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AL DE OPERADORES LI

CONTINUIDADE DO ESPECTRO

Seja X. uma familia de espagos de Banach, € € [0,1], e suponha
que exista uma familia de operadores lineares limitados
E. : X — X. com a propriedade (X := Xp)

IE.ulx. =3 ||lullx, para todo u € X. (1)
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ANALISE ESPECTRAL DE OPERADORES LINEARES

CONTINUIDADE DO ESPECTRO

Mostre que existe M > 1 e eg > 0 tal que
Ecllzix,x) <M, Yee|0,e].

Sugestao: Mostre uma versdo do Principio da Limitagdo Uniforme
que se aplique a esta situacao.

v
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ANALISE ESPECTRAL DE OPERADORES LINEARES o S
CONTINUIDADE DO ESPECTRO

Defini¢do (E-convergéncia)

Diremos que uma seqiiéncia {uc}cc(0,1], com ue € X para todo
—0
€ € [0,1], E—converge para u se ||u. — E.u||x. = 0. Escrevemos

E .
Ue — u para dizer que {uc}.c[o,1] E-converge para u quando €
tende a zero.
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RAL DE OPERADORES LID . _ . _
CONTINUIDADE DO ESPECTRO

Exercicio (Unicidade do E-limite)

E E -
Mostre que, se uc —» u e uc — v, entdo u = v.

Com esta nogdo de convergéncia apresentamos a definicdo de
sequéncia E-relativamente compacta.
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CONTINUIDADE DO ESPECTRO

Definigdo (Convergéncia Compacta)

Uma seqtiéncia {up}nen, com up € X, e e, — 0, € dita
E-relativamente compacta se, para cada subseqtiéncia {u,} de
{un}, existe uma subseqiiéncia {u,} de {uy} e um elemento
u € X tal que uyr —= u. A familia {Ue}ee(o € dita
E-relativamente compacta se cada seqiiéncia {u,}, e, — 0, é
E -relativamente compacta.
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Definicdo (EE-convergéncia)

Diremos que a familia de operadores { B, € L(Xc)}cc[o,1]

EE -converge para By quando ¢ — 0, se B.u, £, Bou sempre que

Ue i> u € X. Escreveremos B, E> By para denotar que
{Be € L(Xc)}eelo,1] EE-converge para By quando € — 0.
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CONTINUIDADE DO ESPECTRO

Definigdo (CC-convergéncia)

Diremos que uma familia de operadores compactos
{B. € K(X.) : € € [0,1]} converge compactamente para By se,
para qualquer familia {uc} com u. € X, ||ue||x. =1, e € (0,1], a

L. . . EE
familia {Bcuc} € E-relativamente compacta e B.— By.

Escreveremos B, <5 Bo para denotar que {Be € K(Xc)}eelo,1]
converge compactamente para By quando € — 0.
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CONTINUIDADE DO ESPECTRO

cc ,
Se B = By, €, =30 e {u,,} é tal que u,, € X.,, para todo
n €N e {||ue,lx., }nen € limitada, mostre que { B, uc,} €
E-relativamente compacta.
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ANALISE ESPECTRAL DE OPERADORES LINEARES

CONTINUIDADE DO ESPECTRO

Lema (Lema Fundamental)

Seja {B. € ’C(Xe)}ee[o,u tal que B, < By. Entéo,
i) existe €g € (0,1] tal que SUPe(0,¢0] HB€HC(X6) < 00.

i) se N(I + By) = {0}, existe ¢ >0 e M > 0 tal que
N(I + B.) = {0} para todo € € [0, €] e

I/ + B) ey <M, Ve €0, (2)
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CONTINUIDADE DO ESPECTRO

Em geral, os operadores B, sdo inversas de operadores ilimitados A..

Assim, suponha que {A¢ : D(A¢) C Xc — X., € € [0,1]} seja uma

familia de operadores fechados e que, para todo € € [0, 1],

A. tenha resolvente compacto, 0 € p(A.) e A1 < At
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Suponha que {Ac : D(A¢) C Xe — Xe, € €[0,1]} satisfaz (3).

Entdo, para cada A € p(Ap), existe ey > 0 tal que \ € p(A¢) para
todo € € [0, €,] e existe uma constante My > 0 tal que

(A= A)7Y < My, Vee[0,e] (4)

e)”
Além disso, (A — A)~t <5 (A — Ag)~! quando ¢ — 0.
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CONTINUIDADE DO ESPECTRO

Prova: De (3) e do fato que X\ € p(Ap) é facil ver que
(A= Ag)t = A (1 — ML

Como A-! < Ayt, aplicando o Lema 1 i) e ii), obtemos que o
operador —A-1(/ — AAZ1)~! estd bem definido e é limitado.

