
Volume 0 (1981), Number 0 pp. 1–11 COMPUTER GRAPHICS forum

Narrow-Band Screen-Space Fluid Rendering

Felipe Oliveira and Afonso Paiva

ICMC-USP, São Carlos, Brazil

Figure 1: An SPH simulation of the Happy Whale liquid drop in a spherical container rendered with the novel narrow-band screen-space
method. On average, our method is 2.4× faster than screen-space rendering using the same narrow-range filter [TY18], also reducing
the memory footprint by 44%.

Abstract
This paper presents a novel and practical screen-space liquid rendering for particle-based fluids for real-time applications.
Our rendering pipeline performs particle filtering only in a narrow-band around the boundary particles to provide a smooth
liquid surface with volumetric rendering effects. We also introduce a novel boundary detection method allowing the user to
select particle layers from the liquid interface. The proposed approach is simple, fast, memory-efficient, easy to code, and it can
be adapted straightforwardly in the standard screen-space rendering methods, even in GPU architectures. We show through a
set of experiments how the prior screen-space techniques can be benefited and improved by our approach.

CCS Concepts
• Computing methodologies → Physical simulation; Rendering;

1. Introduction

In graphics, particles are ubiquitous elements in free-surface flow
simulations, frequently used to track the liquid interface in La-
grangian methods such as Smoothed Particle Hydrodynamics
(SPH) [IOS*14] and Position Based Dynamics (PBD) [MM13] or
hybrid Lagrangian-Eulerian methods, such as Fluid-Implicit Parti-
cle (FLIP) [ZB05] and Material Point Method (MPM) [HZGJ19].
Although these methods have been successfully applied to real-
time applications (e.g., games) due to modern GPUs’ parallel op-
portunities, the high-quality rendering of intricate liquid animations
with a high number of particles at real-time frame rates (i.e., render-
ing at least 30 frames per second) remains a challenge in computer
animation.

Traditionally the rendering of liquids in particle-based fluids
consists of two steps: first, splatting the level-set function defined
by the particles to a regular grid. Second, the liquid surface re-
construction is given by the isosurface extracted from a discrete
level-set in world-space using a polygonization algorithm, such as
Marching Cubes [LC87], where a polygonal mesh represents the
isosurface. However, this entire process is computationally expen-
sive since the surface’s smoothness and topological coherence be-
tween consecutive frames require a high-resolution grid, mainly in
large-scale domains. An alternative is to compute the surface ren-
dering directly from the particles in the screen-space, without mesh
generation. Screen-space techniques consist in computing the vol-
ume rendering directly from geometric primitives (spheres or ellip-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0002-2654-5303
https://orcid.org/0000-0001-8229-3385

F. Oliveira & A. Paiva / Narrow-Band Screen-Space Fluid Rendering

soids) representing the particles, generating a depth buffer from the
frontmost surface along a viewing direction.

This paper presents a novel and practical screen-space liquid ren-
dering for particle-based methods implemented on GPU for real-
time applications. Our method performs particle filtering only in
a narrow-band around the boundary particles to provide a smooth
liquid surface. We also introduce an efficient boundary detection
that performs a particle peeling from the free-surface to produce
the narrow-band. Therefore, we show the effectiveness of the pro-
posed method through a set of comparisons against prior standard
screen-space rendering pipelines. The excellent performance is at-
tested in a set of practical applications where our approach can be
adapted and incorporated in the existing screen-space methods in
the literature, improving their performance significantly. Figure 1
shows our method in action.

In summary, the contributions of our method are:

• a novel screen-space fluid rendering that uses only the particles
in a narrow-band of the liquid interface;
• a novel boundary detection method that allows the user to select

particle layers from the free-surface;
• our approach speeds up and reduces memory consumption of

the prior screen-space methods regardless of the choice of depth
buffer filtering technique;
• our method is simple and easy to code, even in GPU architec-

tures.

2. Related Work

In order to better contextualize our approach and highlight its prop-
erties we organize the existing methods for particle-based fluid ren-
dering into three main groups: mesh-based, ray-casting and screen-
space methods.

Mesh-based methods. The main goal of these methods is to ex-
tract a smooth polygonal surface mesh from the particle positions in
the world-space coordinates using Marching Cubes (MC) like algo-
rithms. Typically, the surface is represented implicitly by the zero
level-set of a signed distance field computed from a weighted sum
of kernel evaluations from the particles’ distances. These methods
can use isotropic kernels [MCG03; ZB05; SSP07], adaptive size
kernels [APKG07] or anisotropic SPH kernels [YT13]. Despite the
existence of parallel implementations of these methods [AIAT12;
YG20; CZZ21], if the liquid spreads more over the computational
domain, the underlying MC grid and its resulting surface mesh
become very large, causing excessive memory consumption. Re-
cently, Sandim et al. [SCN*16] proposed an alternative framework
for surface reconstruction. Their framework relies on a level-set
definition using the boundary particles, i.e., particles located at the
liquid interface. Firstly, this method computes the boundary par-
ticles and their normals in parallel using OpenMP. Then, the sur-
face is extracted fitting the Hermite data (particle positions and
normals) using Screened Poisson surface reconstruction [KH13].
However, this method also suffers the same problem of the kernel-
based methods.

