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Abstract—Morphing is a technique that smoothly transforms
a shape onto another. In this paper, we present a method for
morphing of two dynamic meshes: mesh sequences representing
the keyframes of animated shapes over time. The pipeline of
the proposed method comprises two main stages: template-based
cross-parameterization and dynamic mesh interpolation. In the
cross-parameterization stage, we use a variation of least-squares
(LS) meshes to provide a coarse approximation of the geometry of
the source mesh onto the target mesh. In our method, the possible
candidates to control points of the LS-mesh are detected using
an approach based on the Heat Kernel Signature (HKS). Then,
an iterative process of fine fitting adds new constraints in the
LS-mesh processing. The cross-parameterization is performed
just once for any two frames in order to establish a full
correspondence between vertices of the source and target meshes.
Next, we use such a correspondence in the dynamic mesh
interpolation stage to produce the morphing results. The method
is entirely mesh-based and does not require the generation of
skeletons, mesh segmentation or the use of any additional control
structures. Moreover, it does not require the two input meshes
to share the same number of vertices or triangles, or the have
the same connectivity. The provided results show the robustness
and effectiveness of our method.

I. INTRODUCTION

Morphing, widely used in computer animations and geome-
try processing applications, is an effect that smoothly deforms
a surface onto another over a certain time interval. Recently,
a great challenge for the special effects industry was the
morphing of the actor Mark Ruffalo onto his CGI (computer-
generated imagery) character, The Incredible Hulk, in The
Avengers movie. It illustrates the importance and the difficulty
of the morphing of CGI characters in Computer Graphics.

Given two surfaces represented by triangular meshes, a
prerequisite for morphing is to establish a one-to-one mapping
between the source and target meshes. Such a mapping, or
cross-parameterization, allows to transfer a function (e.g., spa-
tial and/or texture coordinates) from the source to the target,
with applications such as detail mapping [1], [2], mesh com-
pletion [3], [4] and deformation transfer [5], among others.

In general, cross-mapping methods require an initial corre-
spondence between a number of pairs of features or control
points on the source and target meshes, usually specified by
the user, from which new correspondences between elements
of the two meshes can be derived. Different techniques in-
volve some kind of distortion, or deformation, driven by an
objective function, or energy, that defines the similarity of such
correspondences and satisfies some kind of boundary condition
determined by the control points.

Once established a consistent cross-parameterization, mor-
phing is directly obtained by interpolation of the corresponding

points on the source and target meshes. Indeed, several cross-
parameterization techniques published in the literature have
used morphing of static meshes as an application to illustrate
their respective implementations [6]–[8].

In this paper, we are concerned with the morphing of dy-
namic meshes. For our purposes, a dynamic mesh is a mesh
sequence corresponding to the poses of an animated surface
over a given period of time. In this context, Chen et al. [9]
recently proposed a morphing framework that can simultane-
ously interpolate motions and geometries of two input mesh
sequences. The framework requires the creation of compatible
skeleton-driven cages for two rest poses of the source and
target mesh sequences, which are used as control structures in
the subsequent steps. These include a hybrid cross-mapping
that depends on segmentations of the rest poses according to
the cross-sections at the corresponding joints of the compatible
skeletons. Two different methods can be employed: a quad-
domain-based or a template-based fitting parameterization.

As the main contribution of this paper, we present a simpler
alternative method for dynamic mesh morphing which is
entirely mesh-based and does not demand the construction
of skeletons, mesh segmentation or the use of any additional
control structures. In addition, it does not require the two input
meshes to share the same number of vertices or triangles or
have the same connectivity.

For cross-parameterization, we have reviewed and then im-
plemented a variation of the template-based fitting technique
proposed by Yeh et al. [10], which is able to deform the
geometry of meshes with arbitrary (but not distinct) genus
while imposing fewer restrictions on their shape or pose.
The technique comprises two main stages. The former uses
initial control points provided by the user as constraints in
a reconstruction surface technique based on the concept of
least-squares (LS) meshes [11], and is responsible for a coarse
approximation of the geometry of the source into the target
mesh. The second stage is an iterative process of fine fitting
where, at each step, more control points are automatically
discovered and used as constraints in the LS-mesh processing.

