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Análise Espectral de Operadores Lineares
Semigrupos e Seus Geradores

Continuidade do espectro

Seja Xε uma faḿılia de espaços de Banach, ε ∈ [0, 1], e suponha
que exista uma faḿılia de operadores lineares limitados
Eε : X → Xε com a propriedade (X := X0)

‖Eεu‖Xε

ε→0−→ ‖u‖X , para todo u ∈ X . (1)
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Exerćıcio

Mostre que existe M ≥ 1 e ε0 > 0 tal que

‖Eε‖L(X ,Xε) ≤ M, ∀ ε ∈ [0, ε0].

Sugestão: Mostre uma versão do Prinćıpio da Limitação Uniforme
que se aplique a esta situação.
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Definição (E-convergência)

Diremos que uma seqüência {uε}ε∈(0,1], com uε ∈ Xε para todo

ε ∈ [0, 1], E−converge para u se ‖uε − Eεu‖Xε

ε→0−→ 0. Escrevemos

uε
E−→ u para dizer que {uε}ε∈[0,1] E-converge para u quando ε

tende a zero.
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Exerćıcio (Unicidade do E-limite)

Mostre que, se uε
E−→ u e uε

E−→ v, então u = v.

Com esta noção de convergência apresentamos a definição de
seqüência E -relativamente compacta.
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Definição (Convergência Compacta)

Uma seqüência {un}n∈N, com un ∈ Xεn e εn → 0, é dita
E-relativamente compacta se, para cada subseqüência {un′} de
{un}, existe uma subseqüência {un′′} de {un′} e um elemento

u ∈ X tal que un′′
E−→ u. A faḿılia {uε}ε∈(0,1] é dita

E-relativamente compacta se cada seqüência {uεn}, εn → 0, é
E -relativamente compacta.
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Definição (EE-convergência)

Diremos que a faḿılia de operadores {Bε ∈ L(Xε)}ε∈[0,1]

EE-converge para B0 quando ε→ 0, se Bεuε
E−→ B0u sempre que

uε
E−→ u ∈ X. Escreveremos Bε

EE−→ B0 para denotar que
{Bε ∈ L(Xε)}ε∈[0,1] EE-converge para B0 quando ε→ 0.
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Definição (CC-convergência)

Diremos que uma faḿılia de operadores compactos
{Bε ∈ K(Xε) : ε ∈ [0, 1]} converge compactamente para B0 se,
para qualquer faḿılia {uε} com uε ∈ Xε, ‖uε‖Xε = 1, ε ∈ (0, 1], a

faḿılia {Bεuε} é E -relativamente compacta e Bε
EE−→B0.

Escreveremos Bε
CC−→B0 para denotar que {Bε∈K(Xε)}ε∈[0,1]

converge compactamente para B0 quando ε→0.
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Exerćıcio

Se Bε
CC−→ B0, εn

n→∞−→ 0 e {uεn} é tal que uεn ∈ Xεn , para todo
n ∈ N e {‖uεn‖Xεn

}n∈N é limitada, mostre que {Bεnuεn} é
E -relativamente compacta.
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Lema (Lema Fundamental)

Seja {Bε ∈ K(Xε)}ε∈[0,1] tal que Bε
CC−→ B0. Então,

i) existe ε0 ∈ (0, 1] tal que supε∈(0,ε0] ‖Bε‖L(Xε) <∞.

ii) se N (I + B0) = {0}, existe ε0 > 0 e M > 0 tal que
N (I + Bε) = {0} para todo ε ∈ [0, ε0] e

‖(I + Bε)
−1‖L(Xε) 6 M, ∀ε ∈ [0, ε0]. (2)
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Em geral, os operadores Bε são inversas de operadores ilimitados Aε.

Assim, suponha que {Aε : D(Aε) ⊂ Xε → Xε, ε ∈ [0, 1]} seja uma
faḿılia de operadores fechados e que, para todo ε ∈ [0, 1],

Aε tenha resolvente compacto, 0 ∈ ρ(Aε) e A−1
ε

CC−→ A−1
0 . (3)
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Lema

Suponha que {Aε : D(Aε) ⊂ Xε → Xε, ε ∈ [0, 1]} satisfaz (3).

Então, para cada λ ∈ ρ(A0), existe ελ > 0 tal que λ ∈ ρ(Aε) para
todo ε ∈ [0, ελ] e existe uma constante Mλ > 0 tal que

‖(λ− Aε)
−1‖ 6 Mλ, ∀ε ∈ [0, ελ]. (4)

Além disso, (λ− Aε)
−1 CC−→ (λ− A0)−1 quando ε→ 0.
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Prova: De (3) e do fato que λ ∈ ρ(A0) é fácil ver que
(λ− A0)−1 = −A−1

0 (I − λA−1
0 )−1.

Como A−1
ε

CC−→ A−1
0 , aplicando o Lema 1 i) e ii), obtemos que o

operador −A−1
ε (I − λA−1

ε )−1 está bem definido e é limitado.

Cálculos simples mostram que −A−1
ε (I − λA−1

ε )−1 = (λ− Aε)
−1.

