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1. INTRODUCTION

In this paper we consider some duality results concerning various types of implicit dif-
ferential equations (IDE’s). Let

F (x, y,
dy

dx
) = 0 (1)

be an implicit differential equation, where F is a smooth function in (x, y, p) ∈ IR3. At
points where the partial derivative Fp 6= 0, the above equation can be written locally in the

form
dy

dx
= g(x, y) and studied using the methods from the theory of ordinary differential

equations.
When Fp = 0 the equation may define locally more than one direction in the plane.

The qualitative study of such equations have received considerable attention in recent
years. The cases that have been most intensively studied, with extensive applications in
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30 J. W. BRUCE AND F. TARI

differential geometry and control theory, are those implicit differential equations that define
at most two directions in the plane. This is the case locally for example when F = Fp = 0
but Fpp 6= 0. Note that in this situation, using the Division Theorem, one can reduce F to
a quadratic equation in p. One way these equations are studied is by lifting the bi-valued
direction field defined in the plane to a single field ξ on the surface M = F−1(0) in IR3.
(This field is determined by the restriction of the contact planes associated to the standard
contact form dy − pdx in IR3.) If 0 is a regular value of F then M is smooth and the
projection to the plane is a fold. The critical set of this projection is called the criminant
and its image is the discriminant of the equation. The configuration of the solution curves
of F at a point on the discriminant are determined by the pair (ξ, σ), where σ is the
involution on M that interchanges points with the same image under the projection to
IR2. If ξ is regular then a smooth model is given by dy2 − xdx2 = 0 ([13]). The integral
curves in this case are a family of cusps. If ξ has an elementary zero, with separatrices
transverse to the criminant, and not killed under projection, then a smooth model is given
by dy2 − (y − λx2)dx2 = 0, with λ 6= 0, 1

16 (see [14], and [15] for applications to control
theory).

There are three topological models, a well-folded saddle if λ < 0, a well-folded node if
0 < λ < 1

16 and a well-folded focus if 1
16 < λ. The family of cusps and the well-folded

singularities are the only locally structurally stable configurations. Generic bifurcations of
such equations in 1-parameter families are considered in [9] and [16].

A particular class of implicit differential equations are the so called binary differential
equations (BDE’s), that is differential equations of the form

a(x, y)dy2 + 2b(x, y)dxdy + c(x, y)dx2 = 0

where a, b, c are smooth real functions in (x, y). If IRP denotes the real projective line
consider in IR2 × IRP the set M of points (x, y, [α : β]) where δ(x, y) = (b2 − ac)(x, y) ≥ 0
and the direction [α : β] is a solution of the BDE at (x, y). Note that here we allow
F = Fp = Fpp = 0, i.e. a = b = c = 0 at the origin. The discriminant function δ = b2 − ac
of the BDE plays a key role. When δ has a Morse singularity the surface M is smooth
and the approach highlighted above can be used to obtain topological models for the
configurations of the solution curves of such equations ([3], [6]). Bifurcations of BDE’s of
Morse type with zero coefficients are studied in [7]. Other information concerning such
equations, such as defining and computing their multiplicities and the deformations of the
discriminant curve can be found in [8] and [10].

In [2] the first author studied the duals of the solution curves of equation (1). These
are the solution curves of the differential equation obtained from equation (1) using the
Legendre transformation. The duals of the dual curves (the original solutions of equation
(1)) can be studied using the family of height functions on the family of dual curves. It
is established that these form a family of cusps at fold points of the projection where ξ is
regular (recovering the result mentioned above), and furthermore that there are no simple
smooth models in the case when F = Fp = Fpp = 0 and Fppp 6= 0. Note however that the
dual only makes sense if we restrict to affine changes of co-ordinates in the (x, y)-plane.
Consequently we can have diffeomorphic singular points of implicit differential equations
yielding quite distinct Legendre transforms.
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DUALITY AND IMPLICIT DIFFERENTIAL EQUATIONS 31

It is consequently rather surprising that we can show, in this paper, that the well folded
singularities are self-dual, that is, that generically the equation resulting from applying
the Legendre transformation has the same type as the original (Section 2). This is also
true in the case when the discriminant has a Morse singularity at a point where Fpp 6= 0
(Section 3). We also study the case of BDE’s where a = b = c = 0 at the origin and
the discriminant has a Morse singularity (Section 4). Although the Legendre transform
refers only to the plane and the results associated with it are only affine invariant, rather
surprisingly the theorems in Sections 2, 3, 4 have some interesting geometric consequences
for surfaces which we discuss. Note that although much of our work is motivated by the
case of BDE’s, the Legendre transform of a BDE generally is not another BDE. For this
reason we deal with general IDE’s.

2. WELL FOLDED SINGULARITIES

The Legendre transformation in IR3 is given by

X = p, Y = xp− y, P = x.

As in the introduction let M be the surface defined by F (x, y, p) = 0, where F is a smooth
function. We shall only be considering the local behaviour of the integral curves of equation
(1), so we assume that the points (x, y, p) under consideration are close to the origin. (We
may clearly take x = y = 0 and suppose p = 0 by a rotation of the (x, y)-plane.)

The Legendre transformation of the surface M yields a surface N given as the zero-set
of the function

G(X, Y, P ) = F (P,XP − Y,X).

An important property of the Legendre transformation is that the solution curves of the
implicit equation

G(X, Y,
dY

dX
) = 0 (2)

are naturally dual to those of equation (1) (see for example [1]). So if IRP 2 denotes the
affine projective plane, the curve representing all the tangent lines to a solution of equation
(1) is a solution curve of equation (2), and conversely. The key is that the transform takes
the canonical 1-form dy − pdx to (minus) the canonical 1-form dY − PdX in the other
space. The objective here is to relate the configuration of the integral curves of F to those
of G.

Recall that typically solution curves to IDE’s have cusps, and that elementary geometry
tells us that the dual of a cusp is (generically) an inflection. So when studying an IDE, its
Legendre transform and their solution curves we should consider, in both cases, the cusp
set and the inflexional set. We will be particularly interested in the configuration of these
two sets at singular points of the IDE. Our aim is to analyse the configurations that can
occur, and determine those that are dual. Recall, however, that the property that a curve
have an inflexion at some point is not a diffeomorphism invariant, simply an affine one.
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32 J. W. BRUCE AND F. TARI

Throughout our investigation we will only allow ourselves affine changes of co-ordinates
when simplifying normal forms.

