. Seja (fn)n>1 uma sequéncia de fungoes diferencidveis em um intervalo [a,b] que satisfaz
o, o f

— f! é integravel para todo n > 1

— f/ 222, ¢, onde g é continua em [a, D).

Vimos em aula que, sob as condigdes acima, a funcao f é diferencidvel em [a,b] e vale
f" = g. Mostre que na verdade f, ——=» f. Dica: use o teorema fundamental do calculo.

. Seja f:[-1,1] = R a fungao dada por

(x) def { 2?sin(1/x), sex #0

)s
0,sex=0

Considere a sequéncia de fungoes (f,)n>1 em [—1,1] definida por
def X
fa@) =5 ().

Mostre que f, “~=°% 0, onde 0 é a funcao constante igual a 0.

)
b)
()

)

d) Mostre que f, 2= 0.
( que fy,

(a
(b) Mostre que f,, é diferencidvel para todo n > 1.

Mostre que, para todo n > 1, f! é integrével, embora seja descontinua em 0.

. Considere a sequéncia de funcoes (f,,)n>1 em [—7/2,7/2] definida por

Falz) % (cos(a))".

Note que, para qualquer n > 1, f,, é diferencidvel e f/ é integrdvel (posto que continua). A
sequéncia de fungoes (f},)n>1 converge uniformemente? Se néo, ela converge pontualmente?

. Seja (fn)n>1 uma sequéncia de funcoes em R que satisfaz
0< fa(z) <1

quaisquer que sejam n € Z,>1 ¢ z € R. Suponha que a sequéncia (sup fy,(z)),>1 converge;
z€eR

é verdade que (fy,)n>1 converge uniforme ou pontualmente?

. Seja (fn)n>1 a sequéncia de fungdes em d:ef] —1,1[ dada por

def 1
falx) = \[22 + —

(a) Mostre que f, € C*°(I) qualquer que seja n > 1.

n— oo

(b) Mostre que f,(z) —— Va2 = |x|.

(¢) Conclua que uma sequéncia de fungdes suaves pode convergir uniformemente para
uma funcao que nao é diferenciavel.

6. Seja (fn)n>1 a sequéncia de fungbes em R+ dada por

File) e, paran > 1, fori(z) & (@0 fu)(@),



onde ¢ : Ryg — Ryp é a funcdo ¢(x) 4f \/2z. Note que a sequéncia (f,)n>1 estd bem
definida, i.e., a imagem de f, estd contida no dominio de ¢ para todo n € Z,>1.
(a) A sequéncia (fy)n>1 converge pontualmente? Se sim, qual é seu limite pontual?

(b) Se a sequéncia (fy,),>1 converge pontualmente, ela converge uniformemente?
7. Seja (fn)n>1 a sequéncia de fungdes em R dada por

fi@) Lz paran =1, furi(2) L @o fo) (@),

onde 1 : Ryg — Ry é a fungao 9 (z) defy 4 1/x. Note que a sequéncia (fy)n>1 estd bem
definida, i.e., a imagem de f, estd contida no dominio de ¢ para todo n € Z,,>1.
(a) A sequéncia (fy,)n,>1 converge pontualmente? Se sim, qual é seu limite pontual?

(b) Se a sequéncia (fy,),>1 converge pontualmente, ela converge uniformemente?
8. Sejam (an)n>1 € (bn)n>1 duas sequéncias de nimeros reais que satisfazem

— (an)n>1 é mondtona e converge para 0, e

— as somas parciais da série definida por (b,),>1 sfo limitadas, i.e., existe M € R tal
que, para todo N € Z>1, |Zg:1 bn| < M.

Seja (Sp)n>1 a série definida por (an - bp)n>1, i€, Sy def > p_q ak - bi. O objetivo deste
exercicio é mostrar que (S,)n>1 converge, resultado conhecido teste de Dirichlet.

