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A B S T R A C T

Particle-based methods are practical for computing level-sets that represent liquid inter-
faces. However, these methods are computationally expensive to reconstruct the liquid
surface when the number of particles increases considerably due to the massive amount
of particle approximations. This paper introduces two simple and efficient surface
reconstruction methods for particle-based fluids based on discrete indicator functions
(DIFs). The first approach provides fast level-set approximation using a DIF defined by
counting particles inside grid cells. The second approach generates a high-quality liq-
uid surface using a DIF obtained by the particle distribution inside grid cells. Our DIF-
based methods are fast, easy to code, and can be adapted straightforwardly in particle-
based fluid solvers, even implemented in GPU. Moreover, we show the effectiveness of
our approaches through experiments against prior surface reconstruction methods.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Particle-based fluid methods, such as Smoothed Parti-
cle Hydrodynamics (SPH) [1] and Position-Based Dynamics
(PBD) [2], particles are usually employed to track the air-liquid
interface in Lagrangian fluid flow simulations. Although these
methods have been successfully used in interactive applications,
rendering complex liquid animations with a high number of par-
ticles at reasonable computational times, even in GPU architec-
tures, remains a subject of intense research in computer anima-
tion.

The rendering of air-liquid interfaces in particle-based flu-
ids consists of two stages: first, splatting the level-set function
defined by the particles to a regular grid. Second, the liquid
surface reconstruction is given by the isosurface extracted from
a discrete level-set using a polygonization algorithm, such as
Marching Cubes (MC) [3], where a polygonal mesh represents
the isosurface. However, this entire process is computationally
expensive since the surface’s smoothness and topological cor-
rectness require a high-resolution grid.
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On the other hand, in computational fluid dynamics, an indi-
cator function 1F (i.e., a function that is one on the interior of
the fluid body F and zero on the exterior) is usually employed
for tracking liquid interfaces [4]. Let G be a regular grid of res-
olution nx × ny × nz that enclosures the domain. The key idea is
to compute a local fraction of volume occupied by the fluid in
each grid cell K ∈ G, as follows:

ϑ(K) =
1

VK

∫
K
1F(x) dx , (1)

where VK is the volume of K. The scalar field ϑ : G → [0, 1] is
known as discrete indicator function (DIF). Besides, there are
robust surface reconstruction methods from DIFs in the litera-
ture [5, 6].

This paper presents a novel and practical surface reconstruc-
tion for particle-based fluid methods. We propose two efficient
approximations of a DIF using the particles inside grid cells.
Therefore, we show the effectiveness of our approach through
a set of comparisons against prior surface reconstruction meth-
ods. Figure 1 shows our DIF-based methods in action.

We summarize below the main contributions of our approach.
Some parts were published in our previous paper [7] and appear
in this extended version. New material includes a novel DIF
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Fig. 1: DIF-based surface reconstruction of a liquid toy dragon with 5M SPH particles in a grid with 3843 cells: from left to right, the input particles, our DIF by
counting, and our DIF by symmetry.

based on particle distribution and a scheme to recover the small-
scale details (e.g., droplets and liquid ligaments) in the surface
reconstruction. Thus, the contributions of the paper are:

• A novel surface reconstruction method for meshfree liquid
simulations based on DIFs;

• We propose two novel DIFs that use only the particles in-

side the grid cells;

• A scheme to recover small-scale details in surface recon-
struction using union Boolean operation on DIFs;

• Our framework speeds up considerably the surface recon-
struction compared with prior methods;

• Our methods are simple and easy to code, even in GPU.



Preprint Submitted for review / Computers & Graphics (2023) 3

Paper outline. The remainder of the paper is organized as fol-
lows. Section 2 presents a brief review of related methods in the
literature. The proposed reconstruction methods are described
in Section 4. Section 5 and Section 6 provide the results and a
discussion about our methods giving a glimpse of future work,
respectively. Section 7 concludes the paper.

2. Related work

To better contextualize our method and highlight its proper-
ties we organize the existing methods for particle-based fluid
rendering into two main groups: mesh-based and screen-space
methods.

