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Capitulo 1

Introducao

Estas notas de aula serdo utilizadas para o cursos cuja ementa trata de sequencias e séries
numeéricas, sequencias e séries de fungdes, em particular, série de poténcias e de Fourier.

Aplicaremos séries de Fourier para a resolucdo de alguns problemas relacionados com
algumas Equagodes Diferenciais Parciais, a saber, as Equagdes do Calor, da Onda e de Laplace,
no caso periédico.

Serao exibidos todos os conceitos relacionados com o contetido acima, bem como proprie-
dades e aplicagdes dos mesmos.

As referéncias (ver (BE3)) ao final das notas poderdo servir como material importante para
o contetido aqui desenvolvido.
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Capitulo 2

Sequéncias Numeéricas

2.1 Definicoes

Comegaremos tratando de:

Definigao 2.1.1 Uma sequéncia de nimeros reais (ou complexos) (ou, simplesmente,
sequéncia numeérica) é uma aplicagdo

a: N - R (ouC)
n — a(n)

isto €, uma ler que associa a cada mumero matural n um, Unico, numero real (ou
complezo) a(n), que indicaremos por a, e denotaremos uma sequéncia NUMErica por:

(an)nGI\M (an) ) {an}nEN ) {an} .

Para cada n € N fizado, o elemento a, serd dito termo da sequéncia numérica

( an)neN .
O conjunto

{a,:n e N}

serd dito conjunto dos valores da sequéncia numérica (an)nen -

Exemplo 2.1.1

1. Considere a sequéncia numérica (real) (a,) onde

neN?
a, =—, paracada neN,

n
serd:

Logo o conjunto dos valores da sequéncia numérica (a.),

\]‘
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. Considere a sequéncia numérica (real) (a,) onde

neN?
a, =0, para cada meN.
Notemos que o conjunto dos valores da sequéncia numérica (a,) serd:

{0}.

neN

. Considere a sequéncia numérica (real) (a,) onde

a, = sen (11771)

B {O, quando a n for par

neN’

(—1)%3, quando n for impar

Observemos que o conjunto dos valores da sequéncia numérica (a,), ., serd:

{1,0,-1}.

€N

. Considere a sequéncia numérica (real) (a,) onde

nenN’
a, =m, paracada mneEN.
Notemos que o conjunto dos valores da sequéncia numérica (a,), .. serd:

{1>2>3a4>"'}-

EN

. Considere a sequéncia numérica (real) (a,) onde

nenN?’

a, = (—1)", para cada n € N.

Notemos que o conjunto dos valores da sequéncia numérica (a,) serd:

(1,-11.

neN

. Considere a sequéncia numérica (real) (a,) onde

neN?
L n+1

a, = ——, para cada neN.
n

Observemos que o conjunto dos valores da sequéncia numérica (a,) serd:

345
{2>§,§)Z>"'} .

. Considere a sequéncia numérica (real) (a,)

T+ (—=1)"
ani#, para cada M €N,

neN

wens Onde

Logo, o conjunto dos valores da sequéncia numérica (a,) serd:

neN
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2.2 Operacoes com sequéncias numéricas

Como sequéncias numéricas sdo fungbes a valores reais (respectivamente, complexos), cujo
dominio é N, podemos somad-las, multiplicd-las por niimeros reais (ou complexos) de ma-
neira semelhante a quando tratamos de quaisquer fungdes a valores reais (respectivamente,
complexos), isto &,

Definigao 2.2.1 Dadas as sequéncias numéricas (an)nen, (bn)neny € @ € R (ou C) de-
finimos a sequéncia numérica soma da sequéncia numérica (A,)neny COM a Sequéncia
numérica (bn)nen, denotada por

(an)nEN + (bn)n€N>

como sendo a seguinte sequéncia numeérica:

(an)neN + (bn)nEN = (an + bn)neN» (2'1)

ou seja, a sequéncia numeérica soma, a saber, (ay)neny + (bn)nen, € obtida somando-se
0s correspondentes termos de cada uma das sequéncias numéricas (an)nen € (bn)nen-

Definimos a sequéncia numérica produto do numero real (respectivamente, com-
plezo) «, pela sequéncia numérica (an)nen, tndicada por

x (an)neN )

como sendo a seguinte sequéncia numeérica:

& (an)nen = (& Gn)nen, (2.2)

ou seja, a sequéncia numérica produto, isto €, «(a,)nen, € obtida multiplicando-se os
correspondentes termos de cada sequéncia numérica (a,)nen pelo nimero real (respec-
tivamente, complezo) x.
Definimos a sequéncia produto da sequéncia numérica (a,)nen pela sequéncia numeérica
(bn)nen, tndicada por
(an)neN ’ (bn)n€N>

como sendo a seguinte sequéncia numérica:

(an)neN ' (bn)neN = (an bn)nENa (2'3)

ou seja, a sequéncia numérica produto, 1sto €, (an)nen'(bn)nen, € obtida multiplicando-se
0s correspondentes termos de cada uma das sequéncias numéricas (an)nen € (bn)nen-

Se b, # 0, para todo n € N, definimos a sequéncia numérica quociente da sequéncia
numérica (a,)nen pela sequéncia numérica (b, )nen, tndicada por

(an)nGN

(an)neN/(bn)neN ou (bn)neN )

como sendo a segquinte sequéncia numeérica:

(an)neN/(bn)nEN = (an/bn)neN> (2'4)
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ou seja, a sequéncia numérica quociente, 15to €, (an)nen/(bn)nen, € obtida dividindo-se
0s correspondentes termos de cada uma das sequéncias numéricas (a,)nen € (bn)nen
(observe que b, # 0, para todo n € N).

Com isto temos o seguinte exercicio:

Exercicio 2.2.1 Se as sequéncias numéricas (reais) (an)nen € (bn)nen sdos dadas por:
a,=— e by,=(—1)", paracada neN (2.5)
e = 2, encontrar as sequéncia numeéricas:

(an)neN + (bn)neN) x (an)nGI\M (an)neN : (bn)neN € (an)neN/(bn)neN .

Resolugao:
Logo, de (E0), segue que

e 1
(an)neN + (bn)neN (E):(D) (_ + (_1 )n)
neN

n
B <1 + (—1)”n))
n neN
De (E2), temos que:
) e (33 1
O‘(an)neN( ):( )(2_)
n neN

De (E3), segue que

Finalmente, de (E34), temos que:

1
@@®e@) | _n

(an)neN/(bn)neN

neN
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Observacao 2.2.1 Como sequéncias numéricas sGo fungdes a valores reais (respectiva-
mente, complezos), cujo dominio é N, podemos representar seus grdficos em N xR (ou
em N x C, respectivamente).

Denotaremos o grdfico da sequéncia numérica (real ou compleza) (an), ., por G ((an),cy),
e serd defintdo por:

G ((an)neN) = {(TL, an) ye N}

Na verdade, 1sto ndo terd muito interesse no estudo das sequéncias numeéricas.
A seguir temos alguns exemplos relacionados com esta questdo.

Exemplo 2.2.1 Se a sequéncia numeérica (real) (an)nen € dada por:
a,=n, paracada mMneEN,

entdo seu grdfico serd dado por:
G ((an),er) ={(n,n);n € N},

e assim, a representagcdo geométrica do seu grdfico serd:

A

1 2 3 n

Exemplo 2.2.2 Se a sequéncia numeérica (real) (bn)nen € dada por:
b, =(—1)", paracada neN,

entdo seu grdfico serd dado por:
G ((an)per) ={(n, (=1)"); n € N},

e assim, a representagcdo geométrica do seu grdfico serd:

A

Exemplo 2.2.3 Se a sequéncia numérica (real) (cn)nen € dada por

1
Ch=—, paracada mNneN,
n
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entao seu grdfico serd dado por:

(uir={(m2) mer)

e assim, a representagcdo geométrica do seu grdfico serd:

A

1/2
1/4

2.3 Convergéncia de sequéncias numéricas

Observacao 2.3.1 Empiricamente, observando os exemplos acima temos:

1. No Ezemplo (EZX), os termos da sequéncia numeérica (an)nen crescem, tlimitada-
mente, quando n cresce, ou ainda, 0s termos vdo para ”infinito”, quando n cresce
ilimitadamente, ou seja, quando n wvar para “infinito”.

2. No Ezemplo (E=X3), os termos da sequéncia numeérica (b,)nen oscilam entre —1 e
1, quando n cresce tlimitadamente, ou seja, quando n vatr para “infinito”.

3. No Ezemplo (E223), os termos da sequéncia numérica (Cn)neny ~aprorimam-se” de
) S

zero, quando n cresce ilimitadamente, 1sto €, os termos da sequéncia "tendem” a
zero, quando M vat para infinito.

A segquir vamos formalizar esta ultima situacdo de modo mais preciso, ou seja, colocar
de forma correta o conceito de ”convergir” (ou ”aprozimar-se de”, ou ainda “tender
a”).

Defini¢ao 2.3.1 Diremos gque uma sequéncia numérica (a,)ney € convergente (ou con-
verge, ou tende) paral € R (respectivamente, C), quando n vat para infinito, denotando-
se por:

T}Lngoanzl, ou  an —31, ou ainda, a, — 1,

se, e somente se: dado ¢ > 0, podemos encontrar N, € N, de modo que, para
n>N,, deveremoster |a,—1<c¢. (2.6)

Observacgao 2.3.2

1. A Definicao (E231) acima nos diz, formalmente, que podemos ficar tao prézimo de
1, quanto se queira (isto é, dado € > 0), desde que o indice da sequéncia numérica,
ou seja, n, seja suficientemente grande (isto €, tenhamos n > N, ).
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2. Na linguagem dos intervalos, a Defini¢do (E=31) acima, nos diz que dado o inter-
valo

(l—e,l+¢)

(ou seja, dado € > 0), todos os termos da sequéncia numérica caem dentro desse
intervalo excetuando-se, eventualmente, os N, primeiros termos da sequéncia
numérica.

3. Em geral, na Definigdo (EZT) acima, o nimero natural N, depende do nimero
real positivo ¢ dado inicialmente.

4. A Definigcdo (E) acima, é semelhante & defini¢cdo de limites mo infinito, para
funcgdes a valores reais, de uma varidvel real, estudadas no Cdlculo I.

Compare com aquela e veja as semelhancgas.

O resultado a seguir, garante a unicidade do limite de uma sequéncia numeérica, caso ele
existe, mais precisamente:

Proposicao 2.3.1 (unicidade do limite de uma sequéncia convergente) Se o limite da

sequéncia numérica (a,), _, existir ele deverd ser unico, isto €, se

lim a, =14 e lim a, =1,
n—oo n—oo

entao
L=0L.

Demonstracgao:
Mostremos que, para cada ¢ > 0, teremos

L —Ll<e,

0 que implica que
L=1L.

Para isto temos que, para cada ¢ > 0, como

lim a, = 11 y
n—oo
podemos encontar N; € N, de modo
€
se m >Ny, deveremos ter: |a,— i< 7 (2.7)
De modo andlogo, como
lim a, =1,,
n—oo
podemos encontrar N, € N, de modo que
€
se m>N,, deveremos ter: |a,—L|< =. (2.8)
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Logo, se
n Z No = maX{N1 ,Nz},
segue que

L —Ll =l —a,+a,— 1

< |l1 - an| + |an_12’
~— ~—
n>Njy , logo vale (E=2) n>N, , logo vale (E3)
:‘(ln—].]l < % < %
< £ + £ _ €
2 2 7
completando a demonstragao do resultado.
O
Temos o:
Exemplo 2.3.1 A sequéncia numérica (a,), ., dada por
1
a, = o para cada M€ N, (2.9)
€ convergente para zero, isto €,
1
lim — =0. (2.10)
n—oo N
Resolucao:
De fato, observemos que dado ¢ > 0, se considerarmos N, € N, de modo que
1
N, > . (2.11)
Entdo, para
n >N, (2.12)
teremos
n=Lel1=0 |1
N
n
(@)
o 1St 1
n - N,
()
< g,
mostrando a afirmagdo.
O
Temos temabém o:
Exemplo 2.3.2 A sequéncia numérica (a,), ., dada por
. 2n
an=_—"7, pora cada neN, (2.13)
€ convergente para 2, isto é,
2n
lim —— =2. (2.14)
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Resolugao:
De fato, observemos que dado ¢ > 0, consioderemos N, € N, de modo que
2
N, > o (2.15)
Entao, se
n > N,, (2.16)
teremos
an(lzza)z—n el=2| 2n
—1 ot — =2
a1 -
|2n—2n-2
N n+1
=2 2
CIn+1] n+1
(=)
n+12n<2 No>1 2 (zT3)
— < ¢
—= NO )
mostrando que a afirmacgdo é verdadeira.
O
Um outro caso é dado pelo:
Exemplo 2.3.3 A sequéncia numérica (a,), ., dada por
a, =cos(nm), para cada neN, (2.17)
ndo é convergente.
Resolugao:
De fato, observemos que
a, = cos(nm)
=(—-1)", para neN.. (2.18)

Se a sequéncia fosse convergente para algum 1 € R, entdo dado

1
€—§>O,

deveria existir um N, € N, de modo que, para

n > N,, deveriamos ter |[(—1)"—1|<

isto é,
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o que um absurdo, pois isto implicaria que os termos da sequéncia numeérica,

3 3
—1 (:)02n+1 e 1(:)a2n,

1 1
(N

cujo comprimento é igual a 1 (notemos que se os nimeros —1 e 1 pertencem a um mesmo
intervalo, este intervalo deverd ter um comprimento maior ou igual a 2), o que é um absurdo.
Portanto a sequéncia numérica ndo é convergente.

deveriam pertencer ao intervalo

OJ
A seguir temos o seguinte:

Exercicio 2.3.1 Consideremos a sequéncia numérica (a), ., onde seus termos sdo da-

dos por
a;=03, a=033, a3=0333, a=03333,---,a,=0.33---3,---. (2.19)

n—casas

. . 1 .
Mostre que a sequéncia numérica (a,), _, € convergente para 3 ou seja,

—_—

T}Lngoanz 3 (2.20)
‘\.//

—

Resolugao:
De fato, dado ¢ > 0, consideremos N, € N, de modo que

1
N, >log§—1, ou seja, 10N > —

3¢’
ou ainda,
L <€ (2.21)
310No ’ '
Logo, para
n>N,, (2.22)
teremos
(ZT3) e (=) L, 1
la, — 1 = 0.3---3 3
n—casas
B 0.9.-..9-1
B 3
(n—1)—casas
—
B _O. 0---0 1
N 3
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—1

_|10m
3

R

= 370m

(=)

n > No>1 1
< 370%

)

<,

como queriamos mostrar, completando a resolugdo do exercicio.
O

Definicao 2.3.2 Diremos que uma sequéncia numérica (a,)nen € limitada, se existir
M > 0, de modo que
la,] <M,  para todo neN. (2.23)

Observacao 2.3.3 Nos Ezemplos (E221), (2232), (233) e Ezercicio (E2) acima, todas
sequéncias numeéricas sao limitadas.

Observemos que nem todas elas sGo sequéncia numéricas convergentes (veja o Ezem-
plo (E223)).

Como veremos a seguir existe uma relacdo entre sequencias numéricas convergentes e
sequencias numeéricas limitadas, a saber:

Proposicao 2.3.2 Toda sequéncia numérica convergente é limitada, 1sto €, se a sequéncia
numeérica (an)nen € convergente, entdo ela serd uma sequéncia numérica limitada.

Demonstragao:

Como a sequéncia numeérica (a)ncn € convergente, segue que existe 1 € R, de modo que

lim a, =1,

n—oo

ou seja, dado ¢ > 0, podemos encontrar N, € N, de modo que
para m>N,, teremos: |a,—1<c¢.
Em particular, se tomarmos
e=1,

poderemos encontrar N, € N, de modo que

para m>N,, teremos |a,—1<T,
ou seja, para m>N,, teremos —1<a,—1l<]1
ou, equivalentemente, 1—1<a, <141, para n>N,,
ou ainda, —[—1<a,<|l+1, para n>N,,
isto é, |a./<|l+1, para n>N,. (2.24)
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Definamos
M = max{|ai|,|azl, -, lan,1l, U+ 1} . (2.25)

Como isto temos que
la,l <M paratodo neN,

como queriamos demonstrar.
O

Observacao 2.3.4 A reciproca do resultado acitma € falsa, 1sto é, nem toda sequéncia
numérica limitada é convergente, como mostra o Ezemplo (E33).

A seguir temos algumas propriedades gerais para convergéncia de sequéncias numeéricas.

Teorema 2.3.1 (propriedades bdsicas da convergéncia de sequéncias) Sejam (Qn)nen,
(brn)nen € (Cn)nen Sequéncias numeéricas.

1. Se as sequencias numeéricas (an)nen € (bn)nen SGo convergentes para a e b, respec-
tivamente, entdo a sequéncia numérica (Qan)nen+ (bn)nen € convergente para a + b,
isto €, se existem lim a, = a e lim b, = b, entdo eriste lim (a, +b,) e

n—oo

n—oo n—oo

lim (a, +b,) =a+Db,

n—oo
1sto é,
lim (a, +b,) = lim a, + lim b,. (2.26)

n—oo n—oo n—oo

Vale os andlogos para as sequéncias numeéricas

(an)
(an)neN - (bn)nEN ) (an)neN ' (bn)neN € el )
(bn)neN
ou seja, as respectivas sequéncias numeéricas serdo convergentes para
a
a—b, ab e 5
onde, no ultimo caso deveremos ter b,,b # 0 para todo n € N, respectivamente,
ou seja:
lim(a,—b,)=a—>,
n—oo
lim (a,-b,) =ab,
n—oo
5 a, a
b, b’
ou ainda,
lim (a, — b,) = lim a, — lim b,, (2.27)
n—oo n—oo n—oo
lim (a, - by) = (nm an) (hm bn) , (2.28)
n—oo n—oo n—oo
a lim a,
lim & =2 (2.29)

n—oo by lim b,
n—oo
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2. Se as sequéncias numéricas (an)ney € (bn)nen Sdo convergentes para a e b, respec-
tivamente, e

a, <b,, paracada neN,

entao
a<b,
15to €,
lim a, < lim b,,. (2.30)
n—oo n—oo

3. Se a sequéncia numeérica (a,)nen € convergente para zero e a sequéncia numeérica

z

(bn)nen € limitada, entdo a sequéncia numérica (an)nen © (bn)nen = (An bn)nen €
convergente para zero, isto é€,

lim (a, - by) =0. (2.31)

n—oo

4. Suponhamos que as sequéncias numéricas (an)nen € (bn)nen SG0 convergentes para
1l e a sequéncia numérica (Cn)nen Satisfaz:

a, <cq <b,, paracada neN. (2.32)

Entdo a sequéncia numérica (C.)neny € convergente para 1, isto é€,

lim c, =1. (2.33)

n—oo

Demonstracao:
De [0.:
Comecemos demonstrando (E=28):

Como

lima,=a e lim b, =),

n—oo n—oo

dado ¢ > 0, podemos encontrar N;, N, € N, de modo que

se n>N; temos |a,—al< = (2.34)
e
se n>N, temos |b,—Db|< % (2.35)
Logo, tomando-se
NO = maX{N1 ,Nz}, (2.36)

temos para
n>N,, (2.37)
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segue que

|(an +bn) - (a+b)| - |(an - Cl) + (bn _b)|
< la, — a| + [by, — b

(==3) (=3 (=32) (=3
n > Ny > Nyen > Ny > Nj, logo valem (E=24) e (EZ=3)]
<

mostrando que lim (a, +b,) = a+ b ou, equivalentemente,
n—oo

lim (a, + b,) = lim a, + lim b,,

n—oo n—oo n—oo

mostrando a validade da identidade (EZZ2H).

A demonstragdo de (E=27) é andloga e serd deixada como exercicio para para leitor.

Demonstragdo da indentidade (EZ23):

Vamos supor que

a#0

Como as sequéncias numéricas (an )nen € (bn)nen sdo convergentes, pela Proposicdo (E222),
elas serdo sequéncias numeéricas limitadas, em particular, a sequéncia (b,), ., é uma sequéncia
numérica limtada.

Logo deverad existir M > 0, tal que

b, <M, paratodo neN. (2.38)

Dado ¢ > 0, como as sequéncias numeéricas (a,)nen € (bn)nen 80 convergentes, podemos
encontrar Ny, N, € N, tais que:

3
se n>N;, teremos: |a,—al< T (2.39)
se n>N,, teremos |b,—Db|< 7 T ’ (2.40)
>0
Seja
NO = max{N1 ,Nz}. (241)
Observemos que
se n>N,, segue, de (EZ0),que n>N; e n>N,. (2.42)
logo
|(anbn) - ((lb)| = |(an - Cl) b, + (bn - b) (l|
<lan — al|bn| +[by —bllal
(=3)
< |lan —alM + |b, — b||q]
(EZ3) implca que vale (E=3) e (EZ0) ¢ £
< M
MMt 3
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mostrando que
lim (a,b,) =ab

n—oo

ou, equivalentemente,

lim (a, b,) = lim a, lim b,,
n—oo n—oo n—oo

isto é, a validade de (2223).
Se
b#0,

21

podemos fazer uma demonstragao semelhante e esta serd deixada como exercicio para o leitor.

Se
a=b=0,

entdo temos que dado ¢ > 0, como as sequéncias numéricas (a,)nen € (bn)nen 80 convergen-

tes, podemos encontrar N;, N, € N, tais que:
=0
se n>N;, teremos: |an = |an—0|< Ve,

-0
se n>N,, teremos: |b,] = b, — 0] < Ve.

Seja
NO = maX{N1 ,Nz}.

Observemos que

se n>N,, de(ZZ3),segueque n>N; e n>N,.

Neste caso teremos:

(anbn) — abl “=|a, by

- |an| |bn|
(Z3), implica na validade de: (EZ3) e (ZZA)
<

\/E\/E:8>

mostrando que
lim (a,b,) =0

n—oo

ou, equivalentemente,

lim (a, b,) = lim a, lim b,,
n—oo n—oo n—oo

isto é, a validade de (E223).
A demonstragdo de (E=Z9) é semelhante e serd deixada como exercicio.
DeQ.:
Suponhamos, por absurdo, que

a>b, istoé, lim a,> lim b,.
n—oo n—oo

Logo,
a—b>0,

(2.43)
(2.44)

(2.45)

(2.46)
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dado

>0,

CAPITULO 2. SEQUENCIAS NUMERICAS

(2.47)

como as sequéncias numéricas (a, )nen € (bn)nen sd0 convergentes, podemos encontrar N;, N, €

N, de modo que

se n>N;, teremos |a,—al<e,
ouseja, —e<a,—a<e,
istoé, —et+a<a,<e+a,
. a—>b a—>b
que, de (EZZ2), é o0 mesmo que: 5 +a<a, < —5 +a,
b
_at
-2
. a+b
em particular, teremos: > an (2.48)
e
se n>N,, teremos |b,—b|<e¢,
ouseja, —e<b,—b<e,
istoé, —e+b<b,<e+b,
a—b a—b
que, de (ZZ12), é o mesmo que: —T+b<bn<T+b,
—
:a-ﬁ—b
. a+b
em particular, teremos: b, < 7 (2.49)
Logo,
se m>max{N;,Ny}, teremos n>N; e n>N,, (2.50)
assim
(C=m) implica na validade de (E50) q 4+ b (EZ3) implica na validade de (Z50)
b, < > < n,
isto é,

b, < a,, se n>max{N;,N,},

0 que é um absurdo pois, por hipdtese,

a, <b,, paratodo neN,

isto é, vale (E30).
De B.:
Como a sequéncia numeérica (b, )n,eny € uma sequéncia numeérica limitada, podemos encon-

trar M > 0, tal que

ba] <M, (2.51)

Por outro lado, como a sequéncia numeérica (a, )ncy € uma sequéncia numérica convergente
para zero, dado ¢ > 0, podemos encontrar N, € N, tal que

para todo n € N.

£

teremos: |a.| =|a,—0| < M (2.52)

se n>N,
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Logo, dado dado ¢ > 0, se n > N,, teremos

|an bn - O| - |an| |bn|

mostrando que

n—oo
ou seja, a validade de (E=3T).
De B.:
Como as sequéncias (an),., e (bn),., sdo convergentes para 1, dado ¢ > 0, podemos

encontrar N7, N; € N, tais que:
se n>N;, teremos: |a,—1<e¢,

. . ; (%)
que implicard em: —e¢<a,—l<eg, (2.53)
se n>N,, teremos: [b,—1<c¢,

(35)
que implicard em —e<b,—1 < ¢ (2.54)

Logo definido-se
NO = max{N1 ,Nz}, (2.55)
para n > N,, teremos que n > N; e n > N;, assim
(%) em (IZE) an < Cn cn < bn (*%) em !‘m\
—¢ < a,—-1 < c,—-1 < b,—1 < €,
ouseja, —e<cp—Ll<e,

ou, equivalentemente, [c, —1| < ¢,

mostrando que

lim ¢, =1,
n—oo

isto é, a validade de (2=23), completando a demonstragdo do resultado.