Célculos simples mostram que —A-(/ — ML)t = (A - A)~L.
Logo A € p(A¢) e obtemos (4).
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CONTINUIDADE DO ESPECTRO

Para provar a convergéncia compacta de (A — Ae)*1 para
(A — Ag)~! procedemos da seguinte maneira:

Como A-! converge compactamente para Aal e como
{(1 = MAZH71:0 < e < ey} é limitado, concluimos que
o Se |lu|x. =1 entdo (A — A)tu. = —A-lw, com
we = (I — MZ1)7Lu, que é uniformemente limitado em e.
Logo (A — Ac)"lu. tem uma subseqiiéncia E-convergente.
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CONTINUIDADE DO ESPECTRO

@ Se u, £, uentio Aty N Aglu. Agora, para qualquer
subseqiiéncia de {(A — A.)"lu.} existe uma subseqiiéncia (que
novamente denotamos por {(A — A)"tu}) e y € X tal que,

A= A)tue=—(1 = MATH A,
=AY MY =z Sy
e Logo,

Astu B ANy = —(1 = MYz 55 —(1 = MGy

e isto implica que y = (A — Ag) 1u.
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@ Em particular, y é independente da subseqijéncia tomada.
Isto implica que a sequenC|a inteira (A — A.)"tu. E-converge
para y = (A — Ag)lu quando € — 0. Portanto,

(A — At E5 (A — Ag)~! quando ¢ — 0.

o Disto segue que (A — A.)~! <5

resultado esta provado.[]

—= (A —Ap) !t quandoe —~0eo
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oA . n—oo
Dada uma seqiiéncia {u,} com u, € X., e e, — 0, se toda
subseqtiéncia de {un} possui uma subseqiiéncia E—convergente
para um vetor u independente da subseqiiéncia tomada, entdo

E
U, — u.
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CONTINUIDADE DO ESPECTRO

Seja €, X0 e suponha que B, SN By e que A\, X NgemC e

mostre que A\, B, E) o Bo.

Se X.=X e E.=lx, ¥ e€[0,1] e K(X) 3 B. “X) By € K(X),
entdo B, E) By. Reciprocamente, se X € reflexivo, B, E) By e

— — — ~ L(X
5 "% = Be, xn 3 Box sempre que €, "—°>°0, entdo B, (—>) Bo.
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CONTINUIDADE DO ESPECTRO

Exercicio (A)

Seja X = L?(0,7), € € [0,1], ac : [0,7] — (0, 00) continuamente
diferencidvel para cada € € [0,1], D(Ac) = H?(0,7) N H3(0,7) e
defina Ac : D(A¢) C X — X por

(Acp)(x) = —(ac(x)¢'(x)),  x € (0, m).
Mostre que A. € auto-adjunto e satisfaz (Acp, ) > a. % loll%

para todo ¢ € D(A.), onde ae = nEin ]ae(x). Conclua que

x€[0,m

0 € p(A.) e mostre que A1 € K(X) e € [0,1].

Supondo que a, =9 ap uniformemente em [0, 7] e que E. = | para

todo € € [0,1], prove que AZ! « At
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Suponha que {A. : D(A¢) C X. — X, € € [0,1]} satisfaca (3). Se
Y. é um subconjunto compacto de p(Ap), existe ex > 0 tal que
Y C p(Ac) para todo e < ey e

sup sup [[(A — A)) Yl gx,) < oo ()
e€l0,es] AEX

Além disso, para cada u € X temos que

sup [|[(A — Ad) " Ecu— E. (A — Ag) Lullx. =2 0. (6)
AEX
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CONTINUIDADE DO ESPECTRO

Prova: Primeiramente mostremos que existe €z > 0 tal que
Y C p(A¢) para todo € € [0, €x).

Se este ndo fosse o caso, existiriam seqliéncias ¢, — 0, A\, € &
(que podemos supor convergente para um A € X) e u, € X,
llue, || = 1 tais que Ac, ue, — Ante, = 0 ou, equivalentemente,
An(Ae) e, = U,

Da convergéncia compacta {u,} tem uma subseqiiéncia

E-convergente para u € X, ||ul[x =1 e Agu = Au o que estd em
contradi¢do com o(Ag) NE = 0.
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CONTINUIDADE DO ESPECTRO

Mostremos que existe ex € (0, éx) tal que (5) vale. Basta provar
que existe ey € (0, 1] tal que

{0 =AM Higx) t € €10,e5] e A € T} € limitado.

Se este n3o fosse o caso, existiria uma seqiiéncia {\,} em ¥ (que
podemos supor convergente para um certo A € ¥) e uma

N . n—oo
sequéncia {e,} em (0,1] com €, — 0 tal que

n—oo

17 = An(Ae) ™) Hleex,) = 00
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Do Lema 1, ja que —\,(A.,)? < —~X(Ao)~ !, obtemos uma
contradigdo.