Mesh-based methods. The main goal of these methods is to
extract a smooth triangle mesh from the particle positions us-
ing MC-based algorithms. Typically, the liquid surface is rep-
resented implicitly by the zero level-set of a scalar field com-
puted from a weighted sum of kernel evaluations from the par-
ticles’ distances. These methods can use isotropic kernels [8, 9],
adaptive size kernels [10] or anisotropic SPH kernels [11]. De-
spite the existence of parallel implementations of these meth-
ods [12, 13, 14], if the liquid spreads more over the computa-
tional domain, the underlying MC grid and its resulting surface
mesh become very large, causing excessive memory consump-
tion. Bhattacharya et al. [15] improved the undesired blobby
appearance of the level-sets using a smoothing process by solv-
ing a constrained optimization problem. Sandim et al. [16]
proposed an alternative framework for surface reconstruction.
Their framework relies on a level-set definition using the Her-
mite data (particle positions and normals) from the boundary
particles. The liquid surface is obtained fitting the boundary
particles using Screened Poisson surface reconstruction [17].
However, this method also suffers the same issues of the kernel-
based methods.

Screen-space methods. This class of methods performs in 2D
image space using a smoothed depth buffer from the visible liq-
uid surface defined by spherical particles, where the resulting
surface is represented without mesh generation by using ras-
terization techniques [18, 19, 20, 21, 22]. The liquid surface’s
visual quality relies on the depth buffer’s image-based filter-
ing process, which may demand large convolution kernels and
perform multiple filter iterations. However, beyond the screen-
space size and the number of filter passes, these methods’ ef-
ficiency also depends on the number of particles. Recently,
Oliveira and Paiva [23] improved the prior screen-space meth-
ods computing volumetric rendering effects in a small subset of
particles located at a narrow-band of the air-liquid interface.

Despite the proposed approach belonging to the class of
mesh-based methods, our method was strongly influenced by
screen-space methods, extending the filtering process to a 3D
image (a DIF in our case).

3. An overview of surface reconstruction from particles

Usually, in particle-based fluids, the liquid surface S is rep-
resented by an isosurface extracted from a scalar field φ:

S = φ−1(c) = {x ∈ R3 | φ(x) = c} ,

where the scalar c is an isovalue. A typical choice of c is zero
or a small positive value to obtain a smooth surface.

Müller et at. [8] proposed an SPH approximation of an in-
dicator function that assumes value one at particle positions xi

and zero everywhere else in the domain. The scalar field around
a grid point x of G is defined as

φ(x) =
∑

i

W(x − xi, h)
mi

ρi
, (2)

where mi is the particle mass and ρi is the particle density.
The function W is an isotropic kernel with smoothing length h
given by

W(r, h) = s w
(
‖r‖2

h

)
with w(x) = max

(
0, (1 − x2)3

)
, (3)

where s is a scale parameter. In SPH, the value of s is derived
from the unitary property of the kernel, i.e.,

∫
W(r, h)dr = 1.

For the kernel (3), we have s = 315/64πh3. The value of h
defines the radius of influence of the kernel, typically chosen as
the initial particle spacing.

Despite the simplicity of the previous approach, irregular
particle distributions may result in visible surface bumps [11].
In order to produce a smoother surface, Zhu and Bridson [9]
defined a scalar field based on the weighted average of neigh-
boring particle positions x. Considering s = 1 in Equation (3),
the scalar field is given by:

φ(x) = ‖x − x‖2 − r with x =

∑
j x j W(x − x j, 4r)∑

j W(x − x j, 4r)
,

where r is the particle radius, i.e., half of the particle spacing.

Fig. 2: Discrete scalar field φ computed from the particles (gray dots). The stan-
dard reconstruction methods use the particles inside the region of influence of
the kernel to evaluate φ at a grid point x using an isotropic (orange) [8, 9] or an
anisotropic (green) [11] kernel. In contrast, our DIF-based approach [7] evalu-
ates φ at a grid cell K using only the particles inside K (blue).
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Fig. 3: Surface reconstruction pipeline.

A weakness of these methods mentioned above is that the
spherical shape of the isotropic kernel makes it challenging to
reconstruct sharp features and flat surfaces. For this reason, Yu
and Turk [11] developed an anisotropic kernel that captures the
particle distribution near to interface more accurately:

W(r,G) = s det(G) w (‖Gr‖2) ,

where G is an anisotropy matrix determined by the weighted
Principal Component Analysis (WPCA). Thus, the scalar field 2
can be rewritten as follows:

φ(x) =
∑

i

W(x − xi,Gi)
mi

ρi
.

The ellipsoidal shape of the kernel in reconstruction provides
high-quality surfaces without a blobby appearance. However,
the process is computationally expensive due to the calculation
of each particle’s anisotropic matrix Gi.

