
1. Seja (fn)n≥1 uma sequência de funções diferenciáveis em um intervalo [a, b] que satisfaz

— fn
n → ∞ f

— f ′n é integrável para todo n ≥ 1

— f ′n
n→∞−−−−→ g, onde g é cont́ınua em [a, b].

Vimos em aula que, sob as condições acima, a função f é diferenciável em [a, b] e vale

f ′ = g. Mostre que na verdade fn
n→∞−−−−→ f . Dica: use o teorema fundamental do cálculo.

2. Seja f : [−1, 1] → R a função dada por

f(x)
def
=

{
x2 sin(1/x), se x ̸= 0
0, se x = 0

.

Considere a sequência de funções (fn)n≥1 em [−1, 1] definida por

fn(x)
def
= f

(x
n

)
.

(a) Mostre que fn
n → ∞ 0, onde 0 é a função constante igual a 0.

(b) Mostre que fn é diferenciável para todo n ≥ 1.

(c) Mostre que, para todo n ≥ 1, f ′n é integrável, embora seja descont́ınua em 0.

(d) Mostre que f ′n
n→∞−−−−→ 0.

3. Considere a sequência de funções (fn)n≥1 em [−π/2, π/2] definida por

fn(x)
def
= (cos(x))n.

Note que, para qualquer n ≥ 1, fn é diferenciável e f ′n é integrável (posto que cont́ınua). A
sequência de funções (f ′n)n≥1 converge uniformemente? Se não, ela converge pontualmente?

4. Seja (fn)n≥1 uma sequência de funções em R que satisfaz

0 ≤ fn(x) ≤ 1

quaisquer que sejam n ∈ Zn≥1 e x ∈ R. Suponha que a sequência (sup
x∈R

fn(x))n≥1 converge;

é verdade que (fn)n≥1 converge uniforme ou pontualmente?

5. Seja (fn)n≥1 a sequência de funções em I
def
= ]− 1, 1[ dada por

fn(x)
def
=

√
x2 +

1

n
.

(a) Mostre que fn ∈ C∞(I) qualquer que seja n ≥ 1.

(b) Mostre que fn(x)
n→∞−−−−→

√
x2 = |x|.

(c) Conclua que uma sequência de funções suaves pode convergir uniformemente para
uma função que não é diferenciável.

6. Seja (fn)n≥1 a sequência de funções em R>0 dada por

f1(x)
def
= x e, para n ≥ 1, fn+1(x)

def
= (ϕ ◦ fn)(x),



onde ϕ : R>0 → R>0 é a função ϕ(x)
def
=

√
2x. Note que a sequência (fn)n≥1 está bem

definida, i.e., a imagem de fn está contida no domı́nio de ϕ para todo n ∈ Zn≥1.

(a) A sequência (fn)n≥1 converge pontualmente? Se sim, qual é seu limite pontual?

(b) Se a sequência (fn)n≥1 converge pontualmente, ela converge uniformemente?

7. Seja (fn)n≥1 a sequência de funções em R>0 dada por

f1(x)
def
= x e, para n ≥ 1, fn+1(x)

def
= (ψ ◦ fn)(x),

onde ψ : R>0 → R>0 é a função ψ(x)
def
= 1 + 1/x. Note que a sequência (fn)n≥1 está bem

definida, i.e., a imagem de fn está contida no domı́nio de ψ para todo n ∈ Zn≥1.

(a) A sequência (fn)n≥1 converge pontualmente? Se sim, qual é seu limite pontual?

(b) Se a sequência (fn)n≥1 converge pontualmente, ela converge uniformemente?

8. Sejam (an)n≥1 e (bn)n≥1 duas sequências de números reais que satisfazem

— (an)n≥1 é monótona e converge para 0, e

— as somas parciais da série definida por (bn)n≥1 são limitadas, i.e., existe M ∈ R tal

que, para todo N ∈ Z≥1, |
∑N

n=1 bn| ≤M .

Seja (Sn)n≥1 a série definida por (an · bn)n≥1, i.e., Sn
def
=
∑n

k=1 ak · bk. O objetivo deste
exerćıcio é mostrar que (Sn)n≥1 converge, resultado conhecido teste de Dirichlet.

(a) Seja (Bn)n≥1 a série (sequência das somas parciais) definida por (bn)n≥1. Mostre que
para qualquer n ≥ 2 vale

Sn = anBn +

n−1∑
k=1

Bk(ak − ak+1).

A expressão acima é por vezes chamada de “somação” por partes (ou transformada
de Abel) por lembrar a expressão da integração por partes.