Também provaremos (6) por contradi¢do. Suponha que existem
sequéncias ¢, - 0, X2 A\, > A€ X, ue Xen>0tal que

l(An — Aen)_lEenU — Ec,(An— AO)_1U||Xen 2 1. (7)

Usando a identidade do resolvente, temos que

A —A) YELu—(N—A) E u
=A== AT A= AL)TLE U

Disto e de (5) segue que
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[(An = Aen)_lEenU -(A - Aen)_lEenUHXe,, —=30. (8)

Do Lema 2 temos que
I3 = A By — E (A= A0) Mullx, =F 0. (9)
Finalmente, da continuidade do resolvente que
1(An = Ao)Hu = (X = Ao) Hullx = 0. (10)

Agora, (8), (9) e (10) estdo em contradigdo com (7) e o resultado
estd provado. []
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Para cada 6 > 0 e Ao € C defina S5(\o) :={p € C: |u— Xo| =6}

A um ponto isolado A\ € o(Ap) associamos o seu auto-espago
generalizado W(A, Ag) = Q(A, Ap)X onde
S a0t
— A
2mi Jea=s

e ¢ é escolhido de forma que n3o haja nenhum outro ponto de
(Ao) no disco By (\) = {¢ € C: |¢ — \| < 6}

Q(A, Ag) =
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Segue do Lema 3 que existe eg;(y tal que p(Ac) D Ss(\) para
todo € < €5,(n)- Seja W(A, A) := Q(A, Ac)Xc onde

QA = - / (€1 — A)Nde.
j-X=

~ 2mi
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Seja X um espago de Banach. Se M, N sio subespagos de X com
dim(M) > dim(N), mostre que existe u € M, ||u|| = 1 tal que
dist(u, N) = 1 (Lemma IV.2.3 em [Kato-Perturbation Theory]).

Seja X um espago de Banach. Mostre que, se P e Q sdo projecées
e dim(R(P)) > dim(R(Q)), entdo [|P — Q| z(x) = 1.
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CONTINUIDADE DO ESPECTRO

O resultado a seguir diz que o espectro de A, se aproxima do
espectro de Ag quando € tende a zero.

Ja sabemos que o espectro de A, ou Ag contém apenas
auto-valores isolados de multiplicidade finita.
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Teorema

Seja {Ac : D(Ac) C Xe = X., € € [0,1]} uma familia de operadores
satisfazendo (3). Entdo, valem as seguintes afirmativas:

(i) Se Ao € 0(Ao), existe seqiiéncia {e,} em (0,1] com €, =3 0
e seqiiéncia {\,} em C com X\, € o(A.,), paran=1,2,3---,
e A =3 No.

(ii) Se {en} é uma seqiiéncia em (0,1] com e, =3 0, e {\,} €

uma seqiiéncia em C com A\, € 0(Ae,), n€ N e )\, =2 No,

entdo \g € o(Ap).
(i) Se Ao € o(Ap), existe e; € (0,1] tal que
dimW (Ao, Ac) = dimW (Ao, Ag) para todo 0 < € < €;.
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(iv) Se ue W(Xo,Ao), entdo existe uma seqiiéncia {e,} em (0, 1]
com e, =30, u., € W(o, Ac,) e tal que u,, Ly quando
n— oo.

(v) Se {en} é uma seqiiéncia em (0,1] com e, —% 0, e {u,} é
uma seqiiéncia com u, € W(Xo, Ae,), ||unllx., =1, entdo
{un} tem uma subseqiiéncia E—convergente para um vetor u
em W()\o, Ao).
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Prova: e
(i) Seja Ao € 0(Ao) e do > 0 tal que By (Mo) Na(Ao) = { Mo}

Segue, de um resultado anterior, que existe ¢y > 0 tal que
{II(A = A) Hlzx.) s € €10,€0] e A € S5p(ho)} € limitado.
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CONTINUIDADE DO ESPECTRO

Suponha agora que, existe 0 < § < &g e seqiiéncia €, —= 0 tal

que, Bs(Xo) C p(A,) para todo n € N.

Como Bs(Mo) 2 A= (A — A.,) "t € L(X,,) é analitica para cada
n € N, da prova de um lema anterior e do Teorema do Maximo
Maédulo temos que

(7 = 20AH) Hlgx.,) < Jsup li= M Hleex.,) < oo
A—Agl=5
neN
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Portanto, se u € X, segue que

[(hoAs™ ~ Nullx = lim [[(AoAz! — NE,ullx,, > cllullx.
para algum ¢ > 0 e, consequentemente, A\g € p(Ap).
Isto contradiz a escolha de \g e prova que, para cada ¢ > 0,

Bs(Xo) contém algum ponto de o(A,), para todo ¢ suficientemente
pequeno.
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(if) Sejam {e,} uma seqiiéncia em (0,1] com €, =3 0, {\,} uma

seqiiéncia em C com \, € o(A,,) tal que A, =3 X e {u,} uma
seqiiéncia com u, € X, (I — M(Ae,) Dun =0e |un]| = 1.