Observacao 2.3.5

1. O item B. do Teorema (EZX1) actma, € conhectdo como o Teorema da Compa

ragao para sequéncias numéricas.

2. Uma sequéncia numérica que tem limite zero serd dita infinitésimo.

Com 1sto o item@. do Teorema (E231) acima, pode ser resumido como: ”o produto
de uma sequéncia numeérica que € um infinitésimo, por uma Sequéncia NUMErica
lrmitada € uma sequéncia numeérica que € um infinitésimo”.

3. O item[. do Teorema (E=3) acima, € conhecido como o Teorema do sanduiche

ou do confronto para sequéncias numéricas.
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Apliquemos os resultados acima ao:

Exemplo 2.3.4 Mostre que

li ! + ] 4+ 1 0
m - - N - — .
nSoo [ M2 (n+1)2 (2n)?
(n+1 ):garcelas
Resolugao:
Para 1sto observemos que
=Cn
a, =0< ] + 1 + T
T T2 (n41)2 (2n)?
(n+1)—parcelas
n+1>n
n+2>n
Inzn ) ]
< Y +t 5+t )
(n+1)—parcelas
n+1
1 1
R
para cada n € N.
Notemos que:
lim a, “=°0, (2.56)
n—oo

e do Ezemplo (E231) e do item . do Teorema (E=3), segue ge
1 1
lim b,, = lim (— + —2)
n—oo n—oo n n

e 1 1 1
(E=28) < (=) lim — + (lim —) (lim —)
n—oo T n—oo 1L n—oo T

= 0+0.0=0, (2.57)
ou seja, de (EB58) e (ER1Q), teremos:

lima,=_0 — lim b,.
n—o0 ~~— n-ooo
=1

Logo, do item [J. do Teorema (E21) (isto é, do Teorema do sanduiche), seque que

. 1 1 1
lm | 5+ ——5+ -+

1 Y (=37)
dm |t = lim a, = lim b, ="0.

(ZTL)Z n—oo n—oo

~\~

(n+1)—parcelas
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Observacao 2.3.6 Vale observar que mo Ezemplo (E34) acima, nao podemos aplicar
a propriedade de soma de limaites, i1sto é, limite da soma é a soma dos limites, pois o
numero de parcelas de a, aumenta, quando n aumenta.

Observemos que para:

n =1 (duas parcelas), temos que: a;= —

12722
T 1 1
n =2 (trés parcelas), temos que: a;= 5+ 3 T 7
T 1 1 1
n =3 (quatro parcelas), temos que: a3 =55+ 5+ =+

e assim por diante.

Um resultado bastante importante no estudo da convergéncia de sequéncias numéricas é
0 que relaciona limites de sequéncias numéricas com limites, no infinito, de fungdes a valores
reais, de uma varidvel real (estudado no Célculo 1) , a saber:

Teorema 2.3.2 Seja f:[1,00) — R uma fun¢do e suponhamos que

lim f(x) =1€R. (2.58)

X—00

Entdo a sequéncia numérica (a,)nen, onde

a, =f(n), para mneN, (2.59)
€ convergente para 1, 1sto €,
lim a, = lim f(x). (2.60)
n—oo X—00

Demonstragao:
Dado ¢ > 0, como

lim f(x) =1 R,

dado R > 0, de modo que
se x >R, teremos: |f(x)—1<e. (2.61)
Seja N, € N, de modo que
N, > R. (2.62)
Logo
(C==))
se n>N, > R, teremos, por (EED), que: | f(n) -1l < ¢,
—~—
=)
ou seja,

se n>N,, teremos: |a,—1<e¢,

mostrando que a sequéncia numérica (a,) ., é convergente para 1, ou seja, vale (EZ50), com-

pletando a demonstragao.

neN

O
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Observacao 2.3.7 Observemos que NAO podemos aplicar as regras de L’Héspital para

sequéncias numeéricas (an)nen-.

Porém, podemos utilizar o resultado acima para estudar o limite de fungdes a valores
reais, de uma varidvel real, no infinito (utilizando, se possivel, a regra de L’Hdspital), e

assim tirar conclusées para o limite da sequéncias numéricas associada, COMO VETEMOS

em alguns exemplos a sequir.

Exemplo 2.3.5 Mostre que
. 1—m
lim — =
n—oo n° 4 1

Resolucgao:
Para isto, consideremos a fumgédo f: [1,00) — R dada por

1—x
flx) = ——= ara cada x € [100).
(x) RS , P [ )
Notemos que:
1T—x
lim f(x) = i
XLI{olo (X) XI—>I££> Xz + ]
d
do tipo: =2 ,:por L'Héspital m aﬂ — X]
X—00 2
—_ 1
N [x*+1]
lim —
— m —
x—00 2X

Exercicio de Calculo 1 0

Notemos que

. 1—n
a, =
n?+1
(zm=3)

f(n), paracada n e N.

Logo, do Teorema (E33) acima, segue que a sequéncia numérica

1—n
(O e = (nz +1 )neN

lim — = lim a,
n—oo n n—oo

é convegente para | = 0, ou seja,

= lim f(x)

X—00

=0,

ou ainda,

como afirmamos.

(2.63)

(2.64)



2.3. CONVERGENCIA DE SEQUENCIAS NUMERICAS 27

Exemplo 2.3.6 Estudemos a convergéncia da sequéncia numérica (an)n, ., onde

n
an = oo para cada meN. (2.65)

Resolucgao:
Definamos a fungdo f: [1,00) — R dada por

f(x) = %, para cada x € [1,00). (2.66)
Notemos que:

. . X
lim f(x) = lim —
X—00 x—o0 eX
d
2 | por L’Hospital X
) P il P . dx

X—00 d

X
—e
dx

. 1
= lim —
x—o0 eX

Exercicio de Célculo 1
de 0, (2.67)

onde estamos utilizando o fato que tltimo limite foi tratado na disciplina Calculo I.
De (EE3), temos que

(=) N
n—g

=) f(n), paracada meN.

Assim, do Teorema (EZ33) acima, segue que

. n .
lim — = lim a,
n—oo en n—oo

= lim f(x)
X—00

(=2) 0
- )

ou seja,
lim — =0
n—oo en ’

n
(an)nngN = <g> e

é convegente para | = 0, completando a resolugdo.

ou seja, sequéncia numeérica

Exemplo 2.3.7 A sequéncia numérica (a,) onde

Mneny
. T\"
a, =1+ ~ ] » para cada neN, (2.68)

é convergente para e (ou seja, o numero de Euler).
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Resolugao:
Consideremos a funcdo f: [1,00) — R dada por

f(x) = (1 + J—() , paracada x € [1,00). (2.69)

Entédo, do 2.0 limite fundamental (estudado em Célculo 1), segue que

lim f(x) =e. (2.70)
X—00
Notemos que
L 024 ] "
an = <1 + —)
n
"= {n), paracada neN. (2.71)

ou seja,

ou ainda, a sequéncia numeérica

e ((141))
n nenN

é convegente para e, como queriamos mostrar.

Exemplo 2.3.8 Seja r € (0,00) fizado. Entdo a sequéncia numérica (a,)ne onde

nenN?

n

a, =1", para cada n€EN, (2.72)
¢ convergente para

0, se 7re(0,1),
1, se r=1,

ndo serd convergente, se 1 € (1,00)



2.3. CONVERGENCIA DE SEQUENCIAS NUMERICAS 29

Resolugao:
Notemos que, se
r=0,
teremos que
an, (g) rm
r;() on

=0, paracada neN,

e assim a a sequéncia numeérica
n
(an)ne neN — (T‘ )

serd convergente para 0.
Se

teremos que

=1, paracada neN,

e assim a a sequéncia numeérica
n
(an)ne neN — (T )
serd convergente para 1.

Por outro lado, se
re(0,1)U(T,00),

temos que
an (IEZ) rm
="' paracada neN. (2.73)
Portanto, se
re (0,1], teremos que Inr<O0,

e assim a sequéncia numérica (an)ne ., é convergente para zero, pois

. Exercicio de Célculo 1
lim e*=" = 0, paracada re (0,1].

X—00

Se
re(1,00), teremos Inr >0,

logo a sequéncia numérica (a,)ne ndo serd convergente pois, neste caso

neN

. Exercicios de Célculo 1
lim e*'®" = oo, paracada 1€ (1,00),

X—00

completando a resolugao.
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Observacao 2.3.8
1. Vale observar, uma vez mais, que NAO podemos aplicar a Regra de L’Hdéspital,
diretamente, as sequéncias numéricas.

2. O Teorema (E33) actma nao garante que se o limite lim f(x) nao ezxiste, entdo
X—00

o limite lim a, também ndo existird, onde

n—oo

a, =f(n), para cada n€eN,

como mostra o sequinte exemplo:

Consideremos a fung¢do f: R — R dada por

f(x) = sen(mtx), para cada x € R. (2.74)

Notemos que o limaite
lim f(x)

X—00
ndo ezxiste (Ezercicio de Cdlculo 1) porém, considerando-se a sequéncia numérica
(an),.cy, onde

a, = f(n)

= sen(7tn)

=0, para meN,

teremos

lim a, =0,
n—oo

ou seja, a sequéncia numérica (ay)nen serd convergente (para 0).

3. Todos os resultados apresentado acima permanecem verdadeiros se substituirmos
a hipdtese
neN, por n>N,,

para algum N, € N fizado.

Por exemplo, no item B. do Teorema (E=31), se trocarmos a hipdtese:

a, < b,, para cada neN‘, por |an <b,, paracada mn > N,|,

a conclusdo continuard vdlida, isto é,

lim a, < lim b, .

n—oo n—oo
Observacao 2.3.9 Como vimos anteriormente (veja a Proposi¢ao (E33)) toda sequéncia
numérica convergente é limitada, mas nao vale a reciproca (veja o Exemplo (E233)).

A questdo que poderiamos colocar é a sequinte: além de ser limitada, que proprie-
dade(s) uma sequéncia numérica poderia ter, para que pudéssemos garantir que ela
serd convergente ?

A seguir introduziremos uma nova classe de sequéncias numeéricas que nos ajudarao
a responder essa pergunta.
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2.4 Sequéncias numeéricas mondotonas

Definicao 2.4.1 Diremos que uma sequéncia numeérica (Qan)nen €:

1. crescente se:
Qny1 > Qn, para cada mMm €N, (2.75)

2. decrescente se:
any1 < an, para cada me N, (2.76)

3. estritamente crescente se:

Qny1 > Qn, para cada mn €N, (2.77)

4. estritamente decrescente se

ani1 < Qn, para cada mn €N, (2.78)

Se a sequéncia numérica (a,)nen for de um dos tipos acima ela serd dita mondtona.
Exemplo 2.4.1 A sequéncia numérica (a,)nen, onde

a, =n, para cada nE N, (2.79)
¢ estritamente crescente (portanto mondtona)

Resolucgao:
De fato, pois

ramras
an+1(:)n+]
>n

=) a,, paracada meN,

mostrando que a equéncia numeérica

(an)nEN - (n)neN

¢é estritamente crescente.

Exemplo 2.4.2 A sequéncia numérica (a,)nen, onde por
an = > para cada meN, (2.80)

¢ estritamente decrescente (portanto mondtona).
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Resolugao:
De fato, pois
[C=) I
Anyp = ——
+1 T
n+i>n 1
<

n
(=)
- n

para cada n € N, mostrando que a equéncia numérica

(e = (l)
n neN

¢é estritamente decrescente.

O
Exemplo 2.4.3 A sequéncia numérica (a,)nen, onde por
a, =cos(nm), paracada meN, (2.81)
nao é mondtona.
Resolucao:
Notemos que
an =) cos(n )
=(—1)", paracada mneN,
que mostra que nenhuma das condigdes da Definigdo (EZZ) ocorrerd.
[
Exemplo 2.4.4 A sequéncia numérica (a,)nen, onde
1
an = para cada M €N, (2.82)

Z_n )
¢ estritamente decrescente (portanto mondtona).
Resolucao:

De fato, pois, como
2> 2" paracada neN,

segue que
(=) |
n1 = on+l
1
< om
(z=3)
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para cada n € N, mostrando que a sequéncia numeérica

(an)neN = (21_11>

¢é estritamente decrescente.

Observacao 2.4.1

1. Podemos estudar a monotonicidade de uma sequéncia numérica (a,)nen, estudando-
se o comportamento da sequéncia numérica dada por:

( a l1 )
)
lneN

se a, # 0, para cada n € N,

Para ilustrar, suponhamos que

a, >0, para cada meN.

Com 1sto teremos que:

An+1
an

> 1

, para cada mneN

se, e somente se a sequéncia numeérica (a,)nen € crescente.

2. Podemos obter um resultado andlogo ao citado acima, trocando-se o sinal

,  pelo sinal:

e a palavra

crescente|, pela palavra: ’estritamente crescente|.

3. Notemos também que, se

a, >0, paracada meN,

temos que
An+1

an

<1, wparacada neN
se, e somente se a sequéncia numérica (a,)nen € decrescente.
4. Podemos obter um resultado andlogo ao citado acima, trocando-se o sinal

,  pelo sinal:

e a palavra

, pela palavra: ’estm’tamente decrescente|.
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5. Podemos obter resultado andlogos aos acima, para o caso que

a, <0, para cada meN,

trocando-se as palavras

crescente|, pela palavra: decrescente]|.

e vice-versa.

Conclusao: supondo que

a, >0 (oua,<0), paracada neN,

a sequéncia numérica (a,)nen Serd mondtona se, e somente se, ou

a a
ntl o> (ou ntl §1) , para cada MmEN,
an an

. Podemos, quando possivel, estudar a monotonicidade de uma sequéncia numérica

(an)nen estudando-se a monotonicidade de uma funcgdo f:[1,00) = R, onde

a, =f(n), para cada neN.

Por ezemplo, se a fungdo f € crescente (respectivamente, estritamente crescente,
decrescente, ), isto €,

f(x) > f(y) (respectivamente, > , <, <), para cada x>y=>1,
entdo a sequéncia numérica (Qn)nen,
a, =f(n), para cada neN

serd crescente (respectivamente, estritamente crescente, decrescente,

).

. Lembremos que, quando possivel (ou seja, se a fungdo f : [1,00) — R for dife-

rencidvel em [1,00)), poderemos estudar a monotonicidade da fung¢do f acima,
estudando o sinal de sua derivada , mais precisamente:

se f'(x) >0, para todo x € [1,00),
a func¢do f serd crescente em [1,00),
se f'(x) >0, para todo x € [1,00),
a funcdo f serd estritamente crescente em [1,00),
se f'(x) <0, para todo x € [1,00),
a fungdo f serd decrescente em [1,00),
se , para todo x € [1,00),

a func¢do f serd em [1,00).
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8. Pode ocorrer da funcdo f : [1,00) — R nao ser uma fun¢do mondtona, mas a
sequéncia numérica (a,)nen, onde

a, =f(n), para cada neN

ser mondtona, como mostra o sequinte exemplo:

Consideremos a funcdo f:[1,00) — R dada por

f(x) = sen(mtx), para cada x € [1,00).

Entdo a fungdo f ndo é mondtona, mas a sequéncia numérica (a,)nen, onde

a, = f(n)
= sen(7tn)

=0, paracada neN,

€ uma sequéncia numérica monotona, pois

a1 =0>0=a,, paracada neN.

Apliquemos as ideias acima aos:

Exemplo 2.4.5 A sequéncia numérica (a,)nen, onde

-n
an = i1 Para cada meN, (2.83)
€ estritamente decrescente.
Resolugao:
De fato, pois
—(n+1)
An41 (2_33) (Tl+ ]) +1
a, —n
n+1
- n+In+1
n+2 n
B n4+2n+1
 n?4+2n
1
=1+ > 1. 2.84
e (2.84)
~——
>0
para cada n € N.
Como
(=3

)
a, < 0, para neN,
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para cada n € N, multiplicando-se (Z24) por a., segue que
ane1 < a,, paracada neN,

ou seja, a sequéncia numérica (a,)ney € estritamente decrescente, em particular, serd uma
sequéncia numérica mondétona.

[
Exemplo 2.4.6 A sequéncia numérica (a,)nen, onde

2n
3In+2

a, = , para cada mn €N, (2.85)

€ estritamente crescente.

Resolucao:
De fato, pois

2(n+1)
Qi1 (2zm) 3(n+1)+2
an o 2n
3n+2
_2n+23n+2
" 3n+5 2n
_6n’+10n+4

6nt+10n

4
=14+ — 1, 2.86
612+ 10n ( )
—_——

>0

para cada n € N,

Como
(e=z3)
a, < 0, paracada neN,

para cada n € N, multiplicando-se (ZE8) por a., segue que
an+1 > a,, paracada neN,

ou seja, a sequéncia numeérica (a, )nen € estritamente crescente, em particular, serd sequéncia
numérica mondtona.

O
Exemplo 2.4.7 A sequéncia numérica (a,)nen, onde
1 2
n= %, para cada mn €N, (2.87)

€ estritamente decrescente.
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Resolugao:
De fato, consideremos a fungio f: [1,00) — R, dada por

N In(x + 2)

fx) x+2

paracada x € [1,00).

Notemos que

(z=2) In(n + 2)
T n+2

=) f(n), paracada n e N.

Por outro lado, notemos que a fungdo f é diferenciavel em [1,00) €

oy (@) d [In(x +2)
File) = &{ x+2 ]

(x+2)—In(x+2)-1
(x + 2)?

regras de derivagdo X - 2

1 —In(x +2)

<0
(x + 2)?

para x € [1,00).
De fato, pois se

x € [1,00),
teremos x+2 > e,
logo, In(x+2)>1,
ouseja, 1—In(x+2)<0.

Logo, como

£/(x)

0, para xe€([l,00),

(
segue, do item [@. da Observagio (

~

37

(2.88)

(2.89)

X) <
ZT), que a fungdo f serd estritamente decrescente e assim,

pelo item B. da mesma Observagdo, teremos que a sequéncia numeérica (a,)nen também serd

estritamente decrescente (pois a, =) f(n), para cada n € N).

O

Observacao 2.4.2 Sabemos que toda sequéncia numérica convergente é limitada (veja
a Proposicao (B33)), mas nem toda sequéncia numérica limitada é convergente (veja

o Ezemplo (E223)).

A pergunta que podemos formular é a sequinte: que outra propriedade a sequéncia
numérica poderd ter (além de ser limitada), para que possamos garantir que ela seja

converente ?
A resposta serd dada no resultado a sequir:

Teorema 2.4.1 Toda sequéncia numérica limitada e mondtona serd convergente em R.
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Demonstracgao:
Faremos a demonstragdo para o caso em que a sequéncia numeérica (a,)ney Seja crescente.
Os outros casos serdo deixados como exercicio para o leitor.

Como a sequéncia numeérica (a,)ney € limitada temos que existe M > 0, de modo que
la,| <M, paracada n € N.

Logo o conjunto
A ={a,;neN}

serd limitado em R.
Portanto existe
L =sup{a,:n e N} CR.

Afirmamos que
lim a, =L.

n—oo
De fato, dado ¢ > 0, da defini¢do de supremo, como
L =sup{a,:n €N} eR,
podemos encontrar N, € N, de modo que

L—e<an, <L. (2.90)

Como a sequéncia numeérica (a,)ney € crescente temos, para n > N, que

(=) L é limitante superior do conjunto A
L—e < an, <ay < L<L+e¢, (2.91)
ou seja, para n > N,, teremos
L-e<a,<L+e¢,
ou ainda
la, — L|<e, para n>N,,
mostrando que
lim a, = L =sup{a,; n € N},
n—oo
como queriamos demonstrar.
O
Observacao 2.4.3
1. O Teorema (ZZT) actma mos diz que se uma sequéncia (a,),., € mondtona e

limitada, entdo ela serd convergente para algum L € R e, além disso,

lim a, =L =sup{a,; n € N}. (2.92)

n—oo
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2. Se no Teorema (EZZ) acima, a sequéncia numeérica (an)nen for decrescente (e
limitada), entdo, de modo semelhante, pode-se mostrar que
lim a, =L =inf{a,; n € N}. (2.93)
n—oo
3. O resultado acima nos dd uma condi¢do suficiente (mas nao necessdria) para que

uma sequéncia numeérica limitada, seja convergente em R, a saber, que ela seja
mondtona.

Dewzaremos como ezercicio para o leitor uma sequéncia numérica que seja limai-
tada, ndo seja mondtona, mas é convergente em R.

Apliquemos as ideias acima aos:

Exemplo 2.4.8 Mostre que a sequéncia numeérica (a,)nen, onde

a, = ok para cada M€ N, (2.94)

Resolucao:

Para garantir a convergéncia em R, da sequéncia numérica (a,)ney, mostremos que ela é
uma sequéncia numeérica limitada e monétona.

Logo, pelo Teorema (ZZ), segue que ela serd convergente em R.

Apés isto, mostraremos que o valor do seu limite é zero.
(1) Mostremos que a sequéncia numérica (a,)en € decrescente.

De fato, notemos que, para cada n € N, temos:

2n+1

Qi1 (@) (n+1)!
a, pAS
n!
zn—H n!
T2 )!
1

n+1
n+1>2
<

)

=1. (2.95)

Como
a, >0, paracada neN,

para cada n € N, mutiplicando () por a., segue que

a1 <a,, paracada meN, (2.96)
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ou seja, a sequéncia numérica é decrescente (em particular, mondtona).
(ii) Mostremos que a sequéncia numérica (a,)nen € limitada.
Do item (i) temos que a sequéncia numérica (a,)nen € decrescente.

Por outro lado,

(=)
a, > 0, paracada neN,

seque que
(m)
<

—2<0<a, a; =2, paracada neN,

em particular,

la,| <2, paracada neN.

Portanto a sequéncia numérica (a,)ncy € limitada.
Logo, do Teorema (EZ), segue que a sequéncia numeérica (a,)ney € convergente em R,
ou seja, existe L € R tal que

L= lim a,. (2.97)

n—oo

Portanto, teremos

L= 1lim a,
n—oo

O] ZTI
(=) lim —

n—oo M!
— lim F 2“_']
n-oo [N (N —1)!
= lim [E an_1] . (2.98)
n

n—oo

Mas
2
lima, ;=L e lim —=0. (2.99)

n—oo n—oco N

Logo, de (@) e (E9R), segue que

2
L= [hm —} [lim an_1]
n—oo N n—oo

() e (@) )

=0,

ou seja,
n

L=0, ouainda, lim — =0,
n—oo TL'

mostrando que a sequéncia numérica (a,)ney é convergente para zero, completando a re-
solucgdo.
O
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Exemplo 2.4.9 Mostre que a sequéncia numérica (a,)nen, onde

a=v2, a=\/2Vv2,--,ay=+2a,,, paracada meN, (2.100)

€ convergente para 2, 1sto €,
lim a, =2.
n—oo
Resolucgao:
Para garantir a convergéncia em R, da sequéncia numérica (a,)nen, mostremos que ela é
uma sequéncia numérica limitada e monétona.
Logo, pelo Teorema (EZ), segue que ela serd convergente em R.
Apods isto, mostraremos que o valor do seu limite é igual a 2.
(1) Mostremos que a sequéncia numérica (a,)nen € limitada.
Na verdade, mostraremos que

0<a,<2, paracada neN, (2.101)
que implicard, em particular, que
la,| <2, paracada neN,

ou seja, a sequéncia numérica (a,)nen serd limitada.
Para (ET0T), utilizaremos indugao matematica, isto é, precisaremos mostrar que:
(a) a propriedade (EIOT) é vélida para n = T;
e
(b) se a propriedade (E7I0M) for valida para n = k — 1, ela serd valida para n = k.
Notemos que a propriedade (EZTOT) é vélida para n = 1, pois

0< q (EEJ)\/ESZ,

ou seja, vale (a).
Além disso, se a propriedade (ETOT) for vélida para n = k — 1, teremos:

O< a1 <2 (2.102)
Mas
0< Ay (EE) 2 A1
~—~—
()
<2
<V2.2=2,

mostrando a propriedade (EZT0T) serd vélida para n = k, isto é, vale (b).

Assim segue, da indugdo matemdtica, que (EZIOM) é verdadeira para todo n € N, em
particular, a sequéncia numérica (a,), ., € limitada.
(ii) Mostremos que a sequéncia numeérica (a,)nen € crescente.
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Para isto observemos que, para cada n € N, teremos:

an+] (Egm) \/2(171

a, an

V24
(vVan)
V2

> 1, (2.103)

Como
a, >0, paracada neN,

para cada n € N, multiplicando-se (EZI01) por a., segue que
Qni1 > a,, paracada nmeN,

ou seja, a sequéncia numeérica (a,), ., é crescente (em particular, mondtona).
Logo, do Teorema (EZT), segue que a sequéncia numeérica (a,)nen € convergente em R.
Seja
L= lim a,. (2.104)

n—oo

Entao

L= lim a,
n—oo

(= lim /2 a1

n—oo

propriedades de limite .
= /2 lim an_q
n—oo
(Tm3)
= V21,

ou seja, [*=2L.
Com isto poderemos ter as seguintes possibildades:
L=0, ou L=2.