Logo λ ∈ ρ(Aε) e obtemos (4).
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Para provar a convergência compacta de (λ− Aε)
−1 para

(λ− A0)−1 procedemos da seguinte maneira:

Como A−1
ε converge compactamente para A−1

0 e como
{(I − λA−1

ε )−1 : 0 6 ε 6 ελ} é limitado, conclúımos que

Se ‖uε‖Xε = 1 então (λ− Aε)
−1uε = −A−1

ε wε com
wε = (I − λA−1

ε )−1uε que é uniformemente limitado em ε.
Logo (λ− Aε)

−1uε tem uma subseqüência E -convergente.
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Se uε
E−→ u então A−1

ε uε
E−→ A−1

0 u. Agora, para qualquer
subseqüência de {(λ−Aε)

−1uε} existe uma subseqüência (que
novamente denotamos por {(λ− Aε)

−1uε}) e y ∈ X tal que,

(λ− Aε)
−1uε = −(I − λA−1

ε )−1A−1
ε uε

= −A−1
ε (I − λA−1

ε )−1uε = zε
E−→ y .

Logo,

A−1
0 u

E←− A−1
ε uε = −(I − λA−1

ε )zε
E−→ −(I − λA−1

0 )y

e isto implica que y = (λ− A0)−1u.
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Em particular, y é independente da subseqüência tomada.
Isto implica que a seqüência inteira (λ− Aε)

−1uε E -converge
para y = (λ− A0)−1u quando ε→ 0. Portanto,

(λ− Aε)
−1 EE−→ (λ− A0)−1 quando ε→ 0.

Disto segue que (λ−Aε)
−1 CC−→ (λ−A0)−1 quando ε→ 0 e o

resultado está provado.
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Exerćıcio

Dada uma seqüência {un} com un ∈ Xεn e εn
n→∞−→ 0, se toda

subseqüência de {un} possui uma subseqüência E−convergente
para um vetor u independente da subseqüência tomada, então

un
E−→ u.
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Exerćıcio

Seja εn
n→∞−→ 0 e suponha que Bεn

CC−→ B0 e que λn
n→∞−→ λ0 em C e

mostre que λnBεn
CC−→ λ0B0.

Exerćıcio

Se Xε=X e Eε= IX , ∀ ε∈ [0, 1] e K(X ) 3 Bε
L(X )−→ B0 ∈ K(X ),

então Bε
CC−→ B0. Reciprocamente, se X é reflexivo, Bε

CC−→ B0 e

xn
n→∞
⇀ x ⇒ Bεnxn

n→∞−→ B0x sempre que εn
n→∞−→ 0, então Bε

L(X )−→B0.
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Exerćıcio (∆)

Seja X = L2(0, π), ε ∈ [0, 1], aε : [0, π]→ (0,∞) continuamente
diferenciável para cada ε ∈ [0, 1], D(Aε) = H2(0, π) ∩ H1

0 (0, π) e
defina Aε : D(Aε) ⊂ X → X por

(Aεφ)(x) = −(aε(x)φ′(x))′, x ∈ (0, π).

Mostre que Aε é auto-adjunto e satisfaz 〈Aεφ, φ〉 ≥ αε 2
π2 ‖φ‖2

X

para todo φ ∈ D(Aε), onde αε = min
x∈[0,π]

aε(x). Conclua que

0 ∈ ρ(Aε) e mostre que A−1
ε ∈ K(X ) ε ∈ [0, 1].

Supondo que aε
ε→0−→ a0 uniformemente em [0, π] e que Eε = I para

todo ε ∈ [0, 1], prove que A−1
ε

CC−→ A−1
0 .
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Lema

Suponha que {Aε : D(Aε) ⊂ Xε → Xε, ε ∈ [0, 1]} satisfaça (3). Se
Σ é um subconjunto compacto de ρ(A0), existe εΣ > 0 tal que
Σ ⊂ ρ(Aε) para todo ε 6 εΣ e

sup
ε∈[0,εΣ]

sup
λ∈Σ
‖(λ− Aε)

−1‖L(Xε) <∞. (5)

Além disso, para cada u ∈ X temos que

sup
λ∈Σ
‖(λ− Aε)

−1Eεu − Eε(λ− A0)−1u‖Xε

ε→0−→ 0. (6)
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Prova: Primeiramente mostremos que existe ε̂Σ > 0 tal que
Σ ⊂ ρ(Aε) para todo ε ∈ [0, ε̂Σ).

Se este não fosse o caso, existiriam seqüências εn → 0, λn ∈ Σ
(que podemos supor convergente para um λ ∈ Σ) e uεn ∈ Xεn ,
‖uεn‖ = 1 tais que Aεnuεn − λnuεn = 0 ou, equivalentemente,
λn(Aεn)−1uεn = uεn .

Da convergência compacta {uεn} tem uma subseqüência
E -convergente para u ∈ X , ‖u‖X = 1 e A0u = λu o que está em
contradição com σ(A0) ∩ Σ = ∅.
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Mostremos que existe εΣ ∈ (0, ε̂Σ) tal que (5) vale. Basta provar
que existe εΣ ∈ (0, 1] tal que

{‖(I − λA−1
ε )−1‖L(Xε) : ε ∈ [0, εΣ] e λ ∈ Σ} é limitado.

Se este não fosse o caso, existiria uma seqüência {λn} em Σ (que
podemos supor convergente para um certo λ̃ ∈ Σ) e uma
seqüência {εn} em (0, 1] com εn

n→∞−→ 0 tal que

‖(I − λn(Aεn)−1)−1‖L(Xεn )
n→∞−→ ∞
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Do Lema 1, já que −λn(Aεn)−1 CC−→ −λ̃(A0)−1, obtemos uma
contradição.