Entao

10 = MAG) o,
= 0 = AnAc) ™t — (A = An)(Ac)tnllx,, 0.

Uma vez que ||uy||x., = 1, tomando subseqiiéncias se necessario,

)\(Aen)*luniw e Up—= u com |ul|=1. Portanto u—\A;'u=0,
u#0e\eo(A).
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(iii) Como (A — A.)~1 LN (A — Ag)~! uniformemente para
A € S5(M\o) (veja Lema anterior) segue que Qc( o) RN QR(Xo)
quando ¢ — 0.

Se vq, -+, vk é uma base para W(Ao, Ao) = Qo(Xo)X, é facil ver
que, para todo € suficientemente pequeno,

{Qe(AO)EEV].’ Y Qe()\O)E€Vk}

é um conjunto linearmente independente em Q.(Ao)X-.

Disto segue que dim(Qc(Ao)(Xc)) = dim(Q(Xo)(X)).
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Provamos a igualdade supondo que Qe()\o) Q(Xo)-

Suponha, por redu¢do ao absurdo que, para alguma seqiiéncia
n—oo

€, — 0,

dim(Qc, (A0)(Xc,)) > dim(Q(Ao)(X))-

De um exercicio anterior segue que, para cada n € N, existe
un € W(Xo, Ae,) com ||un||=1 tal que dist(up, E, W(\o, Ao))=
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Da convergéncia compacta podemos supor que

E
Qe,(Ao)up = up — Qo(No)uo = uo
e temos um absurdo, ja que

1 < [lup — Ec, Qo(Mo)uollx., = [ Qe,(Mo)tn — Ee, Qo(No)uol|x., — O.
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Assim precisamos apenas provar a convergéncia compacta
Qc(No) <5 Q(Xo) quando € — 0.

Isto segue de QE()\O) Q()\o) da convergéncia compacta

Al << Ay quando € — 0, da limitagdo uniforme de
I(CAZY — 1)71| para ¢ € S5(\o) e € € [0, €], dada na prova de um
resultado anterior, e da férmula
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Q.(Mo) = — (¢l — A)~Nd¢

2mi [¢—Xo|=0
Gl

: CA-Y — )7Ldc.
277 gt :

(iv) Segue tomando u. = Qc(Ao)Ecu.
(v) Segue da convergéncia compacta de Q. para Qp provada em

(i) ]
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No Exercicio A, mostre que os auto-valores e auto-funcoes de Ac
convergem para auto-valores e auto-fungdes de Ag. Conclua que a
convergéncia de auto-fungées ocorre na norma de H(0, 7).

No Exercicio A, se A\ é um auto-valor de A., 0 < e < ¢y e
Ae = Ao quando € — 0, mostre que existe C > 0 tal que

1
[Ae — No| < Cllae — ao|%-
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y T \ y ~ SOLUGOES FRACAS E FORTES
SEMIGRUPOS E SEUS GERADORES .

SEMIGRUPOS E SEUS GERADORES

Neste capitulo apresentamos os fatos basicos da teoria de
semigrupos de operadores lineares e continuos indispensdveis ao
entendimento das técnicas de solugdo de EDPs parabdlicas e
hiperbdlicas semilineares.

Grande parte da exposicdo estard concentrada na caracterizacao
dos geradores de semigrupos lineares, uma vez que, nas
aplicacOes da teoria, em geral, conhecemos a equagdo diferencial e
nao o operador solugdo.
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SOLUGOES FRACAS E FORTES

SEMIGRUPOS E SEUS GERADORES

SEMIGRUPOS

Definicao

Um semigrupo de operadores lineares em X € uma familia
{T(t):t >0} C L(X) tal que
(i) T(0) =Ix,
(ii) T(t+s)= T(t)T(s), para todo t,s > 0.
Se, além disso,
(i) I7(t) = Ixllzex) =0 0, diremos que o semigrupo é
uniformemente continuo

+
(iv) | T(t)x — x| x 290, para cada x € X, diremos que o
semigrupo é fortemente continuo.
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SOLUGOES FRACAS E FORTES

SEMIGRUPOS E SEUS GERADORES

O estudo dos semigrupos de operadores lineares esta associado ao
estudo de problemas de Cauchy lineares da forma

d
ax(t) = Ax(t)

x(0) = xo

(11)
onde A: D(A) C X — X é linear (em geral ilimitado).

