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ü  Supervised	Projec$on	Methods	

ü  Distor$on	Analysis	
ü  Enriched	MP	Layout	

•  Graph	based	Time-Varying	data	Visual	Analy$cs	
ü  Graph-Wavelets	
ü  Mul$-way	Arrays	(tensor	decomposi$on)	
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Mul$dimensional	Projec$on	
@	ICMC	

•  Pioneered	supervised	MP	methods	
	
•  First	to	propose	a	local	MP	method	



ü  Least		Square	Projec$on	(LSP)	

ü  Local	Affine	Mul$dimensional	Projec$on	(LAMP)	

•  Pioneered	user	driven	MP	methods	
	
•  First	to	propose	a	local	MP	method	

Mul$dimensional	Projec$on	
@	ICMC	
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Least	Square	Projec$on	-	LSP	

LSP	has	been	tailored	to	be	interac$ve	(supervised),		

enabling	users	to	steer	the	projec$on	process.	
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Laplace	systems:	
constraints	are	need	to		
ensure	non-trivial	solu$on	
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Visual	Space	control	points	



Unsupervised	 User	Driven	



Although	LSP	allows	for	user	interac$on	it	has	two	main	drawbacks:	
	

	1.		LSP	is	not	super	fast	
	 	can	not	handle	massive	data	sets	

		
	2.		LSP	mapping	is	global	

	 	small	changes	in	the	control	points	affects	the	whole	layout	



Local	Affine	Mul$dimensional	Projec$on	
(LAMP)	



Local	Affine	Mul$dimensional	Projec$on	
(LAMP)	

LAMP	has	been	designed	to	be	local,		

interac$ve,	and	computa$onally	efficient.		



Mul$dimensional	space	
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Mul$dimensional	space	

Each	point	is	mapped	to	the	visual		
space	using	its	own	affine	transforma$on	
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Point-based	layouts	allow	to	

visualize	neighborhood	rela$on	

and	well	defined	clusters.	



However,	informa$on	such	as:	

•  which	are	the	content	of	the	data	in	each	region?	
•  which	are	the	most	relevant	abributes	in	each	region?	

can	not	directly	be	obtained	from	the	layout.	

Point-based	layouts	allow	to	
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and	well	defined	clusters.	
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Graph	Signal	Processing	



Graph	based	Time	Varying	Data:	
Graph-Wavelets	
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									Graph	Laplacian	

eigenvectors	and	eigenvalues	
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Graph	based	Time	Varying	Data:	
Graph-Wavelets	

Dynamic	Networks	



	
Thanks	for	your	aben$on	!!	