We wish to study the singular points. Recall that the lifted field ξ on M can be written
explicitly in the form

ξ = Fp
∂

∂x
+ pFp

∂

∂y
− (Fx + pFy)

∂

∂p
,

(see for example [2]). The corresponding line field is also determined by the kernel of the
canonical 1-form on the tangent spaces to F = 0. So the condition for ξ to be singular
is that F = 0, Fp = 0 and Fx + pFy = 0. The first condition just says that we are on
the surface, and the second that we are on the criminant. The third simply states, as we
now show, that we are also on the locus of inflexions (under the Legendre transform these
points get mapped to the cusp set of the dual). To see this differentiate F with respect to
x to obtain Fx + pFy + Fp(dp/dx). This vanishes identically and we have an inflexion if
and only if dp/dx = 0 that is Fx + pFy = 0.

Suppose now that the projection π : M → IR2 is still a fold and ξ has an elementary
singularity with separatrices transverse to the criminant, and their tangents not projecting
to zero. Of course we cannot assume Davydov’s normal form described in the introduction
since the Legendre transform is only preserved (up to affine equivalence) by an affine change
of co-ordinates.

We start by analysing the conditions for a well folded singularity.

Lemma 2.2.1. Assume that the point under consideration is (x, y, p) = (0, 0, 0). Then
the conditions for a well-folded singularity is determined by the 2-jet of F at (0, 0, 0).
Writing this 2-jet as

j2F = a0p
2 + (b0 + b1x + b2y)p + (c1x + c2y + c3x

2 + c4xy + c5y
2)

then the following is true.
(i) We have a fold point if a0 6= 0, b0 = 0.
(ii) We have a zero of the lifted field if c1 = 0, and then F = 0 is locally smooth if and

only if c2 6= 0.
(iii) We have a well folded singularity if and only if λ 6= 0, 1

16 where λ = (4a0c3 − b2
1 −

b1c2)/4c2
2 (these distinguish saddle/node/focus, that is degeneracies of the lifted field) and

c3 6= 0 (the separatrix does not have tangent projecting to zero, i.e. is not vertical). A
well-folded saddle-node bifurcation occurs when λ = 0.

Proof: These are all fairly straightforward. Since we are at a fold point F = Fp = 0, Fpp 6=
0. We have a zero of the lifted field if, in addition, Fx + pFy = 0. The linear part of the
lifted field is (2a0p + b1x)∂/∂x − ((b1 + c2)p + 2c3x)∂/∂p. The other assertions can be
deduced from this.

Using this computation we can establish the following facts.

Theorem 2.2.2. (i) An IDE F = 0 has a fold (or worse) and a zero of the lifted field
if and only if the same is true for its Legendre transform.
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(ii) The set F = 0 is smooth if and only if G = 0 is smooth.
(iii) The IDE F = 0 (resp. G = 0) has a genuine fold if and only if G = 0 (resp. F = 0)

has a non-vertical separatrix.
(iv) The lifted fields for F and G are equivalent.
(v) Consequently the well-folded singularities of the implicit differential equation F (x, y,

dy

dx
) = 0 are self-dual. This is also the case for the well-folded saddle-node bifurcation.

Proof: We have G(X, Y, P ) = F (P, XP −Y, X), and we can assume that the points under
consideration are (x, y, p) = (0, 0, 0) and (X, Y, P ) = (0, 0, 0). We denote the set of zeros
of G by N . Note that the 2-jet of G at (0, 0, 0) given by

j2G = c3P
2 + ((c2 + b1)X − c4Y )P − c2Y + a0X

2 − b2XY + c5Y
2,

is determined by the 2-jet of F at (0, 0, 0). The result now follows from the previous lemma
by a straightforward calculation. For example we have

GX = PFy + Fp = xFy + Fp, GY = −Fy, GP = Fx + XFy = Fx + pFy.

So at the origin, the projection π : N, 0 → IR2, 0 is a fold or worse if and only if GP = 0,
i.e. Fx + pFy = 0, and we have a zero of the lifted field if and only if GX + PGY = 0, that
is Fp = 0. Indeed, as remarked above, the Legendre transform takes the canonical form in
one space to that in the other. Consequently it takes M diffeomorphically to N and the
integral curves of one lifted field to that of the other. We have a genuine fold if GPP 6= 0
at the origin, that is if and only if Fxx 6= 0 at the origin, the condition that a separatrix is
not vertical. The rest follows in the same vein.

Corollary 2.2.3. As cusps dualise to inflexions, we deduce that there is a smooth curve
of inflexion points tangential to the discriminant at well-folded singularities of equation (1),
see Figure 1.

At this stage it is worthwhile establishing various basic results about implicit differential
equations and their Legendre transforms (or duals as we shall sometimes refer to them). We
recall from [8] that we can associate to any germ of an IDE a multiplicity, which measures
two numerical invariants. These are the number of cusps of the projection of F = 0 to
the (x, y)-plane and the number of (non-degenerate, well-folded) zeros of the natural lifted
field that emerge in a generic deformation of F .

In our case we are also interested in another phenomena.

Definition 2.2.4. An undulation of the IDE F = 0 is a non-singular point on an
integral curve where the curve has ≥ 4-point contact with its tangent line. It is said to be
non-degenerate if we have exactly 4-point contact.

Generally curves do not have undulations, but they do appear generically in 1-parameter
families. Any IDE yields a natural 1-parameter family of curves, namely its solution curves,
so we might expect (isolated) points of undulation for any given IDE.
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34 J. W. BRUCE AND F. TARI

Our aim now is to describe how an IDE, F = 0 and its Legendre transform G = 0 are
related.

Proposition 2.2.5. (i) The set of germs IDE’s, F = 0, with the property that F and
its Legendre transform G have finite multiplicity has a complement of infinite codimension.

(ii) When both have finite multiplicity we can deform the IDE F = 0 so that the deformed
equation has finitely many cusps for the projection say C(F ), finitely many well-folded zeros
of the lifted field Z(F ), and finitely many undulations U(F ). The same will be true for the
Legendre transform G and Z(F ) = Z(G), C(F ) = U(G), C(G) = U(F ).

(iii) The zero sets F = 0 and G = 0 are diffeomorphic, the diffeomorphism preserving
the integral curves of the lifted fields.

(iv) The initial parts of F and G are linearly equivalent.

Proof: (i) We showed in [8], that the set of germs of IDE’s of non-finite multiplicity is of
infinite codimension. The proof here is very similar and omitted.

(ii) These just follow from straightforward calculations, which again we omit. However
we can explain the results geometrically. First note that the condition for a zero of the
lifted field is that we have a cusp point on an integral curve, and an inflexion. Since these
conditions are dual to each other, it follows that zeros of the field on F = 0 correspond to
zeros on G = 0.

On the other hand an undulation can be thought of as two inflexions coming together,
and the dual of this situation is that we have two cusp points coming together on the
corresponding dual solution curves. This only occurs at a cusp of the projection. (More
precisely we expect the undulation to be ‘versally unfolded ’, and the set of tangent lines to
correspond to the discriminant of an A2-singularity, that is yield a cusp. See for example
[4], page 203.)