Notemos que
L=0,

ndo poderd ocorrer pois a sequéncia numeérica (a,) _. € crescente e

neN

an2a1=\/§>0.

Portanto deveremos ter
L=2,
isto é,
Jim v =2,
mostrando que a sequéncia numérica (a,)ney é convergente para 2, completando a resolucgio.

O
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Observagao 2.4.4 Observemos que na sequéncia numérica do Ezemplo (ZZ9) acima,
temos

=2, ay=22.21 =214 q3=2%.21.28 =2ztats ... q, =2ztattan
par cada n € N,
Como
L
2 4 8
€ uma P.G. (progressdo geométrica) de razdo
L
T = z y
cujo primeiro termo é
L
a = za
sabemos que a soma da mesma serd igual a
1
a _
L= 2 .
1—r : 1
2

Logo é natural acharmos que

lim a, =2'=2.
n—oo

Exemplo 2.4.10 Mostremos que a sequéncia numérica (a,)nen, onde

@=V2, a=\24V2, -, a ty2tans, paracads neN,  (2.105)

€ convergente para 2, 1sto €,
lim a, =2.
n—oo
Resolugao:
Para garantir a convergéncia em R, da sequéncia numérica (a,)ney, mostremos que ela é
uma sequéncia numérica limitada e monétona.
Logo, pelo Teorema (EZZT), segue que ela serd convergente em R.
Apods isto, mostraremos que o valor do seu limite é igual a 2.
(1) Mostremos que a sequéncia numérica (a,)nen € crescente, isto é,

a, < an;1, paracada meN. (2.106)

Para isso usaremos indugdo matematica, ou seja, mostraremos que:
(a) a propriedade é valida paran =1
e
(b) se a propriedade for valida para n = k — 1, entdo ela também serd vélida para n = k.



44 CAPITULO 2. SEQUENCIAS NUMERICAS

Notemos que
2<24+V2e 6T
a1(EEE)\/§ < \/2+\/§(EEE)a2,
portanto: a; < ap,

ou seja, vale a propriedade (E-T08) para n = 1, isto vale (a).
Suponhamos que a propriedade for vdlida para n =k — 1, isto é,

a1 < Q. (2.107)

Com isto, teremos:

vaa
< V24
()
= Qg+1y
mostrando que a propriedade serd valida para n = k.

Assim, segue da indugdo matemadtica, que (E-I08) vale para todo niN, ou seja, a sequéncia
numérica (a,), ., € crescente.

(ii) Mostremos que a sequéncia numeérica (a,)nen satisfaz

0<a,<2, paracada neN, (2.108)

em particular, a sequéncia numérica (a,)nen serd limitada.

Para isso usaremos, novamente, indugdo matemadtica para mostrar (EZT03), ou seja, mos-
tremos que

(a) a propriedade é vélida para n = 1.
e

(b) se a propriedade for valida para n = k — 1, entédo ela serd valida para n = k.
Notemos que a propriedade é vélida para n = 1, pois

0<a = v2<2.
Observemos também que, se a propriedade for valida para n = k — 1, isto é, se

0< ar <2, (2.109)

entdo ela serd valida para n = k.
De fato, pois

ax =) V2 + ax

()e\[éT

< V242
=2,
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mostrando que a propriedade é vélida para n = k, ou seja, vale (b).
Assim, do processo de indugdo matemadtica, segue que vale (EI08), em particular, a
sequéncia numérica (a,), ., € limitada.
Logo, do Teorema (EZT), segue que a sequéncia numeérica (a,)nen € convergente em R.
Seja
L= lim a,. (2.110)

n—oo
Entao

L= 1lim a, =2 lim /2 + an;

n—o0 n—o0
propriedades de limite .
= 2+ lim a,_q
n—00
(?)L

_ V2L,

ouseja, [*=2+1,
ou seja, temos as seguintes possibilidades:
L=—1, ou L=2.
Observemos que
L=-1

ndo poderd ocorrer, pois a sequéncia numérica (a,)ney é crescente, assim
a, > a3 =vV2>0.

Portanto, deveremos ter
L=2,

ou seja,

lim a, =2,
n—oo

mostrando que a sequéncia numérica (a,)nen é convergente para 2, completando a resolugio.

O

Alguns tipos de a sequéncias numéricas que sdo divergentes podem ser importantes como
veremos a seguir.

2.5 Sequéncias numéricas divergentes

Definicao 2.5.1 Diremos que uma sequéncia numeérica (a,)necny divergente para +oo
(respectivamente, —oo) se dado K > 0, podemos encontrar N, € N, de modo que, para

n>N,, temos a,>K (respectivamente, a, < —K). (2.111)
Neste caso escreveremos

lim a, = o0 (respectivamente, —c0).
n—oo
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Com isto temos os:

Exemplo 2.5.1 A sequéncia numérica (a,)nen, onde
a, =mn, para cada meN
€ uma sequéncia numérica divergente para oo, isto €,

lim n=c0.
n—oo

Resolugao:
De fato, dado K > 0, consideremos N, € N tal que

N, > K.
Logo,

para n > N,,

(cTm3)
teremos a, (IZEZ)n > N, > K,

mostrando, pela Definicdo (EZ5T), que

lim a, = oo,
n—oo

isto é, (T13).

Exemplo 2.5.2 A sequéncia numérica (a,)nen, onde

S 1=nd

:H——nz’ para cada m €N

an
€ uma sequéncia numérica divergente para —oo, 1sto é,

o 1—nd
lim 5 = —00,
n—oo | +n

Resolucao:

De fato, dado K > 0, conisderemos N, € N, tal que

No>K+1.

(2.112)

(2.113)

(2.114)

(2.115)

(2.116)

(2.117)
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Assim,

para m >N, (2.118)

1=

1+n?
I<n? n? —n
1 4+ n?
n241>n2>1 T‘l,2 —n
<

teremos a,

3

3

TLZ
n2=£0
< 1—-n

(Tm3)

< T—N,

()
< K,

(2.119)
mostrando, pela Definigdo (&), que

lim a, = —o0,
n—oo

isto é, (ZT1M).
O
Semelhantemente com o caso de convergéncia, podemos estudar a divergéncia de uma
sequéncia numérica para co (respectivamente, para —oo), estudando o comportamento de
uma fungdo de uma varidvel real, a valores reais, que a define.
Mais claramente temos:

Proposicao 2.5.1 Suponhamos que a fungdo f: (0,00) (respectivamente, (—o0,0)) — R
€ tal que
lim f(x) = co (respectivamente, —oco), (2.120)
X—00
Entdo a sequéncia numérica (a,)nen, onde
a, =f(n), para cada meN (2.121)

€ uma sequéncia numérica divergente para oo (respectivamente, para —oo), isto é,

lim a, = oo (respectivamente, —oc0). (2.122)
n—oo
Demonstracgao:
Sera deixada como exercicio para o leitor.
O
Apliquemos as ideias acima aos:
Exemplo 2.5.3 A sequéncia numérica (a,)nen, onde
S 1=—nd
an , para cada neN (2.123)

R



48 CAPITULO 2. SEQUENCIAS NUMERICAS

uma sequéncia numeérica divergente para —oo, 1sto €,

Resolugao:
Notemos que este Exemplo € igual ao Exemplo (E532).

Observemos que se definirmos a fungdo f: (0,00) — R, dada por

1=
f(x) = T2 para cada x € (0,00),
teremos que
1—x°
lim f(x) = lim 5
X—00 x—00 | 4%
d
tipo: %,aplicamos L’Hospital _, a |:1 —-Xx
= im
x—oo d
dx
=3
= lim
X—00 X
2
A0 . —3X
= m—

Exercicio de Calculo 1

Como, para cada n € N, temos
(=) 1—n?
o 14n?

f(n),

n

pela Proposigdo (EZ5) acima, segue que

lim a, = lim f(x)
n—oo X—00

(=)

b

completando a demonstragdo da identidade (ZZT24).

Exemplo 2.5.4 A sequéncia numérica (a,)nen, onde

.3
an = —, paracada neN
n

€ uma sequéncia numérica divergente para oo, isto €,

n

lim —SZOO.
n—oo M

(2.124)

(2.125)

(2.126)

(2.127)

(2.128)
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Resolugao:
De fato, consideremos a fungéo f: (0,00) — R, dada por

X

f(x) ==, paracada xe€ (0,00).
X
Notemos que
lim f(x) =) lim —
X—00 Xx—00 X
d X
tipo % aplicaﬂdo L’'Héspital _, a B ]
- R I
T ¥
. 3*1In(3)
= lim 5
X—00 3X
d X
tipo 22 aplicando L'Héspital _, a 3 111(3)]
= h_)m 1
X o0 “ 3 2
5 3]
. 3(In3)?
= lim ——
X—00 6%
d . )
tipo 2 aplicando L’Hospital _. &B (1113) ]
= me*
X—300 1[6 .
dx
g 3*(ln3)?
o x1—>rg> 6
Exercicio d:e Caélculo 1 0. (*)
Como
3n
0 Z_3"
mn

pela Proposigdo (E5) acima, segue que

lim a, = lim f(x)

n—oo X—00

(%)

oo,

completando a demonstragdo da identidade (E7T23).

Observacao 2.5.1

49

(2.129)

1. Se a sequéncia numérica (an)nen € crescente (respectivamente, decrescente) e ndo
¢ limitada, entdo ela serd divergente para oo (respectivamante, —oco), isto é,

lim a, = oo (respectivamente, —0).
n—oo
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2. Outra classe de a sequéncias numéricas que nmao serdo alvo de mosso estudo
€ a classe formada pelas sequéncias numéricas que sdo oscilatérias, ou seja,
sequéncias numeéricas que nao sdo sequéncias numéricas convergentes, nem di-

vergentes para co 0u —o0.

Por exemplo, a sequéncia numérica (a,)nen, onde

an = (_] )n)

para cada m €N,

nao convergente, nem divergente para co ou —o0, 0U Seja, € uma sequéncia numeérica

oscilatoria.

Temos um teorema da comparagdo para sequéncia numeérica divergentes para oco (respec-

tivamente, —o0), a saber:

Teorema 2.5.1 Suponhamos que as a sequéncias numéricas (an)nen, (bn)nen satisfazem:

a, <b,, paracada meN. (2.130)
Entao:
1. Se
lim a, =00, deveremos ter lim b, =00. (2.131)
n—oo n—oo
2.
lim b, = —oc0, deveremos ter lim a, = —o0. (2.132)
n—oo n—oo
Demonstracgao:
De 1.:
Como
lim a, = o0,
n—oo
entdo dado K > 0, podemos encontrar N, € N, tal que para
n >N, teremos a, > K. (2.133)
Assim, se 1 > N,, segue que
(c=m) (=)
no 2 an > K,

mostrando que

lim by = oo,
n—oo

completando a demonstragao do item . .
De modo andlogo mostra-se o item I. .

Os detalhes da demonstragdo do mesmo serdo deixados como exercicio para o leitor.

Apliquemos isto ao (compare com o Exemplo (E223)):

O
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Exemplo 2.5.5 Mostre que a sequéncia numérica (b, )nen, onde
= 1]
vnoon+1 V2n'

(n+1)—parcelas

b, para cada n €N

€ uma sequéncia numérica é diwergente para oo, isto €,

1 1 1

lim + ++— | =00.
n—00 ﬁ vn+1 \/znl
(n+1 ):;arcelas
Resolucgao:
Para isto, observemos que, para cada n € N teremos:
b, = 1 + 1 + L
UM VUt V2n
(n+1)—parcelas

1<n<2n
1<n+1<2n

|

N

S
N

) 3
ﬁ

S

- n+1
2n
n 1
L
2 2n
isto é,
a, <b,, paracada mneN.
Mas
1
lim a, = lim \/—ﬂ—i-—
n—oo n—oo 2 v2n
Exercicio

Logo, pelo item M. do Teorema (EZ521) acima, segue que

1 ] 1 2 1 34
lim = 4im b, = 0o,

+ +o b —
n—oo ﬁ vn+1 vV2n n—oo

(n+1)—parcelas

mostrando (ET33).

51

(2.134)

(2.135)

(2.136)



52 CAPITULO 2. SEQUENCIAS NUMERICAS

2.6 Subsequéncias de uma sequéncia numérica

Definicao 2.6.1 Seja (a,)nen uma sequéncia numeérica e A = {ny,ny,---} subconjunto
infinito dos numeros naturais, satisfazendo

nm<n<ng <.

Como 1sto podemos construir a sequéncia numérica (ay,, )ien (isto €, consideramos a
restrigdo a;, :ACN—=R).
Tal sequéncia numérica serd denominada subsequéncia da sequéncia numeérica (an)nen-

Observacao 2.6.1 Um outro modo de definir subsequéncia de uma sequéncia numerica
(an)nen Seria a segquinte:

Considere uma func¢do f: N — N que seja estritamente crescente.

A sequéncia numérica (af(n]) . serd dita subsequéncia da sequéncia numérica (a,)nen-

ne

Temos os:
Exemplo 2.6.1 Consideremos a sequéncia numérica (Q,)nen, onde
s
a, = sen <n E) , para cada meN. (2.137)
Se considerarmos somente os indices impares, isto é
ny=2i+1, paracada i1€N,
obteremos a subsequéncia (ayii1)ien, da sequéncia numérica (a,)nen, onde
a2itl = sen [(Zi+ 1)%[]
= (—1)', para cada i€N,
ou seja, a subsequéncia (a2ii1)ien, da sequéncia numérica (an)nen, S€rd a sequéncia:
—1,1, 1,1,
Se considerarmos somente os indices pares, isto €,
n; =21, paracada 1€N,
obteremos a subsequéncia (q;i)icn, da sequéncia numérica (a,)nen, onde
A =3 sen(21m)
=0, paracada 1€N,
ou seja, a subsequéncia (azi)icn, da sequéncia numérica (a,)nen, S€rd a sequéncia:

0,0,0, - .
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Exemplo 2.6.2 Consideremos a sequéncia numeérica (a,)nen, onde
a, =n, para cada mneN. (2.138)
Entdo se considerarmos somente os indices impares, 1sto €,
ny=2i+1, paracada i1€N,

obteremos a subsequéncia (azi41)ien, da sequéncia numérica (a,)nen, onde

a2i41 =) 21+ 1, para cada meN,
ou seja, a subsequéncia (aii1)ien, da sequéncia numérica (an)nen, Serd a sequéncia
1,3,5,7,---
Se considerarmos somente os indices pares, isto €,
n; =21, paracada i1€N,

obteremos a subsequéncia (a;i)icn, da sequéncia numérica (a,)neny , onde

)

azi 2i, para cada mEN,

ou seja, a subsequéncia (azii1)ien, da sequéncia numérica (a,)nen, Serd a sequéncia
2,4,6,- -

O
Um resultado importante no estudo da convergéncia de sequéncias numéricas, utilizandos-
e subsequéncias da mesma, é dado pelo:

Teorema 2.6.1

1. Se a sequéncia numérica (a,)neny € convergente para a, entdo toda subsequéncia

é
da mesma, serd convergente para a.

Em particular, se a sequéncia numérica (a,)neny € convergente para a, entdo para
cada k, € N, a subsequéncia (anix, )nen, da sequéncia numeérica (ay)nen, Serd con-
vergente para Q.

2. Se toda subsequéncia da sequéncia numérica (an)nen

€ convergente para a, entao
a sequéncia numeérica (an)nen Serd convergente para aA.
3. Toda sequéncia numérica (an)nen, PosSsut uma subsequéncia mondtona.

4. Toda sequéncia numérica (a,)nen ltmitada, possui uma subsequéncia que € con-
vergente.
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Demonstracgao:
De (0. :
Se
lim a, = a,
n—oo

entdo dado ¢ > 0, podemos encontrar N, € N, tal que se
n>N,, temosque |a,—al<e. (2.139)

Logo, para n; > N, temos que

()
an, —al < g,

mostrando que

lim a,, = a,
1—00

como queriamos demonstrar.

Observemos que para cada k, € N fixado, tem que a sequéncia (an iy, )nen S€rd uma
subsequéncia da sequéncia numérica (an)nen.

Como a sequéncia (a,)neny é convergente para a segue, do que acabamos de mostrar, que
a subsequéncia (anix, Jnen S€rd convergente para a, completando a demonstragdo do item M.

DeD. :
Observemos que para cada k, € N fixado, a sequéncia (a, ik, )nen Serd subsequéncia da
sequéncia numérica (an)nen-
Logo, por hipdtese, serd convergente para a, ou seja, dado ¢ > 0, podemos encontrar
N; € N, tal que se
n>N;, temosque |a.x, —al<e,

que é equivalente a escrever
la, —al<e, paracada n >N, =N;+k,,

mostrando que a sequéncia numeérica (a,)nen é convergente para a, completando a demons-
tracdo do item 0. .

DeB. :

Consideremos os seguintes subconjuntos:

A={p € N; podemos encontrar n >p, de modo que a, > a,},

B ={q € N; podemos encontrar n > q, de modo que a, < a4}, (*)

Notemos que
N=AUB.

Logo, se o conjunto A for finito, teremos que o conjunto B serd infinito, ou seja, existira
uma subsequéncia da sequéncia (a,), ., que é decrescente.
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De fato, como o conjunto B é infinito e contido em N, temos que;
B= {qi; ie N},

onde
Pi < piy1, paracada ieN.

Da defini¢do de B (isto é, de (*)), segue que
aq.,, < aq,, paracada ieN,

ou ainda, a subsequéncia (aq,)ien, da sequéncia (a,), ., serd decrescente.

Por outro lado, se o conjunto B for finito, teremos que o conjunto A serd infinito, ou seja,
existird uma subsequéncia da sequéncia (a.), ., que é crescente.

A verificagdo deste fato, serd deixada como exercicio para o leitor.

De@. :

Notemos que toda subsequéncia de uma sequéncia numérica limitada (a,)ncy serd limi-
tada.

Por outro lado, do item B. acima, a sequéncia numérica (a,)ncy possui uma subsequéncia
mondtona, que indicaremos por (ay, )ien-

Assim, a subsequéncia (ay, )ien serd mondtona e limitada.

Portanto, do Teorema (ZZT), segue que a subsequéncia (a,, )ien serd convergente, com-
pletando a demonstragdo do item B. e do resultado.

O

2.7 Sequéncias numéricas de Cauchy
A seguir introduziremos uma nova classe de sequencias numéricas, a saber:

Definicao 2.7.1 Diremos que uma sequéncia numérica (a,)nen Serd dita uma sequéncia
numérica de Cauchy, se dado ¢ > 0, podemos encontrar N, € N, de modo

para n,m > N,, deveremos ter |a,—an|<e¢. (2.140)

Observacao 2.7.1 Uma sequéncia numérica (a,)nen € uma sequéncia numérica de Cau-
chy se a diferenca, em mddulo, entre dois termos da mesma for arbitrariamente pe-
quena, para indices suficientemente grandes.

Temos os:
Exemplo 2.7.1 A sequéncia numérica (a,)nen, onde
a, = —» para cada neN (2.141)

€ uma sequéncia numérica de Cauchy.
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Resolugao:
De fato pois, dado ¢ > 0, considerarmos N, € N, tal que

2 ) 2
N, > oo ouseja, N. <e. (2.142)
Logo, para n,m > N,, segue
11 (2.143)
n’m N’ '
e assim, teremos:
(=) | 1 1
an — am| = - —
n m
1 1
<=+ —
n o m
(=) 1 1
No N,
2 (Im)
=— < ¢ 2.144
No ) ( )
ou seja, a sequéncia numérica (a,)nen é sequéncia numérica de Cauchy.
O

Observemos que a sequéncia numérica do Exemplo (EZ71) acima é convergente em R.

Isto é, no caso acima, a sequéncia numeérica (a,)nen € convergente em R e é uma sequéncia
numeérica de Cauchy.

Isto ocorre em geral, como mostra o:

z

Teorema 2.7.1 Toda sequéncia numérica convergente é uma sequéncia numeérica de
Cauchy.

Demonstragao:

De fato, se a sequéncia numeérica (a,)ncn € convergente para a, entdo dado ¢ > 0, podemos
encontrar N, € N, de modo que

3
para n > N,, teremos |a,—al< 7 (2.145)

Logo, para n,m > N,, segue que

lan — am| =lan —a+ a — ay

=l(an —a) + (a—an)|
desigualdade triangular

lan —al +la — an|
~—

=lam—al
('ZEE) e €
>~ z + Z =&,
mostrando que a sequéncia numérica (a,)neny € uma sequéncia numérica de Cauchy, comple-
tando a demonstragao.
O

A seguir trataremos do seguinte importante exemplo:
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Exemplo 2.7.2 Consideremos a sequéncia numérica (Sn)nen, onde

Si=1
1

N

Sz +2
1 1

S T

S3 +2 3

) 1 1 1

Shn=14+=-+s+---+—, paracada neN. (2.146)
2 3 n

Mostre que a sequéncia numérica (S, )nen , € divergente para +0o, ou seja,

lim S, = +.

n—oo

Resolucgao:
Mostraremos que a sequéncia numérica (S, )ncy nao é uma sequéncia numeérica de Cauchy.

De fato, para k € N, temos que

T 1 1 1 1 1T 1 1
Bn—&fgy‘O+—+—+~~+—+———+~w~—)—(r+—+—+~~ﬂg‘

2 3 k  k+1 2k 2 3
L.
Ck+1 2k
k—parcelas
k+1<2k
k+2<2k
2k—1<2k 1 1
> — e
> TP
k—parcelas
1
=k —
2k
1
:z)

ou seja,
1
[Sox — Syl > 7 para cada k€ N.

Logo dado, por exemplo,

e£%>0, (2.147)

segue que nao podemos encontrar N, € N, de modo para n, m > N,, tenhamos

1
Sn_Sm = 35
| |<e 3
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De fato, pois para cada N, € N, se tomarmos m > N,, entdo para
n=2m2>N,
(com isto teremos que n, m > N,) segue que

|Sn - Sm| = |SZm - Sm|

VooV
Wl =N =

2
(=) e
ou seja, (Sn)neny nao é uma sequéncia numeérica de Cauchy.
Logo, do Teorema (E-71), segue que numérica (S, )nen ndo poderd ser convergente em R.
Para finalizar, observemos que a sequéncia numérica (S, )neny acima € estritamente cres-
cente, pois, para cada n € N, teremos:

=2 B LI
n 23 n n+l
=)

:Sn_{_L
n+1
~——
>0
>S..

Como a sequéncia numeérica (S, )nen € estritamente crescente e ndo é convergente em R,
ela ndo poderd ser limitada (pois se fosse, seria monétona e limitada, portanto, do Teorema
(EZD), deveria ser convergente em R).

Portanto deveremos ter

lim §,, =400,

n—oo

completando a resolugéo.

Observacao 2.7.2

1. O Ezemplo (E273) acima, serd muito importante ao longo do prézimo capitulo,
que tratard das séries numéricas.
2. Com 1sto surge a pergunta: ”vale a reciproca do Teorema (EZ) actma? ”.

A resposta serd positiva, se considerarmos a sequéncia numérica tomando valores
sobre o todo o conjunto dos numeros reais, ou seja, em R.

Para mostrar 1sso precisaremos de alguns resultados que serdo exibidos a segquir.
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Proposicao 2.7.1 Toda sequéncia numérica de Cauchy é uma sequéncia numérica li-
mitada.

Demonstracgao:

De fato, se a sequéncia numérica (a,)ncy € sequéncia numérica de Cauchy, entdo dado

e=1,
podemos encontrar N, € N, de modo que
para n,m>N,, teremos la, —an|<e=1,

em particular, la, —an,| <1, paracada n>N,. (2.148)

Logo, para n > N,, teremos:

desigualdade triangular (TZm)
lan| —lan,| < lan —an,| < T,
ou seja, lan| < lan,|+T. (2.149)
Consideremos

M = max{|ai|, |azl, -, [an, al, [an,| + 1} (2.150)

Entdo, para cada n € N de (E21Z3) e (E1=0), segue que
lanl <M,

mostrando que a sequéncia numérica (a,)ney € limitada, completando a demonstragéo.
O

z

Observacao 2.7.3 A reciproca do resultado acima nao € verdadeira, i1sto €, nem toda
sequéncia numérica limitada é uma sequéncia numeérica de Cauchy, como mostra o
segquinte exemplo:

Consideremos a sequéncia numérica (an)nen, onde
a, = (—1)", para cada m e N. (2.151)

A sequéncia numérica (a,)nen € uma sequéncia numérica limitada mas nao € uma
sequéncia numérica de Cauchy.
De fato, se considerarmos, por exemplo,

1
e=5>0, (2.152)

seque que, para n € N, teremos
lan — ] TED (1) — (=)™
™1 — (1]
1™ T+ 1]

2
1
2@?%,

—

mostrando que a sequéncia numérica (a,)ney NAO € uma sequéncia numeérica de Cauchy.
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Temos também o:

Proposigao 2.7.2 Se a sequéncia numérica (an)nen € uma sequéncia de Cauchy e pos-
sut uma subsequéncia convergente para a, entdo a sequéncia numérica (a,)neny Serd
convergente para a.