(b) Note que a primeira parcela na soma acima converge para zero, i.e., anBn
n→∞−−−−→ 0.

(c) Mostre que
∞∑
k=1

M |ak − ak+1| <∞.

Com isso, conclua que também vale:

∞∑
k=1

Bk(ak − ak+1) <∞.

(d) Finalmente, conclua que (Sn)n≥1 converge.

9. Seja

g(x)
def
=

∞∑
n=0

anx
n



uma série de potências que converge no intervalo ] − 1, 1[. Suponha que a série numérica∑∞
n=0 an converge. O objetivo deste exerćıcio é mostrar o teorema da convergência radial

de Abel, que diz que

lim
x→1−

g(x) =

∞∑
n=0

an.

(a) Seja Sn
def
=
∑n

k=0 ak. Use a mesma ideia do item (a) do exerćıcio 8 para mostrar que
vale

N∑
n=0

anx
n = xNSN + (1− x)

N−1∑
n=0

Snx
n.

quaisquer que sejam x ∈ R e N ≥ 2.

(b) Seja S
def
=
∑∞

n=0 an. Conclua, a partir do item (a), que para qualquer x com |x| < 1
vale

∞∑
n=0

anx
n − S = (1− x)

∞∑
n=0

(Sn − S)xn.

Dica: lembre que, se |x| < 1, (1− x) · (
∑∞

n=0 x
n) = 1.

(c) Tome ε > 0. Como Sn
n→∞−−−−→ S, existe N⋆ tal que se n ≥ N⋆ então |Sn − S| < ε/2.

Use o item (b) para concluir que, se |x| < 1, vale∣∣∣∣∣
∞∑

n=0

anx
n − S

∣∣∣∣∣ < |1− x|
N⋆−1∑
n=0

|Sn − S|+ ε

2
.

N.B.: N⋆ independe de x.

(d) Finalmente, exiba δ > 0 tal que se |x− 1| < δ (e |x| < 1!) então∣∣∣∣∣
∞∑

n=0

anx
n − S

∣∣∣∣∣ < ε.

Como o ε > 0 tomado anteriormente é arbitrário, a desigualdade acima equivale a
dizer que

lim
x→1−

( ∞∑
n=0

anx
n

)
= S.

(e) O item anterior finaliza o teorema da convergência radial de Abel. Mais geralmente,
mostre que se

g(x)
def
=

∞∑
n=0

anx
n

é uma série de potências que converge em ]−R,R[, onde R > 0, valem

se
∞∑

n=0
anR

n <∞ então lim
x→R−

g(x) =
∞∑

n=0
anR

n,

e

se
∞∑

n=0
an(−R)n <∞ então lim

x→−R+
g(x) =

∞∑
n=0

an(−R)n.



(f) Use o teorema da convergência radial de Abel para mostrar que

log(2) =

∞∑
n=1

(−1)n

n
= 1− 1

2
+

1

3
− 1

4
+ . . .

Dica: escreva 1/(1 + x) como série de potências e integre termo a termo.

10. Seja (Fn)n≥0 a sequência de Fibonacci: F0 = 1, F1 = 1 e, para n ≥ 2, Fn = Fn−1 + Fn−2.
Denote por F(x) a série de potências centrada em 0 com coeficientes (Fn)n≥0, i.e.,

F(x)
def
=

∞∑
n=0

Fnx
n.

(a) Calcule o raio de convergência RF de F(x).

(b) Mostre que, se |x| < RF , então

F(x) =
1

1− x− x2
.

Compare RF com as ráızes de 1− x− x2. A função F é chamada de função geratriz
da sequência (Fn)n≥0.

11. Seja f : Zn≥0 → Zn≥0 uma função estritamente crescente. Calcule o raio de convergência
da série de potências

∞∑
n=0

xf(n).

12. Seja p um polinômio qualquer. Calcule o raio de convergência da série de potências

∞∑
n=0

p(n) · xn.

13. Mostre que
∞∑

n=1

(−n)−n = −
∫ 1

0

xx e

∞∑
n=1

n−n =

∫ 1

0

x−x,

igualdades conhecidas como sophomore’s dream. Dica: lembre que x±x = exp(±x · log(x)).

14. Seja (fn)n≥1 a sequência de funções em R definida por

fn(x)
def
=

 n(1 + 2nx), se x ∈ [−1/2n, 0]
n(1− 2nx), se x ∈ [0, 1/2n]
0, se |x| > 1/2n

.

Defina (φn)n≥1 como a seguir:

φn(x)
def
= fn(x+ 1/2n) + fn(x− 1/2n).