(iii) This is obvious, since the Legendre map is an involution, hence a diffeomorphism.
Similarly for (iv).

We now wish to investigate the relative positions of the inflexion curve, the cusps and
the separatrices (if any). We can do this by considering the corresponding curves on the
surface F = 0 and the way these project to the (x, y)-plane or via a more direct approach.
We start with the former and an elementary lemma.

Lemma 2.2.6. Let f : IR2, 0 → IR2, 0 be a fold mapping, and let Cj, j = 1, 2 be smooth
curves through 0 in the source with tangents there transverse to the kernel of df(0). Suppose
further that σ : IR2, 0 → IR2, 0 is the involution in the source with f(σ(x, y)) = f(x, y) for
all (x, y) ∈ IR2. Then their images f(Cj) are smooth and have 2-point contact if and only
if C1 and σ(C1) are transverse to C2.

Proof: We may suppose that f(x, y) = (x, y2), so ker df(0) is spanned by (0, 1) and
σ(x, y) = (x,−y). We can suppose that Cj is parametrised as (t, gj(t)), since its tangent
is transverse to ker df(0), and its image is parametrised by (t, gj(t)2), so is clearly smooth.
The contact between the two images is given by the first non-vanishing term in (g1(t) −
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g2(t))(g1(t) + g2(t)). So we get two point contact if and only if g′1(0) 6= ±g′2(0). The result
now follows.

In our case we now need to locate the kernel of the projection (at our base point (0, 0, 0))
and the linear part of the involution σ.

Lemma 2.2.7. Parametrising the surface F = 0 as above using the (x, p) co-ordinates,
and denoting the projection M, 0 → IR2, 0 as above by f , we find that ker df(0) is spanned
by (0, 1), the linear part of σ is (x, p) 7→ (x,−p − b1x/a0). Moreover the tangent to the
critical set at (0, 0) is given by (2a0,−b1), and that to the inflexion curve (b1 + c2,−2c3).
Finally the separatrices have tangents which are the eigenvectors of

(
b1 −2c3

2a0 −b1 − c2

)
.

Proof: We have seen that to order 2 we have y = −(c3x
2 + b1xp + a0p

2)/c2, and the first
results follow easily. The singular points of the projection are given by F = Fp = 0, to
first order by 2a0p + b1x = 0. The condition for the locus of inflexions, we noted above
was Fx + pFy = 0. So to first order (b1 + c2)p + 2c3x = 0. The final part follows from the
linearisation of the lifted field.

Alternatively one can compute directly in the plane.

Lemma 2.2.8. In the case of the node and saddle the separatrices are given by curves
parametrised to order 2 as (t, αt2) where 4a0α

2 + (2b1 + c2)α + c3 = 0.

Proof: We know that to second order the solution curves will be parabolas tangent to
the cusp set, so can be written in the form y = αx2 + hot. We simply substitute in the
equation and set second order terms equal to 0.

Now we need to do some detailed calculations. It is not hard to see that by a linear
change of co-ordinates we may suppose that in the above 2-jet we may take a0 = c2 = 1, and
to simplify matters we will do so. This leaves us with a 2-parameter family parametrised
by the coefficients b1 and c3. For each point in this space we have 2 or 4 curves in the
(x, y) plane: the fold curve, the inflexion curve and any separatrices. Each is generically a
parabola, all passing through the same point with the same tangent. We are interested in
the way these parabolas nest. Clearly some change takes place when one of the following
happens:

(a) we change the type of zero of the lifted field, i.e., focus/node/saddle;
(b) fold, inflexion curve or separatrices have an inflexion or a singularity at origin;
(c) some pair of fold/inflexion curve/separatrix sets have > 2−point contact.

We write u for b1 and v for 4c3. Then we have the following sets of interest.

(i) v = 0: separatrices inflexional or singular;

(ii) v = u2: cusp set inflexional (never singular);
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(iii) v = u2 − 1: inflexion curve inflexional;

(iv) u + 1 = 0: inflexion curve singular;

(v) v = u(u+1): saddle/node change and also inflexion curve/fold set have > 2-point
contact;

(vi) v = u(u + 1) + 1/4: focus/saddle node change;

(vii) v = −2(u + 1): the union of this set and (i) and (v) corresponds to inflexion
curve/separatrices having > 2-point contact.

When we take the dual of this BDE and normalise again we get an IDE of the same form
with (u, v) replaced by (−u − 1, v). Note that this does give an involution on the (u, v)
plane, which preserves the above sets.

Corollary 2.2.9. There are 18 types of configuration of cusp set/ inflexion set/ sepa-
ratrices for well-folded singular points of IDE’s. They are as illustrated in Figure 1.

Proof: This simply involves selecting one point from each of the regions bounded by the
above curves and calculating.

Remark 2.2.10. Note that the relative positions of the separatrices, cusp and inflexional
sets are determined by their tangents on the surface F = 0.

2.1. Application: Asymptotic curves on surfaces in IR3

Suppose we are given a surface S in IR3, and an asymptotic curve on that surface. So
this curve has as its tangent at each point one of the asymptotic directions to S there.
Alternatively the osculating plane to the curve at each point coincides with the tangent
plane to the surface. Let us suppose that the surface is written as a graph (x, y, h(x, y))
for some smooth function h, and the asymptotic curve is parameterised (t, α(t), β(t)). The
condition for the curve to be asymptotic is that its tangent line at each point has 3-point
contact (or higher) with the surface at each point. For a fixed parameter value of t the
tangent line is (t+s, α(t)+sα′(t), β(t)+sβ′(t)). The conditions for at least 3-point contact
are (omitting the t’s and (t, α(t)) in any expression involving h)

β − h = hx + hyα′ − β′ = hxx + 2hxyα′ + hyy(α′)2 = 0.

If we differentiate twice the first of these identities (which just tells us that the curve
lies on the surface) we obtain

hxx + 2hxyα′ + hyy(α′)2 + hyα′′ − β′′ = 0 (3)

and combining this with the above we find that hy(t, α(t))α′′(t)− β′′(t) = 0.

Publicado pelo ICMC-USP
Sob a supervisão da CPq/ICMC



DUALITY AND IMPLICIT DIFFERENTIAL EQUATIONS 37

v=u  -12v=u 2

N2

v=-2(u+1)

u+1=0

N6

N5

N4 N3

S5

S8 N7

S1
N1

S2

S3F2

v=u(u+1)+1/4 v=u(u+1)

F1

S6

S4

F1
F2

F3

S7

S6

S4

N7

N6

N5

N4

F1S1

S2

N3S3

S5

S6

S7

S8

N2

N1

F2

F3

FIG. 1. Partition of the (u, v)-plane and the configurations of the cusp set (thick), inflexion set
(dashed) and separatrices (thin).