Our previous work [7] presented a new strategy for comput-
ing the scalar field using a DIF. Instead of evaluating the scalar
field at the grid nodes by kernel weighting, we use a simple ap-
proximation of Equation (1) for each grid cell K ∈ G to yield
the scalar field (see Figure 2. In the next section, we will detail
our method.

4. The method

In this section, we explain the pipeline of the proposed sur-
face reconstruction method. Given an input particle system Pt

at time-step t, our method performs three main steps, as illus-
trated by Figure 3.

4.1. DIF evaluation
This section presents two ways to approximate a DIF from

particles. The first strategy is based on counting particles inside
the grid cells. In contrast, the second relies on the particle dis-
tribution inside the cells. In the following, we will present the
two strategies.

DIF by counting. We approximate the local volume of fluid
simply by counting the particles inside each cell K ∈ G. Let N t

K
be the number of particles of Pt inside K. Firstly, we compute
the initial particle average µ0 (at time-step t = 0) given by:

µ0 =
1
|F |

∑
K∈F

N0
K , (4)

0

1

Fig. 4: DIF by counting from the input particles (Figure 3a) using the particle
average (left) and the maximum number of particles (right).

where the operator | · | denotes the set’s cardinality and F ⊆ G
is the subset of full cells of G, i.e., formed by cells that con-
tain particles in their interior, otherwise, the cell is classified by
empty. Assuming that the cell volume VK is entirely occupied
by the volume of µ0 particles, i.e., VK = µ0Vp, where Vp is
the particle volume. Thus, we approximate the Equation (1) as
follows:

ϑ(K) =
N t

K Vp

VK
=

N t
K Vp

µ0 Vp
=

N t
K

µ0
. (5)

In order to ensure ϑ(K) ∈ [0, 1], the fluid occupancy in a cell K
in our approach is given by:

ϑ(K) =
min{N t

K , µ0}

µ0
. (6)

Since the DIF decreases from the interior of the liquid to its
interface, the particle average µ0 reduces the variation of the
DIF ϑ in internal cells, i.e., full cells that are not adjacent to
empty cells. For instance, Figure 4 shows a comparison when
we take µ0 = maxK{N0

k } instead of Equation 4. Note that the
particle average (4) reduces the DIF’s noise.

Fig. 5: DIF from particle distributions (gray dots) in a cell K: the particle
centroid c (dark blue marker) from a symmetric distribution (left) is closer to
the cell center p (red dot) than in an asymmetric distribution (right).
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Fig. 6: DIF-based surface reconstruction without smoothing (top) and with smoothing (bottom) of a spaceship rising from underwater with 4.76M SPH particles in
a grid with 3843 cells: comparison between DIF by counting (left) and symmetry (right). As can be seen in zoom-in regions, the DIF by symmetry preservers more
details of the liquid surface than DIF by counting.

DIF by symmetry. Since the particles are well distributed in
internal cells and due to the asymmetric particle distribution in
cells close to the liquid interface because there are no particles
outside the liquid surface, we can estimate the cell occupancy
by considering the symmetry of the particle distribution around
the cell center. The particle centroid in a cell K is given by c =∑

i xi/N t
K , where xi ∈ K. For symmetric particle distributions in

a cell K, the particle centroid c is close to the cell center p of K
(see Figure 5). Therefore, we can approximate the DIF based
on the distance between the particle centroid and the cell center
normalized by the half length of the cell diagonal, as follows:

ϑ(K) = 1 − 2
‖c − p‖2
diag(K)

. (7)

Note that in symmetric distributions, the DIF (7) assumes val-
ues close to 1. Otherwise, ϑ(K) reaches values close to zero.

The DIF by symmetry produces less surface aliasing than by
counting, especially in flat regions, as illustrated by Figure 6.

4.2. DIF smoothing

To reduce the aliasing of the liquid surface, we smooth the
DIF ϑ by applying a 3D version of well-known blur filters from
image processing [24], e.g., box and Gaussian filters. In addi-
tion, robust and efficient GPU implementation of these filters
can be found in the VMD library [25].

More specifically, in our DIF-based approach, we apply
a Gaussian filter Gσ with standard deviation σ to enhance
the DIF, where the value of σ defines the filter mask size
max{3, 2 · b3σc − 1}. However, due to the high aliasing effect in
DIF by counting, we apply an additional box filter with a size
mask of 3 × 3 × 3. In our experiments, this strategy provided
better results, with less surface dissipation, than applying Gσ in
a single pass with a large filter size (σ ≥ 1.5). We denote the
smoothed DIF by ϑ̃.