Our method relies on a single cross-parameterization be-
tween any two poses taken from source and target, and uses
it to guide the dynamic mesh interpolation of all poses of the
input dynamic meshes. The results showed in the paper and the
accompanying video attests the effectiveness of the method.

II. RELATED WORK

Morphing is a technique widely employed in Computer
Graphics. In the field of geometry processing, particularly,



morphing has been used as an application to demonstrate
the effectiveness of several mesh parameterization methods
published in the literature.

Informally, a mesh parameterization is a bijective map from
a given mesh onto a standard parametric domain which varies
according to the genus of the mesh. For instance, genus-0
meshes can be parameterized to spherical domains using
extensions of planar techniques [12]–[15]. Mesh of an arbitrary
genus can be mapped to the plane [16] or to a topologically
equivalent base domain [13], [17], [18]. An indirect mapping
between two meshes can be established by using a common
standard parametric domain as an intermediate between the
source and target meshes [19], [20]. Some authors use the term
“domain-based parameterization” to denominate this kind of
inter-mesh mapping.

Cross-parameterization techniques, on the other hand, con-
sist of establishing correspondences between source and target
meshes directly, without the intervention of a common domain.
These usually expect the user provides initial pairwise corre-
spondences, or control points, between features of the source
and target meshes, especially in high curvature regions such
as ears and fingers. Many of the existing approaches [6], [8],
[21]–[23] require that the source and target be of the same
genus. The technique presented in [6] is guaranteed to work
only on genus-0 meshes, while the approach in [21] finds a
maximal non-separated cut graph on each input mesh, ensuring
the success of the algorithm on meshes of higher genus. Both
methods operate on finding compatible base triangulations on
the input models. The techniques introduced in [7], [24], [25]
allow for the mapping between meshes of different genus, but
with some limitations; in [24], for example, the user is required
to manually specify control meshes with the same number of
faces for both the source and target meshes. Approaches in-
volving cross-parameterization and competitive learning based
on self-organized maps (SOMs) are used in [26] for genus-0
meshes, and extended to higher genus parameterization in [27],
[28]. Other methods [5], [8] propose solutions which deform
the source mesh onto target mesh, requiring however these
have similar orientation and position. In a more recent study,
Yeh et al. [10] introduced a cross-parameterization method
based on least-squares (LS) fitting [11]. Due to the reported
efficiency in the cross-parameterization tests, this was the
method we have enhanced in this paper.

Regarding the morphing of animated sequences, to the best
or our knowledge, we have found just one method in the
literature tackling this subject, proposed by Chen et al. [9]. In
order to point out the differences between this method and our
dynamic mesh morphing technique, we briefly describe impor-
tant aspects of their framework, which comprises four steps:
mesh sequence representation, hybrid cross-parameterization,
motion blending, and dynamic shape interpolation.

In the mesh sequence representation stage, the two input
mesh sequences are encoded as a skeleton-driven cage-based
control structure. More precisely, kinematic skeletons for a
source and a target rest pose mesh are semi-automatically gen-
erated using consistent user-specified vertices near to the main

joints of both meshes, as detailed in [29]. If those skeletons
are not compatible (e.g., they have different segments incident
to a joint), then virtual joints are added interactively such
that the corresponding joints have the same valence. Next,
the rest pose meshes are segmented according to the cross-
sections at the corresponding joints of the compatible skele-
tons. Each segment is then classified as an S2 section, if it is
like a cylinder, or an S1 section, otherwise. In the hybrid cross-
parameterization stage, mappings between corresponding S1
sections in source and target rest pose meshes are obtained
by using a domain-based parameterization similar to [30],
whereas corresponding S2 sections are mapped following the
template-based fitting process of [8]. The motion blending
stage adopts the time warping curve method [31] to find opti-
mal frame pairs of two motions by comparing the similarity of
two frames, where the similarity is measured as the distances
between corresponding joints. Then, the in-between motion is
produced by interpolating the corresponding joint angles and
bone lengths. Finally, the dynamic shape interpolation stage
generates interpolated geometries for an in-between motion
via a skeleton-driven cage-based deformation transfer scheme.
Because the motion blending and shape interpolation stages
can be processed singly or sequentially, the framework can be
used for different purposes, including deformation transfer.

