SMA 5878 Functional Analysis II

Alexandre do Nascimento
Javier Cubas

Departamento de Matemática
Instituto de Ciências Matemáticas e de Computação
Universidade de São Paulo

April 7, 2018
Appendix B

Weakly Compactness
In this lecture we present the proofs of Eberlein-Šmulian and Krein-Šmulian theorems.

Before we begin, remember the very useful result:

Theorem

If K is a convex subset of a Banach space X, then the closure of K in the weak and strong topology coincide.
Compactness in general topological spaces cannot be characterized with sequences as we do in metric spaces. However, in the weak topology is possible to do it as follows:

Theorem (Eberlein-Šmulian)

Let W be a subset of a Banach space X. The following properties are equivalent:

(A) The closure of W in the weak topology is compact in the weak topology.

(B) Every sequence of elements of W has a weakly convergent subsequence in X.

(C) Every sequence of elements of W has a limit point in X.
Lemma (B.1.1)

If X is a separable Banach space, then X^* has a countable total subset $A^* = \{a_n^*: n \in \mathbb{N}\}$ with the property

$$\|x\|_X = \sup_{n \in \mathbb{N}} |\langle x, a_n^* \rangle|_{X^*,X^*}.$$

Proof:
Let $\{a_n\}_\mathbb{N}$ a sequence of unitary vectors which are dense in the unitary sphere of X. For each $n \in \mathbb{N}$, let a_n^* such that

$$\langle a_n, a_n^* \rangle_{X^*,X^*} = \|a_n\|_X = \|a_n^*\|_{X^*} = 1.$$

We show that $A^* = \{a_n^*: n \in \mathbb{N}\}$ is total.
Lemma B.1.1

If $y \in X - \{0\}$, with $a_n^*(y) = 0$ for all $n \in \mathbb{N}$, take $x = y/\|y\|$, then $\|x\|_X = 1$ and $a_n^*(x) = 0$.

Let $\{a_{n_k}\}_{k \in \mathbb{N}}$ a subsequence of $\{a_n\}_{n \in \mathbb{N}}$ such that $a_{n_k} \xrightarrow{k \to \infty} x$, then the sequences

$$\langle a_{n_k}, a_{n_k}^* \rangle x, x^* \text{ and } \langle x, a_{n_k}^* \rangle x, x^*$$

have the same limit when k goes to infinity and they are constant, i.e.,

$$\langle x, a_{n_k}^* \rangle x, x^* = 0 \text{ and } \langle a_{n_k}, a_{n_k}^* \rangle x, x^* = 1,$$

which is a contradiction, q.e.d.
Lemma B.1.1

Now, we prove the second claim. For any $x \in X$ with $\|x\|_X = 1$, there is a subsequence $\{a_{n_k}\}_{k \in \mathbb{N}}$ of $\{a_n\}_{n \in \mathbb{N}}$ such that $a_{n_k} \xrightarrow{k \to \infty} x$ and

$$1 = \|x\|_X = \sup_{\|x^*\|_{X^*} = 1} |\langle x, x^* \rangle_{X, X^*}| \geq \sup_{n \in \mathbb{N}} |\langle x, a_n^* \rangle_{X, X^*}|$$

$$= \lim_{k \to \infty} \sup_{n \in \mathbb{N}} |\langle a_{n_k}, a_n^* \rangle_{X, X^*}| \geq \lim_{k \to \infty} |\langle a_{n_k}, a_{n_k}^* \rangle_{X, X^*}| = 1$$

and consequently, for all $x \in X$,

$$\|x\|_X = \sup_{n \in \mathbb{N}} |\langle x, a_n^* \rangle_{X, X^*}|.$$
Lemma (B.1.2)

Let X be a Banach space over \mathbb{K} such that X^* contains an countable total set. Then a weakly compact subset of X is metrizable.

Proof: Let $A^* = \{ a_n^* : n \in \mathbb{N} \}$ be a total set of X^* with $\| a_n^* \|_{X^*} = 1$ for all $n \in \mathbb{N}$ and define $d : X \times X \to \mathbb{R}^+$ the metric define by $d(x, y) = \sum_{n=0}^{\infty} 2^{-n} | \langle x - y, a_n^* \rangle_{X,X^*} |$. If $W \subset X$ is weakly compact, note that $\langle W, x^* \rangle_{X,X^*}$ is a compact subset of \mathbb{K} and, of the Uniform Boundedness Principle, W is a bounded set of X ($\| W \|_X := \sup_{w \in W} \| w \|_X < \infty$).
Lemma B.1.2

