
1. Seja (an)n≥1 a sequência definida por

an
def
=

{
1, se n = k! para algum k;
0, caso contrário.

A sequência (an)n≥1 converge? A t́ıtulo de curiosidade: o número real 0.a1a2 . . . an . . . (ou
seja: o d́ıgito da n-ésima casa decimal é an) é conhecido como constante de Liouville e,
historicamente, foi o primeiro exemplo “concreto” de um número transcendente, i.e., de
um número que não é ráız de nenhum polinômio com coeficientes inteiros.

2. Suponha que (an)n≥1 é uma sequência cujos termos são todos estritamente positivos, i.e.:
an > 0 para todo n ≥ 1.

(a) Mostre que se an
n→∞−−−−→ 0 então log(an)

n→∞−−−−→ −∞.

(b) Mostre que se an
n→∞−−−−→ +∞ então log(an)

n→∞−−−−→ +∞.

(c) Mostre que se log(an)
n→∞−−−−→ −∞ então an

n→∞−−−−→ 0.

(d) Mostre que se log(an)
n→∞−−−−→ +∞ então an

n→∞−−−−→ +∞.

3. Seja (an)n≥1 a sequência definida por

a1
def
=

√
2 e an+1

def
=

√
2an, qualquer que seja n ≥ 1,

onde, para qualquer α ∈ R>0,
√
α denota a ráız positiva do polinômio, na variável T ,

T 2−α. Note que, como a1 > 0, a sequência “faz sentido” (nunca é tomada a ráız quadrada
de um número negativo).

(a) Mostre que (an)n≥1 é limitada superiormente por 2.

(b) Mostre que (an)n≥1 é estritamente crescente.

(c) Pelos itens (a) e (b), (an)n≥1 converge. Encontre lim
n→∞

an. Dica: considere a função

(cont́ınua) f : [0,∞[→ R dada por f(x)
def
=

√
2x; note que f(an) = an+1.

4. Seja (an)n≥1 a sequência definida por a1
def
= 2 e

an+1
def
=

an
2

+
1

an
,

para n ≥ 1.

(a) Mostre que 1 ≤ an ≤ 2, qualquer que seja n ≥ 1. Em particular os termos dessa
sequência são todos positivos.

(b) Mostre que a2n ≥ 2, qualquer que seja n ≥ 1.

(c) Use o item (b) para mostrar que (an)n≥1 é decrescente.

(d) Pelos itens (a) e (c), (an)n≥1 converge. Calcule lim
n→∞

an.

(e) Calcule a2, a3, a4 e a5 e compare com o limite encontrado no item (d).



5. Seja f : R → R a função dada por f(x)
def
= x2 − 2. Vamos definir duas sequências, que

denotaremos por (an)n≥1 e (bn)n≥1, da seguinte maneira. Começamos com a1
def
= 1 e

b1
def
= 2. Note que f(a1) < 0 e f(b1) > 0. Agora faça

an+1
def
= an+bn

2 e bn+1
def
= bn, se f

(
an+bn

2

)
< 0,

ou

an+1
def
= an e bn+1

def
= an+bn

2 , se f
(
an+bn

2

)
> 0.

Perceba que f((bn+an)/2) ̸= 0 para qualquer n ≥ 1 pois, sendo a1 e b1 números racionais,
os termos das duas sequências são todos números racionais, enquanto que as ráızes de f
são irracionais. Calcule os três primeiros termos das duas sequências para entender melhor
o que está acontecendo. Note também que, para todo n ≥ 1, f(an) < 0 e f(bn) > 0.

(a) Mostre que vale an ≤ bn para todo n ≥ 1.

(b) Use o item (a) para mostrar que (an)≥1 é crescente e que (bn)≥1 é decrescente.

(c) Mostre que (an)n≥1 é limitada superiormente por b1 e (bn)n≥1 é limitada inferiormente
por a1. Portanto, ambas sequências convergem.

(d) Mostre que bn − an = 2−n+1, para todo n ≥ 1. Conclua que lim
n→∞

an = lim
n→∞

bn.

(e) Seja γ
def
= lim

n→∞
an = lim

n→∞
bn; note que γ > 0. Mostre que f(γ) = 0, ou seja: γ =

√
2.

(f) Calcule a5 e b5 e compare com o item (e) do exerćıcio 4.

6. Para quaisquer n ≥ 1 e α ∈ R>0, existe um único número real positivo, denotado por n
√
α,

que é ráız do polinômio, na variável T , Tn − α.

(a) Mostre que a sequência ( n
√
n)n≥1 é limitada superiormente por 2 e inferiormente por

1.