Our method is a much simpler, purely mesh-based alterna-
tive specifically designed for dynamic mesh morphing. Follow-
ing, we present the fundamentals and a complete description
of the proposed method.

III. LEAST-SQUARES MORPHING OF DYNAMIC MESHES

In this paper, a mesh is described as a pair M = (V,F),
where the set V = {v1,v2, . . . ,v|V|} represents the geometry
and F = {t1, t2, . . . , t|F|} is the topology of M. The
coordinates (xi, yi, zi) ∈ R3 of the position vector vi ∈ V
define the spatial location of the i-th mesh vertex. (The
symbol v is used throughout to denote both the position of
a vertex and the vertex itself.) A mesh triangle ti ∈ F is
defined by (i1, i2, i3) ∈ I3 such that {vi1 ,vi2 ,vi3} ⊂ V are
the triangle vertices. A dynamic mesh is a mesh sequence
AM = {M0,M1, . . . ,Mn} corresponding to the animation
keyframes of the surface represented byM over a time period
T = [t0, tn]. The mesh Mi ∈ AM has topology Fi ≡ F and
represents the pose of the surface at time ti = t0 + i × dT ,
where dT = (tn − t0)/(n− 1).

The proposed method takes as input two mesh sequences
AS = {S0,S1, . . . ,Sn} and AT = {T0, T1, . . . , Tn}, where
S and T denote the source and the target surfaces, respec-
tively. It is assumed that both source and target surfaces
are two-manifold and have the same genus. In addition,
the method takes two index sets C = {c1, c2, . . . , cm} and
R = {r1, r2, . . . , rm}. The index pair (ci, ri) indicates that
the ci-th vertex of every source mesh in AS is a control
point corresponding to the ri-th vertex of every target mesh
in AT . For each time step ti ∈ T , i = 0, 1, . . . , n, the method
first generates S ′i, a mesh with the same topology of the
source mesh Si but whose geometry is deformed to closely



Fig. 1. Method overview. The left column shows the poses {Si} of the source
surface (horse). The right column shows the deformed poses {S′i}, which
closely approximate the poses {Ti} of the target surface (camel). The method
considers a time period T between Si and S′i to interpolate the original and
deformed source poses at each time step ti. The resulting dynamic mesh
is formed by the interpolated poses {Di} in the diagonal. The intermediate
off-diagonal frames are merely illustrative and not generated by the method.

approximate the geometry of the target mesh Ti. Such de-
formation is based on a cross-parameterization scheme which
establishes a correspondence between a vertex of the source
mesh and a point on the target mesh, and is driven by the initial
correspondence defined by the input control points. Next, the
method computes Di, a mesh whose geometry is given by
the interpolation of the geometries of Si and S ′i at time ti
(supposing Si at t0 and S ′i at tn). Note that D0 ≡ S0 and
Dn ≡ S ′n ≈ Tn. The method output is the dynamic mesh
{D0,D1, . . . ,Dn}, as illustrated in Figure 1.

The method pipeline encompasses three stages: prepro-
cessing (including dynamic mesh regularization, feature ver-
tex detection, and initial vertex correspondence), cross-
parameterization, and dynamic mesh interpolation.

The initial step of the preprocessing ensures that the input
animations have the same number of keyframes and/or dura-
tion. For cyclic animations with a different number of frames
ns and nt (where the indices s and t denote source and target,
respectively), but equal time interval between consecutive
frames, we can set n = lcm(ns, nt), i.e., we replicate the
frames of one or both animations to achieve a common number
of poses for the input dynamic meshes. If the number of frames
is equal, but the durations Ts and Tt are distinct, then we
set dT = min(Ts, Tt)/(n − 1) and interpolate new frames at
every dT in the animation with smaller duration. This results in
dynamic meshes with a different number of frames, which are
then handled as described above. Other strategies as clipping
frames are also possible. In this step we can also subdivide
the source and/or target meshes, as discussed in Section V.