If W_w and W_d denote the set W with weak topology and metric topology of d, respectively, let $I : W_w \to W_d$ the identity operator. If $I : W_w \to W_d$ is continuous then it is homeomorphism (since that W is weakly compact) and the result follows. Lack to prove that $I : W_w \to W_d$ is continuous. Indeed, given $\epsilon > 0$ let $N \in \mathbb{N}$ such that

$$
\sum_{n=N+1}^{\infty} 2^{-n} |\langle x - y, a_n^* \rangle x, x^*| \leq \sum_{n=N+1}^{\infty} 2^{-n} \| W \| x < \frac{\epsilon}{2}
$$

and $V = \{ y \in W : |\langle x - y, a_n^* \rangle x, x^*| < \frac{\epsilon}{2(N+1)}, n = 0, 1, \ldots, N \}$ be a neighborhood of x in W_w such that

$$d(x, y) < \epsilon, \forall y \in V,$$

This concludes the proof. \square
Corollary B.1.1

Corollary (B.1.1)

In the same hypothesis of the Eberlein Smulian ‘s Theorem, we have that (A) implies (B).

Proof:

Let \(\{w_n\}_{n \in \mathbb{N}} \) a sequence in \(W \) and \(Y := \overline{\text{span}}\{w_n : n \in \mathbb{N}\} \).

Since \(Y \) is also closed in the weak topology, see Theorem 1 and the weak topology is Hausdorff, the subset \(W \cap Y \) has compact closure in the weak topology in the Banach space \(Y \).
Corollary B.1.1

Now, Y is separable and by the Lemmas B.1.1 and B.1.2, we have that $\mathcal{W} \cap Y$ with the weak topology is metrizable, and therefore $\{w_n\}_{n \in \mathbb{N}}$ has a weakly convergent subsequence to an element of Y, i.e.,

$$w_{n_k} \rightharpoonup y \in Y, \text{ in } Y,$$

but $X^* \subset Y^*$, then $w_{n_k} \rightharpoonup y \in X$, in the weak topology of X. \qed
Lemma (B.1.3)

(C) ⇒ (A).

Proof:
If every sequence of W has a limit point in X, for a given $x^* \in X^*$ the subset $\langle W, x^* \rangle_{X,X^*}$ of K has the same propriety in K. It follows that $\langle W, x^* \rangle_{X,X^*}$ is a bounded subset of K and by Uniform boundedness Principle W is bounded.
Lemma B.1.3

Let \(J : X \to X^{**} \) be the canonical application.

Since \(J(W) \) is bounded, the closure \(w^*(J(W)) \) of \(J(W) \) in the weak* topology of \(X^{**} \) is compact, Banach-Alaoglu ‘s Theorem.

We claimed its enough to show \(w^*(J(W)) \subseteq J(X) \).

(Then, of course, the case when \(X \) is reflexive is far more easier).
Lemma B.1.3

Let $x^{**} \in w^*(JW)$ and $x_1^* \in X^*$, $\|x_1^*\|_{X^*} = 1$, $w_1 \in W$ with

$$|\langle x_1^*, x^{**} - Jw_1 \rangle_{X^*, X^{**}}| < 1.$$

Before we proceed, let F a finite dimensional subspace of X^{**}. The unitary sphere of F is compact and therefore has a $\frac{1}{4}$-net $\{x_{1}^{**}, \ldots, x_{n}^{**}\}$.

Choose x_p^* on the unitary sphere of X^* such that

$$\langle x_p^*, x^{**} \rangle_{X^*, X^{**}} > \frac{3}{4}, \quad 1 \leq p \leq n.$$

then, for any $x^{**} \in F$ we have that

$$\max\{|\langle x_p^*, x^{**} \rangle_{X^*, X^{**}}| : 1 \leq p \leq n\} \geq \frac{1}{2}\|x^{**}\|_{X^{**}}.$$
Lemma B.1.3

Now choose $x_2^*, \ldots, x_{n_2}^*$ in X^*, $\|x_m^*\|_{X^*} = 1$ and

$$\max\{ |\langle x_m^*, y^{**}\rangle x^*_m, x^{**}| : 2 \leq m \leq n_2 \} \geq \frac{1}{2} \|y^{**}\|_{X^{**}}$$

for all $y^{**} \in \text{span}\{x^{**}, x^{**} - Jw_1\}$. Using again that $x^{**} \in w^*(J(W))$, choose $w_2 \in W$ such that

$$\max\{ |\langle x_m^*, x^{**} - Jw_2\rangle x^*_m, x^{**}| : 1 \leq m \leq n_2 \} < \frac{1}{2}.$$
Lemma B.1.3