Também provaremos (6) por contradição. Suponha que existem
seqüências εn → 0, Σ 3 λn → λ̄ ∈ Σ, u ∈ X e η > 0 tal que

‖(λn − Aεn)−1Eεnu − Eεn(λn − A0)−1u‖Xεn
> η. (7)

Usando a identidade do resolvente, temos que

(λn − Aεn)−1Eεnu − (λ̄− Aεn)−1Eεnu

= (λ̄− λn)(λn − Aεn)−1(λ̄− Aεn)−1Eεnu.

Disto e de (5) segue que
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‖(λn − Aεn)−1Eεnu − (λ̄− Aεn)−1Eεnu‖Xεn

n→∞−→ 0. (8)

Do Lema 2 temos que

‖(λ̄− Aεn)−1Eεnu − Eεn(λ̄− A0)−1u‖Xεn

n→∞−→ 0. (9)

Finalmente, da continuidade do resolvente que

‖(λn − A0)−1u − (λ̄− A0)−1u‖X
n→∞−→ 0. (10)

Agora, (8), (9) e (10) estão em contradição com (7) e o resultado
está provado.
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Para cada δ > 0 e λ0 ∈ C defina Sδ(λ0) := {µ ∈ C : |µ− λ0| = δ}.

A um ponto isolado λ ∈ σ(A0) associamos o seu auto-espaço
generalizado W (λ,A0) = Q(λ,A0)X onde

Q(λ,A0) =
1

2πi

∫
|ξ−λ|=δ

(ξI − A0)−1dξ

e δ é escolhido de forma que não haja nenhum outro ponto de

σ(A0) no disco B
C
δ (λ) = {ξ ∈ C : |ξ − λ| 6 δ}.
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Segue do Lema 3 que existe εSδ(λ) tal que ρ(Aε) ⊃ Sδ(λ) para
todo ε 6 εSδ(λ). Seja W (λ,Aε) := Q(λ,Aε)Xε onde

Q(λ,Aε) =
1

2πi

∫
|ξ−λ|=δ

(ξI − Aε)
−1dξ.
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Exerćıcio

Seja X um espaço de Banach. Se M,N são subespaços de X com
dim(M) > dim(N), mostre que existe u ∈ M, ‖u‖ = 1 tal que
dist(u,N) = 1 (Lemma IV.2.3 em [Kato-Perturbation Theory]).

Exerćıcio

Seja X um espaço de Banach. Mostre que, se P e Q são projeções
e dim(R(P)) > dim(R(Q)), então ‖P − Q‖L(X ) ≥ 1.
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O resultado a seguir diz que o espectro de Aε se aproxima do
espectro de A0 quando ε tende a zero.

Já sabemos que o espectro de Aε ou A0 contém apenas
auto-valores isolados de multiplicidade finita.
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Teorema

Seja {Aε : D(Aε) ⊂ Xε → Xε, ε ∈ [0, 1]} uma faḿılia de operadores
satisfazendo (3). Então, valem as seguintes afirmativas:

(i) Se λ0 ∈ σ(A0), existe seqüência {εn} em (0, 1] com εn
n→∞−→ 0

e seqüência {λn} em C com λn ∈ σ(Aεn), para n = 1, 2, 3 · · · ,
e λn

n→∞−→ λ0.

(ii) Se {εn} é uma seqüência em (0, 1] com εn
n→∞−→ 0, e {λn} é

uma seqüência em C com λn ∈ σ(Aεn), n ∈ N e λn
n→∞−→ λ0,

então λ0 ∈ σ(A0).

(iii) Se λ0 ∈ σ(A0), existe ε1 ∈ (0, 1] tal que
dimW (λ0,Aε) = dimW (λ0,A0) para todo 0 6 ε 6 ε1.
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(iv) Se u ∈W (λ0,A0), então existe uma seqüência {εn} em (0, 1]

com εn
n→∞−→ 0, uεn ∈W (λ0,Aεn) e tal que uεn

E−→ u quando
n→∞.

(v) Se {εn} é uma seqüência em (0, 1] com εn
n→∞−→ 0, e {un} é

uma seqüência com un ∈W (λ0,Aεn), ‖un‖Xεn
= 1, então

{un} tem uma subseqüência E−convergente para um vetor u
em W (λ0,A0).
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Prova:
(i) Seja λ0 ∈ σ(A0) e δ0 > 0 tal que B

C
δ0

(λ0) ∩ σ(A0) = {λ0}.

Segue, de um resultado anterior, que existe ε0 > 0 tal que
{‖(λ− Aε)

−1‖L(Xε) : ε ∈ [0, ε0] e λ ∈ Sδ0(λ0)} é limitado.
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Suponha agora que, existe 0 < δ < δ0 e seqüência εn
n→∞−→ 0 tal

que, Bδ(λ0) ⊂ ρ(Aεn) para todo n ∈ N.

Como Bδ(λ0) 3 λ 7→ (λ− Aεn)−1 ∈ L(Xεn) é anaĺıtica para cada
n ∈ N, da prova de um lema anterior e do Teorema do Máximo
Módulo temos que

‖(I − λ0A
−1
εn )−1‖L(Xεn ) 6 sup

|λ−λ0|=δ

n∈N

‖(I − λA−1
εn )−1‖L(Xεn ) <∞.
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Portanto, se u ∈ X , segue que

‖(λ0A
−1
0 − I )u‖X = lim

n→∞
‖(λ0A

−1
εn − I )Eεnu‖Xεn

> c‖u‖X ,

para algum c > 0 e, consequentemente, λ0 ∈ ρ(A0).

