
1. Calcule o valor exato de
∞∑

n=1

n2

2n
.

Dica: avalie uma série de potências (em torno de 0) num ponto particular.

2. Seja f ∈ PWC([−L,L]) e (an)n≥0 e (bn)n≥1 seus coeficientes de Fourier, como de costume.

(a) Mostre que as sequências (an
√
n)n≥1 e (bn

√
n)n≥1 são limitadas. Dica: lembre que

os coeficientes de Fourier de f são “quadrado somáveis”, i.e., as séries definidas pelos
quadrados dos coeficientes de Fourier convergem (desigualdade de Bessel).

(b) Mostre que lim inf an
√
n ≤ 0, lim sup an

√
n ≥ 0 e lim inf |an

√
n| = 0. É claro que o

mesmo vale se trocarmos an por bn. Note que, para uma sequência (αn)n≥1 qualquer,
os números reais lim inf αn e lim inf |αn| a prinćıpio não possuem nenhuma relação.

3. Seja f : R → R uma função 2L-periódica e integrável. Mostre que para qualquer x0 ∈ R
vale ∫ x0+L

x0−L

f =

∫ L

−L

f

4. Seja λ ∈ R. A equação
y′′ − 2 · x · y′ + λ · y = 0

é chamada de equação de Hermite. Note que suas soluções são funções anaĺıticas em R.

(a) Expresse a solução geral da equação de Hermite como série de potências em torno de
0, i.e., encontre os coeficientes da dita série. Sejam yλ,0(x) e yλ,1(x) as soluções (li-
nearmente independentes) da equação de Hermite que satisfazem as condições iniciais
yλ,0(0) = 1 = y′λ,1(0) e y′λ,0(0) = 0 = yλ,1(0).

(b) Suponha que λ = 2m, onde m ∈ Z≥0. Mostre que se m é par (resp. ı́mpar), y2m,0(x)
(resp. y2m,1(x)) é um polinômio de grau m. A menos de multiplicação por uma
constante, os polinômios em questão são os assim chamados polinômios de Hermite,
denotados por Hm (quando λ = 2m).

A t́ıtulo de curiosidade, os polinômios de Hermite surgem nas soluções da equação de
Schrödinger do oscilador harmônico quântico.

5. Seja f : [−1, 1] → R dada por f(x)
def
= 1− x2.

(a) Calcule os coeficientes e, consequentemente, a série de Fourier de f .

(b) A extensão de f a uma função 2-periódica em R é cont́ınua em R? Se não, em quais
pontos ela não é cont́ınua?

(c) A extensão de f a uma função 2-periódica em R é diferenciável em R? Se não, em
quais pontos ela não é diferenciável?

(d) Mostre que
∞∑

n=1

(−1)n+1

n2
=

π2

12
.



(e) Use a igualdade acima e a seguinte igualdade (que vimos em aula)

∞∑
n=1

1

(2n− 1)2
=

π2

8

para mostrar que
∞∑

n=1

1

n2
=

π2

6
,

identidade que também pode ser obtida a partir da avaliação de Sf (x) em x = 1.

(f) Finalmente, obtenha a série de Fourier da função f : [−1, 1] → R dada por

f(x)
def
=

{
x, se x ̸= 1
−1, se x = 1

.

A menos de valores nos extremos do intervalo [−1, 1], a (extensão a uma função 2-
periódica em R da) função f definida acima é conhecida como onda dente de serra
(sawtooth wave).

6. Seja f ∈ PWCω(R) uma função 2L-periódica de classe C1. Suponha que f ′ seja di-
ferenciável em [−L,L] exceto, no máximo, por uma quantidade finita de pontos e que
f ′′ ∈ PWC([−L,L]) (lembre: os valores de f ′′ nos pontos onde f ′ não é diferenciável são
irrelevantes). Nessas condições as séries de Fourier de f e f ′ convergem uniformemente a
f e f ′, respectivamente. Mostre que∫ L

−L

(f ′)2 =

∞∑
n=−∞

n2π2

L2
|f̂(n)|2.

7. Seja f : [−π, π] → R dada por

f(x)
def
=

{
exp(x), se x ≤ 0
exp(−x), se x ≥ 0

.