O semigrupo {T(t) : t > 0} é o operador solugdo de (11); isto é,
dado xp € X, t — T(t)xo é a solugdo (em algum sentido) de (11).
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SEMIGRUPOS E SEUS GERADORES

Para explicar melhor esta observacdo consideremos primeiramente
o caso A € L(X). Neste caso, o semigrupo t — T(t) é o operador
solugdo (no sentido usual) do problema

d
S T(t) = AT
ST = AT(0), t>0,

T(0) = B € L(X).

(12)

tA

com B = . Esta solugdo serd denotada por T(t) =: e

Vamos mostrar que existe uma unica solugdo para (12) e que as
propriedades de semigrupo estdo satisfeitas.

Isto segue do principio da contracdo de Banach que enunciamos a
seguir.
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Seja X um espaco métrico completo e dx : X x X —R™ sua métrica.
Se F: X — X satistfizer dx(F"(x), F"(y)) <k dx(x,y) para algum

inteiro positivo n e k < 1 (F" é uma contragdo), entdo F terd um
tnico ponto fixo X € X, isto é, um ponto x € X tal que F(X) = X.
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Vamos procurar solugdes de (12) que sejam fungdes pertencentes a
K ={U(:) € C([0, 7], £(X)) : U(0) = B}, a C}((0,7], L(X)) e
que verifiquem (12). Em K considere a métrica induzida pela
norma

NUC c(qo,m,20x)) = max [U() ] £¢x)-

K é um espaco métrico completo e se F : K — K por

F(U)(t) = B + / AU(s)ds.

0

Note que U(-) é uma solugdo de (12) se, e somente se, é um ponto
fixo de F em K.
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Queremos mostrar que existe um inteiro positivo n tal que F" é
uma contracdo. De fato:

IF(U)() = F(V)(8)Il < ‘/OtHAU(S) — AV(s)||ds
< [tl|All sup [JU(2) — V()]

te[0,7]

< TlIA]l sup [[U(t) — V(1)
te[0,7]
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Se, para t € [0, 7],

e A
—— v sup [[U(r) = V()]

Frtu(t) — F MV (1)]| <
I (t) Ol < =79, e

deduzimos que

IF"(U)(2) = F(V)(8)Il < ‘/OtHAF”_lU(S) — AF"HV(s)||ds

t n A n
AR o gy - v
n te[0,7]
T n A n
< TIAY oo ue) - v,
n te[0,7]
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I7|” HAH”

Como %0, existe ng € N tal que F™ é uma contrac3o.

Do Prlnc1p|o da Contragdo de Banach, F tem um dnico ponto fixo.

E facil ver que este ponto fixo é uma funcdo continuamente
diferenciavel e que satisfaz (12).
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SEMIGRUPOS E SEUS GERADORES

Como a argumentagdo acima vale para todo 7 € R obtemos que
toda solucdo de (12) estd globalmente definida.

Vamos agora verificar que a propriedade de semigrupo estd
satisfeita para a solugdo T(t) de (12) com B = I.

Note que U(t) = T(t+s) e V(t) = T(t)T(s) sdo solugdes de
(12) satisfazendo U(0) = V(0) = T(s).

Segue da unicidade de solu¢des que T(t+s) = T(t)T(s).

Portanto, {T(t) : t € R} é um grupo uniformemente continuo de
operadores lineares limitados.
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SEMIGRUPOS E SEUS GERADORES

E claro que estaremos interessados em situa¢des mais gerais, ja
que em muitas aplicagdes o operador A ndo é limitado.

Reciprocamente, dado um semigrupo de operadores lineares
qualquer podemos associd-lo a uma equacio differencial, como
explicaremos a seguir.
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SEMIGRUPOS E SEUS GERADORES

GERADORES

Definicao

Se {T(t),t >0} C L(X) é um semigrupo fortemente continuo de
operadores lineares, seu gerador infinitesimal é o operador
definido por A: D(A) C X — X, onde

D(A) = {x €X: lim M existe},

t—0+
Ax = lim TEXZX e peay.
t—0T t

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Analise Funcional Il



SOLUGOES FRACAS E FORTES
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Seja A € L(X) e defina et := Z% Entdo {e” : t € R}
n=0

define um grupo uniformemente continuo com gerador A e
satisfazendo |le”t|| < eltlIAll.
o

. ngn .
A série A" converge absolutamente, uniformemente em
n!
n=0

subconjuntos compactos de R, visto que |A"|| < ||A||", portanto

(e.e]

()
A"t" t| [|JA]])"
||eAt” < § : : < § : (| | ||' ||) _ e|t\ ||A||’ teR e
n: n:
n=0 n=0
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o0 o0
Argn—t (el A" A
Sl <141 = =[lAlelIAl, t e R
_ | |
— (n—1)! —~
Portanto 4
—eMt = A, teR.
dt
Também

0
le? — 111 < [¢l[ Al Al = 0

Segue que {T(t) : t € R} € a dnica solugdo de x = Ax com
x(0) = I. O resultado agora segue das consideragGes anteriores.
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SEMIGRUPOS E SEUS GERADORES

ALGUNS RESULTADOS FUNDAMENTAIS

O resultado a seguir é extremamente (til na obtencdo de
propriedades de regularidade de semigrupos.