Isto contradiz a escolha de λ0 e prova que, para cada δ > 0,
Bδ(λ0) contém algum ponto de σ(Aε), para todo ε suficientemente
pequeno.
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(ii) Sejam {εn} uma seqüência em (0, 1] com εn
n→∞−→ 0, {λn} uma

seqüência em C com λn ∈ σ(Aεn) tal que λn
n→∞−→ λ e {un} uma

seqüência com un ∈ Xεn , (I − λn(Aεn)−1)un = 0 e ‖un‖ = 1.

Então

‖(I − λ(Aεn)−1)un‖Xεn

= ‖(I − λn(Aεn)−1)un − (λ− λn)(Aεn)−1un‖Xεn

n→∞−→ 0.

Uma vez que ‖un‖Xεn
= 1, tomando subseqüências se necessário,

λ(Aεn)−1un
E−→u e un

E−→u com ‖u‖=1. Portanto u−λA−1
0 u=0,

u 6= 0 e λ ∈ σ(A0).
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(iii) Como (λ− Aε)
−1 EE−→ (λ− A0)−1 uniformemente para

λ ∈ Sδ(λ0) (veja Lema anterior) segue que Qε(λ0)
EE−→ Q(λ0)

quando ε→ 0.

Se v1, · · · , vk é uma base para W (λ0,A0) = Q0(λ0)X , é fácil ver
que, para todo ε suficientemente pequeno,

{Qε(λ0)Eεv1, · · · ,Qε(λ0)Eεvk}

é um conjunto linearmente independente em Qε(λ0)Xε.

Disto segue que dim(Qε(λ0)(Xε)) > dim(Q(λ0)(X )).
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Provamos a igualdade supondo que Qε(λ0)
CC−→ Q(λ0).

Suponha, por redução ao absurdo que, para alguma seqüência
εn

n→∞−→ 0,

dim(Qεn(λ0)(Xεn)) > dim(Q(λ0)(X )).

De um exerćıcio anterior segue que, para cada n ∈ N, existe
un ∈W (λ0,Aεn) com ‖un‖=1 tal que dist(un,EεnW (λ0,A0))=1.
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Da convergência compacta podemos supor que

Qεn(λ0)un = un
E−→ Q0(λ0)u0 = u0

e temos um absurdo, já que

1 6 ‖un − EεnQ0(λ0)u0‖Xεn
= ‖Qεn(λ0)un − EεnQ0(λ0)u0‖Xεn

→ 0.
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Assim precisamos apenas provar a convergência compacta

Qε(λ0)
CC−→ Q(λ0) quando ε→ 0.

Isto segue de Qε(λ0)
EE−→ Q(λ0), da convergência compacta

A−1
ε

CC−→ A−1
0 quando ε→ 0, da limitação uniforme de

‖(ζA−1
ε − I )−1‖ para ζ ∈ Sδ(λ0) e ε ∈ [0, ε0], dada na prova de um

resultado anterior, e da fórmula
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Qε(λ0) =
1

2πi

∫
|ζ−λ0|=δ

(ζI − Aε)
−1dζ

= A−1
ε

1

2πi

∫
|ζ−λ0|=δ

(ζA−1
ε − I )−1dζ.

(iv) Segue tomando uε = Qε(λ0)Eεu.
(v) Segue da convergência compacta de Qε para Q0 provada em
(iii).
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Exerćıcio

No Exerćıcio ∆, mostre que os auto-valores e auto-funções de Aε
convergem para auto-valores e auto-funções de A0. Conclua que a
convergência de auto-funções ocorre na norma de H1(0, π).

Exerćıcio (*)

No Exerćıcio ∆, se λε é um auto-valor de Aε, 0 ≤ ε ≤ ε0 e
λε → λ0 quando ε→ 0, mostre que existe C > 0 tal que

|λε − λ0| ≤ C‖aε − a0‖
1
2∞.
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Semigrupos e Seus Geradores

Neste caṕıtulo apresentamos os fatos básicos da teoria de
semigrupos de operadores lineares e cont́ınuos indispensáveis ao
entendimento das técnicas de solução de EDPs parabólicas e
hiperbólicas semilineares.

Grande parte da exposição estará concentrada na caracterização
dos geradores de semigrupos lineares, uma vez que, nas
aplicações da teoria, em geral, conhecemos a equação diferencial e
não o operador solução.
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Semigrupos

Definição

Um semigrupo de operadores lineares em X é uma faḿılia
{T (t) : t > 0} ⊂ L(X ) tal que

(i) T (0) = IX ,

(ii) T (t + s) = T (t)T (s), para todo t, s > 0.

Se, além disso,

(iii) ‖T (t)− IX‖L(X )
t→0+

−→ 0, diremos que o semigrupo é
uniformemente cont́ınuo

(iv) ‖T (t)x − x‖X
t→0+

−→ 0, para cada x ∈ X, diremos que o
semigrupo é fortemente cont́ınuo.
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O estudo dos semigrupos de operadores lineares está associado ao
estudo de problemas de Cauchy lineares da forma

d

dt
x(t) = Ax(t)

x(0) = x0

(11)

onde A : D(A) ⊂ X → X é linear (em geral ilimitado).