Ray-casting methods. This class of view-dependent methods ren-
ders the liquid surface employing a GPU-based volume ray-casting

of a scalar field defined from the fluid particles. Fraedrich et al.
[FAW10] proposed an SPH particle rendering using an adaptive
discretization of the view volume performing ray-casting in a per-
spective grid. Zirr et al. [ZD15] improved the previous work’s
memory consumption compressing the perspective grid by group-
ing its voxels. Goswami et al. [GSSP10] performed a ray-casting of
a distance field computed in a narrow-band near the boundary parti-
cles detected using the distance between each SPH particle and the
centroid of its particle neighborhood. Later, Xiao et al. [XZY18]
also used ray-casting in a narrow-band around the isosurface de-
fined by an SPH density field. Recently, Biedert et al. [BSS*18]
replaced the polygonization scheme used to compute the isosur-
face of the scalar field derived from the anisotropic SPH kernels
provided by Yu and Turk [YT13] by a direct ray-casting. However,
the methods above mentioned losing the liquid surface depth in-
formation because it discards internal fluid particles’ contribution.
Similar to screen-space methods, Reichl et al. [RCSW14] presented
a rendering based on sphere ray-casting, storing the distances of the
intersection points between rays and particles (spheres) to the view-
point in the depth buffer. Then, the depth buffer is smoothed using a
total-variation denoising filter [Cha04]. Although ray-casting meth-
ods allow interactive rendering, these techniques are not feasible for
real-time applications.

Screen-space methods. As mentioned, this category of methods
performs in 2D image space using a smoothed depth buffer from
the visible liquid surface defined by the particles, where the re-
sulting surface is represented by a triangle mesh using Marching
Squares [MSD07] or without mesh generation by using rasteriza-
tion techniques [CS09; LGS09; Gre10; BSW10; IKM16; NA17;
TY18]. The liquid surface’s visual quality relies on the depth
buffer’s image-based filtering process, which may demand large
convolution kernels and perform multiple passes (filter iterations).
Thus, several improvements have been made in this direction with
many filter flavors: binomial filters [MSD07; CS09], curvature flow
filters [LGS09; BSW10], and bilateral Gaussian filters [Gre10;
NA17]. Imai et al. [IKM16]. proposed another alternative using
Moving Least-Squares plane fitting for filtering. This strategy im-
proves the liquid surface’s quality compared to the bilateral Gaus-
sian filter, avoiding the liquid surface’s flattened appearance in re-
gions near discontinuities. Recently, Truong and Yuksel [TY18]
presented a remarkable screen-space filtering known as narrow-
range filter. Their method smooths the foreground and background
surface’s depth values separately according to a narrow depth range
using a Gaussian filter with adaptive kernel size. However, beyond
the screen-space size, these methods’ efficiency also depends on
the number of filter iterations and the number of particles in the
world-space. Our method addresses the particle issue, improving
the previous methods’ performance considerably regardless of the
screen-space filter’s choice.

3. Screen-Space Fluid Rendering in a Nutshell

The key idea behind the screen-space method is to estimate the liq-
uid surface by the particle projections. By getting the depth values
from the distances between the viewer and particles, we can deter-
mine a surface by smoothing this depth distribution. It is possible
to reconstruct geometric properties such as surface normals and po-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

F. Oliveira & A. Paiva / Narrow-Band Screen-Space Fluid Rendering

Figure 2: Screen-space fluid rendering pipeline.

sition from the smoothed depth values and perform a complete ren-
dering pipeline on the input depth buffer. Most screen-space fluid
rendering methods are based on the pipeline introduced by Van der
Laan et al. [LGS09], which consists of several render passes, as il-
lustrated in Figure 2. In this section, we give a high-level overview
of each pipeline’s stages.

Depth buffer. In this first stage, the generation of depth values
from particle data is entirely solved by rasterizing all particles, rep-
resented by spheres of diameter h, using point sprites (i.e., screen-
oriented quads). As mentioned before, we store the particle’s depth
value concerning the camera’s viewpoint for each pixel on the
screen-space. In Figure 2, we can see darker pixels for closer points
from the camera and lighter pixels for points further away.

Filtered depth buffer. Once the depth buffer is generated, we have
a simple representation by spheres of the liquid surface, resulting in
an unrealistic blobby appearance due to the cusp’s aspect resulting
from the intersection of spheres. To produce a smooth, flat surface
from the particle positions, we perform a two-dimensional smooth
filter in the depth buffer to remove the curvature’s high variation
between the particles.

Normal buffer. With the resulting smoothed depth buffer, we
calculate the surface normals required for the lightning model.
The normals are estimated from the derivatives of the depth field
using the finite difference method and stored in a normal buffer.
The colors in Figure 2 encode the normal directions.

Thickness buffer. Another essential component in the final ren-
dering image is the liquid volume. The volume is represented by
the thickness value, it controls the color attenuation and the trans-
parency of the liquid rendering, affecting the visibility of objects
immersed or occluded by a liquid. The thickness is achieved by
computing the portion of liquid between the viewpoint and a spe-
cific location inside the liquid. For each pixel p in the screen-space,
the thickness from a particle set P is given by:

TP (p) =
|P|

∑
j=1

Gσ(‖p−x j‖2) , (1)

where the operator | · | denotes the set’s cardinality, x j is the posi-
tion of the particle j and x j is its projection on the screen-space,
and Gσ is the Gaussian kernel with a radius of influence σ as user-
defined parameter, such that Gσ(x) = exp(−x2/2σ

2). In practice, the

thickness buffer is generated by rendering Gσ for each point sprite,
replacing the summation of the Equation (1) by an additive alpha
blending to accumulate the amount of liquid at each pixel of the
output buffer. As shown in Figure 2, lighter and darker pixels rep-
resent high and low thickness values, respectively.

Filtered thickness buffer. Again, due to the particle representa-
tion by spheres, the alpha blending operation’s output needs to be
smoothed to generate the final liquid volume. Usually, the thickness
values are smoothed by using the bilateral Gaussian filter [Gre10].