(b) Mostre que ( n
√
n)n≥1 é decrescente a partir do terceiro termo. Dica: para qualquer

n ≥ 1, vimos em aula que (1 + 1/n)n ≤ 3; se n ≥ 3 então vale (1 + 1/n)n ≤ n.

(c) Pelos itens (a) e (b), ( n
√
n)n≥1 converge. Encontre lim

n→∞
n
√
n. Dica: mostre que, para

qualquer n ≥ 2, vale 0 < n
√
n− 1 <

√
2/(n− 1).

7. Tome (an)n≥1 uma sequência convergente. Seja (bn)n≥1 a sequência dada por

bk
def
=

a1 + a2 + · · ·+ ak
k

,

ou seja: bk é a média aritmética dos k primeiros termos de (an)n≥1. Mostre que a sequência
(bn)n≥1 também é convergente e calcule seu limite.

8. Tome (an)n≥1 uma sequência convergente, cujos termos são estritamente positivos. Seja
(bn)n≥1 a sequência dada por

bk
def
= k

√
a1 · a2 · · · ak,

ou seja: bk é a média geométrica dos k primeiros termos de (an)n≥1. Mostre que a sequência
(bn)n≥1 também é convergente e calcule seu limite. Dica: considere a sequência (log(bn))n≥1

e dois casos: lim
n→∞

an = 0 e lim
n→∞

an > 0.



9. Sejam p e q dois polinômios em uma variável com coeficientes em R, e suponha que nenhum
inteiro positivo é ráız de q. Seja (an)n≥1 a sequência definida por

an
def
=

p(n)

q(n)
.

(a) Mostre que se o grau de q for estritamente maior que o grau de p, então an
n→∞−−−−→ 0.

(b) Mostre que se o grau de q for estritamente menor que o grau de p, então an
n→∞−−−−→ ±∞.

(c) Mostre que se os graus de q e p forem iguais, então an
n→∞−−−−→ p⋆/q⋆, onde p⋆ e q⋆ são

os coeficientes do monômio de maior de grau em p e q, respectivamente.

10. Seja (an)n≥1 a sequência definida por

an
def
=

n!

nn

(a) Mostre que (an)n≥1 é limitada (superiormente por 1 e inferiormente por 0).

(b) Mostre que (an)n≥1 é estritamente decrescente.

(c) Pelos itens (a) e (b), (an)n≥1 converge. Encontre lim
n→∞

an. Dica: mostre que para

qualquer M ∈ R>0 existe N ∈ Z≥1 tal que se n ≥ N então log(an) < −M .

11. Tome k ∈ Z≥1 e considere (a
(k)
n )n≥k a sequência definida por

a(k)n
def
=

(
n

k

)
1

nk
.

Mostre que lim
n→∞

a
(k)
n = 1/k!.

12. Para uma sequência limitada (an)n≥1, lembre que

an
def
= sup {ak | k ≥ n} e an

def
= inf {ak | k ≥ n}.

Considere a sequência (an)n≥1 dada por

an
def
= (−1)n ·

(
1 +

1

n

)
.

(a) Encontre uma expressão para o termo geral das sequências (an)n≥1 e (an)n≥1.

(b) Determine se a sequência (an)n≥1 converge ou não.

13. Seja (an)n≥1 uma sequência limitada, e lembre que

lim sup an
def
= lim

k→∞
ak e lim inf an

def
= lim

k→∞
ak.

(a) Mostre que lim sup(−an) = − lim inf an.

(b) Mostre que lim inf(−an) = − lim sup an.

14. Mostre que se uma sequência (an)n≥1 diverge para +∞ (resp. para −∞), então (an)n≥1 é
limitada inferiormente (resp. superiormente).



15. Seja (an)n≥1 uma sequência que satisfaz a seguinte propriedade:

|ak+1 − ak| < 2−k, qualquer que seja k ≥ 1.

Mostre que (an)n≥1 é de Cauchy.

16. O exerćıcio anterior pode ser generalizado da seguinte maneira. Comecemos com uma
sequência (bn)n≥1 de termos positivos tal que a série definida por ela converge, i.e. tal que∑∞

k=1 bk < ∞. Com isso, mostre que se (an)n≥1 satisfaz a desigualdade

|ak+1 − ak| < bk, qualquer que seja k ≥ 1,

então (an)n≥1 é de Cauchy.

17. Seja (an)n≥1 uma sequência para a qual existem um número real c ∈ R>0 e um inteiro
N⋆ ∈ Z≥1 tais que

|ak+N⋆ − ak| > c, qualquer que seja k ≥ 1.

Mostre que (an)n≥1 não é de Cauchy.