O semigrupo {T (t) : t > 0} é o operador solução de (11); isto é,
dado x0 ∈ X , t 7→ T (t)x0 é a solução (em algum sentido) de (11).
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Para explicar melhor esta observação consideremos primeiramente
o caso A ∈ L(X ). Neste caso, o semigrupo t 7→ T (t) é o operador
solução (no sentido usual) do problema

d

dt
T (t) = AT (t), t > 0,

T (0) = B ∈ L(X ).
(12)

com B = I . Esta solução será denotada por T (t) =: etA.

Vamos mostrar que existe uma única solução para (12) e que as
propriedades de semigrupo estão satisfeitas.

Isto segue do prinćıpio da contração de Banach que enunciamos a
seguir.
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Lema

Seja X um espaço métrico completo e dX :X×X→R+ sua métrica.
Se F :X→X satisfizer dX (F n(x),F n(y))6κ dX (x , y) para algum
inteiro positivo n e κ < 1 (F n é uma contração), então F terá um
único ponto fixo x̄ ∈ X, isto é, um ponto x̄ ∈ X tal que F (x̄) = x̄ .
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Vamos procurar soluções de (12) que sejam funções pertencentes a
K = {U(·) ∈ C ([0, τ ],L(X )) : U(0) = B}, a C 1((0, τ ],L(X )) e
que verifiquem (12). Em K considere a métrica induzida pela
norma

‖U(·)‖C([0,τ ],L(X )) = max
t∈[0,τ ]

‖U(t)‖L(X ).

K é um espaço métrico completo e se F : K → K por

F (U)(t) = B +

∫ t

0
AU(s)ds.

Note que U(·) é uma solução de (12) se, e somente se, é um ponto
fixo de F em K .
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Queremos mostrar que existe um inteiro positivo n tal que F n é
uma contração. De fato:

‖F (U)(t)− F (V )(t)‖ 6
∣∣∣∣∫ t

0
‖AU(s)− AV (s)‖ds

∣∣∣∣
6 |t|‖A‖ sup

t∈[0,τ ]
‖U(t)− V (t)‖

6 τ‖A‖ sup
t∈[0,τ ]

‖U(t)− V (t)‖
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Se, para t ∈ [0, τ ],

‖F n−1U(t)− F n−1V (t)‖ 6 |t|
n−1‖A‖n−1

(n − 1)!
sup

t∈[0,τ ]
‖U(t)− V (t)‖,

deduzimos que

‖F n(U)(t)− F n(V )(t)‖ 6
∣∣∣∣∫ t

0
‖AF n−1U(s)− AF n−1V (s)‖ds

∣∣∣∣
6
|t|n‖A‖n

n!
sup

t∈[0,τ ]
‖U(t)− V (t)‖

6
|τ |n‖A‖n

n!
sup

t∈[0,τ ]
‖U(t)− V (t)‖.
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Como |τ |
n‖A‖n
n!

n→∞−→ 0, existe n0 ∈ N tal que F n0 é uma contração.
Do Prinćıpio da Contração de Banach, F tem um único ponto fixo.

É fácil ver que este ponto fixo é uma função cont́ınuamente
diferenciável e que satisfaz (12).

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Análise Funcional II



Análise Espectral de Operadores Lineares
Semigrupos e Seus Geradores

Soluções fracas e fortes

Como a argumentação acima vale para todo τ ∈ R obtemos que
toda solução de (12) está globalmente definida.

Vamos agora verificar que a propriedade de semigrupo está
satisfeita para a solução T (t) de (12) com B = I .

Note que U(t) = T (t + s) e V (t) = T (t)T (s) são soluções de
(12) satisfazendo U(0) = V (0) = T (s).

Segue da unicidade de soluções que T (t + s) = T (t)T (s).
Portanto, {T (t) : t ∈ R} é um grupo uniformemente cont́ınuo de
operadores lineares limitados.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Análise Funcional II



Análise Espectral de Operadores Lineares
Semigrupos e Seus Geradores

Soluções fracas e fortes

É claro que estaremos interessados em situações mais gerais, já
que em muitas aplicações o operador A não é limitado.

Reciprocamente, dado um semigrupo de operadores lineares
qualquer podemos associá-lo a uma equação differencial, como
explicaremos a seguir.
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Geradores

Definição

Se {T (t), t > 0} ⊂ L(X ) é um semigrupo fortemente cont́ınuo de
operadores lineares, seu gerador infinitesimal é o operador
definido por A : D(A) ⊂ X → X, onde

D(A) =

{
x ∈ X : lim

t→0+

T (t)x − x

t
existe

}
,

Ax = lim
t→0+

T (t)x − x

t
, ∀ x ∈ D(A).
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Exemplo

Seja A ∈ L(X ) e defina eAt :=
∞∑
n=0

Antn

n! . Então {eAt : t ∈ R}

define um grupo uniformemente cont́ınuo com gerador A e
satisfazendo ‖eA t‖ 6 e |t|‖A‖.

A série
∞∑
n=0

Antn

n! converge absolutamente, uniformemente em

subconjuntos compactos de R, visto que ‖An‖ 6 ‖A‖n, portanto

‖eAt‖ 6
∞∑
n=0

∥∥∥∥Antn

n!

∥∥∥∥ 6
∞∑
n=0

(|t| ‖A‖)n

n!
= e |t| ‖A‖, t ∈ R e

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Análise Funcional II



Análise Espectral de Operadores Lineares
Semigrupos e Seus Geradores

Soluções fracas e fortes

∞∑
n=1

∥∥∥∥ Antn−1

(n − 1)!