Demonstragao:
De fato, suponhamos que (a,)ney € uma sequéncia numérica de Cauchy, de modo que

uma subsequéncia numérica da mesma, que indicaremos por (an,)icn, Seja convergente para
a.

Como sequéncia numérica (an, )ien (que é uma subsequéncia numérica da sequéncia numérica
(an)nen), € convergente para a, dado ¢ > 0, podemos encontrar N; € N, de modo que
€

5 (2.153)

para m; > N;, teremos |a,, —a|<
Como a sequéncia numérica (a,)nen € uma sequéncia numérica de Cauchy, podemos en-
contrar N, € N, de modo

3
para m,m >N, teremos |a,— Qnl < - (2.154)

Seja
NO = IIlaX{N1 ,Nz}. (2.155)

Portanto, para
n>N,, ouseja, n>N; e n>Nj,

teremos

a, —al =la, —an, + an, — a

=[(an —an,) + (an, — a)

desigualdade triangular
lan — an, [+ lan, —a

(Cm=3) e (@T3) ¢ €

2727 %

mostrando que a sequéncia numeérica é convergente para a, completando a demonstragao.
O
Com isto podemos enunciar e demonstrar o:

Teorema 2.7.2 (critério de Cauchy para convergéncia de sequéncias numéricas)
Um sequéncia numérica é convergente em R se, e somente se, ela é uma sequéncia
numérica de Cauchy.

Demonstracgao:

Seja (an)ney uma sequéncia numeérica em R.
O Teorema (EZ7T) afirma que se a sequéncia numérica (a,)nen for convergente, ela deverd
ser uma sequéncia numérica de Cauchy.
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Por outro lado, se a sequéncia numérica (a,)ney € uma sequéncia numeérica de Cauchy
entdo, da Proposigdo (EZZ1), segue que ela serd uma sequéncia numérica limitada.

Mas, do item B. do Teorema (ZET), temos que toda sequéncia numérica (a,)ney possui
uma subsequéncia que é mondtona, que indicaremos por (an,)ien.

Como a sequéncia numérica (a,)neny € limitada, seque que a subsequéncia numérica
mondtona (an,)iey também serd limitada e assim, do Teorema (EZ1), segue que a sub-
sequéncia numérica (a,, )ieny deverd ser convergente em R.

Portanto a sequéncia numeérica (a,)ncy possui uma subsequéncia convergente em R.

Logo, da Proposigdo (E°72) acima, segue que a sequéncia numeérica (a,)ney S€rd conver-
gente em R, completando a demonstragdo do resultado.

O

Observacao 2.7.4 O Teorema (EZZ3A) acima, ndo nos diz para que valor a sequéncia
numérica de Cauchy converge em R.

Apliquemos as ideias acima ao:

Exemplo 2.7.3 Seja (a,)neny uma sequéncia numérica que tem a sequinte propriedade:

l[anpr — anl < para cada M €N, (2.156)

1
2_n )
Afirmamos que (a.)neny € convergente em R.

Resolucgao:
De fato, se considerarmos n, m € N, com n < m, ou seja,

m=n+k, paraalgum keN,
segue que

|an - aml - |an - an+k|

- |an —Ont1 +Qny1 —Que2 + Qg2 + - - — an+k|
=[(an — anp1) + (@np — ang2) + (@nz + - — anil
desigualdade triangular
< lan — anil +lants — anpal + l@nga — @nysl + -+ + a1 — angx

r.ln: ‘I ‘l

S wtam Tam Tt s
1 : 1 1 1
B A S

k—parcelas

<
— 2n—1

pois,

1T 1 1
1+§+?+..-+Zk—_]§2, paracada mn € N. (2.157)
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Portanto

lap — ap| < para m > n. (2.158)

— Jn-1"

Logo, dado ¢ > 0, considerando-se

1
N, > 1+ log, o (2.159)

para
m>n2>N,, (2.160)
segue que

(e=3) ]
an — am| S

G

mostrando que a sequéncia numérica é uma sequéncia numérica de Cauchy em R.
Logo, do Teorema (E°73), segue que a sequéncia numérica (a,)ney Serd convergente em
R, completando a resolugdo.
O

Uma generalizagdo do exemplo acima é dado pelo:
Exercicio 2.7.1 Seja (an)neny uma sequéncia numérica que tem a sequinte propriedade:
lanr —anl <1, para cada neN, (2.161)

onde r € [0,1) estd fizado.
Afirmamos que a sequéncia numérica (a,)nen € convergente em R.

Resolucgao:

De modo andlogo a resolugdo do Exemplo (EZ73) podemos mostrar que a sequéncia
numérica acima € uma sequéncia numérica de Cauchy em R logo, pelo Teorema (E73),
deverd ser convergente em R.

Para mostrarmos que a sequéncia numérica acima é uma sequéncia numérica de Cauchy
precisaremos mostrar que

n

|an - am| <

< 3 , para m=>nmn.
-

Deixaremos os detalhes da verificcdo deste fato como exercicio para o leitor.

Com isto podemos resolver o:
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Exemplo 2.7.4 Mostre que a sequéncia numérica (a,)nen, onde

a1£1)
1

a2£1+§,

11 1
Q=T+ +c+ -+

3ts =] (2.162)

€ uma sequéncia numérica convergente em R.

Resolucgao:
Notemos que, para cada n € N, teremos

PRl | € RLIIL PSP B LS
nel T el 39 31 " 3n 39 3n-1

1
=1, onde rig.

Logo, do Exemplo () acima, segue que a sequéncia numérica (a,)neny € convergente

em R.
rd L] D
2.8 Exercicios



64

CAPITULO 2. SEQUENCIAS NUMERICAS



Capitulo 3

Séries Numeéricas

3.1 Definicoes

A seguir trataremos de uma classe especial de sequéncias numéricas, denominadas séries
numeéricas, a saber:

Definicao 3.1.1 Dada a sequéncia numérica (a,)nen, podemos considerar uma outra
sequéncia numérica, que indicaremos por (Sy)nen, cujos termos sdo definidos da se-
guinte forma:

S]£a1)
Sz£a1—|—az,

S3i(11—|—(12—|—a3,

n
Sn£a1+a2+-~-+an:Zai, (31)
i=1

para cada n € N, que serd denominada de série numérica, definida pela sequéncia
numeérica (an)nen 0u, simplesmente, série dos a,.

Para cada n € N, o nidmero real (ou complezo) a, serd denominado termo da série
numérica (ou n-ésimo termo da) (S,)nen.

Para cadan € N, o termo S, da sequéncia (Sy)nen (ou seja, da série numérica) serd
denominado n-ésima soma parcial, ou soma parcial de ordem n, ou reduzida de or-
dem n da série numérica (Sp)nen

Denotaremos a série numérica acima por
o0 o0
E an , ou E a,, ou ainda E a, . (3.2)
n=1 1

Observagao 3.1.1 Observemos que (BEX) denotam a sequéncia numérica (S,)nen onde,
cada termo desta sequéncia numérica é dada por (BE).

65
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o0
A sequéncia numérica (Sny)nen (ou Seja, a série numérica E an) também poderd ser

n=1
(o)

chamada de sequéncia numérica das somas parciais da série numérica E n.

n=1

Exemplo 3.1.1 Consideremos a sequéncia numérica (a,)nen, onde
a, = (—1)", para cada meN. (3.3)

Com 1sto temos que série numérica, assoctada a esta sequéncia numérica (an)nen,
que denotaremos por (S, )nen, terd os sequintes termos:

SS=a1+a
D+ (17
——1+41=0,
S3=a;+a;+ a3
SN LAY Ny IR
= —14+1—-1=-1,

Sn£a1+az—|—--~+an

I
M =

ag

i=1

> (=1

i=1

Ezercicio —1 + (_1 )n
— f N

(3.4)
para cada n € N.

O

Observacao 3.1.2 Observemos que a sequéncia numérica (Sy)nen (OU Seja, a série numérica

Z a,) € divergente.

n=I1
De fato, pois a subsequéncia, da sequéncia numérica (S, )nen, cujos indices sdo pares,

converge para 0, pois

Son = 0, para cada neN



3.1. DEFINICOES 67

e a subsequéncia, da sequéncia numérica (S.)nen, cujos indices sdo impares, converge
para —1, pois

Soni1 = , para cada mn € N.

Portanto, pelo item 0. do Teorema (EE1), seque que a sequéncia numeérica (Sy)nen
€ divergente.

Exemplo 3.1.2 Considereremos a sequéncia (a,) onde

neN’

1
an = > bpara cada meN. (3.5)

o0

A série numérica E an, assoctada a esta sequéncia numérica (a,), ., que denota-
n=1
remos por (Sy)nen, terd os sequintes termos:

S=a+a

1 1
(E3) 4

] ] 2
:14_2,
Sgia1+az+a3
@1 1 1
“ 17273
S LA
23
Ss=a1t+a;+az3+ay
@l 1 1 1
~172737;

ot (3.6)

para cada n € N.
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Observacao 3.1.3 Vimos, no Ezemplo (EZ2), que a sequéncia numérica (Sn)nen € di-
vergente para 400, isto é
lim S,, = +o0. (3.7)

n—oo

Exemplo 3.1.3 Consideremos a sequéncia numeérica (an,)nen, onde

a1£1,
azi—],
L
a3:Za
o]
(14:—2,
L]
a5—§a
L]
Qa1 =) (3.8)
L]
aZn:—T—L, (39)

o0

A série numérica E a,, associada a esta sequéncia numeérica (an)nen, que tndica-
n=I1
remos por (Sy)nen, terd os segquinte termos:

S=ar+a

n=1 em (E3) e (E3) 1 ]

1T 1

= O)
S3;=a;+a+az
n=1 em (E3),(BE™) e n=2 em (ER) 1 1 1

1T 1 2
1

— z ,
Ss=ar+a,+az3+ a4
n=1 em (E3),(E9) en=2 em (£@),&3m) 1 1

17172

1
2
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0, para M € par

=< 2 N : (3.10)
—— , para n € impar

para cada n € N.

0

Observagao 3.1.4 Observemos que a sequéncia numeérica (S,)neny € convergente para
zero, 1sto é

lim S, =0. (3.11)
n—oo
Exemplo 3.1.4 Consideremos a sequéncia numérica (a,)nen onde

a,=c¢, paracada mneEN, (3.12)

(a sequéncia numérica constante) onde c € R € fizado.

[e.9]

A série numeérica E a,, assoctada a esta sequéncia numérica (a.)nen, que denota-
n=1
remos por (Sy)nen, terd os sequinte termos:

S]iCh

(E)
= )

S=a+a

= ete

=2c,
Sgi(h—i-az—f-ag

()
="c+c+c

=3c,

Sh=art+a+-+ay

(D)
='ct+c+---+cC
~—_—

n—oparcelas

=nc, (3.13)

para cada n € N.
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Observacao 3.1.5 Logo, de (BE3), segue que a sequéncia numérica (Sy)nen € conver-
gente (para zero) se, e somente se, ¢ = 0.
Na verdade

diwvergente para + oo, para ¢ >0,
a sequéncia numérica (Sn)nen Serd: divergente para —oo, para ¢ <0, (3.14)
convergente para 0, para c =0.

A verificagdo destes fatos serdo deixados como exercicio para o leitor.

3.2 Operacgoes com séries numéricas

Podemos operar com séries numéricas usando as operagoes de sequéncias numéricas introdu-
zidas na Defini¢do (E22T), ou ainda:

Definicao 3.2.1 Dadas as séries numéricas Z a, e an e x € R (ou C), podemos

. n=1 n=1
definir:
o0 o0
1. a soma das séries numéricas E a, e E b, tndicada por
n=1 n=I1

D ant) ba,
n=1 n=1

como sendo a Série numérica:

ian—kibnii(an—kbn). (3.15)
n=1 n=1

n=1

o0 o
12. a diferenca das séries numéricas E a, e E bn, tndicada por
n=1 n=I1

00 oo
E an — E bn )
n=1 n=1

como sendo a série numeérica:

Y an—) ba=) (an—bn). (3.16)
n=I1 n=1 n=1
122. a multiplicacao da série numérica Z a, pelo um nimero real (ou complexo) «,
n=1

indicada por

o0
o) an,
n=1
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como sendo a série numérica:

o0 o0
o E an = E (can). (3.17)
n=1 n=1
o [e.¢]
12v. o0 produto das séries numéricas E a, e E b., serd indicada por
n=1 n=I1

o0 (o)
E an - E bn )
n=1 n=1

o

€ a série numeérica E Cn, Oonde

n=1

n
Cn = E e8% bnfk
k=1

=aqby 1 +ab,o+---+a,2b+a,1by, (3.18)
para cada n € N.

Observacao 3.2.1

1. No caso das séries numéricas serem do tipo

o0 o0
E a, e E b.,
n=0 n=0

a série produto

o o0
E a, - E b.,
n=0 n=0

€ a série numérica Z Cn, onde
n=0
n
Cn = Z akbnfk
k=0
=a,bp+aby 1 +abyo+---+a,2bs+a,1by+a,b,, (3.19)

para cada n € N U{0}.

[e.9] o0

2. O quociente das séries numeéricas E a, e E b., que serd indicado por

n=1 n=1
(o)
2o o
=1
- ou Y an/) bn,
n=1 n=1

b

M

=1

3
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pode também ser definido, porém isto € um pouco mais delicado e serd deizado
para outra ocasido.

Os 1interessados em wver como € definida a série quociente pode ver o item 9.
(pdgina 78) das Referéncias (EXH).

Com isto temos o:

Exercicio 3.2.1 Considerando as sequintes séries numéricas:

> 1
= (3.20)

M

1
— e
n
n=1 1

3
Il

entdo podemos considerar as sequintes séries numéricas:
= > @) e @@ w— [ ] 1
€
S et 3 0 FE=Y (e )
n n
n=1 n=1 n=1

2 n+1

n=1 n=1
> e 1T 1
Yo Su a5 (1)

3.3 Convergéncia de séries numéricas

Como vimos nos Exemplo (BET), (BET3), (BEI3) e (BT4) da segdo (BE), algumas das
sequéncias numéricas das somas parciais consideradas (ou sejam, das séries numéricas consi-
deradas) sdo convergentes, outras ndo.

Baseado nisto, introduziremos a:

o0

Definicao 3.3.1 Diremos que a série numérica E a, € convergente, se a sequéncia
n=1
numérica das somas parciais, isto €, a sequéncia numeérica (Sy)neny (que € a propria

série numeérica), for convergente.
Nesta situacdo, se a sequéncia numérica das somas parciais (Sn)nen converge para
S € R, sto €, se
lim S, =S,

n—oo

o0
diremos que o numero real (ou complezro) S é a soma da serie numérica E Qn.

n=1
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Neste caso escreveremos
Z a, =S. (3.21)

o0

Se a série numérica E a,, ndo for convergente, diremos que ela é divergente.

n=1

Observacao 3.3.1

[e.e]

1. Observemos que se série numeérica E a, € convergente, com soma S, entdo

n=1

ou seja, Z an, = ILm Z ai . (3.22)

[e o]

2. Vale observar que simbolo Z a, denota duas coisas diferentes.

n=1

Mast precisamente: por um lado, denota a série numérica, isto €, a sequéncia
numérica das somas parciais (Sn)neny €, por outro lado, sua soma S, ou seja, o
limite da sequéncia numeérica (S,)nen, Se ele existir.

o0

3. A série numérica E a, serd convergente em R, como soma igual a S € R se, e
n=1

somente se, a sequéncia das somas parciais (S,)neny for convergente para S, em
R que, pela Defini¢do (E=3), € equivalente a dizer que, dado ¢ > 0, podemos
encontrar N, € N, de modo que,

para mn > N,, deveremos ter |S,—S|<e¢. (3.23)

Consideremos alguns exemplos:

Exemplo 3.3.1 A série numérica

Z(—n“ (3.24)

n=1

€ divergente.
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Resolugao:
De fato pois, como vimos no Exemplo (BET) da segdo (E), a sequéncia numérica das
somas parciais (S, )nen € divergente.

o0

Portanto, pela Defini¢do (B=3), temos que a série numérica Z(—] )™ é divergente.

n=1

o0

Exemplo 3.3.2 A série numérica E a,, onde
n=1
L] .
Qniy=— € aQn=——, paracada neN,
n n

€ convergente para zero.

0.9}

Em particular, a soma da série numérica E a, € tgual a zero, ou seja,

n=1

ian:O.
n=1

Resolucao:
De fato pois, como vimos no Exemplo (ET3) da segdo (E), a sequéncia numérica das
somas parciais (S, )nen é convergente para zero.

o

Portanto, pela Definigdo (B=2), temos que a série numeérica E a, é convergente, com
. . n:1
soma igual a zero, ou seja,

ian:O.
n=1

o0

Exemplo 3.3.3 A série numérica Z a., onde

n=1

a,=c, paracada mMnEN,
serd divergente, se c # 0, e serd convergente para zero, se ¢ = 0.

Resolucgao:
De fato pois, como vimos no Exemplo (ET4) da segdo (E), a sequéncia numérica das
somas parciais (S, )nen serd divergente se ¢ # 0, e serd convergente para zero, se ¢ = 0.

e}

Portanto, pela Definigdo (B=2), temos que a série numeérica E a, é convergente, com
. . n=1
soma igual a zero, se ¢ = 0, ou seja,

oo
e serd a série numérica E a, é divergente, se c # 0.

n=1
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Exemplo 3.3.4 Mostre a série numérica
oo
>
n=1

€ convergente, com soma igual a 1, ou seja,

n=1

Resolugao:

Para cada n € N, definamos
1

a, =

assim

—n(n+1)

> 1
Zn(n+1) =1

nn+1)’

; nZ n+1

Observemos que, para cada n € N, teremos:

n
Sn: E a;
i=1

=q+a@t+at+a+---+a

n

1.2 2.

Logo,

= lim

n—oo

lim S,

n—oo

(

o0
ou seja, pela Definigdo (B=3), a série numérica E
n=1

segéo:(lz:':!) 1

a1, isto é,
o0
2wt

n=1

n+1

ou seja, (BE221) é verdadeira.

&) 1 1 1 1

_
n-+1

1
nn+1)

75

(3.25)

(3.26)

(3.27)

1) (1 1 )
+ -+ ———
n n n+1

(3.28)

é convergente, com soma igual
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Exemplo 3.3.5 A série numérica
[e.e]
> ¢
n=I1

€ convergente, se c € [0,1), e divergente para +oo, se ¢ € [1,00).
Além disso, mno caso convergente, 1sto €, se

cel0,1)

o

. . L. . . C
a serie numerica E Cn, terd soma zgual a 1

, 1sto €,

n=1

d c

E ¢t = )
1—c

n=1

Resolucao:
Para cada n € N, definamos

a, =c",

assim

o0 o0
E a, = E c.
n=1 n=1

Observemos primeiramente que, para cada r € [0,0) e k € N, teremos

1— k+1
]+1~+T2...+1‘k:—r
1—r

Para mostrar isto, basta notarmos que
(T—7) (T +r+r7 1) =179,

A verificagdo deste fato serd deixada como exercicio para o leitor.
Assim, temos que

Si=o

=)

SS=ar+a

(E:ZZI)C+CZ,

Ss=a;+a+ a3

et

Shn=a1+a+---+a,,

= erd e,

=c(T+c+--+c")

_AM
(EE):C] c
1—c

b

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)
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para cada n € N.
Logo, se c € [0, 1), segue que

lim ¢™ = lim e™'®¢

n—0o00 n—oo
In(c)<0

= 0.

Assim

o0
Logo, pela Definicdo (BE=2), temos que a série numérica Z c" é convergente, se c € [0, 1)
n=I1

e sua soma serd igual a

C o
isto é
1—¢’

Por outro lado, se ¢ = 1, a série numérica Z c" serd divergente (veja o Exemplo (E23)).
n=I1
Para finalizar, notemos que para ¢ € (1, c0), segue que

lim ¢" = lim e™'®¢
n—oo n—oo
In(c)>0

assim

lim S, = Lim (c]_c )
n—oo n—oo ]—C

=lim (c 1 —cC ¢’
 nSeo 1—c¢ 1—c¢

c>1>0

)

portanto, para cada c € (1, 00), pela Defini¢do (BZ3), temos que a serie numérica Z c" serd

n=1
divergente, para 400, completando a demonstragao da afirmagao.

O
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Observacao 3.3.2 Como wvimos anteriormente no Ezemplo (EZ32), a série numérica

[e9) .I ) .
Z — € dwergente.
n

n=I1
A seguir exibiremos uma outra maneira de mostrar isto.

Exemplo 3.3.6 A série numérica
=]

> - (3.34)

€ divergente.

Resolugao:
Para cada n € N, definamos

a, =

1
) (3.35)
assim
o0 o0
1
E a, = —.
n=1 n=1 n
=]
Mostraremos que sequéncia das somas parciais da série numeérica E — ndo é limitada
n

n=1

logo, pela Proposigdo (Z332), segue que ela ndo poderd ser convergente, ou seja, a série
0

numeérica E — € divergente.
n
n=1
Para tanto, observemos que,

S] 501
&=
:(2+0) )

Nl=

isto é, Sy >(2+0) 2

SS=a+a

=, ]

2
=(2+1)

Y

Nl=

isto é, Szl Z(2+])z,
Ss=a1+a,+az3+ay

1 1 1
=94

27373
13 1

1
isto é, Szz > (2 + 2) E .
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Pode-se mostrar, por indugdo, que :

Som=a;+a;+- -+ anm

1

7

A verificagdo deste fato serd deixada como exercicio exercicio para o leitor.
Logo a subsequéncia (Syn), . néo serd limitada.

De fato, como

> (24 n)

1

da desigualdade acima e do item O. do Teorema (EZ2T), segue que

lim Szn = Q.
n—o0

Como consequéncia temos que a sequéncia numeérica (S, )nen ndo poderd ser limitada, e
oo
: - : : 1 :
assim, pela Proposicdo (E2332), teremos que a série numérica E — sera divergente, comple-
n

n=I1
tando a resolugao.
0J
Observacao 3.3.3

1. A série numérica (B34) serd denominada serie harmoénica.

Segue do Ezemplo (IC72) ou do Ezemplo (BZ2M), que a série harmédnica é uma
série numérica divergente.