Perceba que φn(0) = 0 para todo n ≥ 1. Finalmente, seja g : R → R uma função cont́ınua
qualquer. Mostre que ∫

R
φn · g n→∞−−−−→ g(0).

Dica: use o teorema do valor médio para integrais.



15. Seja λ : R → R a função dada por

λ(x)
def
=

{
exp(−1/x), se x > 0
0, se x ≤ 0

.

(a) Mostre que para qualquer x > 0 vale

λ(n)(x) = exp(−1/x) · pn(1/x)

onde (pn)n≥1 é a sequência de polinômios dada recursivamente por

p0(T ) = 1 e, para n ≥ 1, pn(T ) = T 2 · (pn−1(T )− p′n−1(T )).

(b) Mostre que para qualquer polinômio p vale

lim
x→0+

exp(−1/x) · p(1/x) = 0.

(c) Use os itens (a) e (b) para concluir que λ ∈ C∞(R) e que λ(n)(0) = 0 para todo
n ∈ Z≥ 0. Uma função que possui todas as derivadas num ponto p, todas elas nulas
em p, é chamada de função flat em p. A função λ é, portanto, flat em 0.

(d) Compare a série de Taylor de λ em torno de 0 com a própria função λ e responda: λ
é anaĺıtica em algum intervalo (aberto) que contenha zero?

16. A série de potências
∞∑

n=0

(−1)nx2n (⋆)

converge, no intervalo ]− 1, 1[, para a função

f(x)
def
=

1

1 + x2
.

Logo (⋆) é a série de Taylor de f(x) em torno de 0. Sabendo disso, calcule f (n)(0) para
todo n ∈ Z≥0.

17. Mostre que

lim
x→∞

∞∑
n=0

(−1)nx2n+1

n! · (2n+ 1)
=

√
π

2
.

Dica: lembre que
∫
R exp(−x2) =

√
π.

18. Seja (an)n≥1 a sequência

{1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, . . .}

onde cada k ≥ 1 “aparece” 2k−1 vezes. O termo geral de (an)n≥1 é dado pela seguinte
expressão:

an = 1 + ⌊log2(n)⌋.

Calcule lim sup n
√
an.

19. Seja f : R → R uma função que possui todas as derivadas em 0 e satisfaz f(0) ̸= 0. Como
f é cont́ınua em 0 e f(0) ̸= 0, existe δ > 0 tal que se x ∈ ]− δ, δ[ então f(x) ̸= 0.



(a) Seja g : ]− δ, δ[ → R a função inverso multiplicativo de f , i.e., g(x) = 1/f(x). Mostre
que a função g possui todas as derivadas em 0 e que elas podem ser obtidas através
da regra de Leibniz generalizada:

n∑
k=0

(
n

k

)
g(n−k)(0)f (k)(0) = (gf)(n)(0) = 1(n) = 0,

desde que n ≥ 1 (se n = 0 obtém-se g(0)f(0) = 1).

(b) Mostre que a função f : R → R dada por

f(x)
def
=

{
exp(x)−1

x , se x ̸= 0
1, se x = 0

.

possui todas as derivadas em 0. Mais ainda, mostre que para qualquer n ≥ 0 vale:

f (n)(0) =
1

n+ 1
.

(c) Use os itens (a) e (b) para encontrar as 5 primeiras parcelas da série de Taylor em
torno de 0 da função

g(x)
def
=

{ x
exp(x)−1 , se x ̸= 0

1, se x = 0
.

Os termos da sequência (g(n)(0))n≥1 são os assim chamados números de Bernoulli.

20. Seja (vn)n≥1 a sequência de funções em [0, 1] definida por

vn(x)
def
=

1

nx
.

Mostre que se
∑∞

n=0 an converge absolutamente então a série de funções

∞∑
n=1

anvn(x)

converge (absoluta e) uniformemente em [0, 1]. Dica: use o teste M de Weierstrass.

21. Para duas séries
∞∑

n=0

an e

∞∑
n=0

bn,

seu produto de Cauchy é, por definição, a série

∞∑
n=0

cn onde cn
def
=

n∑
k=0

akbn−k.

O termo cn pode ser encarado como o coeficiente que acompanha o monômio de grau n no
produto dos polinômios

(a0 + a1T + . . .+ anT
n) · (b0 + b1T + . . .+ bnT

n).

Suponha que



—
∑∞

n=0 an converge absolutamente; faça An
def
=
∑n

k=0 ak e A
def
=
∑∞

n=0 an.