∥∥∥∥ 6 ‖A‖
∞∑
n=0

(|t| ‖A‖)n

n!
= ‖A‖e |t| ‖A‖, t ∈ R.

Portanto
d

dt
eAt = AeAt , t ∈ R.

Também
‖eAt − I‖ 6 |t|‖A‖e |t|‖A‖ t→0−→ 0

Segue que {T (t) : t ∈ R} é a única solução de ẋ = Ax com
x(0) = I . O resultado agora segue das considerações anteriores.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Análise Funcional II



Análise Espectral de Operadores Lineares
Semigrupos e Seus Geradores

Soluções fracas e fortes

Alguns resultados fundamentais

O resultado a seguir é extremamente útil na obtenção de
propriedades de regularidade de semigrupos.

Lema

Seja φ uma função cont́ınua e diferenciável a direita no intervalo
[a, b). Se D+φ é cont́ınua em [a, b), então φ é continuamente
diferenciável em [a, b).

Prova: Exerćıcio.
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Todo semigrupo fortemente cont́ınuo possui uma limitação
exponencial que é dada no teorema a seguir.

Teorema

Se {T (t), t > 0} ⊂ L(X ) for um semigrupo fortemente cont́ınuo,
existirão M > 1 e β ∈ R tais que

‖T (t)‖L(X ) 6 Meβ t , ∀t > 0.

Fixado `>0, escolhemos β> 1
` log‖T (`)‖L(X ) e determinamos M.
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Prova: Primeiramente note que existe η > 0 tal que

sup
t∈[0,η]

‖T (t)‖L(X ) <∞.

Isto segue do fato que, para cada sequência {tn}n∈N em (0,∞)
com tn

n→∞−→ 0+, {T (tn)x}n∈N é limitada para todo x ∈ X e, do
Prinćıpio da Limitação Uniforme, {‖T (tn)‖L(X )}n∈N é limitada.

Da propriedade de semigrupo, para qualquer ` > 0,

sup
t∈[0,`]

‖T (t)‖L(X ) <∞.
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Escolha ` > 0 e sejam sup{‖T (t)‖L(X ), 0 6 t 6 `}=M,

β > 1
` log{‖T (`)‖L(X )}, ou seja, ‖T (`)‖L(X ) 6 eβ`. Logo

‖T (n`+ t)‖ = ‖T (`)nT (t)‖ 6 ‖T (`)‖n‖T (t)‖ 6 Meβn`

6 Me |β|`eβ(n`+t), 0 6 t 6 `; n = 0, 1, 2, · · ·

e a afirmativa segue.
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O teorema a seguir caracteriza completamente os semigrupos
uniformemente cont́ınuos de operadores através de seus geradores.

Teorema

Dado um semigrupo fortemente cont́ınuo {T (t), t > 0} ⊂ L(X ),
as seguintes afirmativas são equivalentes:

(a) O semigrupo é uniformemente cont́ınuo,

(b) O seu gerador infinitesimal está definido em todo X ,

(c) Para algum A em L(X ), T (t) = et A.
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Prova: Se T (t) = et A para algum A ∈ L(X ) as demais
afirmativas foram provadas no Exemplo 1.

Se o gerador infinitesimal de {T (t) : t > 0} está globalmente

definido, então
{∥∥∥T (t)x−x

t

∥∥∥
X

}
06t61

é limitado para cada x e pelo

Prinćıpio da Limitação Uniforme temos que

{∥∥∥T (t)−I
t

∥∥∥
L(X )

}
06t61

é limitado e portanto T (t)→ I quando t → 0+.

Resta mostrar que, se T (t)
t→0+

−→ I em L(X ), existe A ∈ L(X ) com
T (t) = eAt .
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Assumindo que T (t)→ I quando t → 0+, existe δ > 0 tal que
‖T (t)− I‖L(X ) 6 1/2, 0 6 t 6 δ. Ainda, para t > 0,

‖T (t + h)− T (t)‖L(X ) = ‖(T (h)− I )T (t)‖L(X ) → 0,

‖T (t)− T (t − h)‖L(X ) = ‖(T (h)− I )T (t − h)‖L(X ) → 0

quando h→ 0+, já que ‖T (t)‖L(X ) é limitada em intervalos
limitados de [0,∞].
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Portanto t → T (t) : R+ → L(X ) é cont́ınua e a integral∫ t

0
T (s)ds está bem definida. Além disso,

∥∥∥∥1

δ

∫ δ

0
T (s)ds − I

∥∥∥∥
L(X )

6 1/2

e portanto

(∫ δ

0
T (s)ds

)−1

∈ L(X ). Defina

A = (T (δ)− I )

(∫ δ

0
T (s)ds

)−1

.
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Para cada h > 0,

h−1(T (h)−I )
∫ δ

0
T (s)ds = h−1

{∫ δ+h

h
T (s)ds −

∫ δ

0
T (s)ds

}
= h−1

∫ δ+h

δ
T (s)ds − h−1

∫ h

0
T (s)ds

h→0+

−→ T (δ)− I .

Logo

T (h)− I

h
h→0+

−→ A e

T (t+h)−T (t)

h
=T (t)

T (h)−I
h

=
T (h)−I

h
T (t)

h→0+

−→ T (t)A=AT (t).
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Portanto t → T (t) tem uma derivada a direita

d+

dt
T (t) = T (t)A = AT (t)

que é cont́ınua para t > 0.