(e}

2. A série numérica E c" serd denominada serie geométrica de razdo c € R.

n=1

Do Ezemplo (B23) acima, sabemos que a série geométrica de razdo c € uma série
numérica convergente, se ¢ € [0,1), cuja soma serd tgual a

o0

E e
1—c

n=1

e divergente, para +oo, se ¢ € [1,00).

c : ,
—, 1sto é
]_C) )

Valem as propriedades bdsicas de convergéncia para a convergéncia de séries numéricas,
a saber:

oo o0
Proposicao 3.3.1 Sejam E a, e E b, duas séries numéricas convergentes, cujas so-
n=I1 n=1

mas sao a e b, respectivamente e o € R.
Entdo as séries numéricas

o0 o0 o0

Zan:thn e ocZan

n=1 n=1 n=1
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serao convergentes, com somas a+b e xa, respectivamente, isto €,

D (antby) =) an£) by, (3.36)
n=1 n=1 n=1
Z(oc an) = Z an . (3.37)
n=1 n=1
Demonstracgao:
Como as séries numéricas Z a, e Z b, sdo convergentes, com somas a e b, respectiva-
n=1 n=I1
mente, entdo, considerando-se as sequéncias numéricas (S,), ., e (Ry), ., onde
n n
Sh = Z a; e R,= Z b;, paracada meN (3.38)
i=1 i=1
temos, pela Definicdo (B=2), que que
limS,=a e limR,=D. (3.39)

n—oo n—oo

Definindo-se a sequéncia numérica (T,), ., onde, para cada n € N, temos

Tn:(a1++an)+(b1++bn)

n n
~Sa+Yn
i=1 i=1

n

somafnita Z(ai +bi), (3.40)

i=1

segue que

lim T, (E20) lim [Z(ai +by)

n—oo n—oo

n n
= lim E a; + E bl
n—oo
i=1 i=1
~——
(BEE)STL (BES)Rn

= lim S,, + lim R,

n—oo n—oo

= a1b.

o0 [e.e]

Notemos que a sequéncia numérica (T, )ncn € a série numeérica E an + E b, ou seja, da

n=1 n=1
o o
Definicdo (BZT), acabamos de mostrar que a serie numérica E a, + Z b, é convergente,
n=1 n=1

com soma a + b.
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o0

De modo andlogo, pode-se mostrar o caso correspondente para a série numérica Z an —

n=1
[eS)
E b...
n=1

A verificagdo deste fato serd deixada como exercicio para o leitor.
Para a outra situagdo, como
lim S, = a, (3.41)

n—oo

entdo definido-se a sequéncia numérica (U, ) ., onde, para cada n € N, temos

neN

n

Uy =D (xa), (3.42)

i=1

segue que

. ) . v
lim U, = nh_}nc}o;(ocal)

n—oo

n
= lim | E a;
n—oo
i=1
=Sn

= lim («S,)

=« lim S,
n—oo

= qa.

o0
Notemos que a sequéncia numeérica (U, )nen € a série « E an, ou seja, da Definigdo (B=3T),

n=1
0

acabamos de mostrar que a serie numérica « E a, é convergente, com soma igual a xa,

n=1

completando a demonstracdo do resultado.
O

Apliquemos as ideias acima aos:
Exemplo 3.3.7 Ezpressar o numero real
0,333---
na forma de um numero racional, 1sto €, na forma

E, onde p,qEZ,

com q # 0.
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Resolugao:
Para isto observemos que definido-se a sequéncia numérica (a,)ncyn, onde

a; =0,3

=3-107", (3.43)
a, = 0,03

=3-1077, (3.44)
az = 0,003

=310, (3.45)

an = 0,003
n—posigdes

=3-10", paracada neN, (3.46)

o0
temos que a série numérica E a, associada a sequéncia numérica (a, )nen, OU S€ja, a sequéncia

n=1
numeérica (S, )nen, terd seus termos dados por:

S]Z(l]

(Bf) 3. -Io—] ,
SS=aq+a (3.47)
EDeE 3 1071 431072

S et (3.48)
ERED e &) 3 1971 13.10243.103

(]
N 10 102 103)°
Sh=ar+a+--+an

=3 107 +3.10243-103+---+3-10™"

n .I 1
=3 Z (ﬁ) , paracada neN. (3.49)
=1

o0

Notemos que a série numérica E a, é convergente para 0,333---.

n=1
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Mas

i a, = is 10
n=1 n=1

Prop. (EXT) , w 1
=3y
10m

n=1

Exemplo (E=H) com ¢ = 15 < 1 10
1 — —
10
~ 3 1
93

que mostra como surge a férmula aprendida no colégio, que diz que para transformar um
numero que é uma dizima periddica para forma de um quociente entre nimeros inteiros,
basta colocar no numerador o periodo e no denominador tantos 2 quantos forem o nimero
de digitos do periodo.

No caso acima o periodo é 3, logo tem apenas um digito assim, na forma de fragdo, teremos

3 1
0 e = —
, 333 5 =3
O
Deixaremos para o leitor o:
Exercicio 3.3.1 Ezxpressar o niumero real
0,272727 - - -
na forma de um numero racional, isto é, na forma
E, onde 7p,q€EZ,
com q # 0.
Resolugao:
Para isto observemos que definindo-se a sequéncia numérica (an)ncn, onde
a = 0,27
=27-107%, (3.50)
a; = 0,0027
—27.107%, (3.51)
asz = 0,000027
=27-10"°, (3.52)

an, =000---27

(2n—2)—posigdes

=27-10"", paracada ncN, (3.53)
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o0
temos que a série numérica E a, associada a sequéncia numérica (a, )nen, OU S€ja, a sequéncia

n=1
numeérica (S, )nen, terd como termos:

S]I(l]

=Y 27102,
SS=a1+a;

=& 9710242710

1 1
_27(W+W)’

Ss=aq+a+az

EDED) =) 57 102427107 +27 1076
1 1 |
:2 5 T AL A6
’ (102 BT 106) !

Sn=ar+ta+--+a,
=) 27102427104 4+27-106+ ... +27.10°2"

N2
=27 Z (ﬁ) , paracada ne€N. (3.54)
i=1

Observemos que a série numeérica E a, é convergente para 0,272727---.

n=1

ian =) izr 102"

Mas

n=1 n=1

Prop. (E=) > 1

= 27

; ]OZn
1
Exemplo (BIi, com ¢ = # 7 W]
102

273
S99 11’

que também pode ser reobtida pelo processo aprendido no 2.0 grau.
O
A seguir daremos outros dois exemplos importantes de séries numéricas convergentes.

Exemplo 3.3.8 A série numérica

=
> - (3.55)
n=1
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€ convergente.

Resolugao:
Definamos a sequéncia numeérica (a,)nen, cujos termos sdo dados por

Ay = — (3.56)

para cada n € N.
Notemos que sequéncia numeérica das somas parciais (S, )nen, associada a série numeérica

o0
E a,, é uma sequéncia numérica limitada.
n=I1

De fato, pois
S, >0, paracada neN

e temos que:

|Sn|:Sn
=aq+a+---+a,

&) 11 1
= SHs—=+o+ o+

12 2.2 3.3 n-n
> 1

>2
n>n—1

-2 —

n

<2,

para cada n € N, ou seja,

IS,/ <2, paracada neN.

Como |
an =) 2 >0, paracada neN,
temos que
definigdo
Sn+1 =" Sn+ Ani1 > Sn
~—~—

>0

para todo n € N.
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o0
Logo a sequéncia numérica das somas parciais (Sn)nen (Ou seja, a série numeérica E an)
. . . . n:1
é estritamente crescente, em particular, serd um sequéncia numérica mondtona.
Como ela também é uma sequéncia numérica limitada, segue, do Teorema (EZ1), que ela

o0
serd convergente em R, ou seja, da Definigdo (EZ3), a série numérica Z — € convergente
n=1 n
em R.
O

Observacao 3.3.4 Curiosidades:

o0 2
. . . T ,
1. Pode-se mostrar que a série numérica E — tem soma igual a < ou seja,
n

n=1
= 1
B
n=1
como veremos mais adiante (chamado de problema de Basel).
Na verdade Leonard Euler mostrou em 1735, essa relagado.

2. A série numérica actma é um caso particular (tomando-se s = 2) da fungao zeta de
Riemann, a saber, a funcao

(:A={s=x+1y;x>1}CC—-C,

dada por

para cada s € A.

Exemplo 3.3.9 A série numérica
>
> ~ (3.57)
n=0

€ convergente.
Resolugao:
Definamos a sequéncia numeérica (a,)nen, cujos termos sdo dados por

o1
= (3.58)

para cada n € NU{0}.
Observemos que a sequéncia numérica das somas parciais (S )nenuio) € limitada pois, como

S. >0, paracada n e NU{0},
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temos que:
Sel=Sn=ar+ax+a3+---a,
()1 1 1 1 1 1
R T TR TR TR
—1+1+]+ ] + ] + + ]
N 2 23 2-3.4 2:-3---n
|
(n—T1)—fatores
3
TLZ<2 1—l—1—i—1 1 + 1 + +;
- 2 2.2 2.2.2 2:2.---2
| —
(n—T1)—fatores
1 1 1 1
<1+ 1+§++§+?+‘”+2n7]
soma dos n primeiros termos:i,e uma PG, de razdo igual a %
1
=1+ ]2 <3, paracada n e NU{0},
2
——
<2
ou seja,
IS, <3 paratodo n e NU{0}.
Como :
an ()E >0, paracada n e NU{0},
temos que

Swi1=Sn+an >S,., paracada n € NU{0},
~——

>0

87

(3.59)

assim a sequéncia numérica das somas parciais (Sy)nenup) é estritamente crescente, em par-

ticular, serd uma sequéncia numérica mondtona.

Como ela também € limitada, segue, do Teorema (E=Z), que ela serd convergente em R,

o
. : . . 1
ou seja, da Definicdo (BE=X), a série numérica E — € convergente em R.
n!

n=0

o0

O

Observacao 3.3.5 Pode-se mostrar que a soma da série numeérica E - € 1gual a e,
n!

n=0

ou seja,
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como veremos mais adiante.

A seguir daremos alguns resultados de convergéncia para séries numéricas.

3.4 Resultados de Convergéncia de Séries Numéricas

Comegaremos com dois resultados simples que podem ser uteis no estudo de convergéncia de
séries numéricas, a saber:

Proposicao 3.4.1 Suponhamos que as séries numeéricas Z a, e an sao tais que
n=1 n=I1
bhn=a, e by,1=0, paracada neN, (3.60)

o) [e.e]
Entdo a série numérica E a, converge se, e somente se, a Série numérica E b,

n=1 n=1
converge.

Neste caso a soma das séries numeéricas coincidem, isto é,

i a, = i b . (3.61)
n=I1 n=1

Demonstracgao:
Para cada n € N, definido-se

Sp = i a, e T,= i b, (3.62)
n=1 n=1

segue que
Sn, sen € par
T, = , Pparacada meN,
SnT-H, se n é impar
o0

logo, da Definigdo (B=2), a série numérica E a, serd convergente se, e somente se, a séria

n=1
oo

numérica E b, for convergente e, neste caso, as somas das respectivas séries numeéricas serdao
n=1

iguais, completando a demonstracdo do resultado.
O

Observacao 3.4.1 Podemos generalizar este resultado considerando a sequéncia numérica
(b )nen, constituida dos termos da sequéncia numérica (an)nen, tntroduzindo-se zeros
d mesma em posigoes aleatdrias.

No caso da Proposi¢ao (BZ) actma, a sequéncia numérica (by)neny € obtida da a
sequéncia numeérica (a,)nen, tntercalando-se zeros entre os temos da sequéncia (Qn)nen,
a saber, a sequéncia numérica (b,)neny serd:

0,ay,0,a,0,a3,0,---
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Outro resultado é dado pela:

Proposicao 3.4.2 Consideremos a série numérica Z a, e p €N fizado.

n=1
o0

Entdo, a série numeérica E a, converge, com soma a, Se, e somente se, a Série

n=1

o0
numérica Z a, converge, com somab=a—a;—a; —---—ap_1, 0U Seja,
n=p
o0 (o]
se Zan:a, entdo Zan:a—a1—a2—~-~—ap,1. (3.63)
n=1 n=p
Demonstragao:

Denotemos a sequéncia numérica das somas parciais da série numérica E a, por (Sy)nen

n=1

oo
e a sequéncia numérica das somas parciais da série numeérica E a, por (T, )nen.
n=p
Logo deveremos ter:
Th =Snip, meN. (3.64)
Logo
lim S,,=a
n—oo
se, € somente se,
IimT,=a—a;+a—---—a
n—oo
o0

isto é, da Definigdo (BEZ), a série numérica E a, converge, com soma a, se, e somente se,

n=1
[e¢]

a série numérica E a, converge, com soma b = a —a; —a; —--- — ap_1, completando a

n=p
demonstracdo do resultado.

O

Observacao 3.4.2 A Proposi¢do (BEZ32) acima nos diz que podemos desprezar um nimero
finito de termos de uma série numérica que 1sso nao alterard o estudo da convergéncia
da mesma.

Poderd alterar o valor da sua soma da série numérica obtida.

Podemos aplicar este resultado ao:

Exercicio 3.4.1 Mostre que a série numérica

- 1

(M +5) (n+6) (3.65)

n=1

€ convergente.
Encontre o valor de sua soma.
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Resolugao:
1

De fato, do Exemplo (E34), sabemos que a série numérica Z mm+1)

m=1

é convergente

com soma igual a a = 1.
Logo, pela Proposigdo (BZ2) acima, a série numérica

> 1
mZ_Gm(mJH)

também serd convergente com soma igual a:

1 1 1 1 1 1
a—(ar+a+azt+as+as)=1— + + + + +
. : . : .5 5.6
]

Exegicio N
¢
Para finalizar, notemos que:
5 st S e
n+5 ) (n+6) mm+1)’
n=I1 m=6

1
(n+5) (n+6)

. 1 .
logo a série numeérica E é convergente e sua soma serd igual a ¢ ou seja, a

série numeérica

> 1
> n+5 J(n+6) 6

n=I1
OJ
O primeiro resultado geral importante para convergéncia de series numéricas é dado pelo:

Teorema 3.4.1 (critério de Cauchy para convergéncia de séries numéricas).
o0

A série numérica Z a, converge em R se, e somente se, dado ¢ > 0 existe N, € N
n=1
de modo que, para n > N, e p € N qualquer, temos
|(ln+] + ani2 + -t an+p| < E. (366)

Demonstracgao:

o9}

Lembremos que, da Definigdo (BE=3), a série numérica E a, converge em R se, e somente
n=1
se, a sequéncia numeérica das somas parciais (S, )nen for convergente em R.

Por outro lado, uma sequéncia numeérica é convergente em R se, e somente se, ela for uma
sequéncia numérica de Cauchy em R, isto é, dado ¢ > 0 existe N, € N, tal que

se n,m>N,, deveremoster |S,—S. <e¢. (3.67)
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Observemos que se
m>n, entdo m=n+p, paraalgum peN,

assim

m n
Sm — Sn = Z a; — a;
i=1 i=1
+p
S
i=n+1
=0Qny1 + A2 + -0+ + Antp - (368)

o0

Logo, da Definigdo (BZX), a série numeérica E a, converge em R se, e somente se, ela

n=I1

for uma sequéncia numérica de Cauchy, isto é, dado ¢ > 0, podemos encontrar N, € N, tal
que, para n > N, e p € N qualquer, temos

|camaw
|an+1+an+2+"'+an+p|(:)lsm_sn|(:)€>

como queriamos mostrar.
O

Observagao 3.4.3 Nos Ezemplos (B24), (BE23), (B23), (B21) da se¢do (BEA), exibimos
séries numeérica que sdo convergentes.

Observemos que, em todos estes Exemplos, as sequéncias numéricas que as definem,
convergem para zero (verifique!),isto €,

lim a, =0.
n—oo

Isto é um fato geral, como afirma o:

Teorema 3.4.2 (critério da divergéncia para séries numéricas)
(o]

Suponhamos que a série numérica E a, € convergente.

n=1
Entao deveremos ter

lim a, =0. (3.69)

n—oo

Demonstracgao:

o0

Se a série numérica E a, é convergente com soma igual a S entdo, da Definigdo (B=T),

n=1
temos que

lim S, =S,

n—oo

onde, para cada n € N, temos que

Ssn=aq+a;+az3+---+ay. (3.70)
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Logo, da Definigdo (B=3), dado ¢ > 0, podemos encontrar N, € N, tal que se n > N,
deveremos ter

Sn1— S| < % (3.71)
Logo, para n > N, (ou sejan—1 > N,), segue que:
e
’an_o| ( :) |Sn_sn71|
:‘Sn_s‘l's_snf”
desigualdade triabgular
< |Sn—S|—|—|S—Sn,1|
(E) ¢ n € ¢
2 2 7
mostrando, pela Definicdo (EZ2), que
lim a, =0,
n—oo
finalizando a demonstragdo.
O

Observacao 3.4.4

1. Nao wvale a reciproca do Teorema (BE2) acima, isto €, existe uma (na verdade

eristem vdrias) sequéncia numérica (an)neny que € convergente para zero, e cuja
o0

série numérica associada a ela, isto €, E a,, nao € convergente.
n=1

Por exemplo, a série harmoénica,

(o] [ee]
1
2= o
n
n=1 n=1

€ um série numérica divergente (veja o Ezemplo (BE3H)) e

. .1
lim a, = lim — =0.
n—oo n—oo N
2. Na verdade o Teorema (B23) acima nos dd uma condi¢do necessdria (mas nao su-
ficiente) para que uma série numérica seja convergente, a saber, que os termos
da série numérica sejam convergentes para zero.

Podemos usar Teorema (B52) como um critério de divergéncia, dai o nome, ou
seja, se

lim a, #0,

n—oo

[e.o]

entdo a série numérica E an serd divergente (pots se fosse convergente, pelo
n=1

Teorema (BR3), deveriamos ter lim a, =0).
n—oo
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Apliquemos o Teorema (B22) ao:
Exemplo 3.4.1 Mostre que a série numérica

i (1 + %) (3.72)

n=1

€ divergente.

Resolucao:

Para cada n € N, definamos
1

Como 1
) &m) .
Jim a "="lim 145 =170,

do critério da divergéncia (isto é, do Teorema (BE53)), segue que a série numeérica
o o0
1
E 1 + — | = an
n
n=1 n=1

serd divergente.
OJ

3.5 Critérios de Convergéncia para Séries Numéricas com
Termos Nao-negativos

Observacao 3.5.1 Nos Ezemplos (BE33) e (BE39) mostramos que as series numeéricas

= > 1
cujos termos sdo ndo-negativos (pots a, > 0, para todo n € N) sdGo convergentes,
utilizando-se do fato que as respectivas sequéncias numéricas das somas parciais (Sy)nen
(ou seja, as proprias séries numéricas) eram limitadas.
Isto ocorre em geral, para séries numéricas cujos termos sao nao-negativos, a sa-

ber:

Teorema 3.5.1 Seja (a,)nen Sequéncia numérica cujos termos sdo ndo-negativos, isto
€
a, >0, paracada mneN. (3.74)
(o)
A série numérica Z a, € convergente em R se, e somente se, a sequéncia numérica
n=1
das somas parciais € limitada, 1sto €, a sequéncia numeérica (Sn)neny € uma sequéncia

numérica limitada, onde, para cada n € N, temos que

Ss=ar+a+---+a,.
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Demonstracgao:

o0
Suponhamos que a série numérica E a, é convergente em R, ou seja, da Definigdo (E=),

n=1
a sequéncia numérica (S, )nen € convergente em R.

Logo, da Proposigdo (E232), segue que a sequéncia numeérica (S, )nen € limitada.
Por outro lado, se sequéncia numérica (S, )nen € limitada, como

a, >0, paracada meN,
temos que a sequéncia numérica (S, )nen serd crescente, pois

Snii=Sn+an >S,, paracada meN.
~—~—

>0
Assim (Sy)nen € monétona e limitada, , do Teorema (EZ71), ela serd convergente, ou seja,
o0

a série numeérica E a, serd convergente em R, completando a demonstracdo do resultado.

n=1

O
Apliquemos o resultado acima aos:

Exemplo 3.5.1 Verifique se as séries numéricas abaizo sdo convergentes ou divergen-
tes.

= 1

1. ZF (3.75)
n=1
=1

2. ZE (3.76)
n=1
> 1

3. —_— 3.77
;n(n+1) (3.77)
1

4, — 3.78

Resolucao:
1.:

1. o |
No Exemplo (BE=23H) foi mostrado que a série numeérica Z ) é convergente em R, utili-

n=1

zando o Teorema (EZT).
2.:

2. =
No Exemplo (BZ39) foi mostrado que a série numérica Z - é convergente em R, utili-

n=1

zando o Teorema (ZZZ).
3.:

o9.: o 1
A série numérica E

—— é convergente em R.
]n(n-i—]) VeIg
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De fato, para cada n € N, definamos

1
=——— >0. 3.79
= m+1)~ (3.79)
Logo a sequéncia numeérica (Sy)nen € monétona (na verdade € estritamente crescente).
Vimos no Exemplo (B334) (veja (BE23)) que
1

Sn:1—n—+1§1, para cada m e N,

logo a sequéncia numeérica (S, )ney € limitada.

> 1
Logo, do Teorema (BEZ5) acima, segue que série érica ———— é convergente e
go, rema ( ) acima, segue que série numér ;n(n—l—ﬂ nvergente em
R.
A série é'caOo 1 ¢ divergente
rie numéri — ivergente.
n=1 \/T_l g
De fato, para cada n € N, definamos
Lo
an = T >0, paracada neN. (3.80)
Logo a sequéncia numeérica (S, )nen € monétona (na verdade estritamente crescente).
Mas,
Sh=ar+a+az+---+an
@y ]
V2 n—1 vn
1<ym
V2<ym
vn—T<vno ]
> -+ — 4+ —
= Jn o m Jn
n—parcelas
n
= — = n
\/T_l \/_)
ou seja,
S.>+n, paracada neN. (3.81)

Portanto a a sequéncia numeérica (S, )neny ndo € limitada, pois

lim vyn=oco etemos (EXI).

n—oo

Logo, do Teorema (B5) acima, a série numeérica E serd divergente (para +00).

1
 Vn

[e.o]
n=
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OJ
Outro critério importante para o estudo da convergéncia de series numeéricas cujos termos
sao nao-negativos é o:

Teorema 3.5.2 (critério da comparagdo para séries numéricas)

o [e.o]

Sejam E a, e E b. duas séries numéricas de tal modo que seus termos satisfazem

) n=1 ) n=1
a segu'mte condzgao:

0<a,<b,, paracada meN, (3.82)
o0 o

1. Se a série numérica E b, € convergente, entdo a série numeérica E a, serd
n=1 n=1

convergente.

Além disso,

ogiangibn. (3.83)
n=1 n=1

(e o] [e.e]
2. Se a série numérica E a, € diwvergente, entdo a série numérica E b, serd diver-

n=1 n=1
gente.

Demonstracao:
Para cada n € N, definamos

Sh=aj+ax+---+a, e T,=by+by+---+by (3.84)
as somas parciais de ordem n, das series numéricas Z a, e Z b, respectivamente.
n=1 n=1

Como temos (B=E2) segue, de (E=4), que
0<S,<T,, paracada neN, (3.85)

De M.:

o0
Se a série numérica E b, é convergente, entdo a sequéncia numérica (T, ).cn Serd conver-

n=I1
gente em R.

Logo, da Proposicdo (E33), a sequéncia numérica (T,,)nen limitada, ou seja existe M > 0,
tal que
IT.| <M, paracada meN, (3.86)

Logo, de (B=0) e (E=3), segue que a sequéncia numeérica (Sy)ney serd limitada.
Mas, como a,, > 0, para cada n € N, temos que a sequéncia numérica (S,)ncy serd
monoétona (na verdade crescente).
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Portanto, do Teorema (EZ), segue que a sequéncia numérica (S, )ney Serd convergente
o0

em R, ou seja, da Definicdo (BZ3T), temos que a série numeérica E a, serd convergente em

n=1

R.
Além disso, seque do item B. do Teorema (E=3) (ou seja, do critério da comparagao para
sequéncias numéricas), que
0< lim S, < lim T,

n—oo n—oo

isto é,

J_an<) bu,
n=1 n=1
completando a demonstragdo do item . .
De A.:

o
Se a série numérica Z a, é divergente entdo, da Proposigdo (EZ33), a sequéncia numérica

n=1
(Si)nen néo serd limitada.

De fato, como ela é monétona crescente, se fosse limitada, do Teorema (EZ1), ela teria
que ser convergente em R, o que seria um absurado.
Assim, como a, > 0 para todo n € N, segue que

lim S, = .
n—oo

Logo, de (B=1) e do item M. do Teorema (E5T), segue que

lim T,, = o0,
n—oo
isto é, a sequéncia numérica (T, )neny também nio serd limitada.
Portanto n&o poderd ser convergente em R, ou seja, da Defini¢do (B=3), a série numérica

o0

Z b, serd divergente, completando a demonstragdo do item B. e do resultado.

n=I1
Apliquemos as ideias acima ao:

Exemplo 3.5.2 Estudar a convergéncia de cada uma das séries numéricas a Sequir:

=

1. 3.87
; o (3.87)
= 1

2. .
; e (3.88)

Resolugao:
1.:

1
341

oo
A série numeérica E é convergente .
n=I1
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Para cada n € N, definamos

a, = (3.89)

by = —. (3.90)

Notemos que, para cada n € N, temos:

0<a,

=) _ |

o3n4]

3413 ]
<
ST

—

Observemos que a série numérica

1

é convergente em R, pois trata-se de uma série geométrica de razdo ¢ = 3 < 1, que, pelo

1
Exemplo (BEZ23), com ¢ = 3 é convergente em R.

Entédo do item . do critério da comparagdo para séries numéricas (isto é, do item . do
Teorema (B23)) segue que a série numeérica

serd convergente em R.
2.:

o0

A série numérica Z é divergente.
n=3

In(n)
Antes de mais nada vale salientar que, para cada n > 3, temos que

0<Inn)<n. (3.91)

De fato, se considerarmos a fungdo f : [e,0c0) — R dada por

f(x) = ) , paracada x € [e,00), (3.92)

segue que a funcido f é diferencidvel em [e,00) e, além disso,

1—1
f'(x) =) X—?(X) <0, paracada x € [e,00),

ou seja, a fungdo f é decrescente em [e, 00).
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Como
fle) = 1 <1,
segue que f(x) <1, paracada x € [e,o0),
ou seja, f(x) = ln)((x) <1, paracada x¢€[e,o00),
ou ainda, In(x) < x, paracada x € [e,o0),
em particular, vale a afirmagédo (B™I).

Logo se, para cada n > 3, definirmos

b, = 3.93
In(n) ( )
¢ 1
an = ]TL) (394)
segue
0<a,
=) 1
on
m |
~ Iln(n)
=) b,, paracada neN. (3.95)
Mas a série numeérica
o0 o0 ]
a3
n=1 n=1 n

é divergente (é a série harmonica, veja o Exemplo (B=ZH)).
Entéo, do item B. do critério da comparagdo para séries numéricas (isto é, do item B. do
Teorema (B23)), segue que a série numérica

(e ¢} o0 1
; bn = ; In(n)

serd divergente, completando a resolugao.