Light attenuation. Before performing the lighting model, we ren-
dered the liquid volume using some light attenuation model. Given
the light path length l and the light-transmitting color rgb in the
liquid, we can estimate each pixel’s output color regarding the
liquid’s light absorption using the Beer-Lambert law [IKM16].
This law stated that the loss of light intensity when it propagates
in a liquid is directly proportional to the light path length. Thus,
the resulting color influenced by the Beer-Lambert law is given by:
rgb = rgb ·exp(−κl), where κ is the attenuation coefficient. In par-
ticular, the thickness provides a good approximation for the light
path length.

Finally, after computing the light attenuation and normal buffer,
we make a composition pass to perform the lighting model using
the simple Blinn-Phong scheme. Moreover, we can enhance the fi-
nal rendered image’s quality by integrating some lighting effects in
the scene, such as reflections/refractions, shadows, and caustics.

4. Narrow-band Screen-Space Fluid Rendering

To improve the performance of the screen-space fluid rendering
for large-scale particle-based simulations, we reduce the number
of particles required to perform the rendering pipeline by using the
particles in a narrow-band (NB) of the liquid interface.

Since the boundary particles [SPd20] give a good sampling of
the free-surface, it is a straightforward choice to use them to build
an NB. Given a spherical particle set P , the boundary particle def-
inition is based on a sphere covering analysis, checking whether a
given particle is covered by its neighbor particles. In mathematical
terms, let Bh(x) be an open ball of radius h centered at a point x ∈
Rdim. A particle j in P is interior whether ∂Bh(x j)⊂ ∪iBh(xi),
where ∂Bh(x j) is the boundary of Bh(x j); otherwise, j is classi-
fied as boundary. The value h corresponds to the particle resolu-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

F. Oliveira & A. Paiva / Narrow-Band Screen-Space Fluid Rendering

Figure 3: Comparison with different approaches for the NB screen-space fluid rendering using the narrow-range filter in a liquid splash with
405K SPH particles: (a) reference image without NB, (b) NB with Müller et al. [MCG03], (c) NB with He et al. [HLW*12], (d) NB with
Sandim et al. [SCN*16], and (e) with our NB. Note that our NB rendering preserves the details of the liquid surface and the volume.

tion, i.e., a value usually close to the initial particle spacing. For
instance, in SPH simulations, this value is known as smoothing
length [IOS*14].

Some methods can be used to detect boundary particles,
some employing threshold of SPH gradient norm of a color
field [MCG03], based on the distance of a particle and the cen-
troid of its neighbors [HLW*12], or using visibility test on the par-
ticles [SCN*16]. However, despite being accurate, these methods
have some issues (see Figure 3) when applied straightforward in
the screen-space rendering pipeline: holes and loss of details (drops
and thin-sheets) of the liquid interface and lack of volume. The first
issue is caused by the drawbacks associated with the corresponding
boundary detection method, while the second one is generated by
removing the internal particles. In the following sections, we will
present strategies to solve these issues.

4.1. Layered Neighborhood Method

To eliminate the spurious results on the liquid surface, we need to
build an NB using a boundary detection method suited to screen-
space fluid rendering, satisfying the following requirements:

R1 – Covering and details: the method should cover any possible
holes and also capture high-quality details in the liquid surface
regardless of the particle distribution;

R2 – Simplicity: the method must be simple to be coded and in-
serted into a parallel particle-based fluid solver on both CPU and
GPU architectures;

R3 – Efficiency: since performance is our primary goal, the detec-
tion should be faster in both loading and rendering particle data.

To fulfill R1, we create an NB around the liquid surface by in-
creasing the boundary particle layer thickness, just adding a few
false positives, i.e., interior particles classified as boundary.

Firstly, we build a regular grid Gh covering the computational
domain Ω⊂Rdim with a voxel size of 2h. A voxel is labeled empty
if it contains no particles in its interior, otherwise, V is labeled full.
We denote by Eh and Fh the set of empty and full voxels of Gh,
respectively. Also, we can define a hash table associated with Gh,
where a voxel V ∈Fh that contains a particle j in its interior can be
retrieved by a hash function H based on the particle positions, that
is H(x j) =V . For SPH solvers, we can avoid the creation of an ad-
ditional grid Gh by reusing the neighborhood search grid [IOS*14].

We design a greedy algorithm for boundary detection based
on particle layers generated from voxels’ adjacency relation. For
instance, boundary particles appear in full voxels adjacent to an
empty voxel or lying at the grid border (see Figure 4). In our case,
two voxels are adjacent if they share at least one vertex, edge, or
face. The layers are determined by the k-ring neighborhoodNk(V)
of a voxel V , as follows:

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

F. Oliveira & A. Paiva / Narrow-Band Screen-Space Fluid Rendering

2h

Figure 4: The boundary particles (dark blue dots) are inside of full
voxels of Gh that are adjacent to an empty voxel (light blue) or
located at grid border (yellow).

• 0-ring is the voxel V itself;
• The k-ring (with k ∈ N∗) of V is the set of adjacent voxels in its

(k−1)-ring.

This definition also allows us to identify voxels in the grid border by
examining whether their neighborhood is incomplete, i.e., V ∈ Gh
is a border voxel whether |N1(V)| 6= 3dim.

Another important ingredient for our boundary detection is the
k-ring distance between voxels. Given two voxels Vi and V j, the
distance is defined as:

dist(Vi,V j) = min{k ∈ N | Vi ∈Nk(V j)} ,

The distance of a full voxel Vi ∈Fh to the set Eh provides a labeling
scheme for Vi as follows:

`(Vi) =

{
minE∈Eh{dist(Vi,E)} , if Vi is not border
1 , otherwise

. (2)

For sake of simplicity, we denote the label of Vi by `i = `(Vi).
The colored voxels illustrated in Figure 4 receive label `i = 1 and
contain all boundary particles (dark blue dots) even computed by
a sophisticated and accurate method as proposed by Sandim et
al. [SCN*16].