Choose \(x_{n_2+1}, \ldots, x_{n_3} \) in the unitary sphere of \(X^* \) such that

\[
\max\{|\langle x_m, y^{**}\rangle x^*, x^{**}| : n_2 < m \leq n_3\} \geq \frac{1}{2}\|y^{**}\| x^{**}
\]

for all \(y^{**} \in \text{span}\{x^{**}, x^{**} - Jw_1, x^{**} - Jw_2\} \) and, using again that \(x^{**} \in \omega^*(J(W)) \) choose \(w_3 \in W \) such that

\[
\max\{|\langle x_m, x^{**} - Jw_3\rangle x^*, x^{**}| : 1 \leq m \leq n_3\} < \frac{1}{3}.
\]

This process can be continued indefinitely. Let \(\{w_n\}_{n \in \mathbb{N}} \) be the sequence resulting from this construction.
By hypothesis, there exist a point $x \in X$ which is a limit point of the sequence $\{w_n\}_{n \in \mathbb{N}}$ in the weak topology of X.

Since $Z = \overline{\text{span}}\{w_n : n \in \mathbb{N}\}$ is weakly closed, $x \in Z$ and take $R^{**} = \text{span}\{x^{**}, x^{**} - Jw_1, x^{**} - Jw_2, \cdots\}$.

We have that, for all $y^{**} \in R^{**}$,

$$\sup_{m \in \mathbb{N}} |\langle x_m^*, y^{**} \rangle x_m^*, x^{**}| \geq \frac{1}{2} \|y^{**}\| x^{**}$$

and therefore, for any point in the closure of R^{**}, in particular for $x^{**} - Jx$.
Lemma B.1.3

Another characteristic of our construction is that

\[
|\langle x^*_m, x^{**} - Jw_n \rangle x^*, x^{**} | < \frac{1}{p}, \quad n > n_p > m.
\]

therefore, for \(n > n_p > m \),

\[
|\langle x^*_m, x^{**} - Jx \rangle x^*, x^{**} | \leq |\langle x^*_m, x^{**} - Jw_n \rangle x^*, x^{**} | + |\langle w_n - x, x^*_m \rangle x, x^* |
\]

Since \(x \) is a limit point of \(\{ w_n \}_{n \in \mathbb{N}} \) in the weak topology, given \(x^*_m \) and an integer \(N > m \) there exist \(w_n \) with \(|\langle w_n - x, x^*_m \rangle x, x^* | < \frac{1}{N} \) e \(n > n_N > m \). For this element we have

\[
|\langle x^*_m, x^{**} - Jx \rangle x^*, x^{**} | \leq |\langle x^*_m, x^{**} - Jw_n \rangle x^*, x^{**} | + |\langle w_n - x, x^*_m \rangle x, x^* | < \frac{2}{N}
\]
Lemma B.1.3

and, consequently $\langle x^*_m, x^{**} - Jx \rangle_{x^*,x^{**}} = 0$ for all m. As seen above

$$\sup_{m \in \mathbb{N}} |\langle x^*_m, x^{**} - Jx \rangle_{x^*,x^{**}}| \geq \frac{1}{2} \|x^{**} - Jx\|_{x^{**}}$$

and therefore $x^{**} = Jx$. This concludes the proof.
Before we begin, we present an important auxiliar result.
Lemma B.2.1

Lemma
Let X be a separable Banach space and $x^{**} \in X^{**}$. Suppose for all $x^* \in X^*$ and sequence $\{x_n^*\}$ in X^* which converges to x^* in the weak* topology; this is, $\langle x, x_n^* \rangle \xrightarrow{n \to \infty} \langle x, x^* \rangle$ for all $x \in X$, we have that $\langle x_n^*, x^{**} \rangle \xrightarrow{n \to \infty} \langle x^*, x^{**} \rangle$. Then $x^{**} = Jx$ for some $x \in X$.