Seja ¢ uma funcdo continua e diferencidvel a direita no intervalo
[a,b). Se D¢ é continua em [a, b), entdo ¢ é continuamente
diferencidvel em |[a, b).

Prova: Exercicio.
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Todo semigrupo fortemente continuo possui uma limitag3o
exponencial que é dada no teorema a seguir.

Teorema

Se {T(t),t >0} C L(X) for um semigrupo fortemente continuo,
existirdo M > 1 e 8 € R tais que

IT(t)llex) < MePt, vt > 0.

Fixado >0, escolhemos 3> log| T(0)lz(x) e determinamos M.

v

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Anadlise Funcional Il



SOLUGOES FRACAS E FORTES
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Prova: Primeiramente note que existe n > 0 tal que

sup || T(2)]l cx) < oc.
te[0,n]

Isto segue do fato que, para cada sequéncia {t,}neny em (0, 00)
com t, =% 0F, {T(tn)x}nen é limitada para todo x € X e, do

Principio da Limitagdo Uniforme, {|| T (ts)|/(x)}nen € limitada.
Da propriedade de semigrupo, para qualquer ¢ > 0,

sup | T(8)]]cx) < oo
te[0,4]
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Escolha £ > 0 e sejam sup{[| T(t)[/z(x),0 < t < £}=M,
B = 71og{l T(0)llcex)}, ou seja, I T(0)](x) < €. Logo

IT(nt + 8)| =TT < IT@OIT (D) < Me’™
< MelPltePnt+t) 0 <t <0 n=0,1,2, -

e a afirmativa segue[]
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O teorema a seguir caracteriza completamente os semigrupos
uniformemente continuos de operadores através de seus geradores.

Teorema

Dado um semigrupo fortemente continuo { T (t),t > 0} C L(X),
as seguintes afirmativas sdo equivalentes:

(a) O semigrupo é uniformemente continuo,
(b) O seu gerador infinitesimal esta definido em todo X,
(¢) Para algum A em L(X), T(t) = etA.

.
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SEMIGRUPOS E SEUS GERADORES

Prova: Se T(t) = ef” para algum A € £(X) as demais
afirmativas foram provadas no Exemplo 1.

Se o gerador infinitesimal de {T(t) : t > 0} estd globalmente

definido, entdo {HM é limitado para cada x e pelo

X}0<t<1
Principio da Limitagdo Uniforme temos que {HT(?’H }

LX) ) o<t<a
é limitado e portanto T(t) — / quando t — 0.

Resta mostrar que, se T(t) =00 | em L(X), existe A € L(X) com
T(t) = e’

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Anadlise Funcional Il



SOLUGOES FRACAS E FORTES

SEMIGRUPOS E SEUS GERADORES

Assumindo que T(t) — / quando t — 0, existe 6 > 0 tal que
[T(t) = lgx) £1/2,0 < t < 6. Ainda, para t >0,

IT(t+h) = T()lce) = I(T(h) = DT ()lx) = 0,
IT(8) = T(t = Mlcpo = (T(h) = NT(t = h)llex) = 0

quando h — 0T, j& que || T(t)||(x) é limitada em intervalos
limitados de [0, o).

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Anadlise Funcional Il



SOLUGOES FRACAS E FORTES
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Portanto t — T(t) : Rt — £(X) é continua e a integral
t
/ T(s)ds estd bem definida. Além disso,
0

1 /9
H/ T(s)ds — 1
0 Jo
5 -1
e portanto </ T(s)ds) € L(X). Defina
0

A= (T() - 1) (/06 T(s)ds>

<1/2

£(X)

-1
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Para cada h > 0,

hl(T(h)—I)/OéT(s)ds =h1 {/hMT(s)ds — /05 T(s)ds}

oth h h—07
= —1/ T(s)ds—h—l/ T(s)ds — T(6) —I.
é 0

Logo
Zlﬁlillltﬂz-A e
h
T(t+h)—T(t) T(h)y—1 _T(h)—1I h—0t B
— =T(t) T T(t) — T(t)A=AT(t).
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Portanto t — T(t) tem uma derivada a direita

dt
ar T(t) = T(t)A= AT (t)

que é continua para t > 0.