From the particle’s point of view, a particle j belongs to a k-layer,
Lk ⊂ P , if H(x j) ∈ `−1(k), where `−1(k) = {Vi ∈ Fh | `i = k}.
In other words, the particle receives the label of the voxel that con-
tains it Figure 5 shows the particle layers according to the Equa-
tion (2). Effectively, we use some of these layers to build our
narrow-band.

The set L1 is a natural choice to represent the narrow-band B.
However, a particle deficiency may occur in voxels with the label
`i = 1. In this case, we need to include some extra particles of L2

Algorithm 1: Layered Neighborhood Method (LNM)
Input: P,Gh,dim
Output: narrow-band B
B← ∅
nmin← 2dim

foreach voxel Vi ∈ Gh do
ni← number of particles of P inside Vi
`i← 0

end

foreach full voxel Vi ∈ Gh do /* 1st layer */
if |N1(Vi)| 6= 3dim then /* Vi is border */

`i← 1
else

foreach voxel Vj ∈N1(Vi)\Vi do
if n j = 0 then /* Vj is empty */

`i← 1
break

end
end

end
end

foreach full voxel Vi ∈ Gh do /* 2nd layer */
if `i 6= 1 then

foreach voxel Vj ∈N1(Vi)\Vi do
if ` j = 1 and n j ≤ nmin then

`i← 2
break

end
end

end
end

foreach full voxel Vi ∈ Gh do
if `i 6= 0 then
Pi← particles of P inside Vi
B← B∪Pi

end
end
return B

in the narrow-band. Let nmin be the minimum number of particles
allowed within a voxel and Pk denotes the particle subset of P
inside a voxel Vk. To determine the particle subset L̃2 ⊆ L2 from a
voxel Vi with `i = 2, we create a rule for its neighbors V j ∈N1(Vi):

if ` j = 1 and n j ≤ nmin ⇒ insert the particles of Pi in L̃2 ,

where n j = |P j|. Thus, the NB is defined by B=L1∪L̃2. This pro-
cedure reduces the number of particles in B, avoiding holes in the
rendered surface. We call this approach the Layered Neighborhood
Method (LNM).

In terms of implementation, we process the layers L1 and L2
using the 1-ring neighborhood of the full voxels. A full voxel Vi is
`i = 1 if there is an empty voxel in its neighborhood N1(Vi). Once
assigned the voxels in the first layer, we process the second layer
analogously. Thus, a full voxel V j ∈ N1(Vi) \ `−1(1) with `i = 1
has the label ` j = 2. Algorithm 1 summarizes our LNM, taking
into account the particles deficiency in the first layer voxels by set-
ting the parameter nmin = 2dim. Note that LNM is simple because
it relies on the voxels’ adjacency relation and easy to code in GPUs

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

https://github.com/felpzOliveira/Bubbles/tree/master/src/boundaries

F. Oliveira & A. Paiva / Narrow-Band Screen-Space Fluid Rendering

Figure 5: A cutaway view shows the classification of the particle layers: L1 (), L2 (), L3 (), L4 (), and L5 ().

Table 1: Average computational times of the boundary detection
methods and their fulfillment requirements.

Methods |B| time ratio R1 R2 R3

Müller et al. [MCG03] 198K 3.77 10.77 7 3† 7

He et al. [HLW*12] 147K 2.90 8.29 7 7 7

Sandim et al. [SCN*16] 89K 8.27 23.63 7 ∂∂∂ 7

Our LNM 198K 0.35 1.00 3 3 3

since each voxel is processed independently, fulfilling the require-
ment R2. Besides, an LNM implementation in CUDA is available
on GitHub (click the top-right icon on Algorithm 1).

Table 1 shows the performance of LMN against other boundary
detection methods in the experiment illustrated in Figure 3 using a
single-core CPU. The column |B| is the number of particles in NB.
The column time is the average computational times (in seconds)
per frame. The column ratio of the average time of each method
to LNM. As can be seen, our method generated the NB at least
eight times faster than the previous methods, satisfying the require-
ment R3. Also, the table summarizes the self-fulfillment require-
ments of each method. The symbol ∂∂∂ denotes a partial fulfillment
of some requirement.

In our screen-space rendering, we use the NB particles B to com-
pute the depth buffer instead of the entire particle system P . This
strategy alleviates the computational efforts of the screen-space
rendering because the relation |B|� |P| usually occurs in particle-

† Yang and Gao [YG20] presented a GPU version of [MCG03].

based fluid simulations. In particular, this is the only stage of our
rendering that handles particle computations.

4.2. Volume Restoration

After computing the depth buffer using the NB represented by the
particle set, the particles are skipped by the remaining stages of
the screen-space rendering pipeline. Therefore, to recover the fluid
volume, we need to estimate a thickness TG using the voxels of Gh.
To accomplish this task, we splat the voxels instead of the particles,
i.e., we need to rewrite the Equation (1) for voxels.