OJ
Antes de exibirmos outro exemplo, vale fazer a seguinte observagao:

Observacao 3.5.2 O Teorema (BEB3) actma permanece vdlido se trocarmos a hipdtese
?0<a, <b,, paracada neN?”

por
70<a,<b,, paracada n >N, ”,

ou seja, temos o:
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Corolario 3.5.1 (critério da comparag¢do para séries numéricas estendido)
(o) o0

Sejam E a, e E b, duas séries numéricas de tal modo que seus termos satisfazerm

) n=1 ) n=1
a segu'mte condzgao:

0<a,<b,, paracada mn > N,.

o [e.e]

1. Se a série numérica E b, € convergente, entdo a série numérica E a, serd

n=1 n=1
convergente.
[e0] o0
2. Se a série numérica E a, € diwvergente, entao a série numérica E b, serd diver-
n=1 n=1
gente.
Demonstracao:

A demonstragdo é semelhante a do critério da comparagdo para séries numéricas (isto é
do Teorema (BX53)) e serd deixada como exercicio para o leitor.

OJ
Podemos aplicar esse resultado a seguinte série numérica:
Exemplo 3.5.3 Estudar a série numérica
= n+ 1
> (3.96)
nTL
n=I1
Resolucao:
Para cada n € N, definamos:
.+ 1
a, = o € bn = E . (397)
Afirmamos que:
0<a,<b,, paracada n>4. (3.98)
Mostrar a desigualdade (BU3) acima, é equivalente a mostrar
n‘(m+1)<n", paracada n>4. (3.99)
Na verdade mostraremos a seguinte desigualdade:
n(n+1)<n', paracada n>4 (3.100)

e notando que
n

n*<n", paracada n>4

teremos a afirmagdo (E3).
Notemos que (ETI0O) é equivalente a:

n*—n—1>0, paracada n>4. (3.101)
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Por outro lado, observemos que que

1+5

4.
> <

x!—x—1=0 se, e somente se, x =

Como

x> —x—1

é um trinémio do 2.0 grau, cujo coeficiente do termo de 2.0 grau é maior que zero (no caso é
igual a 1), segue que (veja a figura abaixo)
x!—x—1>0, paracada x>4.

y:xzfxfl

IS

N

Em particular valerd (ETI), ou ainda, (EZ).
Notemos que a série numérica
o.)
D _bn=
n=4

1
n2

M8

Il
N

n
=

é convergente, pois do Exemplo (B23) a série numérica E — € convergente e assim, da
n

n=I
Propsicdo (BZ2), a série numérica acima serd convergente.

Portanto, de (E93) e do item [. do critério da comparagdo para séries numéricas estendido
(isto é, do item M. do Coroldrio (B=1)) segue que a série numeérica

= n+1
nTl

n=I1
serd convergente, completando a resolugao.
O
Outro critério importante para o estudar da convergéncia de séries numéricas cujos termos
sdo ndo-negativos, é dado pelo:

Teorema 3.5.3 (critério da comparagdo para séries numéricas, por limites)
o0 (0.0

Sejam E a, e E b, duas séries numéricas, cujos termos satisfazem:

n=1 n=1

0<a, e 0<b,, paracada neN. (3.102)

Consideremos a
c= lim —. (3.103)

n—oo n
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1. Se
c € (0,00), (3.104)

(o)

entdo a série numérica E a, serd convergente se, e somente se, a série numérica

n=1

an for convergente.

n=1

2. Se
c=0 (3.105)
o0 o0
e a série numeérica an for convergente, entdo a série numeérica Zan serd
n=1 n=1
convergente.
3. Se
c=o00 (3.106)
o0 o0

e a série numérica E b, for diwvergente, entdo a série numérica E a, serd di-

n=1 n=1
vergente.

Demonstracao:
De @.:

Suponhamos que a

— lim oM
c= n11_)1101O - € (0,00). (3.107)
Logo, dado c
£ = z >0,

podemos encontrar N, € N, tal que

c
se n >N, teremos ’E_:_C <£:§’
ou seja —C<an—c<C
.] ) 2 bn 2)
. c a, 3c
da, = <2< -, 3.108
ou ainda, 0. <32 ( )
Como
b, >0, paracada neN, (3.109)
segue, de (BTI0R), que
(6Tmm9) m 3

0 < %bn <a, < TCbn, para cada m > N,. (3.110)

Suponhamos que a série numérica E a, seja convergente.

n=1
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Entdo de (I) em (BTI) e do item M. do critério da comparagdo para séries numéricas

= /c
estendido (isto é, do item M. do Coroldrio (B2)), segue que a série numérica Z (z bn>
n=I
serd convergente.

o0
Como c > 0, isto implicard que a série numérica E b, serd convergente.

n=1

o0 o0
) ) . ) ) 3c
Por outro lado, se a série numérica E b, é convergente, ento a série numérica E (7 b,

n=I1 n=1
sera convergente.

Logo de (II) em (BTIO) do item M. do critério da comparagdo para séries numeéricas

estendido (isto é, do item M. do Coroldrio (BZ2)) segue que a série numérica Z a, serd
n=1
convergente, completando a demonstragao do item O .

De 2.:
Suponhamos que

— Tm oMo
C —T}Lngo b, 0. (3.111)
Logo, dado
e=1,
podemos encpontrar N, € N tal que
an
se n>N,, teremos |— —c{<e=1,
by
a
ouseja, —1<-—-—-<1,
by
e como b, >0, paran € N teremos, 0<a, <Db,, paracada n > N,. (3.112)

[e.¢]
Como a série numérica Z b, é convergente, do item M. do critério da comparagdo para

n=1
(o ¢]

séries numéricas estendido (isto ¢, do item M. do Coroldrio (EX5)), segue que a série E an
n=1
serd convergente, completando a demonstragao do item DO. .

De B.:
Suponhamos que
. an
c= lim — =o0. (3.113)

n—oo b,
Logo, dado
K=1,

podemos encontrr N, € N tal que

a
se n> N, teremos b—n>K=1,
n

ouseja, a,>b,>0, paracada n>N,. (3.114)
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[eo]

Como a série numérica E b, é divergente entdo, do item B. do critério da comparagdo

n=1

para séries numéricas estendido (isto é, do item B@. do Coroldrio (BEZ2)), segue que a série

numeérica E a, serd divergente, completando a demonstragdo do item B .

[e.o]

n=1

Apliquemos as ideias acima ao:

Exemplo 3.5.4 Estudar a convergéncia das séries numéricas abaizo:

= 3n+5
1. Z] ZZn
> 1
2. ;sen(ﬁ>
© 3

3. Z%

n=1

Resolucgao:

n

. w— 3n+5
A série Z n2+ € convergente.
n=1

Observemos que, para cada n € N, definido-se

. 3n+5
=
que sdo ndo-negativos e
1
bn - z—n y

teremos que

lim

n—oo by, n—oo

. 3n+5
= lim

n—oo n

Exercicio
= 3¢

Notemos que a série numérica

n=1

Qn () e (€T9) .

0,00).

D bn = ;Z_n

(3.115)

(3.116)

(3.117)

(3.118)

(3.119)
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1

é convergente, pois é uma série geométrica de razdo ¢ = 5 < 1 (veja o Exemplo (BE=Z3),

comc;1)
=3)-

Logo, do item [. do critério da comparagdo para séries numeéricas, por limites (ou seja,
do item M. do Teorema (BEX3)), segue que a série numeérica

= 3n+5

[e o]

n=

também serd convergente.

o)
- (o R
A série numeérica E sen | — | é divergente.
n
n=I1

De fato, para cada n € N, consideremos

a, = sen <l) e b,= l, (3.120)
n n

que sdo ambos ndo-negativos.

1
a sen (E)
m n :-lul .

n—oo by, n—oo 1

n
1°. limite fundamental
= 1€ (0,00).

Observemos que

Como a série numeérica
oo oo .]
2 ba=) —
n=1 n=1 n

é divergente (é a série harmoénica, veja o Exemplo (B=21)) segue, do item . do critério
da comparagdo para séries numeéricas, por limites (ou seja, do item M. do Teorema
(B23)), que a série numérica

;an ;sen (n

é divergente.

o 3
‘s - n-
A série numérica E - € convergente.
n:

n=1
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Notemos que se tentarmos aplicar, diretamente, o item 0. do critério da comparagdo
para séries numéricas, por limites item i. (ou seja, do item @. do Teorema (E=23)) néo
dard certo.

Observemos que se, para cada n € N, considerarmos

a, = - € bn = o (3121)
n! n!
que sdo ndo-negativos, entdo
n3
. Qn (=) .. ol
lim o Y gy nb
n—oo by, nooo 1
n!
= lim n?
n—oo
= 00.

Logo nao podemos aplicar nenhum dos itens do critério da comparagdao para séries
numéricas, por limites (ou seja, qualquer um dos itens do Teorema (BZ=3)), nesta
situagao.

Para resolver esse problema, agiremos da seguinte forma:

Notemos que

= n mn—3 = (m+3)°
;H - n; (m+ 3)!
e (n+3)
=> I a (3.122)

Se, para cada n € N, definirmos

L (n+3) ]
=y € b= (3.123)
que sdo nao-negativos, entdo teremos
(n+3)°
an &) .. (n+3)!
T}—)OO b, o T}Lrilo 1
n!

(n+3)3

e Py Py

Exegicio 1 c (O ) OO) )

Como a série numeérica

(00 (0.0 .l

n=1
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é convergente (veja o Exemplo (BZ21)) segue, do item M. do critério da comparagéo
para séries numéricas, por limites (ou seja, do item 0. do Teorema (BE=3)), que a série

numeérica
; tn = ; (n +3)!

também serad convergente, completando a resolugao.

Portanto, da Proposigdo (BEZ3), segue que a série numérica

também serd convergente, completando a resulugao.

O
Outro critério muito 1util é dado pelo:
Teorema 3.5.4 (critério da razdo para séries numéricas)
Consideremos a série numeérica Z a,, onde
n=I1
0<a,, paracada neN. (3.124)
1. Se existir a
re(0,1), talque — <r, paracada neN, (3.125)
n
entdo a série numérica Z a, serd convergente.
n=1
2. Se existir
An1
re(l,c0), tal que >71, para cada nEN, (3.126)

n

o0

entdo a série numérica E a, serd dwergente.

n=1

Demonstragao:
De [0.:
Suponhamos que exista
re(0,1),
tal que a
"1 <, paracada meN.
an

Logo deveremos ter
an1 <Tra,, paracada ne€N. (3.127)
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Afirmamos que isto implicard que
ani <t"a;, paracada neN. (3.128)

A prova de (BTZ8) serd por indugédo sobre n.
Para isto, notemos que:
(i) Vale para n = 1, segue de (BETZ7) que

a <rap,

ou seja, vale (EI28) par n = 1.
(ii) Suponhamos que (BET23) vale para n =k > 2, isto é, que

a1 < ™ ay (3.129)

e mostremos que isto implicard que (BEI28) valerd para k =n + 1.
Para isto, observemos que,
(ET22)
Q2 < T Qg
hipétese de indugdo, isot é, (ET23) "
< r (™ ay)

-
ou seja, (E128) valerd para k =n + 1, finalizando a prova por indugégo.

Para cada n € N, definamos
b, =1"aq. (3.130)

Notemos que a serie numérica

é uma série numeérica convergente, pois é um multiplo de uma série geométrica de razao
r € (0,1), logo serd convergente (veja o o Exemplo (B=23), com ¢ =1 € (0,1)).
De (ET29) e (ET20), segue que

0<a,<b,, paracada neN.

Logo, do item . do critério da comparagdo para séries numéricas (ou seja, do item 0. do
o

Teorema (BE53)) segue que a serie numérica E a, serd convergente.

n=1

De 2. :
Se existir r € [1,00) tal que

An+1
an

>1, paracada neN
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entdo
any > T1a,, paracada meN. (3.131)

De modo semelhante a demosntragdo do item 0., pode-se mostrar que
Qn.1 > 71" a;, paracada n € N.

A verificagdo deste fato serd deixada como exercicio para o leitor.
Para cada n € N, definido-se
b, =1"q, (3.132)

temos que a serie numérica
ET=1 N
J bn =) Ma
n=1 n=1
o0
= E ™
n=1

é divergente, pois é um multiplo, ndo nulo, da série geométrica de razdo r € [1,00) (veja o
Exemplo (B=33), com ¢ =1 € [1,00)), logo serd divergente.
De (BET20) e (BET22), segue que

0<b,<a,, paracada neN. (3.133)

Logo, do item B. do critério da comparagdo para séries numéricas (ou seja, do item
o0

B. do Teorema (BE&X)), segue que a serie numérica Z a, serd divergente, completando a
n=1
demonstracdo do resultado.

O

Observacao 3.5.3 O Teorema (BE24) actma, permanece vdlido se trocarmos a hipdtese

an+1
" T <r, paracada neN”
an
por .
+1
" I <1, paracada m>N,"”
an
no item 1., ou a hipdtese
n+1
" >r, paracada necN”
an
por .
+1
" >r, paracada m >N, "
a’n

no item 1., mais precisamente:
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Corolario 3.5.2 (critério da razdo para séries numéricas estendido)
o0

Consideremos N, € N e a série numérica E a,, de modo que

n=1

0<a,, paracada n>N,. (3.134)

1. Se existir

re (0,1), tal que o1

<71, para cada n>N,, (3.135)

Qan

o)

entdo a série numérica E a, € convergente.

n=1
2. Se existir

rell,c0), tal que o+

>r1, para cada N> N,, (3.136)

n

[e.e]
entdo a série numérica E a, € dwergente.

n=I1

Demonstracao:

A demonstragdo é semelhante a do critério da razdo e serd deixada como exercicio para o
leitor.

O
Como consequéncia do critério da razdo temos o:
Teorema 3.5.5 (critério da razdo par séries numéricas, por limites)
Consideremos a série numérica Z a,, onde
n=1
0<an,, paracada neN (3.137)
¢ a
1= lim /. (3.138)
n—oo an
1. Se
Le[0,1), (3.139)
entdo a série numérica Z a, € convergente.
n=I1
2. Se
Le (1,00) (3.140)

o0
entdo a série numérica E a, € dwergente.

n=1
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3. Se
=1,
nada podemos afirmar.
Demonstragao:
De @ .:
Como , por hipétese, o
1= lim /2 <1, (3.141)
n—oo an
dado
L1=1
€=—— >0, (3.142)

podemos encontrar N, € N, tal que, para n > N,, teremos:

n 139 ] —
a+]—l‘<£(—:)—l,
a, 2
1-1 n nl1-—1
ou, equivalentemente, — 5 < aaH —1 (<) 5
an>0 q, or(I) 1 —1
implicando que: 0 < aaH lD<() 5 +1
T 1 141 1=
- 4= . 1. 3.143
27272 77 < (3.143)

Logo, do item M. do critério da razdo para séries numéricas estendido (isto é, do item
(0.0

0. do Coroldrio (BE53)), segue que a serie numérica E a, é convergente, completando a

n=1
demonstragdo do item 0. .

De 1. :
Como, por hipédtese,

1= lim 20 5 ) (3.144)
n—oo an
dado
L l=1
s:T >0, (3.145)
podemos encontrar N, € N tal que, se n > N,, segue que
Erzm) | — 1
At _1’<€( :)1_)
a, 2
) 1—1 @ -1
ou, equivalentemente, ——— < it _ < —,
2 a, 2
1-1
2
or (II ] —1
implicando que: Ani1 P >( : 1+ ——
an 2
! + L <=§">] 1 (3.146)
= — — =7 . .
2 2
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Logo, do item B. do critério da razdo para séries numéricas estendido (isto é, do item

[e o]

B. do Coroldrio (BE53)), segue que a serie numeérica Z a, é divergente, completando a
n=1
demonstragdo do item B. .

De iii.:
Exibiremos dois exemplos onde

. Qn1
1= lim =1
n—oo an

e no primeiro exemplo a série numérica converge e no segundo exemplo a serie numeérica
diverge.

(o]
Sabemos que a série numérica E —
U

=an

é convergente (veja o Exemplo (EZ23)).

Notemos que
An41

1] = lim
n—oo an

Exercicio 1

= 1
Por outro lado, a série numérica Z - é divergente (veja o Exemplo (BE=XH)).

=bn
Observemos que, neste caso:

n—oo n

Exegicio 1
Esses dois exemplos mostram que se
L=L=1,

nada podemos afirmar, ou seja, a série numérica poderd ser convergente ou divergente, com-

pletando a verificagdo do item B. e do resultado.
O

Apliquemos as ideias acima aos:
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Exemplo 3.5.5 Analise a convergéncia da série numeérica:

o0

n!’
n=1

Resolugao:
Para cada x, € [0, 00) fixado e cada n € N, definamos

. Xo'
a,=—-.
n!
Logo
XonJr]
Qnyp (ETZ) (n+1)!
1 = lim ——
n—oo Ay n—oo Xo
n!
. Xo
= lim
n—oo M -+ 1

Exegicio O 1 < 1 )

Z Xo para cada x, € [0,00) fizado .

113

(3.147)

(3.148)

Entéo, do item M. critério da razdo para séries numéricas, por limites (ou seja, do item .

n

o
(. . Xo'
do Teorema (BE3)), segue que a série numérica E L' é convergente, para cada x, € [0, 00)
n!

n=1

fixado.

Exemplo 3.5.6 Analise a convergéncia da série numeérica abaizo:

= 1

ann

n=1

Resolucgao:
Para cada n € N, definamos

Logo

1
O (BEZ0) | (n+1)2n+

lim
n—oo an n—oo
n2n
e 2 (1)
xercicio‘I .
mredde — =1 <1,

2

O

(3.149)

(3.150)

Entéo, do item . critério da razdo para séries numéricas, por limites (ou seja, do item M.

o)

do Teorema (BET5H)), segue que a série numérica E —n é convergente.
n

n=1
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Exemplo 3.5.7 Analise a convergéncia da série numérica abaizo:

n
—. 3.151
Resolugao:
Para cada n € N, definamos
. nt
= (3.152)
Logo
(TL + ])nH
!
i Sl @) o (0 +n1)-
n—oo an n—oo
n!

i n+1\"
= lim | ——
n—oo n
) T\"
=1lm |14+ —
n—oo n

Exercicio

= e=1>1.

Entéo, do item B. critério da razdo para séries numéricas, por limites (ou seja, do item B.
o0
L (- L
do Teorema (BE5H)), segue que a série numérica E — ¢ divergente.
n!

n=1

U
Exemplo 3.5.8 Analise a convergéncia da série numérica abaizo:
i ] . (3.153)
2n+1
n=1
Resolucao:
Para cada n € N, definamos
1
a, = (3.154)

2n+1°
Notemos que

1
lim Gni1 29 lim —2 n+1)+1
n—oo an n—oo ]
2n+1
B 2n+1
T 2n 3

Exercicio 1

Y

ndo podemos aplicar o critério da razdo por limites (veja o item B. do Teorema (BE23)).
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Porém, se definirmos, para cada n € N,

1
by = — 3.155
- (3.155)
entdo
1
lim o e =) oo 2nf 1
n—oo by, n—o0 l
n
Ii n
e m ————
n—oo 2 (n +1 )
Exercicio 1
=" —->0.
3 >

Como a série numérica - -
Sh=Y o
n=1 n=I1 n
é divergente (é a série harmoénica, veja o Exemplo (BEZM)) segue, do item M. do teste da
comparagdo para séries numeéricas, por limites (ou seja, do item 0. do Teorema (E=3)), que

a série numérica
o0 o0
Z :
a = Z
" 2n+1
n=1 n=1

serd divergente.
OJ
Um outro critério importante para o estudo da convergéncia de séries numéricas é dado
pelo:

Teorema 3.5.6 (critério da raiz para séries numéricas) Consideremos a série numérica

(o]
E a,, onde
n=1

0<a,, paracada mecN. (3.156)
1. Se existir
Tre(0,1) (3.157)
de modo que
1
(a )™ <71, para cada neN, (3.158)
——

o
entdo a série numérica E a, serd convergente.

n=1
2. Se existir
re(l,00) (3.159)

de modo que
(a )™ >71, para cada neN, (3.160)
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o0

entdo a série numeérica E a, serd diwergente.

n=1

Demonstracgao:
De . :
Por hipétese, temos que

(an)% <r, paracada mneN,
onde
0<r<1,

ou seja,
0<a,<r", paracada mne€N.

[e o]

Observemos que a série numeérica E " é convergente, pois é uma série geomérica de

n=1
razdo r € [0, 1) (veja Exemplo (BE=23), com ¢ =1 € [0,1)).
Logo, do item . do critério da comparagdo para séries numéricas (ou seja, do item 0. do

Teorema (B51)), segue que a serie E a, serd convergente, completando a demonstragdo do

n=1
item 0. .

De 2. :
Por hipétese, temos que
(an)% >r, paracada meN,
onde r € (1,00), ou seja,
a, > 1", paracada €N.

o0

Observemos que a série numérica Zr” é divergente v € [1,00) (veja Exemplo (BEZ3),
n=1
comc=r € [l,00)).

Logo, do item B. do critério da comparagdo para séries numéricas (ou seja, do item B. do
o0

Teorema (B5J)), segue que a serie Z a, serd divergente, completando a demonstragao do
n=1

item O. e do resultado.
O

Observacao 3.5.4 O Teorema (BEEM) actma, permanece vdlido se trocarmos a hipdtese
" (ay)® <r, paracada neN com recl[0,1)”

por
1
"(ap)* <1, paracada n>N,, com rve€l0,1)”
no item 1., ou a hipdtese

1
"(ap)® >71, paracada neN, com re€[l,c0)’
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por

" 1

no item 1., ou seja:

Corolario 3.5.3 (critério da raiz para séries numéricas, estendido)

o0

Consideremos N, € N e a série numérica E a,, onde

n=1

0<a,, paracada m>N,.

1. Se existir
re0,1)
de modo que
1
(an)™ <71, para cada n>N,,
o0
entdo a série numérica E a, serd convergente.
n=I1
2. Se existir
re(l,o00)
de modo que
1
(a )™ >1, para cada n>N,,
o0
entdo a série numeérica E a, serd diwvergente.
n=1
Demonstracgao:

(an)™ >71r, para cada n>N,, com 71e€](l,o00)

1

117

(3.161)

(3.162)

(3.163)

(3.164)

(3.165)

A demonstragdo é semelhante a do critério da raiz (ou seja, do Teorema (BE5H)) e serd
deixada como exercicio para o leitor.

Como consequéncia temos o:

O

Teorema 3.5.7 (critério da raiz para séries numéricas, por limites) Consideremos a
(o]

série numérica E a,, onde

n=1

0<a,, paracada meN

e definamos

3=

1= lim (a,)
n—oo

. Se

lLe[0,1),

o0

entdo a série numérica E a, serd convergente.

n=1

(3.166)

(3.167)

(3.168)
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2. Se

lLe (1,00),

o0

entdo a série numérica E a, serd divergente.

n=1
3. Se
1=1,

nada podemos afirmar.

Demonstragao:
De @M. :

Por hipétese, temos que

1= lim (a,)" < 1.

n—oo

Logo, dado

1-1
e = >0,

podemos encontrar N, € N, tal que se n > N,, teremos

‘(an)% _1‘ el

_%<(an)l_1<

1-1

isto é,
ou, equivalentemente,

Em particular,

para cada n > N,.

SERIES NUMERICAS

(3.169)

(3.170)

(3.171)

(3.172)

1_T<(a“)%<l+_'

Logo, do item M. do critério da raiz para séries numeéricass, estendido (ou seja, do item

e}

0. do Coroldrio (E53)), segue que a série numérica E a, serd convergente, completando a

n=1

demonstracdo do item 0. .
De 1. :

Por hipétese temos que

1= lim ()% > 1.
n—oo
Logo, dado
-1
& = T >O,

(3.173)

(3.174)
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podemos encontrar N, € N, tal que se n > N,, teremos:

erm) 1— 1
‘(an)%_l‘ <£( :)T)
L 1—1 1 1—1
isto &, —T<(an)n—l<T,
1—1 @ 1—1
ou, equivalentemente, 1— 5 (<) (an)% <l+ 5
Em particular,
1 por (II) 1—1
N
(an) -
L 1
“2727T
=
> 1,

para cada n > N,.

119

Logo, do item B. do critério da raiz para séries numeéricass, estendido (ou seja, do item

[e o]

B. do Corolédrio (EB3)), segue que a série numérica E a, serd divergente, completando a

n=1
demonstragdo do item @. .