—
∑∞

n=0 bn converge; faça Bn
def
=
∑n

k=0 bk, B
def
=
∑∞

n=0 bn e βn
def
= Bn −B.

Faça Cn
def
=
∑n

k=0 ck onde
∑∞

k=0 ck é o produto de Cauchy de
∑∞

n=0 an e
∑∞

n=0 bn.

(a) Mostre que para qualquer n ≥ 0 vale

Cn = AnB + γn

onde

γn
def
=

n∑
k=0

akβn−k.

(b) Mostre que lim
n→∞

γn = 0.

(c) Conclua que, sob as hipotéses listadas acima, o produto de Cauchy converge e tem
soma igual ao produto das somas de seus fatores. Isso é conhecido como teorema de
Mertens.

(d) A convergência absoluta de um dos fatores é essencial para a convergência do produto
de Cauchy: mostre que o produto de Cauchy da série (convergente)

∞∑
n=1

(−1)(n+1)

√
n

com ela mesma não converge.

22. Para qualquer α ∈ R defina(
α

k

)
def
=

α · (α− 1) · · · (α− (k − 1))

k!

para k ∈ Z≥1 e (
α

0

)
def
= 1.

Note que

— se α ̸∈ Z≥0, então
(
α
k

)
̸= 0 para qualquer k e

— se α ̸∈ Z≥0 e k > α então
(
α
k

)
troca de sinal à medida que k aumenta.

Seja α ̸= 0 e considere a função suave fα : R>−1 → R dada por

fα
def
= (1 + x)α.

(a) Mostre que para quaisquer k ∈ Z≥0 e t ∈ R>−1 vale

f
(k)
α (t)

k!
=

(
α

k

)
(1 + t)α−n.

(b) Mostre que o resto de Lagrange correspondente ao polinômio de Taylor de ordem n
de fα em torno de 0 é dado por

Rn,0(x) =

(
α

n+ 1

)
xn+1(1 + t)α−(n+1),

onde t está entre 0 e x (e depende de n e de x!).



(c) Mostre que o resto de Cauchy correspondente ao polinômio de Taylor de ordem n de
fα em torno de 0 é dado por

Rn,0(x) = (n+ 1)

(
α

n+ 1

)
x(1 + t)α−1

(
x− t

1 + t

)n

,

onde t está entre 0 e x (e depende de n e de x!). N.B.: os restos de Cauchy e Lagrange
coincidem, apenas suas expressões são distintas.

(d) Mostre que para qualquer α ∈ R a série

∞∑
k=0

(
α

k

)
xk

converge desde que |x| < 1. Em particular, se |x| < 1 vale

lim
k→∞

(
α

k

)
xk = 0.

A seguir veremos que a série acima converge para o valor que se espera que ela convirja,
i.e., (1 + x)α.

(e) Suponha que 0 ≤ x < 1. Use o item (b) para mostrar que lim
n→∞

Rn,0(x) = 0. Dica:

(1 + t)α−n−1 ≤ 1 se α < n+ 1, pois 1 ≤ 1 + t ≤ 2.

(f) A dica do item (e) não funciona se −1 < x < 0. Nesse caso vamos usar o resto de
Cauchy, i.e., o item (c) para mostar que lim

n→∞
Rn,0(x) = 0. Mostre que se −1 < x <

t < 0, então valem∣∣∣∣x− t

1 + t

∣∣∣∣ ≤ |x| e |x(1 + t)α−1| ≤ |x| ·máx{1, (1 + x)α−1}.

O máximo acima assume ou um ou o outro valor a depender se α < 1 ou α > 1.

(g) Use os itens (c) e (f) e a identidade

(n+ 1)

(
α

n+ 1

)
= α

(
α− 1

n

)
para mostrar que lim

n→∞
Rn,0(x) = 0 se −1 < x < 0.

(h) Conclua, finalmente, que se |x| < 1, então podemos escrever

(1 + x)α =

∞∑
n=0

(
α

n

)
xn,

igualdade essa conhecida como expansão em série binomial. Em particular, para
x = 1/4 e α = 1/2 obtemos

√
5 = 2

∞∑
n=0

(
1/2

n

)
1

4n
=

(
2 +

1

4
− 1

4
· 1

42
+

1

8
· 1

43
− 5

64
· 2

44
+

7

128
· 1

45
+ . . .

)
,

e o teste de Leibniz garante que a soma finita

2

N∑
n=0

(
1/2

n

)
1

4n

aproxima
√
5 com erro menor que 2 · |

(
1/2
N+1

)
| · 4−(N+1).