Proposition 2.2.11. Some plane projection of the asymptotic curve has an inflexion at
a point if and only if the corresponding space curve can, after a change of co-ordinates in
the source and an affine change in the 3-space be reduced to the form (t, at3+hot, bt4+hot).
Following Scherbak [23] we call such points (1, 3, 4) points.

Proof: Recall that a plane curve has an inflexion if and only if its tangent line has at
least 3-point contact with the curve. Now since asymptotic curves and plane projections
are affine invariant we may assume that the form is of the indicated type and then clearly
deduce that any projection yielding a nonsingular curve gives an inflexion. Conversely
suppose (without loss of generality) that the projection results in (t, α(t)). The condition
for an inflexion at say t = 0 is α′′(0) = 0, but then β′′(0) = 0 and the result follows.

So we are interested in (1, 3, 4) points on the asymptotic curves. We now see that we may
use the standard BDE hyydy2 +2hxydxdy +hxxdx2 = 0 for the asymptotic directions. The
inflexions on the integral curves have an intrisic meaning, and hence so does the Legendre
transform. (Note that a priori there is no reason why the Legendre transform of this
equation is of any interest at all.) These points form the so-called flecnodal curve.

Now the well folded singularities of the asymptotic BDE correspond to cusps of the
Gauss map. So after a linear change of co-ordinates we may write h = y2 +(ax2y + bxy2 +
cy3) + (dx4 + . . .) where a2 − 4d 6= 0. A short calculation shows that the 2-jet of the BDE
becomes

j2F = p2 + (2ax + 2by)p + (ay + 6dx2 + . . .).
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S4

S6 N1 F1

S3S2S1

FIG. 2. Configurations of asymptotic lines at a cusp of Gauss.

To get a well folded singular point we need a 6= 0, d 6= 0, 25a2 − 24d 6= 0 and a2 − 4d 6=
0. Now suppose we scale y 7→ ty, then p 7→ tp and multiplying the equation by t−2

we obtain p2 + 2((a/t)x + by)p + ((a/t)y + (6d/t2)x2 + . . .). If a/t = 1 then we have
p2 + 2(x + 2by)p + (y + (6d/a2)x2 + . . .). So in the notation preceding Corollary 2.2.9 we
have u = 2 and v = 6d/a2. Clearly as a and d vary we can obtain any point on the line
u = 2. The exceptional points on this line are v = −6, 0, 3 4, 6, 25/4 and the type of
folded singular point obtained are (moving from v large negative to v large positive) S6,
S4, S3, S2, S1, N1, F1, as described in Figure 2. In other words there are 5 types of saddles
but only one type of node and focus.

There are a number of other examples that we would like to consider, but which need
to be viewed in a slightly different way. The following discussion explains the problems.

As we have seen many IDE’s occur naturally in differential geometry. For example we
can consider the lines of curvature on a surface in 3-space. We can of course parameterise
that surface by a piece of the plane, and study the BDE in that plane, but there is no
reason why the Legendre transform of this BDE or the curve of inflexions should have any
geometric significance. On the other hand on the surface there are points where the integral
curves have natural analogues of inflexions. These are the geodesic inflexions, where the
curve crosses the plane spanned by its tangent line and the normal. It turns out that
these points are often of considerable geometrical interest. We saw that for the asymptotic
curves these geodesic inflexions are picked up as inflexions in the parameterising plane, but
this is for very special reasons. To obtain information in other cases we need to proceed in
a slightly different way.

Definition 2.2.12. A 2-contact element of a curve in the plane is the R-equiva-lence
class of the 2-jet of a germ of an immersion IR, 0 → IR2. (That is we do not distinguish
2-jets of germs differing by a change of co-ordinates in the source.)

Given a point u in the plane there are a 2-parameter family of such elements through
u, determined by the slope of the tangent line through u and the curvature of the curve
germ there. For those elements with non-zero curvature we can think of this space as IR2

where a point v determines the centre of a circle through u, and the germ of this circle
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at u determines the contact element. Using this model the space of all contact elements
(with non-zero curvature) can be thought of as IR2 × IR2. Given a curve α : I → IR2, the
corresponding family of contact elements is parameterised (α, β) where β(t) is the centre
of curvature of the curve at α(t). We have seen that the following is true.

Lemma 2.2.13. The 2-contact element of an integral curve of F (x, y, p) = 0 at (x, y) is
determined by p and ((Fx + pFy)/Fp)(x, y, p)

Now suppose given an IDE on a surface, and on that surface an integral curve through a
point. Then clearly this yields a geodesic inflexion if it, and the curve obtained by slicing
the surface by the plane containing its tangent and the normal, have ≥ 3-point contact
on the surface. Looking at their inverse images in the parameterising space (contact is
preserved by diffeomorphisms) this condition is determined by the corresponding 2-contact
elements. So for each integral curve in the parameterising plane there is the family of 2-
contact elements corresponding to the curve and a family determined by the normal slices
of the surface. These two families have the same linear parts, that is determine the same 1-
contact elements. We are interested in those points where the 2-contact elements coincide.
Thinking of the space of 2-contact elements as IR2×IR2 again, we see that the fact that the
elements are tangent means that the centre of the relevant circle for the normal slice family
occur on the normals to the original curve, and the points sought are the intersection of
this locus of centres with the evolute of the integral curve. The BDE will yield a family of
integral curves and hence a family of such points. We will now show that we can generally
use the previous models to describe the configuration of cusp locus, geodesic inflexions and
separatrices, by showing how to carry out the required calculations.

We shall write our surface in Monge form z = h(x, y).

Lemma 2.2.14. Suppose given a point (x, y) in the parameterising plane and a direction
with slope p there. Let v(p) be the corresponding tangent direction at (x, y, h(x, y)) and
C(p) the curve given by the intersection of the plane spanned by the normal and v(p) with
the surface. Then its inverse image in the (x, y)-plane determines a 2-contact element
represented by (t, pt + qt2) where

q = (−hy + phx)(hxx + 2phxy + p2hyy)/2(1 + h2
x + h2

y).

If the IDE for the curves on the surface are given by F (x, y, p) = 0 (F will be constructed
from h in some way) then the geodesic inflexions are given by −(Fx + pFy)/Fp = 2q that
is

−(Fx + pFy)(1 + h2
x + h2

y) = Fp(−hy + phx)(hxx + 2phxy + p2hyy).

Proof: For any point (x, y) of the parameterising plane the normal at the corresponding
point (x, y, h(x, y)), and the tangent direction v(p) is easily computed. One can conse-
quently write down the normal plane, and check that if the germ of the image of the curve
(x + t, y + pt + qt2) was to lie, to second order, in this plane then q has the given form.