The remaining preprocessing steps and stages are de-
scribed below. Before, it is reviewed the concept of least-

squares meshes, a surface reconstruction technique proposed
by Sorkine and Cohen-Or [11] and the main tool in which our
method is based on (hence the name least-squares morphing).

A. Least-squares Meshes
A LS-mesh (V,F) is constructed from the connectivity

provided by the triangles in F such that the position of every
vertex vi ∈ V is enforced to be closest to the centroid of its
1-ring vertex neighborhood, N1(vi), i.e.,

LV =
[
0 0 · · · 0

]>
, (1)

where V =
[
v1 v2 . . . v|V|

]>
and L is the Tutte Laplacian

of the mesh:

[L]ij =


1 if i = j,

− 1

|N1(vi)|
if j ∈ N1(vi),

0 otherwise.

Since L is singular, it is necessary to provide the coordinates
of some control vertices in order to obtain a nontrivial solution
of Equation (1). Let C = {c1, c2, . . . , cm} be the set of indices
of m control vertices, and {r1, r2, . . . , rm} the prescribed
vertex coordinates. One strategy is to employ a scheme of
reduction [32] for removing from the system the lines and
columns corresponding to the control vertices. The solution
of such a reduced system gives the position of the remaining
vertices, while the control vertices are positioned exactly at the
given coordinates, i.e., the prescribed positions of the control
vertices are hard constraints in Equation (1).

LS-meshes adopt a distinct approach: the control vertices
are positioned closest, in the least-squares sense, to the given
coordinates, i.e., the prescribed positions of the control ver-
tices are soft constraints. These restrictions are imposed on
Equation (1) by adding m rows to the system, which becomes
rectangular with dimension (|V|+m)× |V|:

AV = B⇐⇒
[
L
F

]
V =

[
b1 b2 . . . b|V|+m

]>
, (2)

where

[F]ij =

{
1 if j = ci ∈ C,
0 otherwise,

(3)

and

bi =

{
0 if i ≤ |V|,
rci−|V| if |V| < i ≤ |V|+m.

(4)

System (2) is solved by finding V that minimizes:

‖AV −B‖2 = ‖LV‖2 +
m∑
k=1

‖vck − rck‖2, (5)

where || · || is the Frobenius norm. It is also possible to assign
individual weights wk to the control vertices; in that case, the
energy to be minimized is:

‖LV‖2 +
m∑
k=1

w2
k‖vck − rck‖2.

As the value of wk increases, vck becomes closer to rck , at
the expense of compromising the fairness conditions.



B. Feature Vertex Detection

Feature vertices can be used as candidates to control points.
Motivated by the performance tests conducted in [33], [34], we
have adopted for feature vertex detection an approach based
on the concept of Heat Kernel Signature (HKS), proposed by
Sun et al. [35].

For a triangle mesh M, the HKS of a vertex vi ∈ V is
written in terms of the eigenpairs (λk, φk) resulting from
the spectral decomposition of the discrete Laplace-Beltrami
operator (LBO) of M:

HKSt(v) =
nv∑
k=1

e−λktφk(vi)
2, (6)

where nv ≤ |V|. (In particular, we used the cotangent dis-
cretization [36] of the LBO.) The vertex vi is considered a
feature vertex if HKSt(vi) > HKSt(vj), for every vertex vj ,
j ∈ N2(vi), where N2(vi) is the 2-ring vertex neighborhood
of vi, for a fixed, large value of t (we used t = 4 ln 10/λ2
and nv = min(300, |V|) [35] in our experiments). Let PM
be the index set of all feature vertices of M. In the proposed
method, the feature detection can be applied once for all poses
of the input dynamic meshes, resulting PAS = ∪ni=0PSi and
PAT = ∪ni=0PTi , or only in a number of poses indicated by
the user. This approach tries to capture, for example, those
vertices that are in plain regions in some poses but can be in
high curvature regions in others.

