately 19 instances483

per class.484

In Table 3, we summarize the results for all experimented methods and485

datasets, when the protocol P.2 (Section 4.1) and optimal hyperparame-486

1https://ic.ufal.br/professor/thales/leaplibras/
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Fig. 9: t-SNE projection of the glass dataset: all classes are noisy and/or not well-clustered.

ters are employed on the test sets (for several random selections of nor-487

mal/abnormal classes). For instance, the K and κ calibration on the KGD488

dataset are revealed in Table 4 for all KNN-based methods.489

Results on the iris dataset corroborate the limitations of MCSVM for490

novelty detection: by excluding one of the three classes from the training491

set, MCSVM fails to identify that instances from the excluded class are nov-492

elties, achieving the worst MCC result among all compared methods. This493

result may be visually explained by the sketch already shown in Fig. 1a: since494

only two classes were used for training, we claim that the resulting MCSVM495

hyperplane separates the trained classes, but does not define any untrained496

region as in the illustration shown in Fig. 1b for a distance-based novelty clas-497

sifier. Our approach outperformed all methods under both metrics, closely498

followed by its linear variant.499

Except for the KGD dataset, the best results were achieved by the met-500

ric learning approaches KLMNN and LMNN. When both approaches are501

directly compared, KLMNN is only outperformed by the LMNN variant on502

the glass dataset under the F1 score. This may be a consequence of severe503

noise found in that dataset, as shown in Fig. 9. In such scenarios, we claim504

that non-linear metric learning is more susceptible to degenerate the data.505

Overall, considering the MCC as the reference error metric, our approach506

outperformed the other methods in three out of the four datasets.507
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Finally, the study performed in this section provides the answer to the508

question Q.6.509

Table 3: Comparison between our non-linear novelty classifier (KLMNN) and other meth-
ods on four real datasets. Here, nc represents the number of classes of the dataset, and
nuc the number of excluded classes. The best results are highlighted in bold and the
second best results underlined.

dataset nc nuc acc. score
KNN-based methods other methods

KNN LMNN KLMNN KNFST OSVM MCSVM KPCANOV

iris 3 1
F1 0.94 0.96 0.96 0.91 0.94 0.91 0.94

MCC 0.80 0.88 0.89 0.78 0.82 0.76 0.83

glass 6 3
F1 0.66 0.74 0.68 0.65 0.72 0.62 0.73

MCC 0.35 0.35 0.39 0.31 0.22 0.36 0.35

KGD 18 9
F1 0.94 0.92 0.95 0.96 0.85 0.94 0.95

MCC 0.87 0.84 0.90 0.92 0.71 0.89 0.90

libras 20 5
F1 0.93 0.93 0.93 0.91 0.92 0.93 0.93

MCC 0.69 0.69 0.70 0.66 0.67 0.68 0.70

Table 4: MCC of the KNN-based methods for different combinations of hyperparameters
K and κ in the KGD dataset. The scores for values of κ less than 1 are omitted with
symbol ∅. Best results in bold.

KNN LMNN KLMNN

K
κ κ κ

K K − 1 K − 2 K − 3 K K − 1 K − 2 K − 3 K K − 1 K − 2 K − 3

1 0.87 ∅ ∅ ∅ 0.84 ∅ ∅ ∅ 0.89 ∅ ∅ ∅
2 0.73 0.80 ∅ ∅ 0.81 0.81 ∅ ∅ 0.89 0.90 ∅ ∅
3 0.51 0.60 0.73 ∅ 0.75 0.82 0.81 ∅ 0.89 0.89 0.89 ∅
4 0.52 0.52 0.61 0.76 0.75 0.75 0.82 0.82 0.86 0.88 0.88 0.89
5 0.56 0.50 0.53 0.65 0.62 0.64 0.68 0.75 0.79 0.83 0.83 0.83

4.4. Multi-class classification results510

We evaluated the non-linear multi-class KNN classifier described in Sec-511

tion 3.3 for a specific classification task. In this case, we compared only to512

the KNFST and MCSVM methods, since the other OSVM and KPCANOV513

were not developed for this purpose. To evaluate each method’s performance,514

we calculated the precision, recall, and F1 score for each class individually.515
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Then, we calculated the well-known macro and weighted averages of each516

of these measures. We calculated these measures from the aggregate confu-517

sion matrix for experiments on real datasets, summarizing the results of 10518

validation experiments.519

In Tables 5 and 6, we respectively show comparisons of our approach520

for multi-class classification on both a synthetic dataset (uniform distribu-521

tions with 1000 training examples in dimension 10); and a real data set522

(iris). In both tables, pre represent the precision, rec is the recall and f1523

is the F1 score. In addition, m. avg is the macro average and w. avg is524

the weighted average measure. Both LMNN and KLMNN variations of our525

multi-class classifier performed better than the KNFST and MCSVM. Also,526

it is worth mentioning that learning metrics was important to considerably527

improved the classification performance of the knn classifier. The KNFST528

and MCSVM also performed well in this case, reaching average recalls of529

approximately 1.0, but with average precisions slightly lower. As for the530

iris dataset, we can see from Table 6 that our approach KLMNN outper-531

formed the compared methods, reaching 0.95 and 0.96 for macro average532

and weighted average F1 score, respectively.533

Table 5: Multi-class classification results on the uniform distributions from experiment
of Fig. 6. Best results for macro average and weighted average F1 score are in bold and
underlined.