Segue do Lema 5 que t 7→ T (t) é continuamente diferenciável e,
da unicidade de soluções para o problema ẋ = Ax , com x(0) = I ,
que T (t) = eAt , t > 0.
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Em vista desse teorema a teoria de semigrupos concentra-se no
estudo dos semigrupos fortemente cont́ınuos e seus geradores.

O resultado a seguir coleta alguns fatos importantes sobre
semigrupos fortemente cont́ınuos que serão utilizados com
freqüência no restante do caṕıtulo.
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Teorema

Seja {T (t)} um semigrupo fortemente cont́ınuo. Então,

1 Para qualquer x ∈ X, t → T (t)x é cont́ınua para t > 0.

2 t → ‖T (t)‖L(X ) é semicont́ınua inferiormente e portanto
mensurável.

3 Se A é o gerador de T (t); então, A é densamente definido e
fechado. Para x ∈ D(A), t 7→ T (t)x é cont. diferenciável e

d

dt
T (t)x = AT (t)x = T (t)Ax , t > 0.

4
⋂

m>1 D(Am) é denso em X.

5 Para Reλ > β, λ ∈ ρ(A) e

(λ− A)−1x =

∫ ∞
0

e−λtT (t)xdt, ∀x ∈ X
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Proof: 1. A continuidade de t 7→ T (t)x é uma consequência da
limitação exponencial de ‖T (t)‖ e, para t > 0 e x ∈ X ,

‖T (t + h)x − T (t)x‖X = ‖(T (h)− I )T (t)x‖X
h→0+

−→ 0,

‖T (t)x − T (t − h)x‖X ≤ ‖T (t − h)‖L(X )‖T (h)x − x‖X
h→0+

−→ 0.
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2. Mostremos que {t ≥ 0 : ‖T (t)‖L(X ) > b} é aberto em [0,∞)
para cada b. Isto implicará o resultado.

Como ‖T (t0)‖L(X ) > b, existe x ∈ X , ‖x‖X = 1 tal que
‖T (t0)x‖ > b.

Segue de 1. que ‖T (t)x‖ > b para todo t suficientemente próximo
a t0, logo ‖T (t)‖L(X ) > b para t em uma vizinhança de t0 e o
resultado segue.
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3. Seja x ∈ X e, para ε > 0, xε = 1
ε

∫ ε

0
T (t)x dt. Então xε

ε→0+

−→ x

e, para h > 0,

h−1(T (h)xε − xε) =
1

εh

{∫ ε+h

ε
T (t)x dt −

∫ h

0
T (t)x dt

}
h→0+

−→ 1

ε
(T (ε)x − x).
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Logo xε ∈ D(A). Seguirá diretamente de 5. que A é fechado pois
(λ− A)−1 ∈ L(X ).

Se x ∈ D(A) é claro que

d+

dt
T (t)x = lim

h→0+

1

h
{T (t + h)x − T (t)x} = AT (t)x = T (t)Ax

é cont́ınua e qualquer função com derivada a direita cont́ınua é
continuamente diferenciável.
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4. Seja φ : R→ R em C∞(R) com φ(t) = 0 em uma vizinhança
de t = 0 e para todo t sufficientemente grande, seja x ∈ X e

f =

∫ ∞
0
φ(t)T (t)x dt.

Segue facilmente de

h−1(T (h)f − f ) = h−1

∫ ∞
h

(φ(t − h)− φ(t))T (t)x dt

que f ∈ D(A) e que Af = −
∫ ∞

0
φ′(t)T (t)x dt.
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Como −φ′ satisfaz as mesmas condições que φ,

Amf = (−1)m
∫ ∞

0
φ(m)(t)T (t)x dt

para todo m ≥ 1 e f ∈ ∩m≥1D(Am).
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Para mostrar que ∩m≥1D(Am) é denso em X , escolha φ como

acima e também satisfazendo que

∫ ∞
0
φ(t)dt = 1. Assim, se

fn =

∫ ∞
0

nφ(nt)T (t)xdt =

∫ ∞
0
φ(s)T (s/n)xds, n = 1, 2, 3, · · · ,

temos que fn ∈ ∩m≥1D(Am) e fn → x quando n→∞.
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5. Recorde que ‖T (t)‖L(X )6Meβt. Defina R(λ)∈L(X ) por

R(λ)x =

∫ ∞
0

e−λtT (t)xdt, Reλ > β,

e note que ‖R(λ)‖L(X )6
M

Reλ−β .
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Seja x ∈ X e h > 0

h−1(T (h)− I )R(λ)x = R(λ)
T (h)x − x

h

= h−1

[∫ ∞
h

e−λt+λhT (t)x dt −
∫ ∞

0
e−λtT (t)x dt

]
= h−1

[
−
∫ h

0
eλ(h−t)T (t)x dt +

∫ ∞
0

(eλh − 1)e−λtT (t)x dt

]
h→0+

−→ −x + λR(λ)x .

(13)
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Portanto R(λ)x ∈ D(A) e (λ−A)R(λ)x = x , e λ−A é sobrejetor.
Também, se x ∈ D(A) então, R(λ)Ax = λR(λ)x − x = AR(λ)x .