Remark 2.2.15. (1) This calculation now allows us to carry out the relevant compu-
tations for various geometric BDE’s. We have seen that we may always suppose that
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(x, y, p) = (0, 0, 0). Moreover we are always studying the IDE in a neighbourhood of a
point where Fp = 0. From this we deduce that the condition for a geodesic inflexion on an
integral curve is Fx +pFy = α(x, y, p)Fp where α, Fp lie in M(x, y, p). So the linear part of
this condition coincides with that for Fx + pFy = 0. As remarked in 2.10 above this linear
part determines the relative positions of the inflexional, cuspidal sets and the separatrices
(if any). In other words the models described above will apply.

(2) In the case when the direction is asymptotic we note that q = 0, so the 2-contact
element has no quadratic part. So we have geodesic curvature zero if and only if the
pull-back of the asymptotic curves have inflexions, as we have seen before.

2.2. Application: Conjugate Curve Congruence
In [18] Fletcher constructed a natural family of BDE’s that links the asymptotic curves of

a smooth surface in IR3 to the lines of curvature. Take the set of all directions in all tangent
planes making a fixed (signed) angle α ∈ [−π/2, π/2] with their conjugate direction with
respect to the second fundamental form of the surface. Note that when α = 0 this gives the
asymptotic directions, since these are the self conjugate directions, and when α = ±π/2
it yields the principal directions. For a fixed angle α these directions are labeled Cα,
and called the conjugate curve congruence. This family appears to be of some substantial
importance. Note also that the conjugate directions, and hence this family, are important
in computer vision when dealing with projections of surfaces; see [20].

These directions are given by

(sinα(Gm− Fn)− n cos α
√

EG− F 2)dy2 +

(sinα(Gl − En)− 2m cos α
√

EG− F 2)dydx +

(sinα(Fl − Em)− l cosα
√

EG− F 2)dx2 = 0,

where E, F, G (e, f, g) are the coefficients of the first (second) fundamental form at (x, y).
Away from umbilics the special parametrisation where x-constant and y-constant curves
are principal curves can be adopted and the Cα can be simplified considerably to the form

κ2 cos αdy2 + (κ2 − κ1) sin αdydx + κ1 cos αdx2 = 0,

where κi, i = 1, 2 are the principal curvatures at (x, y). The stable structures and the
bifurcations in the Cα curves when α varies are described in [9].

The congruence Cα defines at most two directions at points in IR2. Take at each point
the unit vector corresponding to a given direction. This defines a map-germ from IR2 → S2.
The fold singularities of this map is the fold curve. It turns out that the fold curve of a
given direction is the locus of the geodesic inflexions of the integral curves of the other
direction ([18]). It follows from Remark 2.2.15 that the linear condition determining the
position of the inflexion set of the BDE of Cα (or the fold curve of Cα) is that determined
in the models discussed above, when using a co-ordinate chart.
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Suppose the surface is given locally in Monge form z = h(x, y) with

h(x, y) = 1
2Σ2

i=0

(
i
2

)
aix

2−iyi + 1
6Σ3

i=0

(
i
3

)
bix

3−iyi + 1
24Σ4

i=0

(
i
4

)
cix

4−iyi

+ . . . .

By taking sinα0 = a0/
√

a2
0 + a2

1, cos α0 = −a1/
√

a2
0 + a2

1, we fix the x-axis as an element
of Cα0 at the origin. The 2-jet of the BDE Cα0 is then given (after scaling) by Ap2+2Bp+C
with

A =2a1(a0 + a2)
B =(−a0a2 + a2

0 + 2a2
1)+(2a1b1 + a0b0 − a0b2)x+(a0b1 − a0b3 + 2a1b2)y

C =2(b0a1 − a0b1)x + 2(a1b1 − a0b2)y+
(a3

0a1 + a0a
3
1 − a0c1 + c0a1)x2 + 2(−a0c2 + a3

0a2 + a1c1 + a2
1a0a2)xy

+(−a0a
3
1 + 2a2

0a1a2 − a0c3 + a1c2 + a0a1a
2
2)y

2.

When a2
0 − a0a2 + 2a2

1 = 0 the origin is on the discriminant of the congruence Cα0 . We
have generically a well-folded singularity if furthermore b0a1 − a0b1 = 0. By scaling and
using the notation in Section 2 we have

u = 1 + (b2
0 + b2

1)/(b2
1 − b0b2)

v = b1(a2
0 + a2

1)(a
3
0a1 + a0a

3
1 − a0c1 + c0a1)/2a0(b2

1 − b0b2).

In particular, when α = 0 we are dealing with the asymptotic lines, and at a cusp of
Gauss we have a0 = a1 = b0 = 0 and therefore u = 2 as in §3.1.

When α = ±π/2 we obtain the lines of curvature. This case is dealt with in Section 4.
When 0 < α < π/2 it is clear that all the cases in Figure 1 occur in this situation.

3. THE MORSE TYPE 1 CASE

When Fpp 6= 0 we can rewrite F , after a smooth change of co-ordinates, in the form
p2 + f(x, y) = 0. The discriminant of the equation is then given by f(x, y) = 0. When f
has a Morse singularity so does F and the surface M is singular (an isolated point or a
cone). We say that F is of Morse type 1. We showed in [9] that the generic topological
models in this situation are p2 + (±x2± y2) = 0. (See also [21] where the behaviour of the
integral curves when the discriminant is a node is studied, and applied to gas dynamics.)
These phenomena occur generically in 1-parameter families. When the coefficient of x2

above is +1 two well-folded foci appear on one side of the transition and none on the
other. An implicit differential equation equivalent to this normal form is labelled Foci-
Morse Type 1. When the coefficient of x2 is −1 two well-folded saddles appear on one
side of the transition and none on the other ([9]). An equation equivalent to this normal
from is labelled Saddles-Morse Type 1. Note that we are only interested in the case when
F = 0 is a cone, not an isolated point. Note also that since the Legendre transform is a
diffeomorphism the same will be true for the surface G = 0.

When dealing with duality of IDEs we can only use affine changes of co-ordinates, so
we can no longer write the equation in a simple from p2 + f(x, y) = 0. However, since the
discriminant is singular, the 1-jet of F at the origin is zero and we have the following.
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Lemma 3.3.1. Assume that the point under consideration is the origin, F has zero 1-jet
at the origin and Fpp(0, 0, 0) 6= 0. Then Saddles and Foci Morse Type 1 equations are
distinguished by the 2-jet of F . Writing the 2-jet of F at (0, 0, 0) as

j2F = p2 + 2(b1x + b2y)p + ax2 + 2bxy + cy2

then we have the following.
(i) The discriminant has a Morse singularity if and only if

∆F = b2 − 2bb1b2 + ab2
2 − ac + b2

1c 6= 0.