De iii.:

Notemos que se

2=

lim (a,)
n—oo

=1,

o0

nada podemos afirmar com relagdo a convergéncia da série numérica E a,, COMO veremos

n=I1
nos dois exemplos a seguir:

Observemos que

. 1 .1
lim n~» = lim en ™"
n—oo n—oo
. Inn
= limen
n—oo

) [lnn]
= limexp |—] .
n

n—oo

(3.175)
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Mas
. Inn . Inx
lim — = lim —
n—oo T x—o0o X
1
2. L’Hospital -
> T2 im X =0,
X—00 1
. 1 . Inn
logo: lim n» = lim exp [—]
n—oo n—oo n
expencial é continua em 0 |: . <].Il n)}
= exp | im | —
n—oo n
() e0
=1, (3.176)
ou seja,
lim nn S (3.177)
n—oo
=
Sabemos que a série numérica Z — ¢ divergente (é a série harmonica, veja o Exemplo
n=1 \nz-/
=an
Notemos que, neste caso,
1, = lim (a,)=
n—oo
N
= lim (—)
n—oo n
. 1
= lim | — (3.178)
n—oo nn
1 &=,
lim nr
n—oo
Por outro lado, sabemos que a série numeérica Z — € convergente (veja o Exemplo
RN
=bn

Neste caso, teremos:

L = lim (b,)"
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Esses dois exemplos mostram que se
L=L=1,

nada podemos afirmar, ou seja, a série numeérica poderd ser convergente ou divergente, com-
pletando a verificagdo do item B. e do resultado.

O
Apliquemos as ideias acima aos:
Exemplo 3.5.9 Analizar a convergéncia da série numérica:
= ]
—. (3.179)
nn
n=1
Resolucgao:
Para cada n € N, definamos
]
a, = et (3.180)

Notemos que

(e==m)
a, > 0, paracada mneN

e 1= lim(a,)™

n—oco N

Logo, do critério da raiz no limite item i. (ou seja, do Teorema (BX57) item i.), segue que
a serie numeérica

o0 o0 ]
dm=) o
n=1 n=1
é convergente.
O
Apliquemos as ideias acima aos:
Exemplo 3.5.10 Analizar a convergéncia da série numérica:
i ] (3.181)
n2n’ '
n=I1
Resolugao:
Para cada n € N, definamos
1
a, = (3.182)

n2n’
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(eT=3)
a, > 0, paracada neN

2=

e 1= lim (a,)
n—oo

1/n
= 1 ()
n—oo \ 2N

1
= lim ;
() 1

= —<1.
3 <

Logo, do item M. do critério da raiz para séries numéricas, no limite (ou seja, do item .
do Teorema (B517)), segue que a série numérica

o0 o0 -I
;anzznZn

n=1

serd convergente.
OJ

O 1ltimo critério para convergéncia de séries numérica, cujos os termos sdo nao-negativos,
que exibiremos é o:

Teorema 3.5.8 (critério da integral ou de Cauchy para séries numéricas)

Suponhamos que a fungdo f : [0,00) — R é ndo-negativa (isto é f(x) > 0 para
x € [0,00)), decrescente, continua em [0,00) e que a sequéncia numérica (Qn)nen S€ja
dada por

a, =f(n), para cada meN. (3.183)

[ee]
Entao a série numeérica E a, serd convergente se, e somente se, a integral impropria

n=1
o0

de 1.a espécie J f(t) dt for convergente converge.
1

Demonstragao:

Notemos que como a fungédo f é continua em [0, co) segue que ela serd Riemann integravel
no intervalor [k, k + 1], para cada k € N.

o0
Suponhamos que a série numérica Z a,, é convergente.

n=1

Observemos que, (veja a figura abaixo), para cada k € N, teremos:

(ET=)

ay f(k), € a drea do retdngulo que tem base [k, k + 1] e altura f(k). (3.184)
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a; = f(2

a3 =f(3

Por outro lado, como a fungdo f é decrescente em [0, 00), para cada k € N, temos que

0 < f(x)
f é decrescente
< f(k)
=) ap paracada xe€ [k,k+1]. (3.185)

Logo, para cada k € N, das propriedades da integral de Riemann, de (BEZIZ3), segue que

k+1 (m)
J fix)dx = FK)(k+1) —K
« e

— £(k)
= . (3.186)

Portanto, para cada k € N, segue que

0<f(x) kK

0 < Jf(x) dx
1

k<k+1 e 0<f(x) [k+1
=

f(x) dx
1
3

2
[, k+11=[1,2JU12 3JU---[k  k-+1]
= J f(x)dx + J
1

K k+1
f(x) dx+~~~+J f(x) dx+J f(x) dx
2 -1

k

(eT=m)
< aq+a+--- 4 ag +oag,

ou seja,

[e.e]

Sk (= soma parcial de ordem k da série Z an). (3.187)

n=1
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(e o]

Portanto, como a série numérica E a, é convergente, segue que a sequéncia numeérica
n=1
(Si)nen sera convergente.

Logo, de (BTE17), segue que a integral imprdépria de 1.a espécie J f(x) dx serd convergente.

1
[

Suponhamos que a integral imprépria de 1.a espécie f(x) dx seja convergente.

1
Observemos que (veja a figura abaixo), para cada k € N, temos que

ay = d&rea do retangulo de base [k — 1, k] e altura f(k). (3.188)
A
a; = f(1)
as = (2)
as = (3)
1 2 3 4 5 6 7 -

Como a funcéo f é decrescente em [0, c0), para cada k € N, temos que

f é decrescente

f(x)

=) ap paracada xe€ [k—1,k]. (3.189)

f(k)

Logo, para cada k € N, das propriedades da integral de Riemann, de (EZI3), segue que

jk fo)dx > Ik — (k— 1))
— £(K)

= 4. (3.190)

Portanto, para cada k € {2,3,-- -}, teremos:

K B o 2 3 K
J f(x) dx =2V A0 J f(x)dx + J f(x)dx+--- —i—J f(x) dx

1 1 2
(ET=m)

> ata3+---+ag, (3.191)

ou ainda, para cada k € {2,3,---}, segue que

K (ETm) &
a1+J fx)dx > ) aj =Sy, (3.192)
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o0
ou seja, a soma parcial, de ordem k, da série numérica Z a, .

n=1
o0

Assim, se a integral improépria de 1.a espécie J f(x) dx é convergente, de (E2T92), segue
1

o

que a sequéncia numérica das somas parciais (S, )nen, associada a a série numérica E an,

n=1
serd limitada, mais precisamente,

0<an
<

0 Sk
() k
< +J f(x) dx

Mas como
a, >0, paracada meN,

temos que a sequencia numérica (Sy, )nen serd monétona (crescente).
Portanto a sequéncia numérica (S, )nen € mondtona e limitada em R.

o
Do Teorema (BE), segue que ela serd convergente em R, isto é, a série numeérica E an

n=1
é convergente em R, completando a demonstragao.

O

Observagao 3.5.5 O Teorema (BE3R) acima permanece vdlido se trocarmos o intervalo
[0, 00), pelo intervalo [a,c0], com a > 1 fizado, ou seja vale o:

Corolario 3.5.4 (critério da integral ou de Cauchy para séries numéricas, estendido)
Sejam a>1 e N, € N, tal que N, > a.
Suponhamos que a fungdo f : [a,00) — R € nao-negativa (isto é f(x) > 0 para
x € [a,00)) decrescente, continua em [a,00) e que a sequéncia numérica (an)nen S€ja
dada por
a, =f(n), para cada mn>N,. (3.193)

o0
Entdo a série numeérica E a, serd convergente se, somente se, a integral imprdépria

n=1
o0

de 1.a espécie J f(t) dt for converge.

a

Demonstracgao:

A demonstragdo é semelhante a do Teorema (B5H) acima e serd deixada como exercicio
para o leitor.
O

Apliquemos as ideias acima aos:
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Exemplo 3.5.11 Analizar a convergéncia da série numérica

iy
; - (3.194)

Resolucao:
Para cada n € N, definamos
1

n=—-: 3.195
an = (3.195)

Consideremos a funcdo f: [1,00) — R dada por

1

f(x) = > Dara cada x € [1,00). (3.196)

Notemos que
e a fungdo f, dada por (BET@8), é continua em [1,0);
e a fungdo f, dada por (BETUB), é ndo-negativa em [1,00), pois

1
f(x) (a::mn);>o) para cada x € [1,00);

e a fungdo f, dada por (BT9d), é decrescente em [1,00), pois se x,y € [1, c0) satisfazendo
X<y,
1
entdo: f(x) =9 _
X
1
Y

1<x<y
<

E:EE

= t(y).

e para cada n € N, temos

= .. (3.197)

Observemos que a integral imprépria de 1.a espécie:

o0 o0 ‘I
J f(x) dx =2 J —dx
1 1 X

L
= lim U — dx]

Teor. Fund. Célculo ,.
= lim lln(x)

x=b
b—oo =T ]
= lim [In(b) — In(1)]
b—oo ~—~—

Exercicio Calculo 1
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o0

isto é, a integral improépria de 1.a espécie J f(x) dx é divergente.
1
Assim, do critério da integral para séries numéricas (ou seja, do Teorema (BE53)), segue

que a série

[ee] o

1
=)
n
n=1 n=1

é divergente (caso contrdrio a integral imprépria deveria ser convergente, o que seria um
absurdo).

O
Exemplo 3.5.12 Analizar a convergéncia da série numérica
= 1
Z —» Para cada pER fizado. (3.198)
n=1 n
Resolucgao:
Para p € R fixado e para cada n € N, definamos
L]
n = (3.199)
Consideremos a funcdo f: [1,00) — R dada por
1
f(x) = o para cada x € [1,00). (3.200)
Notemos que, se
p=0,
a série numérica dada por (BTTUR), serd a série numérica
D1
n=1
que é divergente, pois
lim a, “=' lim 1
n—oo n—oo
=1 7& 0,
e assim do critério da divergéncia pars séries numeéricas (isto é, do Teorema (BEZ2)) segue a
afirmagado.
Se
p <0,
a série numeérica
S o)
n np
n=1 n=1
=> nv (3.201)

3
I
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serd divergente, pois —p > 0, logo
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imn?=00#0
n—oo

e assim, novamente, do critério da divergéncia (isto é, do Teorema (BZ3)) segue a afirmacéo.

Se

a série numérica

p=1,
[e o] OO]
an= ) —
Lo

também serd divergente (é a série série harmonica, mostramos no item 1., que é divergente).

Consideremos o caso em que

Notemos que:

p € (0,00) \{1}.

e a fungdo f, dada por (BE=2D), é continua em [1,00);

e a fungdo f, dada por (BEZ0), é ndo-negativa em [1, c0), pois

f(x)

(ezm) 1

— >0, paracada x€[l,00);

e a funcdo f, dada por (BE=20), é decrescente em [1,00), pois se x,y € [1 0co) satisfazendo

e para cada n € N, temos

X<y,
(ezm) T

xP
1<x<y 1]
<

yr
fy);

entdo f(x)

(eZm)

(e=zm) 1
T oo

= q,.. (3.202)
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Observemos que a integral imprépria de 1.a espécie

o0 cawinin o0 1
J f(x) dx = J — dx
1 1 xP

v
= lim U — dx}
b—oo 1 xP

Teor. Fund. Célculo lim 1 ]
a (1—p)xr!

b—oo

= lim [b'P —1]
] —p b—oo

| converge (para ﬁ), sep € (1,00)
| diverge (para +o0), se p< (0,1)

Logo, do critério da integral (ou seja, do Teorema (BE23)), segue que a série numérica

i 1 . convergente, sep € (1,00)
—  ser&: :
P diverge (para +o0), sep € (0,1)

n=1

Juntando todos os casos tratados teremos:

= convergente, sepe (1,00
> —  sera: Ve pelloo) (3.203)
—=nP diverge (para +oc0), sep € (—oo,1]
([l
Observagao 3.5.6 Para cada p € R, a série numérica
2
= (3.204)

serd denominada p-série.

Logo, o Exzemplo (E513) acima, nos diz que uma p-série € convergente se, e somente
se,
peE(l,00). (3.205)

Exemplo 3.5.13 Analizar a convergéncia da série numérica
i 1 ara cada p € [0,00) fizado (3.206)
— nlnp (n) ) p p ) ¢ .

Resolugao:
Para p € [0, 00) fixado e para cada n € {3,4,5,-- -}, definamos
1
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Consideremos a funcédo f: [e,00) — R dada por

1

f(x) = ——— ara cada x € [e . 3.208
( ) Xlnp(x)? pr [ )OO) ( )
Notemos que, se
p=0,
teremos a série numeérica Z o que é, essencialmente a série harmonica (desprezando-se os
n=3
dois primeiros termos da mesma), portanto serd divergente.
Se
p=1,
teremos temos, por (EZ07) e (EZ03), que
a, = ] ara cada ne€{3,4,5 } (3.209)
n — n ].Il(n) ) p y THryv . .
) 1
f(x) = , Pparacada x>e. (3.210)
x In(x)

Notemos que:
e a fungdo f, dada por (B=ZI0), é continua em [e, c0);
e a fungdo f, dada por (B=Z10), é ndo-negativa em [e, co), pois

@zm) 1

fx) x In(x)

>0, paracada x € [e,00);

e a funcdo f, dada por (BE=210), é decrescente em [e, c0), pois se x,y € [e oo) satisfazendo

X <Y,
1
entdo: f(x) i)
x In(x)
e<x<y 1
~ yln(y)
cavans!
= ty);
e para cada n € N, temos
fn) =
~ nln(n)

=9 ... (3.211)
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Observemos que a integral imprépria de 1.a espécie

J f(x) dx =) J 1 dx
. . xIn(x)

: °
“im || e

1
b u=In(x) = du=—dx
Mas: J dx = x

. xIn(x) x=e=>u=1
x =b = u=1In(b)
In(b) 1
:J —du
;u
u=In(b)

Teor. Fund. Célculo n

=In[In(b)] .

[e's) b
Cogo, | flxdx = fm |

= b11_)m In [In(b)]

Exercicio de Calculo 1

oo

Portanto a integral imprépria J
. xIn(x)

Logo, pelo critério da integral para séries numéricas (ou seja, do Teorema (BE53)), segue
o0

dx é divergente.

que a série numeérica E

n=3
Consideremos agora o caso em que

p € (0,00) \{1}.

- serd divergente.

Notemos que:
e a fungdo f, dada por (BE=ZR), é continua em [e, c0);

e a fungdo f, dada por (BZR), é ndo-negativa em [e, co), pois

Ezm) _ ]

fix) x InP(x)

>0, paracada x€ [e,00);

e a funcdo f, dada por (B=20R), é decrescente em [e, co0), pois se x,y € [e oo) satisfazendo

X<y,

(Ezm) |
 x InP(x)

e<x<y 1

y In"(y)

entdo: f(x)
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e para cada n € N, temos
ez 1 ==

f(n) n InP(n)

an . (3.212)

Observemos que a integral imprépria de 1.a espécie:

J:O f(x) dx = J:o #"(x) dx

: L
= &1—%]6 |:Je m dX:| . (3213)

1
u=1nx=>du:;dx

b
1
l\/IaS; ‘Lmdxz X:e:>u:1
x=b = u=In(b)
In(b) 1
:J —du
1 up
Teor. Fund. Célculo ‘]— u=In(b)
- 1—pluwr' |,
1
=g DT =1] (3.214)
Assim
o b
E=3) . 1
Je f(X) dx = ‘t}-l—{g)J Xlnp(x)
(ezm) -~
= [Jm (In(b))' P —1
n—oo (] _p) [ :|

Bxercicio { converge (para pL_]), se pe(l,00)

diverge (para co), se pe(0,1)

Logo, do critério da integral (ou seja, do Teorema (B21)), segue que, a série numérica

> 1 . convergente, se pe(l,00)
Z ———  sera: .
nlnP(n)

- diverge (para +o0), se p <€ (0,1)

Logo, juntando todos o casos tratados do critério da integral (ou seja, do Teorema (E23)),
segue que, a série numeérica

) (3.215)

i 1 . convergente, se pe(1,00)
sera:
diverge (para +o0), se p € (—oo,]1]

0

3.6 Convergéncia de Séries Alternadas

Observacao 3.6.1
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1. Observemos que os critérios estabelectdos na se¢do [Z3 anterior, s6 podem ser
aplicados para séries numéricas que tenham somente um nimero finito de termos
negativos, ou seja, sé aplicam-se para séries numéricas

o0
E an ,
n=1

onde
a, >0, para cada n>N,.

2. Se a série numérica possui somente um numero finito de termos positivos, po-
demos aplicar os critérios desevolvidos na se¢do I A anterior, trocando-se o sinal
dos termos da série numérica dada inictalmente, ou seja, em vez de estudarmos

a convergéncia da série numeérica

o0
E an,
n=1

onde
a, <0, wpara cada m >N,

poderemos estudar a convergéncia da série numérica

Z(_an) )

1

o0
n=
e, neste caso, teremos

—a, >0, para cada mn>N,.

Deste modo, a série numérica obtida, ficard com somente um numero finito de
termos megativos e assim poderemos tentar aplicar os resultados da se¢do EA a
esta mova série numérica.

3. Baseado nestas observagées, falta um resultado que trate de series numéricas que
tenham infinitos termos positivos e negativos, o que chamaremos de:

Definicao 3.6.1 Diremos que uma série numérica é um série numérica alternada se

ela puder ser colocada na seguinte forma:

> (=)ay (3.216)
n=I
onde
a, >0, paracada mneN. (3.217)

Temos os:
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Exemplo 3.6.1 As séries numéricas abaizo sao séries numéricas alternadas:

1.y (="
n=1

Neste caso,
a, =1, para cada meN. (3.218)
2 i(_] )nHl
. n=1 n
Neste caso,
1
an = > para cada mneN. (3.219)
3 i(_] )n+1 1
’ — 2n—1
Neste caso,
1
n=5——7, para cada meN. (3.220)
O

Com isto temos o seguinte critério para o estudo da convergéncia de séries numéricas
alternadas:

Teorema 3.6.1 (critério da série numeérica alternada ou de Letbnitz)
Suponhamos que (an)neny € uma sequéncia numeérica que satisfaz:

i. a, >0, paracada neEN; (3.221)
ii. (an)neny € uma sequéncia numérica decrescente, (3.222)
iii. lim a, =0. (3.223)

n—oo

(0.0
Entdo a série numérica E (—1)

n=1

"“a, serd convergente.

n+1

o0
Além disso, se a soma da série numérica E (—1)"""a,, for denotada por S, entdo

n=1

IS—S. < any, para cada meN, (3.224)

Demonstracao:

[e o]

Denotemos por (S, )nen @ sequéncia numérica das somas parciais da série numeérica E Qn,
. n=1
ou seja,
n
Sn = E (—1)*"q,, paracada mneN. (3.225)
— E,—/
k=1 Ry

Afirmamos que:
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Son <Syni2, paracada neN. (3.226)

De fato pois, para cada n € N, temos:

(EZ2m)
Sonp2 = Son+ A +FAmp
1 -
2n+2 : 2n+3
=Son+ (1) aznir + (=1 aznp2
=Sin+ Qi1 — Q2np2
—_—
=)
AQn+l = Any2
S 0
ZSZTL .
Temos também:
Soni1 <S;n1, paracada meN. (3.227)

De fato pois, para cada n € N, termos:

Son+ =) Son—1 +Agn + Agna

-1 -1
: 2ntl 2n+2
T s
— Slnf1 + (_]) a;n + (_]) A2 n+1
= Son1 + —Qon + Aanyd
—_—
(==3)

An 2 A2ny]
<

<Son-1.

Além disso, temos:
0<S$,,<a, paracada né€N. (3.228)

De fato pois, para cada n € N, termos:

=1 =—1 =1 =—1

) —— ——N— —N—
0< Son EX T @+ (1) @yt 4 (DD @y 4 (1) gy
=q—Q@+a+--—Qn2+Qng— An

/

=a+(—ay+a3)+- -+ (—axmo2+ am) + (—am)
~——— ———

(==3) (===22) <0
az arn—1 arn-2

a3 <
0 <

ININ

S(l].

Logo, de (E2220) e (BZ221), segue que a sequéncia numérica (Syn)ney € mondtona (decres-
cente) e limitada em R.

Logo, do Teorema (EZ), a sequéncia numeérica (S,n)nen Serd convergente em R.

Seja

S= lim S, . (3.229)

n—oo
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Observemos que, para cada n € N, temos:

i)
Sont — Son + Axng

=1

——
- SZn + (_1 )(2n+1)+1 azn+1

=Son+ Qnit. (3.230)
Como, de (B2223), temos que
lim a, =0, (3.231)
n—oo

segue que

lim SZn+1 (B::EJ) lim (SZn + aZn-H)
n—oo n—oo

= lim Szn+ lim A2 n
n—00 n—oo

=g 0=

Ou seja, a sequéncia numeérica (S;,41)neny também serd convergente para S.
Com isto podemos mostrar que a sequéncia numérica (S, ).cy serd convergente para S.
A verificagdo deste fato serd deixada como exercicio para o leitor.

o0
Portanto a série numérica E (—1)

n=1
Notemos que, de (BEZ22H), seque que a sequéncia numérica (S, )nen € crescente e como

"1a, é convergente e sua soma serd igual a S.

lim S, =S,
n—oo
segue que
S)n <S, paracada neN. (3.232)

Por outro lado, de (B=ZZ7), temos que a sequéncia numeérica (Syn:1)nen € decrescente e

como
lim S, =S,
n=00
deveremos ter
S$<S;n.;1, paracada neN. (3.233)

Como isto, para cada n € N, teremos

(Z2x3) (E=Z=33)
Son < S < Synyr- (3.234)
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Portanto, para cada n € N, segue que

(E222)
0 < S§$—5m

(E=2=33)
S SZn-H - SZn

= Aani

= A2n+1y
isto &, IS — Syl =V S-S,

< Qongt e (3.235)

Por outro lado, para cada n € N, temos:

(E2=3)

0 < Syns1—S

(EZ3)

< Sinp1— Song2
=—Ainp2
-
= [(—1)(2n+2)+] (lzn+2]

= U2n+2,

. , (=)
1sto ¢, |S - 52n+1’ < SZnJr] —S

< Arny2 . (3.236)
Portanto, de (E2238) e (B2230), segue que
S—S. <an.1, paracada neN

completando a demonstragdo do resultado.

Apliquemos as ideias acima aos:

Exemplo 3.6.2 Verifique se a série numérica abaixo convege ou diverge, justificando

sua resposta.
(_] )n+1

i - (3.237)

n=1

Resolucgao:
Notemos que série numérica (E2317) é uma série alternada, onde

1
an = - Dara cada neN. (3.238)

Observemos que a sequéncia numeérica (a,)nen:
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e ndo negativa, pois

1
an(E:EE)H>O, paracada n € N;

e é decrescente, pois se n, m € N satisfazem n < m, segue que

| cammace: ] ] TLSm ]
am( _)_ < — = Qn,
m n
e além disso, temos:
1
lim a, = lim — =0
n—oo

Logo pelo critério da série alternada (ou seja, do Teorema (BTED)) segue que a serie
i (_1)n+1
numérica E ———— é convergente.
n
n=1

O
Observacao 3.6.2 A série numérica (B22Z31) acima serd denominada série harmoénica
alternada.

Veremos, mais adiante, que esta série alternada tem soma igual a In(2), ou seja,

o (_])n-H B
%;—?f—_mgy

(3.239)

Podemos também aplicar o critério de Leibnitz (isto é, o Teorema (BEXE)), ao:

Exemplo 3.6.3 Verifique se a série numérica abaizo convege ou diverge, justificando
sua resposta.

o0 (_] )n+1

s 3.240

2n—1 ( )

n=1
Resolucao:
Notemos que série numérica (B2Z0) é uma série alternada, onde
: ! ara cada eN (3.241)
a, = r n . )
Observemos que a sequéncia numeérica (a,)nen é:

e ndo negativa, pois

paracada n e N;

)

e ¢é decrescente, pois se n, m € N satisfazem n < m, segue que

B 7] ] n<m ]
a, = <

2m—1 2n—1
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e além dissom, temos:
. . 1
lim a, = lim =0
n—oo n—oo 2 n— 1

Logo, pelo critério da série alternada (ou seja, do Teorema (BE)), segue que a serie
e (T
numérica ——— é convergente.
; m—1 Vere
([l

%)bservagéo 3.6.3 Veremos, mais adiante, que a soma desta série numérica serd igual
e ou seja,
o (_] )n+1

2n—1

n=1

T
=_, .242
: (3.242)

Observacao 3.6.4

1. O Teorema (BE) pode ser aplicado a série numérica

> (=1 a, (3.243)

1

[e.o]
n=

mais precisamente: se a sequéncia numeérica (a,)neny € ndo negativa, decrescente

[e.e]
e tem limite zero, entdo a série numérica E (—=1)"a,, serd convergente.
n=I1

Para ver 1sto basta observar que série numérica

Y Ean=(-1)) ()" an.