Figure 6 compares the resulting surface from DIF by count-
ing and symmetry. The smoothed DIF by symmetry preserves
the surface details because it requires only one smooth filtering
pass, avoiding the features’ dissipation.

Figure 7 shows the effect of the parameter σ in Gaussian fil-
ter Gσ. The surface becomes smoother when we increase the
parameter σ. Nevertheless, thin and small surface details can
disappear for high values of σ.

4.3. Isosurfacing

In our method, for each cell Ki ∈ G, we assume that the
smoothed DIF ϑ̃ is sampled at cell centers pi of Ki. Thus, once
computed the field ϑ̃, we have fractional volumes of fluid ϑ̃i

located at the centers pi. The liquid surface S is represented by
the zero level-set of a discrete scalar field given by:

φi = φ(pi) = c − ϑ̃(Ki) with c ∈ (0, 1) . (8)
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Fig. 7: Effect of varying the parameters: the DIF-based surface reconstruction
using different combinations of Gaussian filters Gσ and isovalues c. The chal-
lenge is choosing a set of parameters so the smooth surface preserves details
and does not seem like a blob.

The field φi assumes negative values inside S and positive val-
ues outside S .

We extract the isosurface of S executing the MC algorithm in
the dual grid. The cells of the regular dual grid are obtained by
connecting the centers pi of the adjacent cells of G. We com-
plete the dual grid connecting pi with ghost points g placed
outside of the domain (see Figure 8a). To ensure the surface
matches the boundary of G, we use linear extrapolation to set
the discrete field at the ghost points. For the edges 〈pi, g〉 where
pi belongs to a full cell Ki, we have φ(g) = −φi, otherwise,
φ(g) = φi.

The MC’s lookup table determines the local topology of S
inside each dual cell by indexing the configurations of sign(φi)
at the eight corners of the cell (see Figure 8b). Considering
a linear approximation of the scalar field, given a dual edge
ei j = 〈pi,p j〉 where φi · φ j ≤ 0, the intersection point (vertex) v
of S with ei j is computed as follows:

v = (1 − α) pi + αp j with α =
φi

φi − φ j
.

After processing each dual cell, the entire surface S is extracted.
Figure 7 shows that the isovalue choice affects the thickness

of the reconstructed surface. The liquid surface becomes thin-
ner when we increase the values of c, and conversely. The reso-
lution of G affects surface quality and computational efficiency
of the poligonization. Some authors recommend that a cell size
less than or equal to the particle spacing is necessary to capture
thin and small-scale details [12].

5. Results

We implemented our approach in C++ and a parallel ver-
sion of our code on GPU using CUDA. The particle-based
fluid simulations were produced with SPH using the compu-
tational framework provided by DualSPHysics [26]. All re-
sults have been achieved using a computer with AMD Ryzen 9

(a) (b)

Fig. 8: Isosurfacing of a DIF in 2D: (a) a dual grid (dashed orange line) is
obtained from the grid G (solid black lines). The dual grid points are formed
by the cell centers pi (orange dots) of Ki ∈ G and by ghost nodes g (gray dots).
(b) For each dual cell, MC examines the configuration of sign(φi) at the corners
to define the local topology of the surface S (solid red line) and determines the
intersection points (red dots) between S and the dual edges.

3950X and 32GB RAM and NVIDIA GeForce RTX 2070 with
8GB VRAM.

Figures 9, 10, 11, and 12 show comparisons of our DIF-based
methods applied in different simulations in comparison with
previous surface reconstruction methods proposed by Müller
et al. [8], Zhu and Bridson [9], and Yu and Turk [11]. Fur-
thermore, the implementations in C++ of these methods can be
found in the Github1 repository from Kim’s book [27].

Table 1 shows the computational times and some statistics
for a set of experiments presented in this section. The column
|P| is the number of particles, the column res is the resolution
ofG, the column c is the isovalue used in Equation (8) to extract
the isosurface, and the column σ is the filter size used in our ex-
periments. Each method’s time average and standard deviation
std (in parenthesis) across all animation frames were measured
using a single-core CPU. Note that our DIF by counting and
symmetry are 2× and 1.8× faster in the worst cases and 30×
and 26× faster in the best cases, respectively, demonstrating our
methods’ efficiency.

In order to perform a quantitative analysis of the reconstruc-
tion methods, given a triangle surface mesh (ground truth), we
create a regular particle sampling that fills the mesh volume.
The reconstruction error is the Haussdorf distance [28] between
the ground truth mesh and the reconstructed surface. Figure 13
presents the results of this error analysis in the Stanford Bunny.
As can be seen, our DIF by symmetry is the most accurate
method.