(ii) Assuming ∆F 6= 0, the equation is of Saddles-Morse Type 1 if b2
1 − a > 0 and

Foci-Morse Type 1 if b2
1 − a < 0.

Proof: For an IDE with Fpp 6= 0 to be of type Saddles/Foci-Morse Type 1, we need the
discriminant to have a Morse singularity and its branches (complexify if necessary) to be
transverse to the unique direction defined by the equation at the origin. It is equivalent
to Foci-Morse Type 1 if the lifted field on the cylinder, obtained by blowing up M , has
no singularities on the exceptional circle. Otherwise, it has 2 saddles singularities on this
circle and the equation is equivalent to a Saddles-Morse Type 1.

The claim that the Saddles/Foci-Morse Type 1 condition depends only on the 2-jet of F
follows from the fact that the 2-jet of the discriminant of the equation and the condition
for it to be transversal to the unique direction at the origin depend only on the 2-jet of F
at the origin. The 2-jet of the discriminant is given by

j2δF = (b2
1 − a)x2 + 2(b1b2 − b)xy + (b2

2 − c)y2.

This has a Morse singularity if and only if

∆F = b2 − 2bb1b2 + ab2
2 − ac + b2

1c 6= 0.

The branches of the discriminant are transverse to the unique direction (1, 0) determined
by the equation at the origin if and only if b2

1 − a 6= 0. When b2
1 − a > 0 the lifted field

on the blow up of M has two saddles singularities on the exceptional circle. In the case
b2
1 − a < 0, the lifted field has no singularities on the exceptional circle.

Theorem 3.3.2. Let F = 0 be an IDE with a Morse Type 1 singularity with 2-jet as
above.

(i) The Legendre transform has a Morse Type 1 singularity if and only if the separatrices
of F (when they exist) are not inflexional, the condition being a 6= 0.

(ii) The discriminant type (a node or an isolated point) is preserved under duality if
a > 0 and reversed otherwise.

(iii) The singularity type (saddles, foci) is preserved under duality.
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Proof: We apply the Legendre transformation to F . The 2-jet of the resulting function G
is given by

j2G = aP 2 + 2(b1X − bY )P + X2 − 2b2XY + cY 2.

We have GPP 6= 0 if and and only if a 6= 0. Geometrically, this has the following
interpretation. When the lifted field on the blow up of the surface M has two saddle
singularities on the exceptional circle, this circle is a common separatrix of the field at
the two singularities. The remaining separatrices project to smooth tangential curves in
the (x, y)-plane with tangent line along the unique direction defined by F at the origin,
the x-axis in our setting. So the initial term of these curves, still called separatrices, is
given by y = αx2. Substituting this in F = 0 yields 4α2 + 4b1α + a = 0. The condition
a 6= 0 means that the origin is not an inflexion point of one of these curves, i.e. they are
parabolas. If a > 0 the separatrices bend in the same direction, otherwise they bend in
opposite directions.

The 2-jet of the discriminant of G is given by

j2δG = (b2
1 − a)X2 + 2(ab2 − bb1)XY + (b2 − ac)Y 2.

This has a Morse singularity if and only if ∆G = a∆F 6= 0. The Morse type of the
discriminant is preserved under duality when a > 0 and reversed when a < 0.

The branches of δG are transverse to the unique direction (1, 0) determined by G = 0 at
the origin if and only if b2

1 − a 6= 0. We have Saddle-Morse Type 1 equation if b2
1 − a > 0

and a Foci-Morse Type 1 equation if b2
1− a > 0. So the type of the singularity is preserved

under duality.

We now need to consider the inflexion set of the integral curves of F = 0. We recall
that this set is given by F = Fx + pFy = 0. The surface Fx + pFy = 0 is locally smooth
as ∇(Fx + pFy)(0) = (a, b, b1) and a 6= 0. When F = 0 defines a cone, which we assume it
does here, the surface Fx +pFy = 0 generically intersects this cone in an isolated point or a
pair of curves. (The surface Fx + pFy = 0 is tangent to the cone when the discriminant of
G has a singularity worse than Morse.) If b1 = 0 the inflexion curves in the (x, y)-plane are
certainly tangential. Suppose then that b1 6= 0. Then eliminating p in F = Fx + pFy = 0
yields an equation in the (x, y)-plane with a 2-jet of the form

δIF = a(a− b2
1)x

2 + 2a(b− b1b2)xy + (b2 + b2
1c− 2bb1b2)y2.

We have a non degenerate quadratic if ∆IF = b2
1∆G 6= 0 resulting in a pair of transverse

inflexion curves if ∆IF > 0 and an isolated point if ∆IF < 0. Observe that ∆IF = ab2
1∆F ,

so ∆IF and ∆F have the same Morse type if a > 0 and reversed type if a < 0. We thus
have

Proposition 3.3.3. Let F = 0 be an IDE with a Morse Type 1 singularity and suppose
that j2F = p2 +2(b1x+ b2y)p+ax2 +2bxy + cy2. Assume that a 6= 0 and b1 6= 0. Then the
inflexion set has a Morse singularity. This singularity is of the same type (a node or an
isolated point) as that of the discriminant of F = 0 if a > 0 and of opposite type if a < 0.
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As we assume that a(b2
1 − a) 6= 0 (see Lemma 3.3.1 and Theorem 3.3.2) the inflexion

curves are transverse to the unique direction determined by the equation. When δF is a
node, it separates a neighbourhood of the origin into four sectors and the integral curves of
the IDE F = 0 lie in two of them (where δF ≥ 0). Considering one of these sectors we have
several configurations depending on whether the unique direction separates the inflexion
curves or not. They are separated if a(a− b2

1)(b
2 + b2

1c− 2bb1b2) < 0 and not separated if
a(a− b2

1)(b
2 + b2

1c− 2bb1b2) > 0.
We also seek to analyse how each case dualises under the Legendre transformation. A

calculation shows that the 2-jet of the equation defining the inflexion curves of G (after
scaling) is given by

δIG = (a− b2
1)X

2 + 2(bb1 − ab2)XY + (ab2
2 + b2

1c− 2bb1b2)Y 2.

We have ∆IG = b2
1∆F and the inflexion curves are separated by the unique direction if

(a− b2
1)(ab2

2 + b2
1c− 2bb1b2) < 0 and not separated if (a− b2

1)(ab2
2 + b2

1c− 2bb1b2) > 0.
To aid the process of identifying all the cases we take j2F in a simpler form. Since

b1 6= 0 we can make linear changes of co-ordinates and set b1 = 1 and b2 = 0. Then
∆F = b2 + c− ac and the position of the inflexion curves of F is determined by the sign of
a(a− 1)(b2 + c). The position of the inflexion curves of G depends on the sign of (a− 1)c.