Segue que (λ−A)R(λ)x = x = R(λ)(λ−A)x para todo x ∈ D(A)
e λ− A é também um-a-um. Logo (λ− A) é uma bijeção de D(A)
sobre X com inversa limitada R(λ) e a prova está completa.
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Teorema

Sejam {T (t), t > 0} e {S(t), t > 0} semigrupos fortemente
cont́ınuos com geradores infinitesimais A e B repectivamente. Se
A = B então T (t) = S(t), t > 0.
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Prova: Seja x ∈ D(A) = D(B). Do Teorema 4 segue facilmente
que a função s 7→ T (t − s)S(s)x é diferenciável e que

d

ds
T (t − s)S(s)x = −AT (t − s)S(s)x + T (t − s)BS(s)x

= −T (t − s)AS(s)x + T (t − s)BS(s)x = 0.

Portanto s 7→ T (t − s)S(s)x é constante e em particular seus
valores em s = 0 e s = t são os mesmos, isto é T (t)x = S(t)x .

Isto vale para todo x ∈ D(A) e como D(A) é denso em X e S(t),
T (t) são limitados, T (t)x = S(t)x para todo x ∈ X .
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Soluções fracas e fortes

Se o semigrupo {T (t) : t > 0} for fortemente cont́ınuo,
A : D(A) ⊂ X → X o seu gerador e x0 ∈ D(A) então,
R+3 t 7→x(t) :=T (t)x0∈X será continuamente diferenciável e

ẋ(t) = Ax(t), t > 0,

x(0) = x0.
(14)

No caso em que x0 ∈ X não pertence a D(A), também podemos
dar sentido para x(·) como solução de (14). A seguir definimos
soluções fracas e fortes.
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Definição

a) Uma função x ∈ C ([0,∞),X ) ∩ C 1(0,∞),X ) é dita uma
solução forte de (14) se x(t) ∈ D(A), ∀ t > 0 e (14) vale.

b) Uma solução fraca de (14) é uma função x ∈C ([0,∞),X )
tal que x(0)=x0, para todo x∗∈D(A∗),
[0,∞)3 t 7→〈x(t), x∗〉∈K é diferenciável e

d

dt
〈x(t), x∗〉 = 〈x(t),A∗x∗〉, t > 0. (15)
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O teorema a seguir caracteriza as soluções fracas e fortes de (14).

Teorema

1 Uma solução forte de (14) é também uma solução fraca.

2 Uma função x : [0,∞)→ X é solução fraca de (14) se, e
somente se,

x(t) = T (t)x0, t > 0. (16)

Em particular, existe uma única solução fraca de (14) e, se
x0 ∈ D(A), a solução fraca de (14) é também uma solução
forte.
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Prova: 1. e a última parte de 2. são triviais.

Vamos provar 2. provando que a função dada por (16) é uma
solução fraca de (14) e que soluções fracas são únicas.

Defina x : [0,∞)→ X por (16) e seja x∗ ∈ D(A∗). Para qualquer
x0 ∈ D(A) t 7→ 〈T (t)x0, x

∗〉 é diferenciável com derivada
〈T (t)x0,A

∗x∗〉 e

〈T (t)x0, x
∗〉 − 〈x0, x

∗〉 =

∫ t

0
〈T (s)x0,A

∗x∗〉ds.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Análise Funcional II



Análise Espectral de Operadores Lineares
Semigrupos e Seus Geradores

Soluções fracas e fortes

Por continuidade a expressão acima vale para todo x0 ∈ X .
Consequentemente, t 7→ 〈T (t)x0, x

∗〉 é diferenciável com derivada
〈T (t)x0,A

∗x∗〉 para todo x0 ∈ X e x(·) é uma solução fraca de
(14).
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A diferença de duas soluções fracas de (14) é uma função cont́ınua

u : [0,∞)→ X que satisfaz d
dt 〈u(t), x∗〉 = 〈u(t),A∗x∗〉 para todo

t > 0, u(0) = 0 e para todo x∗ ∈ D(A∗).

Se U(t) =

∫ t

0
u(s)ds então,

〈u(t), x∗〉 =

∫ t

0
〈u(s),A∗x∗〉ds

ou

〈 d
dt

U(t), x∗〉 = 〈U(t),A∗x∗〉.
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Note que (T (t))∗D(A∗) ⊂ D(A∗) para t > 0, pois

〈Ax , (T (t))∗x∗〉 = 〈T (t)x ,A∗x∗〉 para x∗ ∈ D(A∗), x ∈ D(A).

Logo, para qualquer t∗ > 0

〈T (t∗ − t)
d

dt
U(t), x∗〉 = 〈T (t∗ − t)U(t),A∗x∗〉

e d
dt 〈T (t∗ − t)U(t), x∗〉 = 0 para 0 6 t 6 t∗, onde utilizamos que

t 7→ T (t)u0 é uma solução fraca.

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Análise Funcional II



Análise Espectral de Operadores Lineares
Semigrupos e Seus Geradores

Soluções fracas e fortes

Como U(0) = 0, 〈U(t∗), x∗〉 = 0, para todo x∗ ∈ D(A∗), portanto
(do fato que D(A∗) é total - Exerćıcio) U(t∗) = 0 e u(s) = 0 para
0 6 s <∞.
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Exerćıcio

Seja A : D(A) ⊂ X → X um operador fechado, densamente
definido e com 1 ∈ ρ(A). Defina em D(A) a norma
‖x‖1 = ‖x‖X + ‖Ax ||X . Mostre que

1 D(A2)
X

= X

2 Y := (D(A), ‖ · ‖1) é um espaço de Banach.

3 D(A2)
Y

= Y (Sugestão: tome D(A) 3 fn → Ax ∈ X,
xn = (I − A)−1(x − fn) e mostre que xn → x e Axn → Ax).
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