6. Discussion

In this section, we highlight the limitations present in our ap-
proach and potential improvements to the current state of the
surface reconstruction method and future projects we are work-
ing on. Also, we discuss the scalability and the computational
time consumption of each stage of our reconstruction pipeline.

1https://github.com/doyubkim/fluid-engine-dev

https://github.com/doyubkim/fluid-engine-dev


Preprint Submitted for review / Computers & Graphics (2023) 7

Fig. 9: Surface reconstruction of a liquid toy dragon with 1.2M SPH particles in a grid with 2563 cells: from left to right, our DIF by counting, our DIF by symmetry,
Müller et at. [8] , Zhu and Bridson [9], Yu and Turk [11]. Our DIF by counting and symmetry are 2.2× and 2.1× faster than the best competitor method (Zhu and
Bridson), 11.6× and 11.2× faster than the anisotropic method (Yu and Turk), respectively.

6.1. Scalability and profiling
Figure 14 shows the computational timing of our approach

using the DIF by counting, our fastest method, implemented on
GPU and the performance profiling of each stage of the recon-
struction pipeline (as shown in Figure 3) with different resolu-

tions of G. As can be seen, the computational time related to
grid operations to produce the smoothed DIF increases when
we refine the grid, becoming a potential bottleneck in high-
resolutions. Regarding the rendering, our method preserves
nicely small-scale liquid details even in a grid with a resolu-
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Fig. 10: Surface reconstruction of a floating ball with 0.93M SPH particles in a grid with 2563 cells: from left to right, our DIF by counting, our DIF by symmetry,
Müller et at. [8] , Zhu and Bridson [9], Yu and Turk [11].

Fig. 11: Surface reconstruction of a double dam-break simulation with 1M SPH particles in a grid with 2563 cells: from left to right, our DIF by counting, our DIF
by symmetry, Müller et at. [8] , Zhu and Bridson [9], Yu and Turk [11].

Fig. 12: Surface reconstruction of a spaceship rising from underwater with 4.76M SPH particles in a grid with 3843 cells: from left to right, our DIF by counting,
our DIF by symmetry, Müller et at. [8] , Zhu and Bridson [9], Yu and Turk [11]. Our DIF by counting and symmetry are 2× and 1.8× faster than the best competitor
method (Zhu and Bridson), 30× and 26× faster than the anisotropic method (Yu and Turk), respectively.
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Table 1: Average statistics, reconstruction parameters and computational times (in seconds) per frame. The best computational performances and the second best
are shown in bold and italic, respectively.

time (std)
Experiment |P| res c σ Müller et al. [8] Zhu and Bridson [9] Yu and Turk [11] DIF by counting DIF by symmetry

Toy dragon (Fig. 9) 1.20M 2563 0.05 1.0 22.42 (0.59) 15.94 (0.73) 85.03 (2.15) 7.30 (0.66) 7.59 (0.18)
Floating ball (Fig. 10) 0.93M 2563 0.10 1.0 18.85 (0.50) 16.23 (0.30) 100.05 (0.29) 7.21 (0.63) 8.63 (0.21)
Double dam-break (Fig. 11) 1.00M 2563 0.10 1.0 19.48 (0.64) 14.05 (1.79) 76.27 (3.81) 6.74 (0.56) 6.81 (0.15)
Spaceship (Fig. 12) 4.76M 3843 0.05 0.8 129.78 (1.28) 60.54 (3.17) 899.84 (5.95) 29.74 (0.68) 34.16 (0.63)

(a) Ground truth (b) error = 2.117 × 10−2 (c) error = 2.105 × 10−2 (d) error = 2.250 × 10−2 (e) error = 2.129 × 10−2 (f) error = 2.110 × 10−2

Fig. 13: Reconstruction error analysis in the Stanford Bunny with 1.47M particles in a grid with 2563 cells: (a) ground truth, (b) DIF by counting, (c) DIF by
symmetry, (d) Müller et al., (e) Zhu and Bridson, and (f) Yu and Turk.

0.00

0.05

0.15

0.25

0.10

0.20

0.30 GPU time

Fig. 14: Analysis of the grid resolution on GPU: surface reconstruction of the liquid splashing in the double dam-break (Fig. 11) using our DIF by counting
with different grid resolutions (left) and the average computational timing (in seconds) of each pipeline stage (right): DIF evaluation ( ), smoothing ( ), and
isosurfacing ( ).

tion of 5123. Important to note that the GPU version is almost
100× faster than the single-core version for a grid resolution
of 2563 (see Table 1).