KNN LMNN KLMNN KNFST MCSVM

pre rec f1 pre rec f1 pre rec f1 pre rec f1 pre rec f1

class 1 0.90 0.94 0.92 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 0.98 0.99 1.00 0.99
class 2 0.91 0.96 0.93 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 0.98 0.98 1.00 0.99
class 3 0.91 0.94 0.93 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 0.98 0.99 1.00 0.99
class 4 0.91 0.93 0.92 1.00 1.00 1.00 1.00 1.00 1.00 0.96 1.00 0.98 0.98 1.00 0.99

m. avg 0.91 0.94 0.93 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 0.98 0.98 1.00 0.99
w. avg 0.91 0.94 0.93 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 0.98 0.98 1.00 0.99

4.5. Proof-of-concept visual experiment for gestures534

We finally performed a simple visual experiment on gestures represented535

by key pose classes, to demonstrate that gesture recognition can be improved536

by applying our non-linear novelty filtering step. In Fig. 10, we show a537

t-SNE projection of instances of key pose classes and poses of a gesture538

example with its respective dashed trajectory. In Fig. 10a, although the539
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Table 6: Multi-class classification results on the iris dataset. The first and second best
scores for macro average and weighted average F1 score are highlighted in bold and un-
derline, respectively.

KNN LMNN KLMNN KNFST MCSVM

pre rec f1 pre rec f1 pre rec f1 pre rec f1 pre rec f1

class 1 0.92 0.99 0.95 0.99 0.96 0.97 0.99 0.99 0.99 0.98 0.98 0.98 0.97 0.95 0.96
class 2 0.83 0.98 0.90 0.89 0.97 0.93 0.88 0.97 0.92 0.81 0.87 0.84 0.83 0.92 0.87
class 3 0.89 0.95 0.92 0.94 0.97 0.95 0.94 0.97 0.95 0.98 0.87 0.92 0.94 0.83 0.88

m. avg 0.88 0.97 0.92 0.94 0.97 0.95 0.93 0.97 0.95 0.92 0.90 0.91 0.92 0.90 0.91
w. avg 0.88 0.98 0.93 0.94 0.97 0.95 0.94 0.98 0.96 0.93 0.91 0.92 0.92 0.91 0.91

gesture trajectory intersects a region with several green instances, in the540

high-dimensional feature space, they do not. Thus, the green crosses are the541

result of incorrect pose classifications that were not detected as novelties. In542

Fig. 10b, only the correct key poses are detected (red and blue). This gives543

us evidence that our non-linear novelty filter may improve distance-based544

gesture recognition methods.545

5. Limitations and future work546

We proposed a method for multi-class novelty detection that is also ca-547

pable of performing multi-class classification. The method proposed here is548

based on a non-linear distance learned from training data and may be ap-549

plied for novelty, outlier or anomaly detection. Our main conclusions are:550

1) multi-class SVMs are not appropriate for novelty detection and filtering551

in situations where data from abnormal classes are given as input for classi-552

fication, while our methodology succeeds; 2) in many situations, non-linear553

distances learning (KLMNN) achieves better results when compared to linear554

distances learning (LMNN) and the standard Euclidean distance; and 3) our555

method outperforms previous work on novelty detection in most experiments.556

In addition, our experiments revealed that our method scales well when both557

the number of features and/or samples grows when compared to existing558

novelty detection approaches, both in terms of accuracy and computational559

performance.560

Differently from one-class classification, such as OSVM and KPCANOV,561

the proposed solution is limited to multi-class novelty detection problems562

(Bodesheim et al., 2013), relying on training data from at least two normal563

classes to learn a distance function. Nevertheless, there is still great potential564
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(a) Euclidean metric: a few poses of the ges-
ture are incorrectly classified as the green
class.

(b) Non-linear metric: after transforming
the space, the green class cluster is far from
the trajectory, and only the correct classes
red and blue are detected over the trajec-
tory.

Fig. 10: t-SNE projection of instances of 3 key pose classes (dots), and the trajectory of
a gesture (whose poses are represented by crosses) between two key pose classes (red and
blue). The color of the crosses encodes pose classifications by our multi-class classifier
(red, green or blue), or novelties (black).

for usage in a wide range of applications where only data from a subset of565

classes are given as input for training, as mentioned in Section 1.566

As future work, we plan to apply the proposed solution for applications567

such as real-time pose and gesture recognition; and visual recognition sys-568

tems. Experimenting with different kernels for the KPCA projection may569

also be the topic of future research, as well as more sophisticated hyperpa-570

rameter tuning strategies.571
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