(a) Seja (By)n>1 a série (sequéncia das somas parciais) definida por (by,)n>1. Mostre que
para qualquer n > 2 vale

n—1

S, = a,B, + Z Bk(ak — ak+1).
k=1

A expressao acima é por vezes chamada de “somagao” por partes (ou transformada
de Abel) por lembrar a expressdo da integracao por partes.
. . . . n—oo
(b) Note que a primeira parcela na soma acima converge para zero, i.e., a, B, —— 0.
(¢) Mostre que
o0
E Mlay, — agy1| < oo.
k=1

Com isso, conclua que também vale:
oo
E Bk(ak — ak+1) < 00.
k=1

(d) Finalmente, conclua que (S,)n>1 converge.
9. Seja
oo
g(x) def Z anz"”
n=0



uma série de poténcias que converge no intervalo | — 1,1[. Suponha que a série numérica

pIrea

o n converge. O objetivo deste exercicio ¢ mostrar o teorema da convergéncia radial

de Abel, que diz que

(a)

lim g(z) = Z .
n=0

x—1—

. def ey . ;.
Seja S, = ZZ:O ak. Use a mesma ideia do item (a) do exercicio 8 para mostrar que
vale

N N-1
Zanx" =zVSy + (1-2x) Z Snx™.
n=0 n=0

quaisquer que sejam z € Re N > 2.

Seja S def >0 o an. Conclua, a partir do item (a), que para qualquer z com |z| < 1
vale

i apz” — S =(1-12) i(Sn —S)z™.
n=0 n=0

Dica: lembre que, se [z| <1, (1 —z)- (3,2, z") = 1.

Tome & > 0. Como S,, === S, existe N* tal que se n > N* entdo |S, — S| < £/2.
Use o item (b) para concluir que, se |z| < 1, vale

o0
E apx™ — 8
n=0

N.B.: N* independe de .
Finalmente, exiba ¢ > 0 tal que se [z — 1| < § (e |z| < 1!) entao

oo
E apx”™ — S
n=0

Como o € > 0 tomado anteriormente é arbitrario, a desigualdade acima equivale a

dizer que
lim <Z anx"> =S.
n=0

N*—1 c
<|L—a Y 18— 8|+
n=0

<e.

rz—1-

O item anterior finaliza o teorema da convergéncia radial de Abel. Mais geralmente,
mostre que se

oo
def
g(x) = Zana:"
n=0
¢é uma série de poténcias que converge em | — R, R[, onde R > 0, valem

o0 &)
se Y. a,R" <ocoentdo lim g(z)= 3 a,R",

n=0 z—>R™ n=0

se > an(—R)" <ooentdo lim g(x)= > a,(—R)™.
n=0 n=0

z——R*



(f) Use o teorema da convergéncia radial de Abel para mostrar que

= (=" 1 1 1
log(2):z( ):177+***+...
n=1

n 2 3 4

Dica: escreva 1/(1 + x) como série de poténcias e integre termo a termo.

10. Seja (Fy,)n>0 a sequéncia de Fibonacci: Fy =1, Fy =1 e, paran > 2, F,, = F,_1 + F,_o.
Denote por F(x) a série de poténcias centrada em 0 com coeficientes (F,)n>0, i€,

Flx) o Z Fz™.
n=0

(a) Calcule o raio de convergéncia Rx de F(z).
(b) Mostre que, se |z| < Rr, entdo

_ 1
T 1l—g—2?

F(x)
Compare Rz com as raizes de 1 — z — 2. A funcdo F é chamada de funcio geratriz
da sequéncia (F,)n>0-

11. Seja f : Zp>0 — Zp>0 uma funcgao estritamente crescente. Calcule o raio de convergéncia
da série de poténcias
o0
Z 2f ()
n=0

12. Seja p um polinémio qualquer. Calcule o raio de convergéncia da série de poténcias

13. Mostre que
00 1 o0 1
Z(—n)fnz—/ ¥ e Zn”‘:/ ",
n=1 0 n=1 0

+a

igualdades conhecidas como sophomore’s dream. Dica: lembre que =% = exp(+z -log(z)).