6.2. DIF improvement
In order to recover fine and small-scale details in the liquid

surface dissipated by the smoothing step, we can perform an ad-
ditional step in our surface reconstruction pipeline depicted by
Figure 3. Since the fine and small-scale details occur in regions
where the smoothed DIF ϑ̃ reaches low values at the grid cells
K of G, we perform a thresholding segmentation of the original
DIF ϑ using the isovalue c as follows:

ϑ(K) =

ϑ(K) ϑ̃(K) ≤ c
0 otherwise

.

Then, we apply the smoothing step (described in Section 4.2)
in the segmented DIF ϑ using a Gaussian blur with a smaller

filter size of σ/2 to preserve the small details. Finally, the re-
sulting surface S is given by the union of the DIFs ϑ̃ and ϑ, i.e.,
S = (ϑ̃ ∪ ϑ)−1(c) with

ϑ̃ ∪ ϑ (K) = max{ϑ̃(K), ϑ(K)} .

Figure 15 shows the result of this improvement, our DIF-
based method with this additional improvement is almost 1.6×
faster than the best competitor method [9]. Note that our im-
provement recovers the surface details even for large isovalues
and filter sizes.

This additional stage is ideal when the user wants to avoid
fine-tuning parameters (σ and c), mainly in surface reconstruc-
tion involving DIF by counting. However, the main drawback
of this scheme is the computational time overhead due to the
processing and smoothing of the segmented DIF. For this rea-
son, we suggest this improvement as optional in our pipeline.
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15
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0

CPU time

Fig. 15: Recovering surface details by DIF improvement: isosurface of the double dam-break in a grid with 2563 cells using DIF by counting with isovalue c = 0.2
and filter size σ = 1.2. From left to right, the surface from the smoothed DIF ϑ̃, the surface details from the segmented DIF ϑ, and the resulting surface from ϑ̃ ∪ ϑ.
At rightmost, the average computational timings (in seconds) using a single-core CPU: our DIF by counting ( ), the additional improvement process ( ), and Zhu
and Bridson method ( ).

6.3. Limitations and future work
The grid representation restricts our GPU implementation to

bounded domains. It opens possibilities for replacing our cur-
rent data structure with sparse grid representations using GVDB
Voxels [29]. Aggressive smoothing can remove small surface
details like liquid droplets. Thus, another direction of future re-
search is constructing a “detail-aware” blur using adaptive fil-
ters [30] for DIF smoothing and more sophisticated polygoniza-
tion algorithms suited for DIFs [5, 6] as well.

7. Conclusion

We introduced two simple and efficient surface reconstruc-
tion methods for liquid interfaces suited for particle-based fluid
solvers on CPU and GPU architectures based on smoothed
DIFs. The first DIF is a fast method defined by counting par-
ticles inside grid cells. The second DIF is achieved by analyz-
ing the particle distribution inside grid cells, providing a high-
quality surface. Our approach provides a significant speed-up
for surface reconstruction compared to the prior methods, as
attested by the set of experiments and comparisons in the paper.

Acknowledgements

We want to thank the anonymous reviewers of SIB-
GRAPI 2022 for their valuable suggestions. We also thank
Samantha Miller from SideFX for their kind donation of the
Houdini software. This study was financed in part by the
National Council for Scientific and Technological Develop-
ment – Brazil (CNPq) under grant 309226/2020-1, and the São
Paulo Research Foundation (FAPESP) under grant 2019/23215-
9. The computational resources provided by the Center for
Mathematical Sciences Applied to Industry (CeMEAI), also
funded by FAPESP (grant 2013/07375-0).

References

[1] Ihmsen, M, Orthmann, J, Solenthaler, B, Kolb, A, Teschner, M. SPH
fluids in computer graphics. In: Eurographics 2014 - State of the Art
Reports. 2014, p. 21–42. doi:10.2312/egst.20141034.

[2] Macklin, M, Müller, M. Position based fluids. ACM Trans Graph
2013;32(4). doi:10.1145/2461912.2461984.

[3] Lorensen, WE, Cline, HE. Marching cubes: A high resolution 3d surface
construction algorithm. In: SIGGRAPH ’87. 1987, p. 163–169. doi:10.
1145/37402.37422.

[4] Hirt, CW, Nichols, BD. Volume of fluid (VOF) method for the dynamics
of free boundaries. J Comput Phys 1981;39(1):201–225. doi:https:
//doi.org/10.1016/0021-9991(81)90145-5.