C. Initial Vertex Correspondence

In the last preprocessing step, the indices (ck, rk) of the ini-
tial pairs of corresponding vertices are specified, i.e., the sets
C and R which are used in the cross-parameterization to guide
the initial mapping process. In the current implementation (as
in other methods, see Section II), this task is performed by
the user, who is responsible for identifying some source and
target vertices with similar semantic correspondence.

In order to help the user, we provide a graphical tool, called
ILSM (Interactive LS-Mesh), which helps he/she interactively
add, remove, and modify pairs of corresponding vertices while
viewing the result of the coarse fitting on-the-fly, as shown in
Figure 2. The user can choose any pairs of source and target
poses to deal with. The feature vertices detected previously are
available in ILSM and can be used as hints of control points.

D. Cross-Parameterization

In the cross-parameterization stage, it is employed a varia-
tion of the template-based fitting technique proposed by Yeh
et al. [10]. It takes as input a source mesh S = (Vs,Fs) and
a target mesh T = (Vt,Ft), where the indices s e t indicate
source and target elements, respectively. (The meshes S and
T can be resting poses of the source and target surfaces or any
poses taken from AS and AT , respectively. In the last case,
the pose indices are omitted for sake of clarity.) The main
goal is to obtain a mapping between the meshes from which
it is possible to deform the source mesh in order to closest
approximate the target geometry. The technique consists of

Fig. 2. ILSM: a graphical tool for interactive specification of pairs of cor-
responding vertices (drawn as cyan circles) to be used in the coarse fitting.
Red circles are feature points detected with HKS. The left panel shows the
coarse fitting of the source mesh. The right panel shows the target mesh.

two stages: coarse and fine fitting. The main improvements we
have made in our implementation are in the last stage, more
precisely, in the reliable correspondence criteria, curvature
measurement, and surface detail fitting, as described below.

1) Coarse fitting: The coarse fitting stage reconstructs the
source mesh S as a LS-mesh by solving Equation (5) to
determine Vs, where the soft restriction for the position of
the ci-th control vertex is rci = vtri (ci ∈ C and ri ∈ R), i.e.,

‖AsVs −B‖2 = ‖LsVs‖2 +
m∑
i=1

‖vsci − vtri‖
2. (7)

Since the positions of the control vertices in S are constrained
by the corresponding vertices in T , the reconstructed source
mesh approximates more or less roughly the target.

2) Fine fitting: The fine fitting iteratively computes reliable
correspondence points between T and the LS-mesh obtained
in the coarse fitting, and then updates the geometry of S
accordingly, essentially adding extra soft constraints to the
LS-mesh processing. At each iteration step, reliable points
between T and the transformed S are determined as follows:
each vertex vti is projected onto S along nti, the normal to
target surface at vti . The intercepted triangle tsj (if any) and
vti make a reliable pair (vti , t

s
j) if: 1) the angle between nti,

the unit normal to target surface at vti , and Ns
j , the unit normal

of the triangle tsj , is less than 90o, i.e., nti ·Ns
j > 0; and 2) at

least one vertex vtj , j ∈ N1(v
t
i), projects onto a source triangle

belonging to the 2-ring face neighborhood of tsi . This approach
leads to an increase in the number of reliable correspondences
with few interactions, without requiring that the target mesh is
much more refined that the source, as in the original method.