(a) Calcule a série de Fourier de f .

(b) Mostre que
∞∑

n=1

1− (−1)ne−π

1 + n2
=

π + e−π − 1

2
.

(c) Mostre que

1

2
− 3

10
+

5

26
− 7

50
+

9

82
− . . . =

∞∑
n=0

(−1)n · (2n+ 1)

1 + (2n+ 1)2
=

π

2
· e−π/2

1 + e−π
=

π

4
· sech

(π
2

)
,

onde sech denota a função secante hiperbólica (inverso multiplicativo da função cos-
seno hiperbólico). Dica: considere a derivada de f .

8. O processo de amortização de d́ıvida funciona da seguinte maneira. Considere as seguintes
quantidades e suas definções:

— P0 ∈ R>0: valor do empréstimo/d́ıvida;



— N ∈ Z≥1: quantidade de peŕıodos de tempo (e.g.: meses ou anos) que levarão para a
d́ıvida ser paga; e

— r ∈ R>0: taxa de juros (por peŕıodo de tempo).

A d́ıvida é paga, a cada peŕıodo de tempo, em parcelas de igual valor P , de tal forma
que ela fique liquidada após N peŕıodos de tempo. Mas a cada peŕıodo de tempo, o
balanço da d́ıvida (a quantidade que ainda falta pagar) é acrescido pela taxa de juros; mais
precisamente, denotando por Bi o balanço da d́ıvida após o i-ésimo peŕıodo de tempo, e

fazendo B0
def
= P0, temos que

Bi+1 = (1 + r) ·Bi − P.

A condição que diz que a d́ıvida deve ser liquidada após N peŕıodos de tempo se traduz
na igualdade BN = 0.

(a) Mostre que

P =
P0(1 + r)Nr

(1 + r)N − 1
.

(b) Seja f : R → R dada por

f(r)
def
=

{
P0(1+r)Nr
(1+r)N−1

, se x ̸= 0

P0/N, se x = 0
.

Mostre que f é cont́ınua.

(c) É fato que f é anaĺıtica em R. Calcule as duas primeiras derivadas de f em 0.

(d) Use o item (c) para mostrar que o truncamento da série de Taylor de f em torno de
0 até grau 1 é

P0

N

(
1 +

(N + 1)r

2

)
. (⋆)

Se r é muito pequeno, podemos aproximar o valor da parcela da d́ıvida (item (a))
usando o truncamento (⋆). A t́ıtulo de curiosidade, uma expressão ligeiramente dife-
rente de (⋆), a saber:

P0

N

(
1 +

Nr

2

)
,

era muito usada por comerciantes e mercadores do oriente médio até meados do século
passado.

(e) Compare as expressões anteriores com aquelas fornecidas pelo simulador de financia-
mento na página do Banco Central do Brasil.

9. Para s ∈ R, seja

Lis(x)
def
=

∞∑
k=1

xk

ks
.

Note que Li0 é a série geométrica (com termo inicial x).

(a) Mostre que, para todo s ∈ R, o raio de convergência da série acima é 1. A função
Lis : ] − 1, 1[→ R é chamada de função polilogaŕıtmica, ou função de Jonquière, de
ordem s.



(b) Mostre que, em ]− 1, 1[ , vale

Lis+1(x) =

∫ x

0

Lis(t)

t
.

Em particular, se x ̸= 0, o teorema fundamental do cálculo garante que vale Li′s(x) =
Lis−1(x)/x qualquer que seja s ∈ R. Mas a igualdade anterior claramente é válida
para x = 0: basta comparar as séries correspondentes.

(c) Sabendo que Li0(x) = x/(1− x), use o item (b) para calcular Li−1, Li−2 e Li−3.

(d) Compare o item (c) com o exerćıcio 1.

A t́ıtulo de curiosidade: para s > 0, as funções Lis possuem representações em termos de
integrais das distribuições de Fermi-Dirac (para part́ıculas que obedecem o prinćıpio da
exclusão de Pauli) e de Bose-Einstein (para part́ıculas que não obedecem o prinćıpio da
exclusão de Pauli), onipresentes em f́ısica estat́ıstica.