For each pixel p in the screen-space, we compute TG taking
into account the contribution of the grid voxels. Given V j ∈ Fh,
the thickness is defined regarding the occupancy and the distri-
bution of the particles P j. We estimate the occupancy using the
number of particles n j = |P j|, while the particle distribution is rep-
resented by the particle centroid c j = ∑i xi/n j ∈ R3, where each
particle i belongs to P j. Firstly, we render the projected centroid c j
on the screen-space as a point sprite, as shown by Figure 6a. Then,
the thickness TG is given by a local average of the occupancy using
the Gaussian convolution in the screen-space as follows:

TG(p) =
|Fh|

∑
j=1

n j Gσ(‖p− c j‖2) . (3)

Each parcel of Equation (3) is computed individually as a point
sprite. Then, we perform accumulative alpha blending operations
to obtain the resulting thickness of the sum of all point sprites’
contributions, as illustrated by Figure 6b. After splatting all voxels,
we move on to the next step of the rendering pipeline, where the
thickness buffer is smoothed by using the bilateral filter.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

F. Oliveira & A. Paiva / Narrow-Band Screen-Space Fluid Rendering

(a)

(b)

Figure 6: The thickness TG defined from the grid voxels V j.
(a) The centroid c j (red dot) of the particlesP j inside V j (blue dots)
is rendered as a point sprite (red quad) with center at the projected
centroid c j with size h. (b) For each point sprite (colored quad) as-
sociated with V j, we evaluate its pixels by the Gaussian Gσ centered
at c j multiplied by n j = |P j|. Finally, the resulting value of TG for
a pixel p overlaid by the point sprites is achieved by enabling the
accumulative alpha blending.

For large-scale particle-based fluid simulations, our method con-
siderably reduces the number of Gaussian evaluations in Equa-
tion (3) w.r.t. Equation (1) because the number of full voxels is
much less than the number of particles, i.e., |Fh| � |P|. As an im-
plementation remark, the centroid computation in the object-space
can be performed in GPU during the last loop of Algorithm 1.

5. Results

We implemented our approach in C++ and OpenGL. The particle-
based fluid simulations were produced using predictive-corrective
incompressible SPH (PCISPH) [SP09] parallelized on GPU us-
ing CUDA. All results have been achieved using a computer
equipped with a processor Intel i7-7700HQ with four 2.8GHz cores
and 16GB RAM, and an NVIDIA GeForce GTX 1050Ti with
768 CUDA cores and 4GB of RAM. Table 2 shows the compu-
tational times and some statistics for a set of experiments presented
in this section. The column res is the resolution of Gh and the col-
umn mem is the memory saving (in percentage) provided by LNM,

Table 2: Average statistics and computational times (in millisec-
onds) per frame.

PCISPH Gh LNM
Experiment |P| time res |B| mem time

Happy Whale (Fig. 1) 1.12M 8257 110×110×110 528K 44% 17.20
Liq. sloshing (Fig. 7) 1.14M 8398 75×75×75 302K 66% 12.93
Water drop (Fig. 8) 722K 4352 70×57×70 206K 59% 9.50
Dam breaking (Fig. 9) 572K 3919 91×57×54 142K 66% 14.38

i.e., how much our NB reduces memory storage in the rendering.
In our application, we incorporate the LNM implemented in GPU
into the PCISPH fluid solver. Note that the NB computation spends
less than 1.2% of the overall PCISPH time on average and a mem-
ory saving of 44% in the worst case and 66% in the best case.

Figures 1, 7, 8, and 9 show our NB screen-space fluid render-
ing applied in different simulations using many sorts of depth-map
filters, such as narrow-range filter [TY18], bilateral filter [Gre10],
plane fitting filter [IKM16], and curvature flow filter [LGS09].
In our experiments, we use a screen size in full HD (1920×1080)
resolution, a filter size of 7× 7, and 4 iterations for all filters. Ex-
cept for the curvature flow filter, we apply 30 iterations.

Figure 10 shows the boxplots of the computational times for dif-
ferent strategies of screen-space fluid rendering. As can be seen, our
NB approach improves the performance considerably regardless of
the filter’s choice, which demonstrates our method’s efficiency.

Figure 11 provides a visual comparison between regular screen-
space fluid rendering and our NB approach, and as can be seen,
our method delivers results nearly indistinguishable from regular
ones. Our NB method increases the frame rates in fps (frames per
second) at least 15 fps in the worst case (with curvature flow filter)
and 51 fps in the best case (with narrow-range filter). Note that our
NB achieves a speed-up of ≈ 2× for the screen-space renderings
that require few filter iterations.

6. Discussion

Performance profiling. Figure 12 presents the computational
timing and the performance profiling of each stage of the rendering
pipeline (as shown in Figure 2) using the narrow-range filter for a
liquid splashing produced during a quadruple dam breaking simu-
lation with 900k SPH particles. Our NB method improves the ren-
dering performance considerably by reducing the execution time of
the depth map and thickness stages. On the other hand, the render-
ing bottleneck is the filtering processes performed on screen-space,
where the image resolution directly impacts its performance.

Thickness on voxels. The choice of the particle centroids instead
of voxel centers in thickness computation, given by Equation (3),
avoids artifacts caused by the pixels’ thickness displacement that
occurs when the particles are all located on one side of the vox-
els. Figure 13 shows the volume silhouettes computed with Canny
edge detection applied on TG using the two approaches: particle
centroids and voxel centers. Note that TG with particle centroids
affords the best approximation regarding the thickness reference
TP given by Equation (1).

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

F. Oliveira & A. Paiva / Narrow-Band Screen-Space Fluid Rendering

Figure 7: Liquid sloshing simulation rendered using our NB screen-space method with plane fitting filter. On average, our method is 1.7×
faster than the same rendering without NB.

Figure 8: Water drop simulation rendered with our NB screen-space method using curvature flow filter. On average, our method is 1.5×
faster than the same rendering without NB.

Figure 9: Dam breaking with obstacles of dragons rendered using our NB screen-space method with bilateral filter. On average, our method
is 2× faster than the same rendering without NB.