Next, it is performed a dual relaxation in order to compute
the geometry of the dual mesh S∗ = (V∗s ,F∗s ), where V∗s and
F∗s are the dual vertices and dual faces of the primal mesh
S, respectively. (Each vertex vs∗i ∈ V∗s corresponds to the
centroid of the triangle tsi ∈ Fs, and two dual vertices are con-
nected if their corresponding primal triangles are neighbors,
i.e., share an edge in the primal mesh.) For each primal triangle



tsi that received one or more reliable vertices, the centroid cti of
these vertices is used as hard constraint for the corresponding
“matched” dual vertex vs∗i in the linear system

L∗sV
∗
s =

[
0 0 . . . 0

]>
|Fs|×3

. (8)

The solution of Equation (8) (e.g. by reduction) gives the
positions of the unmatched dual vertices which are uniformly
flattened in the regions surrounded by the nearby matched
ones, i.e., with reliable correspondences.

Once the position of each vertex vs∗i = cs∗i in dual mesh is
obtained, it is used as a soft constraint in the LS-mesh setup
to refit the dual source mesh S∗. More precisely, we compute
V∗s that minimizes

ω2‖L∗sV∗s‖2 +
|Fs|∑
i=1

wi
2‖vs∗i − cs∗i ‖2, (9)

where the smoothness term is controlled by the weight ω (we
used ω = 3 in our experiments) and the individual dual vertex
constraints are controlled by the weights wi, which depend on
a curvature measure on T . We adopt as curvature measure for
every vertex vti :

hti = 1−
|κt1i |+ |κ

t
2i |∑|Vt|

j=1

(
|κt1j |+ |κ

t
2j
|
) , (10)

where κt1i and κt2i are the principal curvatures [37] at vti . In
our experiments, we consider the vertex is in a high-curvature
region if hti ≥ 0.5.

The weights wi in Equation (9) are set as follows. If vs∗i is
a matched dual vertex, then wi is the average of the curvature
measure of all reliable vertices projecting onto the primal
triangle tsi ; otherwise, wi is the average of the curvature mea-
sure of all target vertices. This scheme allows for a tighter
approximation in high-curvature areas of T (where the weights
are higher) and good triangle quality in flat areas.

The fitting result obtained in Equation (9) is transformed
back to the primal domain by finding Vs that minimizes the
following LS-system:

‖LsVs‖2 + αC1(Vs) + C2(Vs). (11)

The first energy term C1 is related to the dual mesh fitting (we
adopted α = 3.0 in our experiments). Since each dual vertex
vs∗i corresponds to a primal triangle tsi , this term forces the
centroid of the primal vertices {vsi1 ,v

s
i2
,vsi3} of tsi to fit the

dual vertex vs∗i :

C1(Vs) =

|F|s∑
i=1

w2
i

∥∥∥∥13(vsi1 + vsi2 + vsi3)− vs∗i

∥∥∥∥2, (12)

where the weights wi are computed using the surface curvature
measure as described above. To improve the fitting of surface
details, the energy term C2 is added. For each high-curvature
vertex vti in T , the reliable projection criteria described earlier
is used to find a corresponding position in the transformed
source mesh S. Let (vti , t

s
j) be the reliable pair and psi the

point resulting from the projection of vti onto tsj . This point

can be written as a linear combination of the tsj’s vertices
using barycentric coordinates: psi = b1v

s
j1

+ b2v
s
j2

+ b3v
s
j3

.
For a set B of matched high-curvature vertices on T :

C2(Vs) =
∑
i∈B

hti
2 ∥∥(b1vsj1 + b2v

s
j2 + b3v

s
j3)− vti

∥∥2. (13)

The fine fitting process is repeated several times, each step
making the source mesh closest to the target. We stop the
iterations when the relation between the number of reliable
and projected vertices is less than 4%.

3) Cross-Parameterization of Dynamic Meshes: In the pro-
posed method, the cross-parameterization scheme is applied
only once to a single pair S and T (as commented above, the
source and target meshes can be resting poses or any poses
from input dynamic meshes, e.g., S0 and T0). Since the cross-
parameterization is the most time-consuming stage, such an
approach leads to an increase in the computational perfor-
mance of the method. In order to ensure that this single cross-
parameterization can then be appropriately used for shape
interpolation of all poses of the input dynamic meshes, we
extended the fine fitting as follows. After ending the iterations
(less than 25 in all our tests), for each vertex vtj ∈ Vt we find
the nearest vertex vsi ∈ Vs, and set (i, j) as a pair of corre-
sponding points. Next, we use this full vertex correspondence
as soft constraints to reconstruct the source as an LS-mesh.
In fact, since the topology of all poses of a dynamic mesh is
the same, we can use such a correspondence to deform every
pose Si ∈ AS into the corresponding Ti ∈ AT . Moreover, this
scheme helps to eliminate some artifacts that are sensitive to
threshold adopted to detect high curvature regions.