18. Seja X um subconjunto de Z≥1. Para cada n ≥ 1 faça

Xn
def
= #{x ∈ X | x ≤ n},

ou seja: Xn conta a quantidade de elementos de X que são menores ou iguais a n, donde
Xn é denominada função de contagem de X. Note que a sequência (Xn/n)n≥1 é limitada
(superiormente por 1 e inferiormente por 0). Se

lim
n→∞

Xn

n
= α

dizemos que o conjunto X possui densidade aritmética α. Note que a densidade aritmética
de X, quando existe, pode ser encarada como a probabilidade de um número inteiro esco-
lhido ao acaso estar no conjunto X.

(a) Mostre que o conjunto dos números pares possui densidade aritmética 1/2.

(b) Mais geralmente, para k ∈ Z≥1, mostre que o conjunto dos múltiplos de k possui
densidade aritmética 1/k.

(c) Mostre que o conjunto dos quadrados, i.e. o conjunto {1, 4, 9, 16, 25, . . .}, possui den-
sidade aritmética nula.

A t́ıtulo de curiosidade: um resultado fundamental em teoria dos números, conhecido como
teorema dos números primos, diz que o conjunto dos números primos tem densidade nula.

19. Seja (an)n≥1 uma sequência descrescente de termos positivos.

(a) Mostre que, para qualquer N ≥ 1, vale:

2N−1∑
k=1

ak ≤
N−1∑
s=0

2s · a2s .

Logo, se a série definida por (2n ·a2n)n≥0 converge, então a série definida por (an)n≥1

também converge. Isso é conhecido como teste da condensação de Cauchy.



(b) Mostre que, para qualquer N ≥ 1, vale:

N∑
s=0

2s · a2s ≤ 2 ·

2N−1∑
k=1

ak

+ a2N .

Logo, se a série definida por (2n · a2n)n≥0 converge, vale

∞∑
s=0

2sa2s ≤ 2 ·

( ∞∑
n=1

ak

)
.

(c) Mostre que
∞∑

n=2

1

n · (log(n))2
< ∞.

20. Seja (an)n≥1 a sequência definida por

an
def
=

(−1)n+1

⌈n
2 ⌉

,

onde ⌈·⌉ denota a função teto. Mostre que a série definida por (an)n≥1 converge para zero.

21. O objetivo deste exerćıcio é verificar a igualdade

exp(1) =

∞∑
k=0

1

k!
.

(a) Primeiramente, mostre que a série definida por (1/n!)n≥1 converge.

(b) Para quaisquer α ∈ ]0, 1[ e k ∈ Z≥1, mostre que vale (1− α)k ≥ 1− kα.

(c) Use o item (b) para concluir que, quaisquer que sejam k ∈ Z≥2 e n ≥ k, vale

1−
k−1∏
j=1

(
1− j

n

)
≤ (k − 1)2

n
.

(d) Conclua, a partir e nas mesmas hipóteses do item (c), que∣∣∣∣∣
n∑

k=0

1

k!
−
(
1 +

1

n

)n
∣∣∣∣∣ < 3

n
.

(e) Finalmente, conclua que

lim
n→∞

(
1 +

1

n

)n

=

∞∑
k=0

1

k!
.

22. Seja α ∈ R>1. Mostre que a série definida por (1/nα)n≥1 converge e que

ζ(α)
def
=

∞∑
n=1

1

nα
≤ α

α− 1
.

A função ζ : R>1 → R acima definida é conhecida como função zeta de Riemann. Dica:
use uma “estimativa integral”.



23. Seja (an)≥1 uma sequência de números inteiros que satisfaz

1 ≤ a1 < a2 < a3 < . . . < an < . . .

Suponha que A
def
= {an | n ≥ 1} possui densidade aritmética estritamente positiva. Mostre

que
∞∑
k=1

1

ak
= +∞.

Dica: mostre que existe N⋆ tal que se N ≥ N⋆ então aN < 2N/α, onde α é a densidade
aritmética de A. A volta desse resultado não é verdadeira: a série∑

p primo

1

p

diverge, mas o conjunto {p ∈ Z≥1 | p é primo} possui densidade aritmética nula.

24. Para k ≥ 1, seja logk : ]Ek,∞[→ R a função definida recurvisamente por

log1(x)
def
= log(x) e logn+1(x)

def
= log(logn(x)),

onde os números reais Ek também são definidos recursivamente por

E1
def
= 0 e En+1

def
= exp(En).

(a) Mostre que lim
x→∞

logk(x) = +∞, qualquer que seja k ≥ 1.

(b) Mostre que

(logk+1(x))
′ =

1

logk(x) · logk−1(x) · · · log1(x) · x
.

(c) Mostre que
∞∑

n=⌈Ek⌉+1

1

logk(n) · logk−1(n) · · · log1(n) · n
= +∞.

(d) Conclua que
∞∑

n=⌈Ek⌉+1

1

logk(n) · n
= +∞.