8

12

16

20

24 with NB

without NB

(a) Happy Whale (Fig. 1)

10

15

20

25

30
with NB

without NB

(b) Liquid sloshing (Fig. 7)

8

12

16

20

24 with NB

without NB

(c) Water drop (Fig. 8)

8

12

16

20

24 with NB

without NB

(d) Dam break (Fig. 9)

Figure 10: Boxplots of the computational times (in milliseconds) for screen-space rendering with different filters: bilateral filter (), narrow-
range filter (), plane fitting filter (), and curvature flow filter ().

Grid resolution. The particle resolution h defines the grid res-
olution, i.e., the resolution of Gh increases when the value of h
decreases and vice-versa. Figure 14 shows how the grid resolu-
tion impacts on the quality and performance of our NB rendering.
We test the dam breaking simulation (Figure 9) with different voxel
sizes, as we expected, the performance improves when we decrease
the grid resolution. However, the rendering quality deteriorates in
coarse grids due to the poor thickness approximation, as can be

verified by the error defined by the color difference‡ between the
NB rendering and the reference image without NB and also by its
mean squared error (MSE). The value of 2h is the best choice of the
voxel size regarding the tradeoff between efficiency and rendering
quality.

‡ We use the function imcolordiff available in MATLAB R2020b.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

F. Oliveira & A. Paiva / Narrow-Band Screen-Space Fluid Rendering

(a) Bilaterl filter [Gre10] (b) Curvature flow filter [LGS09] (c) Plane fitting filter [IKM16] (d) Narrow-range filter [TY18]

Figure 11: Comparison of screen-space rendering methods in a single frame of the simulation illustrated by Figure 1 and their performance
in fps: regular approaches (top) and with our NB (bottom).

without NB 11.2

6.9with NB

Figure 12: Liquid splashing rendered using our NB screen-space
method with narrow-range filter (top) and the computational tim-
ing (in milliseconds) of each rendering pipeline stage for this
frame (bottom): depth buffer (), filtered depth buffer (), thick-
ness buffer (), filtered thickness buffer (), normal buffer (),
light attenuation and rendering ().

Dynamic shadow generation. Beyond the liquid surface, the
poor representation of the NB can lead the screen-space render-
ing pipeline to some shortcomings in the computation of secondary
physical effects, such as shadows. The shadow casting relies on
some formulation based on a visibility estimation using rays sent
from light sources. When the liquid surface contains holes, a light
ray can travel without ever interacting with the fluid generating spu-
rious results, as illustrated by Figure 15a. While Figure 15b shows

Figure 13: Thickness TG on voxels: reference thickness TP com-
puted over the particles P (right) and a zoom-in region (top-left)
showing the volume silhouettes provided by TG using particle cen-
troids (pink) and voxel centers (yellow).

that our NB provided by LNM is resilient to holes formation on the
surface affording correct shadows.

Limitations. Although our NB method yields liquid rendering at
high frame rates and low memory footprint for large SPH-based
simulations, it inherits some limitations typical to prior screen-
space rendering techniques, such as the over-smooth appearance
of the liquid surface and visual artifacts near discontinuities.

Future work. Our current GPU implementation is limited to
bounded computational domains due to the full grid used by LNM.
It opens some opportunities for replacing our data structure with
dynamic hierarchical sparse grid representations using GVDB Vox-
els [WTYH18]. Another direction of future research is to incorpo-
rate some physical effects neglected by our pipeline, such as foam
and caustics.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

F. Oliveira & A. Paiva / Narrow-Band Screen-Space Fluid Rendering

reference

4

6

8

10

12

14

16

18

20

22

with NB
h 2h 4h

without NB
reference

h

2h

4h

h

2h

4h

Figure 14: Analysis of the grid resolution: NB screen-space renderings using the narrow-range filter (middle), boxplots of the computational
times (in milliseconds) for different voxel sizes (bottom-left), and the error images (right) between our NB renderings and the reference
image without NB (top-left).

(a) NB with Müller et al. [MCG03]. (b) NB with our LNM.

Figure 15: Shadow generation using different NB screen-space fluid renderings. (a) Muller’s NB produces incorrect shadows due to the
presence of holes on the poor reconstructed liquid surface. (b) Our NB represents the shadow accurately due to the excellent light occlusion
by the well-reconstructed surface yielded by LNM.

7. Conclusion

We introduced a simple and novel narrow-band screen-space liquid
rendering pipeline for SPH fluids on CPU and GPU architectures.
The presented method performs particle filtering only in an narrow-
band around the boundary particles to provide a high-quality liq-
uid surface. We also proposed an efficient boundary method suited

to screen-space rendering called Layered Neighborhood Method.
Our method speeds up and reduces memory footprint of the regular
screen-space fluid rendering methods regardless of the choice of the
depth buffer filtering scheme, as attested by the set of experiments
and comparisons carried out in the paper.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

F. Oliveira & A. Paiva / Narrow-Band Screen-Space Fluid Rendering

Acknowledgements

We want to thank the anonymous reviewers for their valuable sug-
gestions. This study was financed in part by the National Council
for Scientific and Technological Development – Brazil (CNPq) un-
der grant 309226/2020-1, and the São Paulo Research Foundation
(FAPESP) under grant 2019/23215-9. The computational resources
provided by the Center for Mathematical Sciences Applied to In-
dustry (CeMEAI), also funded by FAPESP (grant 2013/07375-0).

References
[AIAT12] AKINCI, G., IHMSEN, M., AKINCI, N., and TESCHNER, M.