Segue do Lema 5 que t — T(t) é continuamente diferenciavel e,
da unicidade de solugdes para o problema x = Ax, com x(0) =/,
que T(t) = e, t > 0[]
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SEMIGRUPOS E SEUS GERADORES

Em vista desse teorema a teoria de semigrupos concentra-se no
estudo dos semigrupos fortemente continuos e seus geradores.

O resultado a seguir coleta alguns fatos importantes sobre
semigrupos fortemente continuos que serdo utilizados com
freqiiéncia no restante do capitulo.
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Teorema

Seja {T(t)} um semigrupo fortemente continuo. Ent3o,

Q Para qualquer x € X, t — T(t)x € continua para t > 0.

Q t — || T(t)llz(x) € semicontinua inferiormente e portanto
mensuravel.

© Se A € o gerador de T(t); entdo, A € densamente definido e
fechado. Para x € D(A), t — T(t)x € cont. diferencidvel e

%T(t)x = AT(t)x = T(t)Ax, t>0.

Q Nms1 D(A™) € denso em X.
© Para Rel > 3, A € p(A) e

A=A Ix = / e MT(t)xdt, Vxe X
0

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Anadlise Funcional Il



SOLUGOES FRACAS E FORTES

SEMIGRUPOS E SEUS GERADORES

Proof: 1. A continuidade de t — T(t)x é uma consequéncia da
limitagdo exponencial de || T(t)|| e, parat >0e x € X,

h—0t

IT(t+ h)x = T(t)xlx = [(T(h) = T(t)x]lx — O,

.
I T(6)x = T(t = hx|lx < IT(t = h)ll ol T(h)x = x| x =% o.
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2. Mostremos que {t > 0: || T(t)|/z(x) > b} é aberto em [0, 00)
para cada b. Isto implicara o resultado

Como || T(to)llz(x) > b, existe x € X, |x||x =1 tal que
1T (to)x[| > b.

Segue de 1. que || T(t)x|| > b para todo t suficientemente préximo

a to, logo || T(t)|lz(x) > b para t em uma vizinhanca de to e o
resultado segue.
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€

+
T(t)x dt. Entdo x 0 %

3.Sejax€Xe,parae>0,x€:%

S~

e, para h > 0,

(T (h)x — xe _1/7{ xdt—/OhT(t)xdt}
29 (T (e~ ).

Alexandre Nolasco de Carvalho ICMC - USP SMA 5878 Anadlise Funcional Il



SOLUGOES FRACAS E FORTES

SEMIGRUPOS E SEUS GERADORES

Logo x. € D(A). Seguira diretamente de 5. que A é fechado pois
(A=At e L(X).

Se x € D(A) é claro que

o tx = lim L {T(t+ h)x — T(t)x} = AT(6)x = T(£)A
CoT(0x = lim o {T(e+ h)x = T(e)x} = AT(e)x = T(t)Ax

é continua e qualquer funcdo com derivada a direita continua é
continuamente diferenciavel.
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4. Seja ¢ : R — R em C*(R) com ¢(t) =0 em uma vizinhanga
de t = 0 e para todo t sufficientemente grande, seja x € X e

f:/o o(t) T(t)x dt.

Segue facilmente de
YT (h)F — f) = hl/hoo(¢(t ) — () T(t)x dt

que f € D(A) e que Af = —/oogb’(t)T(t)x dt.
0
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Como —¢' satisfaz as mesmas condicdes que o,
ATF = (—1)"’/ AU () T(t)x dt
0

para todo m > 1e f € Nyp>1D(A™).
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Para mostrar que Npy,>1D(A™) é denso em X, escolha ¢ como

acima e também satisfazendo que / o(t)dt = 1. Assim, se

f,,:/ooonqb( )T ( xdt—/ o(s)T(s/n)xds, n=1,2,3 -+,

temos que f, € Np>1D(A™) e f, = x quando n — oo.
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5. Recorde que HT(t)HL(X)gMeth. Defina R(\) € L(X) por

R(\)x = / e MT(t)xdt, Re) > 6,
0

e note que [[R(N)||£(x) < gex=s-
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SejaxeXeh>0
T(h)x — x
h

_ h_l[ / e MM () dt — / e T(t)x dt]
h 0
h 00
- h—l[—/ =T (t)x dt +/ (e —1)e M T(t)x df]
0 0

P X AR(A)x.

(T (h) — NR(\)x = R(\)

(13)
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Portanto R(A\)x € D(A) e (A — A)R(A\)x = x, e A — A é sobrejetor.
Também, se x € D(A) entdo, R(A\)Ax = AR(\)x — x = AR(\)x.