E. Dynamic Mesh Interpolation

The last stage generates the output dynamic mesh AD. For
each pair Si ∈ AS , Ti ∈ AT , a new LS-mesh, S ′i, is con-
structed with an extra coarse fitting step using the full vertex
correspondence obtained in the cross-parameterization stage.
This extra step is required to smoothly position the vertices of
S ′i, since distinct source vertices can correspond to the same
target vertex. Then, a new mesh, Di, is created and added
into AD. We consider the time interval T to morph Si into
S ′i, i.e., the position of a vertex of Di is given by the linear
interpolation of the corresponding vertices of Si and S ′i at time
ti. Results of the method are presented in Section V.

IV. ASPECTS OF IMPLEMENTATION

The source code was almost all implemented in MATLAB,
including the graphical tool ILSM introduced in Section III.
The main reason for using MATLAB is the number of mathe-
matical functions available and the ease of manipulating matrix
data; as a result, MATLAB provides an environment in which
it is possible to implement numerical solutions faster than
using traditional languages, such as C++. We used the Toolbox
Graph by Gabriel Peyre1 to compute the principal curvatures
and LBO matrix; the remainder of the MATLAB code was
developed by the authors.

1Available at mathworks.com/matlabcentral/fileexchange/5355.



The function responsible for computing the reliable cor-
respondences in the fine fitting stage was implemented in
C++ due to computational performance. In order to find the
projection of a vertex vti onto the deformed source mesh S,
we shoot a ray from vti along the direction nti and verify if
the ray hits a triangle tsj of S. The search is performed inside
a sphere centered at vti to avoid the intersection with regions
of S far from the target vertex, as depicted in Figure 3. More
precisely, we find pi = vti + di n

t
i (closest to vti) such that

|di| ≤ rki , where rki is the search radius:

rki = max
j∈Nk(vt

i)
||vti − vtj ||2.

In our experiments, we adopted rki ≈ k r1i , with k = 7. To ac-
celerate the ray/triangle intersection calculations, we employed
a bounding volume hierarchy (BVH) [38] in each iteration of
the fine fitting for partitioning the triangles of the deformed
source mesh S. After computing the intersection point, if any,
the vertex vti is classified as reliable or unreliable as explained
in Section III. The C++ function for reliable correspondence
was made available to MATLAB by using the mex interface
(see mathworks.com/help/matlab/ref/mex.thml).

Fig. 3. Ray-casting to find pi, the projection onto S of the target vertex vt
i

along its normal nt
i , inside a sphere of radius rki

.

V. RESULTS AND DISCUSSIONS

Table I summarizes the data for the models we have used to
test our implementation. For each model are shown the name
of the dynamic mesh, the number of vertices (|V|), the number
of triangles (|F|), and the number of feature points (|P|)
detected by the HKS-based approach described in Section III.

TABLE I
DATA FOR THE MODELS USED FOR TESTS.

Mesh |V| |F| |P|
Allosaurus 7,102 13,192 23

Horse 8,431 16,843 43
Man 52,609 95,040 55

Camel 21,887 43,814 63
Whale 18,055 34,880 85

We apply our pipeline to the test cases presented in Table II,
with dT = 1/24 seconds. For each case, we identify the source
and target dynamic meshes, the number of poses (n), the
number of initial control points (m) used in the coarse fitting,
and the processing time for the cross-parameterization and
dynamic mesh interpolation stages, CP and DMI, respectively
(in seconds). The processing time for the HKS-based feature

point detection, the only fully automatic preprocessing step,
varies between 9.0 (for the horse) and 20.0 (for the whale)
seconds per frame. All the tests were performed on a computer
equipped with CPU Intel Core i7-5500U and 16 GB of RAM.