“Parallel Surface Reconstruction for Particle-Based Fluids”. Comput.
Graph. Forum 31.6 (2012), 1797–1809. DOI: 10.1111/j.1467-
8659.2012.02096.x 2.

[APKG07] ADAMS, BART, PAULY, MARK, KEISER, RICHARD, and
GUIBAS, LEONIDAS J. “Adaptively Sampled Particle Fluids”. ACM
Trans. Graph. 26.3 (2007). DOI: 10.1145/1276377.1276437 2.

[BSS*18] BIEDERT, T., SOHNS, J.-T., SCHRÖDER, S., et al. “Direct
Raytracing of Particle-Based Fluid Surfaces using Anisotropic Ker-
nels”. Symposium on Parallel Graphics and Visualization (EGPGV ’18).
2018, 1–12 2.

[BSW10] BAGAR, F., SCHERZER, D., and WIMMER, M. “A Layered
Particle-Based Fluid Model for Real-Time Rendering of Water”. Euro-
graphics Conference on Rendering (EGSR ’10). 2010, 1383–1389. DOI:
10.1111/j.1467-8659.2010.01734.x 2.

[Cha04] CHAMBOLLE, A. “An Algorithm for Total Variation Minimiza-
tion and Applications”. J. Math. Imaging Vis. 20.1–2 (2004), 89–97. DOI:
10.1023/B:JMIV.0000011325.36760.1e 2.

[CS09] CORDS, H. and STAADT, O. G. “Interactive Screen-Space Surface
Rendering of Dynamic Particle Clouds”. Journal of Graphics, GPU, and
Game Tools 14.3 (2009), 1–19. DOI: 10.1080/2151237X.2009.
10129282 2.

[CZZ21] CHEN, QIAORUI, ZHANG, SHUAI, and ZHENG, YAO. “Parallel
realistic visualization of particle-based fluid”. Comput. Animat. Virt. W.
32.3–4 (2021), e2019. DOI: https://doi.org/10.1002/cav.
2019 2.

[FAW10] FRAEDRICH, R., AUER, S., and WESTERMANN, R. “Efficient
High-Quality Volume Rendering of SPH Data”. IEEE Trans. Vis. Com-
put. Graph. 16.6 (2010), 1533–1540. DOI: 10.1109/TVCG.2010.
148 2.

[Gre10] GREEN, S. Screen Space Fluid Rendering for Games. http://
developer.download.nvidia.com/presentations/2010/gdc/
Direct3D_Effects.pdf. Game Developers Conference. 2010 2, 3, 7,
9.

[GSSP10] GOSWAMI, P., SCHLEGEL, P., SOLENTHALER, B., and PA-
JAROLA, R. “Interactive SPH Simulation and Rendering on the GPU”.
Symposium on Computer Animation (SCA ’10). 2010, 55–64 2.

[HLW*12] HE, X., LIU, N., WANG, G., et al. “Staggered Meshless Solid-
fluid Coupling”. ACM Trans. Graph. 31.6 (2012), 149:1–149:12. DOI:
10.1145/2366145.2366168 4, 6.

[HZGJ19] HU, Y., ZHANG, X., GAO, M., and JIANG, C. “On Hybrid
Lagrangian-Eulerian Simulation Methods: Practical Notes and High-
Performance Aspects”. ACM SIGGRAPH 2019 Courses. 2019. DOI: 10.
1145/3305366.3328075 1.

[IKM16] IMAI, T., KANAMORI, Y., and MITANI, J. “Real-Time Screen-
Space Liquid Rendering with Complex Refractions”. Comput. Animat.
Virtual Worlds 27.3–4 (2016), 425–434. DOI: 10.1002/cav.1707 2,
3, 7, 9.

[IOS*14] IHMSEN, M., ORTHMANN, J., SOLENTHALER, B., et al. “SPH
Fluids in Computer Graphics”. Eurographics 2014 - State of the Art Re-
ports. 2014, 21–42. DOI: 10.2312/egst.20141034 1, 4.

[KH13] KAZHDAN, M. and HOPPE, H. “Screened Poisson Surface Re-
construction”. ACM Trans. Graph. 32.3 (2013), 29:1–29:13. DOI: 10.
1145/2487228.2487237 2.

[LC87] LORENSEN, W. E. and CLINE, H. E. “Marching Cubes: A
High Resolution 3D Surface Construction Algorithm”. SIGGRAPH ’87.
1987, 163–169. DOI: 10.1145/37402.37422 1.

[LGS09] Van der LAAN, W. J., GREEN, S., and SAINZ, M. “Screen
Space Fluid Rendering with Curvature Flow”. Symposium on Interac-
tive 3D Graphics and Games (I3D ’09). 2009, 91–98. DOI: 10.1145/
1507149.1507164 2, 3, 7, 9.

[MCG03] MÜLLER, M., CHARYPAR, D., and GROSS, M. “Particle-based
Fluid Simulation for Interactive Applications”. Symposium on Computer
Animation (SCA ’03). 2003, 154–159 2, 4, 6, 10.

[MM13] MACKLIN, M. and MÜLLER, M. “Position Based Fluids”. ACM
Trans. Graph. 32.4 (2013). DOI: 10.1145/2461912.2461984 1.

[MSD07] MÜLLER, M., SCHIRM, S., and DUTHALER, S. “Screen Space
Meshes”. Symposium on Computer Animation (SCA ’07). 2007, 9–15 2.

[NA17] NETO, L. S. R. and APOLINÁRIO JR., A. L. “Real-Time Screen
Space Cartoon Water Rendering with the Iterative Separated Bilateral
Filter”. Journal on Interactive Systems 8.1 (2017). DOI: 10.5753/
jis.2017.672 2.