Proposition 3.3.4. Suppose that the equation F = 0 is of Morse Type 1, the separatri-
ces through the origin are not inflexional and the inflexion curves are not tangential. Then
the local models of the configurations of tangent lines to the cusp and inflexion curves and
of the unique direction at the origin together with their corresponding duals are those in
Figure 3.

In Figure 3 the separatrices are also drawn to point out how they curve and to make the
distinction between the saddle and foci type.

When b1 = 0 we have the following.

Proposition 3.3.5. Suppose that the equation F = 0 is of Morse Type 1, the separatri-
ces through the origin are not inflexional but the inflexion curves are not transversal. Then
the inflexion set generically has an A±3 -singularity.

The local models of the configurations of the tangent lines to the cusps and inflexion
curves and of the unique direction at the origin, together with their corresponding duals are
those in Figure 4.

The proof is a calculation and we omit it.

Remark 3.3.6. In Proposition 3.3.4 and 3.3.5 the tangent lines to the curves of interest
are given. One can refine this classification by considering the actual cusps and inflexion
curves and the way they bend in relation to each other. This bending depends on j3F .
However their relative position only depends on j2F .
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∆F
<0

∆F>0

∆F
<0

∆F>0

Saddles

a>0

a>0

Saddles

a<0
Saddles

Saddles

G=0F=0

Foci

Foci

Foci

FIG. 3. Configurations of the tangent lines to the cusp set (thick) and inflexion curves (thin) (unique
direction and separatrices dashed) and their duals: the inflexion set has a Morse singularity.

∆F>0

∆F
<0

∆F>0

∆F
<0

a>0

Saddles

a<0
Saddles

G=0F=0

Foci

a>0

Saddles

Foci

FIG. 4. Configurations of the tangent lines to the cusp (thick) and inflexion set (thin) (unique direction
and separatrices dashed) and their duals: the inflexion set has an A±3 -singularity.
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3.1. Application: Asymptotic curves on surfaces in IR3

Let S be a smooth surface given locally at the origin in a Monge form z = h(x, y).
Assume that the origin is a parabolic point so that

j4h = a0y
2 + b1y

3 + b2xy2 + b3x
2y + b4x

3 +
i=4∑

i=0

diy
4−ixi.

It is shown in [5] that when the family of height function is not versal at a cusp of Gauss,
the parabolic set has a Morse singularity. This occurs when b3 = b4 = 0 and d5 6= 0.
The equation of the asymptotic curves hyydy2 + 2hxydxdy + hxxdx2 = 0 has then a Morse
Type 1 singularity. With the above conditions we have j1hxy = 2b2y so the coefficient of
x vanishes. We are then in the situation of Proposition 3.3.5. Hence the inflexion set (the
flecnodal curve in this case) generically has an A±3 -singularity. All the configuration in
Figure 4 occur. These depend on the 3-jet of the coefficients of the BDE which in turn
depend on the 5-jet of h.

3.2. Application: Conjugate Curve Congruence
We consider the example in Section 2.2. It is easy to check that we can apply the

results here because of Lemma 2.13. The Morse Type 1 singularity occurs on a Cα0 when
in addition to the conditions for having a well-folded singularity in Section 2.2, we have
a1b1−a0b2 = 0. Then the coefficient of xp in F becomes 2(a1b1 +a0b0). This is generically
non-zero for α0 6= 0. So we are in the situation of Proposition 3.3.4. By varying the
coefficients of f we obtain all the cases in Figure 3.

4. BDE’S WITH VANISHING COEFFICIENTS

As pointed out in the introduction, BDE’s

a(x, y)dy2 + 2b(x, y)dxdy + c(x, y)dx2 = 0

where a = b = c = 0 at the origin are of interest in differential geometry and control theory.
When the discriminant δ = b2 − ac has a Morse singularity the surface M is smooth ([6]).
Such BDE’s are said to be of Morse Type 2. Topological models of these BDE’s are given
in [3] and [6].

Suppose given a BDE of Morse Type 2. Then a linear change of co-ordinates reduces
the 1-jet of the coefficients of the BDE to

(y, b1x + b2y, εy),
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with ε = ±1, (see [6] for the general case and [19] when ε = −1). We shall also need to
consider the 2-jet of these coefficients, so we write

j2a(x, y) = y + a20x
2 + a21xy + a22y

2,
j2b(x, y) = b1x + b2y + b20x

2 + b21xy + b22y
2,

j2c(x, y) = εy + c20x
2 + c21xy + c22y

2.

The lifted field ξ on M has 1 or 3 zeros (saddles or nodes) on the exceptional fibre, with
the exceptional fibre being a common separatrix to all of them. The zeros are the roots of
the cubic

φ(p) = (Fx + pFy)(0, 0, p) = p(p2 + 2b2p + 2b1 + ε).

The eigenvalues of ξ at the zeros of φ are

α1(p) = 2(p2 + b2p + b1)
−φ′(p) = −(3p2 + 4b2p + 2b1 + ε)

We showed in [6] that the topological type of the above BDE with 1-jet (y, b1x + b2y, εy)
depends only on (b1, b2), and all the BDE’s whose corresponding (b1, b2) belong to the
same connected component of the (b1, b2)-plane bounded by some exceptional curves are
topologically equivalent. These exceptional curves are given by the following conditions:

(i) the discriminant fails to be Morse: b1 = 0;
(ii) the cubic φ has a repeated root: 2b1 + ε = 0 or b2

2 − 2b1 − ε = 0;
(iii) the polynomials α1, φ have a common root: b1 = 0 if ε = −1, and b1=0 or b2

2 =
(b1 + 1)2 if ε = +1.

Now on the surface M at the zeros of ξ we know that Fx + pFy = 0. Generally this
will be a surface which will cut the surface M transversely. If the three roots of φ = 0 are
distinct the condition for non-transverse intersection is that Fx(0, 0, p) and Fy(0, 0, p) (and
consequently φ(p)) have a common root, that is F = 0 is not smooth. So we deduce the
following:

Proposition 4.4.1. (i) At each zero of ξ we expect three curves: the p-axis, the other
separatrix and the curve corresponding to inflexions. Generically these will have distinct
tangents at the zeros. Projecting back down to the (x, y)-plane we are essentially blowing
down, so there will be 1 or 3 curves of inflexions 2-point tangent to the corresponding
projected separatrices (those distinct from the p-axis). The configuration of these curves
depend on the 2-jet of the coefficients a, b, c of the BDE.

(ii) We can get all possible cases (3 cases when the cubic has 1 root and 18 cases when
it has 3 roots) by varying the coefficients aij , bij , cij.