TABLE II
TEST CASES.

# Source Target n m CP (s) DMI (s)
1 Allosaurus Horse 48 40 34.0 10.0
2 Allosaurus Man 50 45 35.2 8.5
3 Horse Camel 48 37 19.2 8.3
4 Horse Whale 80 35 17.0 13.6

In test case 1, we refined the target mesh (horse) by using
a scheme which is described below, resulting in a mesh with
V = 75, 822 and F = 151, 587. Frames of test cases 1, 2, and
4 are depicted in Figure 4, Figure 5, and Figure 6, respectively
(see also the accompanying video). In these figures, the first
and second rows show poses of the source and target dynamic
meshes, {Si} and {Ti}, respectively, and the third row show
the morphing results, {Di}. Frames of the test case 3 were
used in the method overview, as illustrated in Figure 1.

Our last test case is the morphing of the dinosaur in all other
models: whale, horse, man, camel and back to the dinosaur.
Frames resulting from morphing can be seen in Figure 7.

A. Discussion

Experiments have shown the proposed method is robust to
deal with models with a distinct number of articulated parts, as
can be seen, for example, in the tails that arise and disappear
in the morphing of Figure 7.

For the test cases 1-4, the total processing time for the
cross-parameterization and dynamic mesh interpolation varies
between 27.5 seconds and 45.0 seconds, as reported in Ta-
ble II. While this time seems to be quite appropriate for our
MATLAB-based implementation, we argue it is not feasible to
make a fair comparison with the running time presented in [9],
since the test platforms, models, and supposedly programming
languages are distinct.

Regarding the size of the meshes, the target mesh T must
provide more details, and, therefore, be a bit more refined than
the source mesh S. That is necessary once the neighboring
vertices of vti should project onto neighboring faces of tsj to
establish a reliable correspondence. However, this would not
be possible if the set Vt is very small or irregularly distributed
in space. To deal with this issue, we implement a MATLAB
function that refines a triangle mesh by splitting the mesh
edges in a number of semi-edges, which are used to tessellate
the interior of the mesh triangles as illustrated in Figure 8.

B. Limitations

The importance of the initial vertex correspondence is key
to achieve a correct cross-parameterization with direct impact
on the fine fitting stage. In our experiments, we have observed
that the fine fitting is not always capable to properly handle
poor coarse fitting meshes reconstructed from badly chosen
control points. Selecting adequate initial control points can be



Fig. 4. Test case 2: Allosaurus to horse.

Fig. 5. Test case 3: Allosaurus to man.

Fig. 6. Test case 3: horse to whale.

Fig. 7. Allosaurus morphing onto all other models and back to Allosaurus.



Fig. 8. Mesh refinement. First, each mesh edge is split into a number e > 1
of semi-edges specified by the user. Next, each mesh triangle is tessellated
into e2 new triangles by connecting the new vertices in segments parallel to
the triangle edges. In these examples, we used e = 2 (left) and e = 3 (right).

a repetitive, trial-and-error process. For this, our graphical tool
ILSM is a very valuable and helpful resource.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented an alternative method for
dynamic mesh morphing. Our method is simpler than the
most recent related method published in the literature [9],
since it is purely mesh-based and does not require skeletons,
mesh subdivision or any control structures. Moreover, the pro-
posed method relies on a unique template-based fitting cross-
parameterization technique, centered at the concept of least-
squares (LS) meshes and adapted for dealing with dynamic
meshes. The cross-parameterization stage establishes a full
vertex correspondence between the source and target meshes
from which we can perform dynamic mesh interpolations to
obtain the morphing results. The results presented in the paper
show the effectiveness of the proposed method.

The main drawback of the method is the manual setup of
some initial vertex correspondence used to guide the cross-
parameterization stage. In addition, the method can be only
applied to meshes with the same genus. We will also address
these issues in future work.
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