[RCSW14] REICHL, F., CHAJDAS, M. G., SCHNEIDER, J., and WESTER-
MANN, R. “Interactive Rendering of Giga-Particle Fluid Simulations”.
Symposium on High Performance Graphics (HPG ’14). 2014, 105–
116 2.

[SCN*16] SANDIM, M., CEDRIM, D., NONATO, L. G., et al. “Bound-
ary Detection in Particle-based Fluids”. Comput. Graph. Forum 35.2
(2016), 215–224. DOI: 10.1111/cgf.12824 2, 4–6.

[SP09] SOLENTHALER, B. and PAJAROLA, R. “Predictive-Corrective In-
compressible SPH”. ACM Trans. Graph. 28.3 (2009). DOI: 10.1145/
1531326.1531346 7.

[SPd20] SANDIM, MARCOS, PAIVA, AFONSO, and DE FIGUEIREDO,
LUIZ HENRIQUE. “Simple and reliable boundary detection for mesh-
free particle methods using interval analysis”. J. Comput. Phys. 420
(2020), 109702. DOI: https://doi.org/10.1016/j.jcp.
2020.109702 3.

[SSP07] SOLENTHALER, B., SCHLÄFLI, J., and PAJAROLA, R. “A Uni-
fied Particle Model for Fluid–Solid Interactions”. Comput. Animat. Virt.
W. 18.1 (2007), 69–82. DOI: 10.1002/cav.162 2.

[TY18] TRUONG, N. and YUKSEL, C. “A Narrow-Range Filter for
Screen-Space Fluid Rendering”. ACM Comput. Graph. Interact. Tech.
1.1 (2018). DOI: 10.1145/3203201 1, 2, 7, 9.

[WTYH18] WU, KUI, TRUONG, NGHIA, YUKSEL, CEM, and HOET-
ZLEIN, RAMA. “Fast Fluid Simulations with Sparse Volumes on the
GPU”. Comput. Graph. Forum 37.2 (2018), 157–167. DOI: https:
//doi.org/10.1111/cgf.13350 9.

[XZY18] XIAO, X., ZHANG, S., and YANG, X. “Fast, High-Quality Ren-
dering of Liquids Generated using Large Scale SPH Simulation”. Jour-
nal of Computer Graphics Techniques (JCGT) 7.1 (2018), 17–39 2.

[YG20] YANG, W. and GAO, C. “A Completely Parallel Surface Re-
construction Method for Particle-based Fluids”. Vis. Comput. 36
(2020), 2313–2325. DOI: 10.1007/s00371- 020- 01898- 2 2,
6.

[YT13] YU, J. and TURK, G. “Reconstructing Surfaces of Particle-based
Fluids using Anisotropic Kernels”. ACM Trans. Graph. 32.1 (2013), 5:1–
5:12. DOI: 10.1145/2421636.2421641 2.

[ZB05] ZHU, Y. and BRIDSON, R. “Animating Sand as a Fluid”. ACM
Trans. Graph. 24.3 (2005), 965–972. DOI: 10 . 1145 / 1073204 .
1073298 1, 2.

[ZD15] ZIRR, T. and DACHSBACHER, C. “Memory-Efficient on-the-Fly
Voxelization of Particle Data”. Symposium on Parallel Graphics and Vi-
sualization (PGV ’15). 2015, 11–18 2.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1111/j.1467-8659.2012.02096.x
https://doi.org/10.1111/j.1467-8659.2012.02096.x
https://doi.org/10.1145/1276377.1276437
https://doi.org/10.1111/j.1467-8659.2010.01734.x
https://doi.org/10.1023/B:JMIV.0000011325.36760.1e
https://doi.org/10.1080/2151237X.2009.10129282
https://doi.org/10.1080/2151237X.2009.10129282
https://doi.org/https://doi.org/10.1002/cav.2019
https://doi.org/https://doi.org/10.1002/cav.2019
https://doi.org/10.1109/TVCG.2010.148
https://doi.org/10.1109/TVCG.2010.148
http://developer.download.nvidia.com/presentations/2010/gdc/Direct3D_Effects.pdf
http://developer.download.nvidia.com/presentations/2010/gdc/Direct3D_Effects.pdf
http://developer.download.nvidia.com/presentations/2010/gdc/Direct3D_Effects.pdf
https://doi.org/10.1145/2366145.2366168
https://doi.org/10.1145/3305366.3328075
https://doi.org/10.1145/3305366.3328075
https://doi.org/10.1002/cav.1707
https://doi.org/10.2312/egst.20141034
https://doi.org/10.1145/2487228.2487237
https://doi.org/10.1145/2487228.2487237
https://doi.org/10.1145/37402.37422
https://doi.org/10.1145/1507149.1507164
https://doi.org/10.1145/1507149.1507164
https://doi.org/10.1145/2461912.2461984
https://doi.org/10.5753/jis.2017.672
https://doi.org/10.5753/jis.2017.672
https://doi.org/10.1111/cgf.12824
https://doi.org/10.1145/1531326.1531346
https://doi.org/10.1145/1531326.1531346
https://doi.org/https://doi.org/10.1016/j.jcp.2020.109702
https://doi.org/https://doi.org/10.1016/j.jcp.2020.109702
https://doi.org/10.1002/cav.162
https://doi.org/10.1145/3203201
https://doi.org/https://doi.org/10.1111/cgf.13350
https://doi.org/https://doi.org/10.1111/cgf.13350
https://doi.org/10.1007/s00371-020-01898-2
https://doi.org/10.1145/2421636.2421641
https://doi.org/10.1145/1073204.1073298
https://doi.org/10.1145/1073204.1073298