[5] Manson, J, Smith, J, Schaefer, S. Contouring discrete indicator func-
tions. Comput Graph Forum 2011;30(2):385–393. doi:https://doi.
org/10.1111/j.1467-8659.2011.01869.x.

[6] Evrard, F, Denner, F, van Wachem, B. Surface reconstruction
from discrete indicator functions. IEEE Trans Vis Comput Graph
2019;25(3):1629–1635. doi:10.1109/tvcg.2018.2809751.

[7] Quispe, FI, Paiva, A. Counting Particles: a simple and fast surface
reconstruction method for particle-based fluids. In: 2022 35th SIBGRAPI
Conference on Graphics, Patterns and Images (SIBGRAPI). 2022, p. 145–
149. doi:10.1109/SIBGRAPI55357.2022.9991770.

[8] Müller, M, Charypar, D, Gross, M. Particle-based fluid simulation for
interactive applications. In: Symposium on Computer Animation (SCA
’03). 2003, p. 154–159.

[9] Zhu, Y, Bridson, R. Animating sand as a fluid. ACM Trans Graph
2005;24(3):965–972. doi:10.1145/1073204.1073298.

[10] Adams, B, Pauly, M, Keiser, R, Guibas, LJ. Adaptively sampled
particle fluids. ACM Trans Graph 2007;26(3). doi:10.1145/1276377.
1276437.

[11] Yu, J, Turk, G. Reconstructing surfaces of particle-based fluids using
anisotropic kernels. ACM Trans Graph 2013;32(1):5:1–5:12. doi:10.
1145/2421636.2421641.

[12] Akinci, G, Ihmsen, M, Akinci, N, Teschner, M. Parallel sur-
face reconstruction for particle-based fluids. Comput Graph Forum
2012;31(6):1797–1809. doi:10.1111/j.1467-8659.2012.02096.x.

[13] Yang, W, Gao, C. A completely parallel surface reconstruction method
for particle-based fluids. Vis Comput 2020;36:2313–2325. doi:10.1007/
s00371-020-01898-2.

[14] Chen, Q, Zhang, S, Zheng, Y. Parallel realistic visualization of particle-
based fluid. Comput Animat Virt W 2021;32(3–4):e2019. doi:https:
//doi.org/10.1002/cav.2019.

[15] Bhattacharya, H, Gao, Y, Bargteil, AW. A level-set method for skinning
animated particle data. IEEE Trans Vis Comput Graph 2015;21(3):315–
327. doi:10.1109/tvcg.2014.2362546.

[16] Sandim, M, Cedrim, D, Nonato, LG, Pagliosa, P, Paiva, A. Boundary
detection in particle-based fluids. Comput Graph Forum 2016;35(2):215–
224. doi:10.1111/cgf.12824.

[17] Kazhdan, M, Hoppe, H. Screened Poisson surface reconstruction. ACM
Trans Graph 2013;32(3):29:1–29:13. doi:10.1145/2487228.2487237.

[18] van der Laan, WJ, Green, S, Sainz, M. Screen space fluid rendering with
curvature flow. In: Symposium on Interactive 3D Graphics and Games
(I3D ’09). 2009, p. 91–98. doi:10.1145/1507149.1507164.

http://dx.doi.org/10.2312/egst.20141034
http://dx.doi.org/10.1145/2461912.2461984
http://dx.doi.org/10.1145/37402.37422
http://dx.doi.org/10.1145/37402.37422
http://dx.doi.org/https://doi.org/10.1016/0021-9991(81)90145-5
http://dx.doi.org/https://doi.org/10.1016/0021-9991(81)90145-5
http://dx.doi.org/https://doi.org/10.1111/j.1467-8659.2011.01869.x
http://dx.doi.org/https://doi.org/10.1111/j.1467-8659.2011.01869.x
http://dx.doi.org/10.1109/tvcg.2018.2809751
http://dx.doi.org/10.1109/SIBGRAPI55357.2022.9991770
http://dx.doi.org/10.1145/1073204.1073298
http://dx.doi.org/10.1145/1276377.1276437
http://dx.doi.org/10.1145/1276377.1276437
http://dx.doi.org/10.1145/2421636.2421641
http://dx.doi.org/10.1145/2421636.2421641
http://dx.doi.org/10.1111/j.1467-8659.2012.02096.x
http://dx.doi.org/10.1007/s00371-020-01898-2
http://dx.doi.org/10.1007/s00371-020-01898-2
http://dx.doi.org/https://doi.org/10.1002/cav.2019
http://dx.doi.org/https://doi.org/10.1002/cav.2019
http://dx.doi.org/10.1109/tvcg.2014.2362546
http://dx.doi.org/10.1111/cgf.12824
http://dx.doi.org/10.1145/2487228.2487237
http://dx.doi.org/10.1145/1507149.1507164