Segue que (A — A)R(N)x = x = R(A\)(A — A)x para todo x € D(A)

e A\ — A é também um-a-um. Logo (A — A) é uma bijecdo de D(A)
sobre X com inversa limitada R(\) e a prova estd completa.[]
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Teorema

Sejam {T(t),t > 0} e {S(t),t > 0} semigrupos fortemente
continuos com geradores infinitesimais A e B repectivamente. Se
A = B entdo T(t) = S(t), t > 0.
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Prova: Seja x € D(A) = D(B). Do Teorema 4 segue facilmente
que a fungdo s — T(t — 5)S(s)x é diferenciavel e que

Tt = 9)S(s)x = ~AT(t — 5)S(s)x + T(t — 5)BS(s)x
= —T(t —s)AS(s)x + T(t — s)BS(s)x = 0.

Portanto s — T(t — 5)S(s)x é constante e em particular seus
valores em s = 0 e s = t sdo os mesmos, isto é T(t)x = S(t)x.

Isto vale para todo x € D(A) e como D(A) é denso em X e S(t),
T(t) sdo limitados, T(t)x = S(t)x para todo x € X []
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SOLUCOES FRACAS E FORTES

Se o semigrupo {T(t) : t > 0} for fortemente continuo,
A: D(A) C X — X o seu gerador e xg € D(A) entdo,
RT3t x(t):=T(t)xo € X serd continuamente diferencidvel e

oo

No caso em que xg € X n3o pertence a D(A), também podemos
dar sentido para x(-) como solu¢do de (14). A seguir definimos
solugdes fracas e fortes.
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SEMIGRUPOS E SEUS GERADORES

a) Uma fungdo x € C([0,00), X) N CY(0,00), X) € dita uma
solucao forte de (14) se x(t) € D(A), Vt > 0 e (14) vale.
b) Uma solugdo fraca de (14) € uma funcdo x € C([0, o), X)
tal que x(0)=xp, para todo x*€ D(A*),
[0,00) 3 t— (x(t),x*) €K € diferencidvel e

Cix()x) = (<0, A7), tz0. (19)

V.
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SEMIGRUPOS E SEUS GERADORES

O teorema a seguir caracteriza as solugdes fracas e fortes de (14).

Teorema

Q@ Uma solugéo forte de (14) é também uma solugo fraca.

@ Uma fungdo x : [0,00) — X € solucdo fraca de (14) se, e

somente se,
x(t) = T(t)xo, t=0. (16)

Em particular, existe uma dnica solugco fraca de (14) e, se
xo € D(A), a solugdo fraca de (14) é também uma solugdo
forte.
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Prova: 1. e a dltima parte de 2. s3o triviais.

Vamos provar 2. provando que a fungdo dada por (16) é uma
solugdo fraca de (14) e que solugdes fracas sdo Unicas.

Defina x : [0,00) — X por (16) e seja x* € D(A*). Para qualquer
xo € D(A) t— (T(t)xo,x*) é diferencidvel com derivada
(T(t)x0, A*x*) e

(T(t)xo,x™) — (x0,x") = /0 (T(s)xp, A*x")ds.
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Por continuidade a expressdo acima vale para todo xg € X.
Consequentemente, t — (T (t)xp, x*) é diferencidvel com derivada
(T(t)xo, A*x*) para todo xp € X e x(-) é uma solugdo fraca de
(14).
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A diferenca de duas solucdes fracas de (14) é uma fung3o continua
u:[0,00) — X que satisfaz %(u(t),x*) = (u(t), A*x*) para todo
t >0, u(0) =0 e para todo x* € D(A*¥).

t
Se U(t) :/ u(s)ds entdo,
0

ou
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Note que (T(t))*D(A*) C D(A*) para t > 0, pois

(Ax, (T(£))*x*) = (T(t)x, A*x*) para x* € D(A*), x € D(A).

Logo, para qualquer t* > 0

(T(t* — t)%U(t),x*> = (T(t*" —t)U(t),A"x™)

e E“—(t* — t)U(t),x*) =0 para 0 < t < t*, onde utilizamos que
t — T(t)ug é uma solugdo fraca.
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SOLU(;(T)ES FRACAS E FORTES

SEMIGRUPOS E SEUS GERADORES

Como U(0) =0, (U(t*),x*) =0, para todo x* € D(A*), portanto
(do fato que D(A*) é total - Exercicio) U(t*) =0 e u(s) = 0 para
0<s< o0 []
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S(Q)LI,T(;(BES FRACAS E FORTES

SEMIGRUPOS E SEUS GERADORES

Seja A: D(A) C X — X um operador fechado, densamente
definido e com 1 € p(A). Defina em D(A) a norma
IIx]l1 = ||x||x + ||Ax||x. Mostre que

o DA% = x

Q@ Y :=(D(A),] - |1) € um espago de Banach.

(3] D(A2)Y =Y (Sugestio: tome D(A) > f, — Ax € X,
1

xp = (I — A)"*(x — f,) e mostre que x, — x e Ax, — Ax).
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