14. Seja (fn)n>1 a sequéncia de funcdes em R definida por

n(l+ 2nx), se z € [—1/2n,0]
fn(x) Lof n(l —2nx), se z € [0,1/2n)]
0, se || > 1/2n
Defina (@5 )n>1 como a seguir:

(@) X fo(z +1/20) + folz — 1/20).

Perceba que ¢, (0) = 0 para todo n > 1. Finalmente, seja g : R — R uma fungao continua
qualquer. Mostre que

/‘pn'gw—oo>g<0)'
R

Dica: use o teorema do valor médio para integrais.



15. Seja A : R — R a funcao dada por

def [ exp(—1/x), se x>0
Alw) = { 0,sex<0

(a) Mostre que para qualquer = > 0 vale
AW (2) = exp(—1/z) - pp(1/)
onde (pp)n>1 ¢ a sequéncia de polindmios dada recursivamente por

po(T) =1e, paran>1, p,(T) =T? (po_1(T) — pl,_1(T)).

(b) Mostre que para qualquer polinémio p vale

lim exp(—1/z)-p(1/x) = 0.

z—0*t

(c) Use os itens (a) e (b) para concluir que A € C®(R) e que A™(0) = 0 para todo
n € Z> 0. Uma fungao que possui todas as derivadas num ponto p, todas elas nulas

em p, é chamada de fungao flat em p. A fungdo A é, portanto, flat em 0.

(d) Compare a série de Taylor de A em torno de 0 com a prépria fungio A e responda: A

é analitica em algum intervalo (aberto) que contenha zero?

16. A série de poténcias
o0

Z(_l)nljn
n=0
converge, no intervalo | — 1, 1[, para a fungao
def 1
flx) =

1422

Logo (%) é a série de Taylor de f(x) em torno de 0. Sabendo disso, calcule f(™(0) para

todo n € Zxg.

17. Mostre que

e —1)» 2n+1
i 3 CUT VT
200 £ nl-(2n+1) 2
Dica: lembre que [ exp(—z?) = /7.
18. Seja (an)n>1 a sequéncia

{1,2,2,3,3,3,3,4,4,4,4,4,4,4,45.5,.. .}

onde cada k > 1 “aparece” ok-1
expressao:

an =1+ [logy(n)).
Calcule lim sup /a,,.

19. Seja f : R — R uma funcdo que possui todas as derivadas em 0 e satisfaz f(0
f é continua em 0 e f(0) # 0, existe § > 0 tal que se x € | — J,d] entao f(x)

) #
£0.

vezes. O termo geral de (a,)n>1 € dado pela seguinte

0. Como



(a) Seja g:]—4,6] = R a fungdo inverso multiplicativo de f, i.e., g(z) = 1/f(x). Mostre
que a fungao g possui todas as derivadas em 0 e que elas podem ser obtidas através
da regra de Leibniz generalizada:

n

> ()" 00100 = a0 =1 0.

k
k=0
desde que n > 1 (se n = 0 obtém-se ¢g(0)f(0) = 1).
(b) Mostre que a fungéo f : R — R dada por

f(x)d:ef{ SR se v £ 0

1, sex=0

possui todas as derivadas em 0. Mais ainda, mostre que para qualquer n > 0 vale:

1
n+1

F(0) =

(c) Use os itens (a) e (b) para encontrar as 5 primeiras parcelas da série de Taylor em
torno de 0 da fungao

x
def [ Gpim=T e #0
9(x) { 1, sex=0

Os termos da sequéncia (g™ (0)),>; sdo os assim chamados niimeros de Bernoulli.
20. Seja (vy)n>1 a sequéncia de fungdes em [0, 1] definida por

1
vn(z) —

Mostre que se Zfbozo a, converge absolutamente entao a série de fungoes

Z anUp (2)

converge (absoluta e) uniformemente em [0, 1]. Dica: use o teste M de Weierstrass.