Preprint Submitted for review / Computers & Graphics (2023) 11

[19] Green, S. Screen space fluid rendering for games. http:

//developer.download.nvidia.com/presentations/2010/

gdc/Direct3D_Effects.pdf; 2010. Game Developers Conference.
[20] Imai, T, Kanamori, Y, Mitani, J. Real-time screen-space liquid rendering

with complex refractions. Comput Animat Virtual Worlds 2016;27(3–
4):425–434. doi:10.1002/cav.1707.

[21] Neto, LSR, Apolinário Jr., AL. Real-time screen space cartoon water
rendering with the iterative separated bilateral filter. Journal on Interactive
Systems 2017;8(1). doi:10.5753/jis.2017.672.

[22] Truong, N, Yuksel, C. A narrow-range filter for screen-space fluid ren-
dering. ACM Comput Graph Interact Tech 2018;1(1). doi:10.1145/
3203201.

[23] Oliveira, F, Paiva, A. Narrow-band screen-space fluid rendering. Com-
put Graph Forum 2022;41(6):82–93. doi:https://doi.org/10.1111/
cgf.14510.

[24] Toriwaki, J, Yoshida, H. Fundamentals of Three-Dimensional Digital
Image Processing. Springer; 2009.

[25] Humphrey, W, Dalke, A, Schulten, K. VMD – Visual Molecular Dy-
namics. J Mol Graph 1996;14:33–38. URL: https://www.ks.uiuc.
edu/Research/vmd/. doi:10.1016/0263-7855(96)00018-5.

[26] Domı́nguez, JM, Fourtakas, G, Altomare, C, Canelas, RB,
Tafuni, A, Garcı́a-Feal, O, et al. DualSPHysics: from fluid dynam-
ics to multiphysics problems. Comp Part Mech 2021;doi:10.1007/
s40571-021-00404-2.

[27] Kim, D. Fluid Engine Development. CRC Press; 2016.
[28] Taha, AA, Hanbury, A. An efficient algorithm for calculating

the exact Hausdorff distance. IEEE Trans Pattern Anal Mach Intell
2015;37(11):2153–2163. URL: https://doi.org/10.1109/tpami.
2015.2408351. doi:10.1109/tpami.2015.2408351.

[29] Wu, K, Truong, N, Yuksel, C, Hoetzlein, R. Fast fluid simulations with
sparse volumes on the gpu. Comput Graph Forum 2018;37(2):157–167.
doi:https://doi.org/10.1111/cgf.13350.

[30] Westin, CF, Kikinis, R, Knutsson, H. Adaptive image filtering. In:
Handbook of medical imaging. Academic press; 2000, p. 19–31.

http://developer.download.nvidia.com/presentations/2010/gdc/Direct3D_Effects.pdf
http://developer.download.nvidia.com/presentations/2010/gdc/Direct3D_Effects.pdf
http://developer.download.nvidia.com/presentations/2010/gdc/Direct3D_Effects.pdf
http://dx.doi.org/10.1002/cav.1707
http://dx.doi.org/10.5753/jis.2017.672
http://dx.doi.org/10.1145/3203201
http://dx.doi.org/10.1145/3203201
http://dx.doi.org/https://doi.org/10.1111/cgf.14510
http://dx.doi.org/https://doi.org/10.1111/cgf.14510
https://www.ks.uiuc.edu/Research/vmd/
https://www.ks.uiuc.edu/Research/vmd/
http://dx.doi.org/10.1016/0263-7855(96)00018-5
http://dx.doi.org/10.1007/s40571-021-00404-2
http://dx.doi.org/10.1007/s40571-021-00404-2
https://doi.org/10.1109/tpami.2015.2408351
https://doi.org/10.1109/tpami.2015.2408351
http://dx.doi.org/10.1109/tpami.2015.2408351
http://dx.doi.org/https://doi.org/10.1111/cgf.13350

	Introduction
	Related work
	An overview of surface reconstruction from particles 
	The method
	DIF evaluation
	DIF smoothing
	Isosurfacing

	Results
	Discussion
	Scalability and profiling
	DIF improvement
	Limitations and future work

	Conclusion