Proof: Let $\{x_j\}_{j \in \mathbb{N}}$ a dense subset of X. Suppose that $x^{**} \notin JX$; this is, that $d(x^{**}, JX) = d > 0$. By the Hahn-Banach Theorem, there exist $x^{***} \in X^{***}$ such that, $\|x^{***}\|_{X^{***}} = 1$, $\langle JX, x^{***} \rangle_{X^*, X^{***}} = 0$ e $\langle x^{**}, x^{***} \rangle_{X^{**}, X^{***}} = d$. Let

$$W_n = \{z^* : |\langle x_i, z^* \rangle_{X, X^*}| < 1 \text{ for } i = 1, \cdots, n\}.$$
By the Goldstine Theorem (JX^* is dense in X^{***} with the weak* topology of X^{***}), given $Jx_1, \ldots, Jx_n, x^{**} \in X^{**}$ and $\epsilon > 0$, there exist $x^* \in X^*$, $\|x^*\|_{X^*} = 1$, such that

$$|\langle x_1, x^* \rangle| = |\langle x_1, x^* \rangle x, x^* - \langle Jx_1, x^{**} \rangle x^{**}, x^{***} | = |\langle Jx_1, Jx^* - x^{***} \rangle x^{**}, x^{***} | < \epsilon,$$

$$|\langle x_n, x^* \rangle| = |\langle x_n, x^* \rangle x, x^* - \langle Jx_1, x^{**} \rangle x^{**}, x^{***} | = |\langle Jx_n, Jx^* - x^{***} \rangle x^{**}, x^{***} | < \epsilon,$$

$$|\langle x^*, x^{**} \rangle x^*, x^{**} - \langle x^{**}, x^{***} \rangle x^{**}, x^{***} | = |\langle x^{**}, Jx^* - x^{***} \rangle x^{**}, x^{***} | < \epsilon.$$
Therefore, there exist a functional
\(x_n^* \in B_{1}^{X^*}(0) \cap \{ z^* \in X^* : |\langle z^*, x^{**} \rangle x^*, x^{**} | \geq d/2 \} \cap W_n \). The sequence \(\{ x_n^* \} \) converges to zero in the weak* topology of \(X^* \) indeed, given \(x \in X \) and \(\varepsilon > 0 \), there exist \(x_j \) with \(\|(x/\varepsilon) - x_j\| < 1 \) and

\[
|\langle x/\varepsilon, x_n^* \rangle x, x^* | \leq |\langle x/\varepsilon - x_j, x_n^* \rangle x, x^* | + |\langle x_j, x_n^* \rangle x, x^* | < 2, \quad \text{for all } n \geq j.
\]

However, \(|\langle x_n^*, x^{**} \rangle x^*, x^{**} | \geq d/2 \) and this gives us a contradiction, this concludes the proof of lemma. \(\square \)

We are now in a position to prove the Krein-Šmulian Theorem.
Using Eberlein Smulian result we the following theorem which is already known in the strong topology.

Theorem (Krein-Šmulian)

If X is a Banach space and $K \subset X$ is weakly compact, then the closed convex hull $\overline{co}K$ of K is weakly compact.
Proof of K-S Theorem

First we reduced our prove to the case that X is separable. From Eberlein Smulian Theorem, its enough to show that every sequence of elements of $\overline{co}K$ has a weakly convergent subsequence.

Since each element of a sequence of $\overline{co}K$ is a convex finite linear combination of elements of K, the sequence will be generate by a sequence S in K.

Let Y be the closure of the subspace generate by S, its enough to show that $\hat{K} = K \cap Y$ is weakly compact (Theorem 1) in Y.

Hence, it’s enough to consider X separable and K weakly compact. Define K_w as the subset K with the weak topology.

Consider $T : X^* \rightarrow C(K_w)$ defined by $Tx^*(k) = x^*(k)$, $k \in K$ and the dual operator of T, $T^* : C(K_w)^* \rightarrow X^{**}$.

Choose any element of $C(K_w)^*$, by the Riesz representation Theorem is a regular measure μ, and let $\{x_n^*\}_{n \in \mathbb{N}}$ a bounded sequence that converges in the weak* topology of X^* to x^*.
Then, by the dominated convergence Theorem,

\[\langle x_n^*, T^* \mu \rangle_{X^*, X^{**}} = \int x_n^*(k) \, d\mu(k) \xrightarrow{n \to \infty} \int x^*(k) \, d\mu(k) = \langle x^*, T^* \mu \rangle_{X^*, X^{**}}. \]

From Lemma B.2.1 we have that \(T^* \mu \in JX. \)

Now, take the unitary disk in \(C(K_w)^* \), which is convex and compact in weak* topology. Then, the range of the disk by \(J^{-1} T^* \) is also convex, weakly compact and contains \(K. \)

This shows that \(\overline{co}(K) \) is weakly compact and finishes the proof.

\[\square \]