21. Para duas séries
oo oo
g a, e E by,
n=0 n=0

seu produto de Cauchy é, por definicao, a série

o0 n

def
g ¢, onde ¢, = E arbp_p-
n=0 k=0

O termo ¢, pode ser encarado como o coeficiente que acompanha o mondémio de grau n no
produto dos polinémios

(a0 + a1 T+ ...+a,T") - (bg + 01T +...+b,T").

Suponha que



oo def n def o
— Y ._p Gn converge absolutamente; faca A, = >, jar e A= Y7 ay.

— >0, by converge; faca B, def >oh_obk, B def Yool obn e By B B

Faca C,, &' >or_ock onde Y77 i é o produto de Cauchy de D07 (a, e > 00 by.
(a) Mostre que para qualquer n > 0 vale

onde

n
def
Yo = E arBn—k-
—0

(b) Mostre que lim =, = 0.
n—oo

(¢) Conclua que, sob as hipotéses listadas acima, o produto de Cauchy converge e tem
soma igual ao produto das somas de seus fatores. Isso é conhecido como teorema de
Mertens.

(d) A convergéncia absoluta de um dos fatores é essencial para a convergéncia do produto
de Cauchy: mostre que o produto de Cauchy da série (convergente)

OO (_1)(n+1)

com ela mesma nao converge.

22. Para qualquer a € R defina

para k € Z>y e

Note que
— se o & Z>, entao (%) # 0 para qualquer k e
— sea & Z>p ek > aentao (z‘) troca de sinal & medida que k aumenta.

Seja a # 0 e considere a funcdo suave f, : Rs_1 — R dada por

fo (14 2)

(a) Mostre que para quaisquer k € Zxg e t € R_4 vale

fé:!(t) = (Z)(l )

(b) Mostre que o resto de Lagrange correspondente ao polinémio de Taylor de ordem n
de f, em torno de 0 é dado por

Ry o(x) = (

onde t estd entre 0 e x (e depende de n e de z!).

n+1 1 t a—(n+1)
n+1)x (1+¢) ’



(c)

Mostre que o resto de Cauchy correspondente ao polinémio de Taylor de ordem n de
fa em torno de 0 é dado por

Rpolz) = (n+ 1)(n i 1)x(1 )t (f;ﬁ)n

onde ¢ esta entre 0 e = (e depende de n e de x!). N.B.: os restos de Cauchy e Lagrange
coincidem, apenas suas expressoes sao distintas.

Mostre que para qualquer o € R a série
=«

k
> (3)r
k=0

converge desde que |z| < 1. Em particular, se |z| < 1 vale

- aN ko
klgfrolo <k>x =0

A seguir veremos que a série acima converge para o valor que se espera que ela convirja,

i.e., (14 x)*.

Suponha que 0 < z < 1. Use o item (b) para mostrar que lim R, o(x) = 0. Dica:
n—oo

(1+t) " 1<lsea<n+1,poisl1 <1+t<2.

A dica do item (e) ndo funciona se —1 < = < 0. Nesse caso vamos usar o resto de
Cauchy, i.e., o item (c) para mostar que lim R, ¢(z) = 0. Mostre que se —1 < z <
n— oo

t < 0, entao valem
T —t
1+1¢

‘ <ol e o1+ < |o] - max{l, (1 +2)* 7'

O méaximo acima assume ou um ou o outro valor a depender se &« < 1 ou a > 1.

Use os itens (c) e (f) e a identidade

o0, = ("))

para mostrar que lim R, o(z) =0se —1 <z < 0.
n— oo

Conclua, finalmente, que se |z| < 1, entdo podemos escrever

(1+2)* = f: (:):1:”

n=0
igualdade essa conhecida como expansao em série binomial. Em particular, para
x=1/4 e a =1/2 obtemos

= (1/2\ 1 1 1.1 1 1 5 2 701
5=2 — =24 s — ],
Vs %(n)él” (+4 ity a ettt )

e o teste de Leibniz garante que a soma finita
N
1/2\ 1
2 (%)
n ) 4n
n=0

aproxima /5 com erro menor que 2 - \(Al,fl)\ 4= (N+D),