We now consider the Legendre transformation, which of course generally will not be a
BDE. Taking an affine chart p = dy/dx of the projective line, we obtain an equation of the
form

G = a(P, XP − Y )X2 + 2b(P,XP − Y )X + c(P,XP − Y ).
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(We shall not need to consider the other chart q = dx/dy as no singularity of ξ arises
at the point at infinity.) As any value of p is a solution of the original equation F = 0,
the equation G = 0 should be studied in a neighbourhood of the X-axis; the Legendre
transform has naturally blown-up the original BDE. We observe that the X-axis is an
integral curve of G, that is G(X, 0, 0) = 0.

Theorem 4.4.2. Suppose given a BDE F = 0 of Morse Type 2 with coefficients (a, b, c)
with 1-jet (y, b1x + b2y, εy), and (b1, b2) off the exceptional curves described above. Then,

(i) GP (X, 0, 0) 6= 0 if and only if φ(X) 6= 0. So away from the roots of the cubic φ on
the X-axis, the equation G = 0 can be reduced to an ordinary differential equation.

(ii) At the zeros of φ(X), we generically have GPP (X, 0, 0) 6= 0. Furthermore, G = 0
has a well-folded singularity at these points. The well-folded singularity is of type saddle
(resp. node) if the root of φ is a saddle (resp. node) of the field ξ. The X-axis is a common
separatrix to all the well-folded singularities.

(iii) The inflexion set of G consists of the X-axis (infinitely degenerate inflexions) when
ε = −1, and of the union of the X-axis with two smooth curves intersecting this axis
transversally at two points distinct from the zeros of φ when ε = +1.

(iv) The bending of the cusp curve at (s, 0, 0), with s a zero of φ, is determined by the
sign of b1GPP (s, 0, 0). The bending of the non-flat separatrix at such a point is determined
by the sign of (α1(s)+φ′(s))GPP (s, 0, 0), provided α1(s)+φ′(s) 6= 0. So the relative bending
of the cusp curve and the non-flat separatrix depends only on b1(α1(s) + φ′(s)). We have
α1(s) + φ′(s) = 0 at a root of φ if and only if

(3b1 + 2ε)2 − 4b2
2(b1 + ε) = 0

which gives another exceptional set in the (b1, b2)-plane.
(v) GPP = 0 at s, a zero of φ, if and only if the integral curve through the origin of

F = 0 with a slope s is inflexional. We have

1
2GPP (X, 0, 0) = a22X

4 + (a21 + 2b22)X3 + (a20 + 2b21 + c22)X2

+(2b20 + c21)X + c22,

that is, GPP (X, 0, 0) depends only on the 2-jet of the coefficients of the initial BDE. In
particular, the bending of the cusp curves at two distinct roots of φ depends on the 2-jet of
F , and all possible combinations occur by varying the coefficients aij , bij , cij.

(vi) The partition of the (b1, b2)-plane into the regions where the relative bending of the
cusp curve and the non-flat separatrix at a zero of φ is constant is given in Figure 5.

The proof follows from relatively straightforward calculations.

4.1. Application: Asymptotic lines of surfaces in IR3

The coefficients of the BDE giving the asymptotic lines vanish at flat umbilics. These
points occur generically in 1-parameter families of surfaces. If the surface is given locally
in Monge form z = h(x, y), the origin is a flat umbilic if j2h = 0. Then h = C(x, y) + h.o.t
where C is a cubic in (x, y). In general, this cubic is non degenerate, so by linear changes
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FIG. 5. Partition of the (b1, b2) plane (ε = −1 left, ε = +1 right) by the exceptional curves.

of co-ordinates we may set C(x, y) = 1
6y3± 1

2x2y. We have an elliptic flat umbilic (− case)
if the cubic has 3 roots and a hyperpolic flat umbilic (+ case) if it has 1 root.

The BDE hyydy2 + 2hxydxdy + hxxdx2 = 0 is of Morse Type 2 at a flat umbilic. The
lifted field has 3 saddles at an elliptic umbilic and 1 saddle at a hyperbolic umbilic (see
[6]). The bending of the non-flat separatrix and the cusp curve of the Legendre transform
G is as in Region 1 (Figure 5, left) for the elliptic flat umbilic and Region 18 (Figure 5,
right) for the hypebolic flat umbilic.

We deduce the following from the results in Section 2.1 and Proposition 4.4.1.

Proposition 4.4.3. There are 3 flecnodal curves at an elliptic flat umbilic and 1 at a
hyperbolic flat umbilic. These curves are tangent to the separatrices of the BDE of the
asymptotic lines.

4.2. Application: Sub-parabolic lines of surfaces in IR3

Geodesic inflexions on the lines of curvatures of a smooth surface S ⊂ IR3 are an impor-
tant robust feature of the surface. Let p0 be a point on S which is not an umbilic. The
locus of points where the principal curvature is extremal along the other line of curvature
is called the sub-parabolic line in [12], [24], [22]. It can be characterised, via a computation
of the first and second fundamental forms of the focal set, as the locus of points on the
surface whose image is the parabolic curve on the focal set [17], [11]. However, as in the
case of ridges, the sub-parabolic lines were first and are best described using singularity
theory, and an associated family of maps, the folding maps, [24]. A point is sub-parabolic
if and only if folding the surface along a the normal plane that contains a principal di-
rection induces a map-germ with a singularity of type S≥2. The folding map also reveals
some fascinating geometry of the surface and its focal set at umbilics. At such points all
directions are principal so folding the surface in any normal plane induces a map with a
singularity of type cross-cap or worse. On the projective line IRP 1 of such directions, there
may be 3 or 1 directions where the singularity is of type S2 (resp. B2), i.e. there are 3
or 1 sub-parabolic lines (resp. ridges) through an umbilic [12]. It turns out, and we shall
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deduce this from Proposition 4.4.1 and our analysis of the Legendre transform, that the
configuration of these sub-parabolic lines is closely related to that of the lines of curvature
[12], [22].

A result in [22] characterises the sub-parabolic line as the locus of points where the other
lines of curvature have a geodesic inflexion. Using the results in Section 2.1, Proposition
4.4.1 and Theorem 4.4.2 we deduce the following.

Proposition 4.4.4. (1) The linear part of the inflexion set of the BDE of the lines of
curvature of a smooth surface in IR3 corresponds to the linear part of the sub-parabolic
lines.

(2) There are 3 (at a Star or Monstar) or 1 (at a Lemon) sub-parabolic lines through
a generic umbilic, and these curves are tangent to the corresponding lines of curvatures
through the umbilic point. (Compare [12], [22], [24].)

We observe that the discriminant of the BDE of the lines of curvature consists of the
umbilic points. So the 1-jet of the coefficients of this BDE are of the form (y, b1x+b2y,−y)
at an umbilic point, where b1, b2 depend only on the coefficients of the cubic part of the
function defining the surface in Monge form at the umbilic. All the cases in Figure 5 left
occur for the Legendre transform of this BDE.
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