(e .o] (e .o]
n=1 n=1

2. A condigdo

" (an)neny decrescente ”

necessdria para obtermos a conclusdo no Teorema (BBI), como mostra o sequinte
exemplo:

Considere a série numérica

T 1 1 1 1 1 1
1 \n+! —1_ _ - R -
Z1( H™a, =1 sts—mt3—mti ot

o0
n=

Observemos que ela € uma série numérica divergente.

De fato, pois a série numérica

oo o0 -]
;a2n+1:;2n+]
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¢ divergente (verifiqgue!) e a série numérica

o0 e o] ]
;GZTL:;Z_“

[O'N

: : . ]
convergente (série geométrica de razdo 0 < c = 7 < 1) e temos:
o [e o] o0
1
Z(—1)n+ an = Z A2ng1 — Z A2ny
n=1 n=1 n=1

logo ela serd divergente.

Observemos que

a, >0, wparacada neN e T}Lngoanzo,

mas a sequéncia (a,)neny N0 € decrescente (verifique!).

Podemos aplicar as ideias desenvolvidas nesta segdo, ou seja, o critério de Leibnitz (ou
seja, do Teorema (BETE)) ao:

Exemplo 3.6.4 Mostremos que a série numérica
o9}
1
> (= inin) (3.244)

€ convergente.

Resolugao:
Notemos que a série numérica (B=224) é um série alternada, onde
In(n)

an = > paa cada n>3. (3.245)

Notemos que:
(i) A sequéncia numérica (a,)nen € ndo negativa, pois

3. 244 ]. n
an(?)nTzo, paracada n >3 (>1);

(ii) A sequéncia numérica (an)nen € decrescente.

De fato, pois considerando-se a fungdo f : [e,00) — R dada por

f(x) = , paracada x € [e,00), (3.246)

segue que a fungdo f é diferencidvel em [e, o) e, além disso, das regras de derivagio,
teremos
(ezzm) 1 —In(x)

£/(x) g

<0, paracada x€[e,00).
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Logo a fungdo f é decrescente em [e,00) e como

segue que a sequéncia numérica (a,)ney também serd decrescente;
(iii) além disso, temos:

) (ezzmm) .. In(n)
lim a, = lim
n—oo n—oo n

S. item 2. ].
Obs. (ZT) item 2 im n(x)

1
2. L’Hospital _, v
= lim | X
n—oo | 1
=0 ,
logo, T}EIC}O a, =0.

Logo segue, do critério da série alternada (ou seja, do Teorema (BXBE)), que a serie

n+1 11’1
numérica E ——— é convergente.
O
Como exercicio deixaremos o:
Exercicio 3.6.1 Mostre que a série numérica
> 1
(=1 — 3.247
> = (3.247)

n=I1
€ convergente e determine sua soma, com erro menor ou tgual 0,02, em valor absoluto.

Resolucgao:
Notemos que a série numérica (B227) é um série alternada, onde

1
an = 3> para cada neN. (3.248)

Deixaremos, como exercicio parfa o leitor, mostrar que a série numerica (E=224) é conver-

gente (use o critério da séria alternada, ou seja, o Teorema (EET)).
. 1
Denotemos por S a soma da série E (=)™, ou seja,
n?

n=1

(e ¢]
§ n+1

n=1
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o0
n+1 l

e por S, a soma parcial de ordem n da série Z(—]) vt ou seja, para cada n > 3, temos

n=1
que

Do critério da série alternada (ou seja, de (BE224) do Teorema (BT T)) segue que

IS, — S| < an;1, paracada meN.

Como lim a,, =0, podemos escolher N, € N, de mdo que
n—oo

1
aNo+1 - NOZ

<0,02
_, b
7100
1
50"
Notemos que, se N, = 9 teremos
Qo1 = Qqo
:9: L
102
1
~ 1000
- 1
50°
Portanto, de (E2224), segue que
ISe — S| < ayo
< 0,02,
assim
59( a; —a; +as+ — Qo
:9: . ] 1 o l
= 1Tt t g

€ uma aproximagado de S, com erro menor que 0,02 .

(3.249)
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3.7 Reagrupamento de Séries Numéricas

o0 [e.o]

Definicao 3.7.1 Dada uma série numérica E a,, diremos que a serie numérica E bn

n=1 n=1
o0

€ um reagrupamento da serie numérica E a,, se os termos da 2.a série numeérica

n=I1

forem os termos da 1.a série numérica, tomados em outra ordem, isto €, para cada
n €N, temos

by = ay,, (3.250)
para algum i, € N e para cada m € N, temos

am = b, (3.251)
para algum j, € N.

Para ilustrar, temos o:
Exemplo 3.7.1 A série numérica
T 1 1 1 1 1
T+ —s4-+s—=—— +

3 2 5 7 4 6
€ um reagrupamento da da série harmémica alternada, isto €, da série numérica:

i(—ﬂ"“l. (3.252)

n
n=1

Neste caso, temos que:
bi=a, br=a3, by=as, .

Para reagrupamento de séries numeéricas, cujos termos sdo ndo-negativos, temos o seguinte

resultado:
o0

Teorema 3.7.1 Suponhamos que a série numeérica E a, seja convergente e

n=1

a, >0, paracada mneN. (3.253)

Entao qualquer reagrupamento, que denotaremos por E b., da série numérica

n=1
o0

E a, serd convergente.

n=1

o0
Além disso, se a soma da série numérica E a, € igual a S, entdo a soma do
n=1
(o]

z

reagrupamento Z b, também serd igual a S, isto €,

n=1

se Z a, =S, entdo Z b, =S. (3.254)
n=I n=1
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Demonstracgao:

(e ¢]
Sejam (S, )nen € (Th)nen as sequéncias numéricas das somas parciais das séries E a, e

n=1
o0

Z b., respectivamente, isto é, para cada n € N, temos:

n=1

ol
I-
.M:
2

(3.255)

,4
Il
=

I
M-
o)

T, = (3.256)

x
Ik

o0 o0
Como a série numeérica E b, é um reagrupamento da série numérica E a,, segue que,
n=1 n=1

para cada k € N, existem 1;,1; --- € N, de modo que

bk = Ay,

n
ou seja, I, (E=9) Z by
i=k

n
=)
i=k

ai, + ai, + -+ a, . (3.257)

o0

Como a série numérica E a, é convergente, segue que sequéncia numeérica (S,)nen €

n=I1
convergente.

Logo, da Proposicdo (E333), segue que a sequéncia numérica (S,)ney serd limitada, isto
é, podemos encontrar M > 0, tal que

0<s, = i a
i=1

an_zo

IS, <M, paracada neN. (3.258)

Como
(E=Z=3)

a, > 0, paracada neN,

segue que a sequéncia numeérica (S, )ney Sera crescente.
Notemos que, para cada n € N, temos:

T, " b+ byt + by

(EZ=2)
= Qi +ai2+"'+ain
k=max{i,i,,in} e ;>0

a+a;+---+ ag

=) 27

)
=S < M, (3.259)
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ou seja, a sequéncia numérica (T, )nen € limitada.
Observemos que ela também € crescente

(=3)

iste in €N
b, e > 0, paracada neN.

in
Logo, do Teorema (EZT), segue que a sequéncia numérica (T,)ncn Serd convergente em
o0

R, ou seja, a série E b, é convergente em R.

n=1
(o]

Denotemos por T a soma da série numérica E b,.

n=1
Observemos que, para cada n € N, de (BE2253), temos que

(Sn)nen é crescente

T, < Sk S,

para
kimax{i] )il)"' »in})

que implicard em
T<S. (3.260)

o

De modo andlogo, considerando-se a série numérica E a, como um reagrupamento da

n=1
(0.9)

série numeérica E bn., segue que

n=1

0<S<T, (3.261)

e assim, (BZ60) e (BEZE0), implicardo que

T=S,
o0 o0
ou seja, a soma das séries numéricas E a, € E b, sdo iguais, completando a demonstragdo
n=I1 n=1

do resultado.
O

Observacao 3.7.1 A condi¢cdo
"a, >0, paracada neN”

no Teorema (BZ1) € necessaria para a validade do resultado, como mostra o ezemplo
a sequar:
Considere a série harmoénica alternada

1 T 1 1 1 1 11
Z(_”WE:]_§+§_Z+§_E+?_§+m’ (3.262)
1

o0
n=
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que é convergente, com soma igual a S > 0 (que mostraremos, mais adiante, que
S =1n(2)), ou seja,

:1—1+———+1——+———+~~. (3.263)
2 3 4 5 6 7 8
Logo
> 1
3S=3 X0,
T 1 1 1
“2 48T
=0+1+0—1+0+1—0+1+---. (3.264)
2 4 6 8

Somando-se as séries numéricas (BE2E3) e (BZ64), obteremos:

33_1+1_1+1+1_1
27 3 2 5 7 4

que € um reagrupamento da série harmédnica alternada (BZE2), e cuja soma (que €

=S) € uma wvalor diferente de S, ou seja, um reagrupamento de uma série numérica

(e o]

N W

1 .
(=1)™'—, que converge, mas que o valor de sua soma € diferente !
n

n=1
Ao final deste capitulo apresentaremos um resultado que mostrard que para séries

numéricas do “tipo alternada”, podemos ter reagrupamentos convergindo para qualquer
numero real, ou até mesmo divergindo para +o0o ou —oo (veja o Teorema (BZL)).

3.8 Séries Absolutamente Convergentes

Comegaremos pela
o0

Definicao 3.8.1 Diremos que a série numérica E a, € absolutamente convergente se

n=1

a série numérica

D lan (3.265)
n=1

for convergente.

Para ilustrar, consideremos o:

Exemplo 3.8.1 Para cada c € (—1,1) fizado, mostre que série numérica

i " (3.266)
n=1

€ absolutamente convergente:
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Resolugao:
A série numérica (B=Z6H) é uma série geométrica de ragéo c.
Notemos que, para cada n € N, temos:

) = e[ (3.267)

Como |c| € [0, 1), temos que a série numeérica

(o9} o0

Z ’Cn’ (B:iﬂ) Z |C|n

n=1 n=1

serd convergente (veja o Exemplo (BE23)).
Portanto, da Definicdo (EXE), segue que a série numérica (E=26H) é absolutamente con-
vergente.

O
Temos também o:
Exemplo 3.8.2 Verifique se a série numérica
> 1
Z(—U““H (3.268)

n=1

€ absolutamente convergente:

Resolucgao:
Notemos que a série numérica (EZ63) é a série harmonica alternada.
Observemos que, para cada n € N, temos:

Como a série numeérica

i 1
n=1 n
€ divergente (é a série harmonica, veja o Exemplo (B=4)), segue, da Definigdo (B=ET), que a
série numeérica (B=Z68) ndo é absolutamente convergente, ou ainda, a série harmoénica alternada
ndo é absolutamente convergente.
OJ
Para séries numéricas absolutamente convergentes, temos o :

o0

Teorema 3.8.1 Se a série numérica E a, € absolutamente convergente, entdo a série

n=1
o0

numérica E a, € convergente, i1sto €, se a série numeérica

n=1

(o]
Dl
n=I1
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€ convergente, entdo a série numeérica
[e.o]
D_an
n=1
também serd convergente.

Demonstracgao:

Observemos que, para cada n € N, segue que

- |an| S an < |an|)

logo 0<a,+|a. <2a,]. (3.269)

(o0 o0
Como a série numeérica E la,| é convergente, segue que a série numérica E (2]an])

n=I1 n=1
também serd convergente.

Logo, do item [. do critério da comparagdo para séries numéricas (ou seja, do item M. do
oo

Teorema (B23)), segue que série numérica Z(an + |a,|) serd convergente.

n=1

Mas
a, = (an, +|an|) —lan|, paracada n €N,
o0 o0
Como as séries numeéricas Z(aﬁ— lan]) e Z |a,,| sdo convergentes, das propriedade basica
n=I1 n=1

o
de subtragéo de séries numéricas (veja a Proposigdo (B=31)), segue que a série numérica E an

n=1

também serd (pois é diferenca de duas convergentes), completando a demonstrago.
O

Observacao 3.8.1 A reciproca do Teorema (BEE) actma € falsa, isto €, existem séries
numeéricas que sdo convergentes mas nao sdo absolutamente convergentes.
Para ver 1sto, notemos que a série numérica

i1 )
Z(_” —H1TL

1

o0
n=

é convergente (pois é a série harmédnica alternada, veja o Exzemplo (BEBE2)) mas ndo é
absolutamente convergente.
De fato, pois

> 1 >
Sirti=3
n=I1 n n=I1 n
que € a série harmédnica que sabemos ser divergente (veja o Ezemplo (BZ24)).

Apliquemos as ideias acima aos:
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Exemplo 3.8.3 Estudar a convergéncia da série numérica
> 1
M= 3.270
;( " (3.270)
Resolugao:

Notemos que,

[e o]

>

n=1

— 1

:ZP

n=1

1
n+1
(=1

e estd série numérica a direita é convergente (é uma p-série, com p > 1, veja o Exemplo
(BE2132), ou ainda, (E2M3)).

Entédo, da Definicdo (B==), segue que a série numérica (E=Z70) é absolutamente conver-
gente.

o0

Logo, do Teorema (B=), segue que a série numérica Z(—1 )yt

1
— também serd conver-

n
n=1
gente.
O
Temos também o:
Exemplo 3.8.4 Estudar a convergéncia da série numérica
> sen(n)
> - (3.271)
n=I1
Resolucao:
Para cada n € N, definamos
sen(n
an = nE ). (3.272)
n!
Notemos que, para cada n € N, teremos:
0 <lan|
(=) | sen(n)
N n!
1
< wE (3.273)

o0
Mas as série numérica E — € convergente (veja o Exemplo (EEH), ou ainda, (BETZ2),
n!

n=1

com x = 1).
Logo do item M. do critério da comparagdo para séries numéricas (ou seja, do item .
. o |sen(n)| .
do Teorema (BE3)) segue que a série numérica Z oy serd convergente, ou seja, da
n=1
sen(n)

o0
Definigdo (BZZ), temos que a série numeérica E

n=1

' € absolutamente convergente.
n!

sen(n)
n!

o0
Além disso, do Teorema (B=), segue que a série numérica E

n=1

é convergente.

O
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3.9 Séries Condicionalmente Convergentes

[e.e]

Definicao 3.9.1 Diremos que a série numérica E a, € condicionalmente convergente

n=1

(e}
se a série numérica E a, for convergente, mas nao for absolutamente convergente, isto

n=1
o0

€, se a Série numeérica E a, € uma Ssérie numeérica convergente, mas a S€rie NuUMETICa

n=1

oo
E la,| € uma série numérica divergente.

n=1

Para ilustrar temos o:

Exemplo 3.9.1 Mostre que a série numérica
- n+1 1
> (==, (3.274)

n
n=1

€ condictonalmente convergente.

Resolugao:
A série numérica (BZ74) € a série harmonica alternada que é uma série numérica condi-
cionalmente convergente, pois ela converge, mas ndao converge absolutamente, isto é, a série

numeérica
o0

n+ 1
2=

n=1

é convergente (veja o Exemplo (BE53)), mas a série numérica

1 >
_1n+1_: -
(1) n\ >4

o0

>

n=1

é divergente (veja o Exemplo (BZ2)).

Temos também o:

Exemplo 3.9.2 A série numérica
> 1
E (—1)“*‘5, (3.275)

é condicionalmente convergente ?

Resolugao:
A série numérica (EZZ7H) nao é uma série numérica condicionalmente convergente, pois
ela converge absolutamente (veja o Exemplo (EE3)).
OJ
Para finalizar exibiremos um resultado sobre reagrupamento de séries numéricas condicio-
nalmente convergentes, a saber:
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o0

Teorema 3.9.1 Suponhamos que série numérica E a, € condicionalmente convergente.

n=1

Entao dado
—oo<L< oo, (3.276)

o0
podemos encontrar um reagrupamento da série numeérica E a,, que € convergente e
. . n=1
cuja soma € igual a L .

Além disso, se
L=oco0 ou L=-—o0, respectivamente

o0

podemos encontrar reagrupamento da série numérica E a, que dwerge para L = +o0,
. n=I1
ou L = —o0, respectivamente.

Demonstragao:
Daremos, a seguir, uma ideia da demonstragdo para o caso em que

O0<L<oo.

Os outros casos sdo semelhantes e suas demonstragdes serdo deixadas como exercicio para
o leitor.

o0 o0

Como ela é condicionalmente convergente temos que E a,, converge e E |a,| diverge.
. n=1 n=1
Consideremos

A={neN;a, >0}={n;,ny,nz, -}

Bi{neN;an<0}:{m1»m2)m3>"‘}>
onde
n<n e mp<m, se i1<j.

Afirmamos que A e B sdo infinitos.
De fato, se um dos dois fosse finito, por exemplo o conjunto B fosse finito, teriamos
somente um nimero finito de termos negativos (ou, positivos, se o conjunto A fosse finito),

o0
0 que contraria a hipétese da série numérica E a, ser uma série alternada.

n=1

o0 o0
Logo podemos produzir um reagrupamento, E b, da serie numérica E a,, da seguinte
n=1 n=1
forma:
b] = An,
an,, se by <L
b, =

Qm,, ¢ by >L "~
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be — An,, SE€ b;+b, <L

T Qm,, 8¢ by +by>L1L "

b — An,, S€ bi+b,+b3<L
T Qm,, S€ by +by+b3>L"

e assim por diante.

Como
lim a, =0,
n—oo

o)

pois a série numérica E a, é convergente (critério da divergéncia, ou seja, o Teorema (BEZ2))

n=1

o0
podemos mostrar que que a sequéncia numérica das somas parciais da série numeérica Z b

n=I1
serd convergente para L.

Deixaremos os detalhes como exercicio para o leitor.
A figura abaixo ilustra a situagdo descrita acima:

/Wm'
Py

3.10 Exercicios



Capitulo 4

Sequéncia de Funcoes

O objetivo deste capitulo é introduzir alguns conceitos de convergéncia de sequéncias de
funcdes, suas propriedades e aplicagoes.

4.1 Definicoes

Observacao 4.1.1 Seja A um subconjunto de R, ndgo vazio.
Denotaremos por F(A; R) o conjunto formado por todas as funcgées f: A — R, isto

\('b\

FA;R)={f;f: A = R é uma func¢do}. (4.1)
Comecemos pela

Definicao 4.1.1 A aplicacdo que, a cada natural n, fizermos corresponder uma fungao
fo: A —= R, 1sto €,
N — F(A; R)

n— f, ’

serd dita sequéncia de funcoes definidas no conjunto A.
Para cadan € N, a funcdo f,, : A — R serd dita termo da sequéncia de fungoes ou

ainda n-ésimo termos da sequéncia de funcoes .

Notacao 4.1.1 A sequéncia de fungbes acima serd indicada por:

(fn)neN ) {fn}neN (fn) ou {fn} . (4'2)

Consideremos os

Exemplo 4.1.1 Seja A = [0,00) e consideremos a sequéncia de funcées (f,)nen, Oonde,
apra cada n € N, temos que a funcao f, : A — R € dada por

fu(x) = > para cada x €R. (4.3)

Os grdficos dos quatro primeiros termos da sequéncia de fungées (f,)nen, estdo
representados, geometricamente, na figura abaizo.

153
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Xo z

Exemplo 4.1.2 Seja A =R e consideremos a sequéncia de fungdes (fn)nen, onde, para
cadan € N, a funcao f, : R — R € dada por

n

fa(x) =x", para cada x € R. (4.4)

Os grdficos dos trés primeiros termos da sequéncia de fungdes (f,)nen, estdo repre-
sentados, geometricamente, na figura abaizo.

4.2 Convergeéncia Pontual de Sequéncias de Funcoes

Observacgao 4.2.1 Dada uma sequéncia de fungées (f,)neny onde, para cada n € N,
temos que a funcdo f, : A — R, fizando-se x, € A obtemos uma sequéncia numérica
(fr(xo))nen que pode ou ndo ser uma sequéncia numérica convergente.

Baseado nisto temos a sequinte defini¢do:
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Definicao 4.2.1 Dada a sequéncia de funcgées (fn)neny como acima e x, € A.
Diremos que a sequéncia de fungdes (f,)nen converge em X,, se a sequéncia numeérica
(fr(xo))nen for convergente, isto €, se existe

lim f,.(x,) .
n—oo

Se para cada x € A, a sequéncia numérica (f,(x))nen for convergente para f(x),

onde f : A — R € uma funcdo, entdo diremos que a sequéncia de func¢ées (f,)nen

converge pontualmente (ou ponto a ponto) para a fungdo f, no conjunto A , isto é
se

)

f(x) = lim f.(x), para cada x € A. (4.5)
n—oo
Neste caso escreveremos
fnf, em A ou limf,=f, pontualmente no conjunto A. (4.6)

Observacao 4.2.2
1. Observemos que a fungao f: A — R estd univocamente determinada, isto €, € de

fato uma funcao.

2. Da Definicdo de convergéncia de sequéncias numérica (isto €, da Defini¢do (E23T))
temos:
fnf, em A
se, e somente se, dado € > 0, para cada x € A, existe N, € N, como
N, = No(e,x), (4.7)
de modo que para

n>N,, teremos |fa(x)—Tf(x)<ce. (4.8)

3. Este tipo de convergéncia de sequéncia de fungbes é chamada de convergéncia pon-
tual ou convergéncia ponto a ponto.

Para ilustrar temos os:

Exemplo 4.2.1 Estudar a convergéncia pontual das sequintes sequéncias de fungoes
(fn)nEN-'

1. A=R, para cadan € N, temos f, : R — R, dada por
fu(x) = %, para cada x € R. (4.9)

2. A=[0,1], para cada n € N, temos f,:[0,1] = R, dada por
fo(x) =x", para cada x € [0,1]. (4.10)
3. A=R, para cada n € N, temos f, : R — R, dada por

2 2
X“4+nx  x
fr(x) i%z;—kx, para cada x € R. (4.11)

4. A =R, para cada n € N, temos f, : R — R, dada por

fn(x) = w, para cada x € R. (4.12)
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Resolugao:

1.
Notemos que, para cada x, € R fixado, temos que

lim f,(x,) =) im X — 0.
n—oo n—oo T

Logo, definido-se a fungdo f: R — R, dada por

f(x) =0, paracada x€R,

Segue que
fn>f, em A=R

isto €, a sequéncia (f,)ncn converge pontualmente para f, no conjunto A.

A figura abaixo ilustra a situagdo descrita acima:

Yy
f1(x)=x
; fa(x) =3
' -
. o
T
. f3(x)=2%
/// 3 3
T fa(x) =7
=
-
-
[
= -
= Xoo  f(x)=0 ¥

Notemos que, para cada x, € R fixado, temos que

(i). Se x, =1, temos que:
lim (1) = lim 1" =1.

(ii). Se x, € [0, 1), temos que
lim f,(x,) = lim x,*
n—oo n—oo

Logo, definido-se a fungdo f: [0, 1] — R, dada por

. J 0, para x€[0,1)
f(x)—{] , para x =1

(4.13)

(4.14)

(4.15)
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segue, dos itens (i). e (ii). acima, que

fo = fem A=10,1] (4.16)
isto é, a sequéncia de fungbes (f,,)neny converge pontualmente para a fungdo f, no con-
junto em A.

A figura abaixo ilustra a situagdo acima:

Yy

f1(x)Y=x
f ZLX): x2 !
f3(x) = x3

Notemos que, para cada x, € R fixado, temos que

2

lim f,(x,) =) qim X + Xo = Xo -
n—oo n—oo N

Logo, definindo-se a fungdo f: R — R, dada por
f(x) =x, paracada x € R, (4.17)
segue que
fo > f, em A=R (4.18)

a sequéncia de fungdes (f,)nen, converge pontualmente para a fungio f, no conjunto em
A

A figura abaixo ilustra a situagdo acima:

Xo X
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Notemos que, para cada x, € R fixado, temos que

Hm £, (x) "= lim sen(nx, +n)

n—oo n—oo n
\sen(nxo+n)|§1:e limn 00 +=0 0.
Logo, definido-se a fungdo f: R — R dada por
f(x) =0, paracada x€R, (4.19)
segue que
f, 5 f, em A=R (4.20)

a sequéncia de fungdes (f,,)nen, converge pontualmente para a fungédo f, no conjunto em
A.

A figura abaixo ilustra a situacdo acima:

‘f1 (x) = sen(x+ 1)

fa(x) = 17 sen(2x + 2)
7/

Y
Xo FANEE

f3(x) = 13 sen(3x + 3)

O

z

Observagao 4.2.3 Na Defini¢Go da convergéncia pontual (isto €, na Definigdo (E=2)),
podemos observar que, dado ¢ > 0 e x, € A, o nimero natural N, a ser encontrar
depende, em geral, de

e edoponto X,. (4.21)

Serd que mao podemos eliminar a dependéncia do N, em relagdo ao ponto x, ?
A resposta em geral é nao, como mostra o Ezemplo (E231) abaizo.

4.3 Convergéncia Uniforme de Sequéncias de Funcoes

Quando pudermos encontrar um ntumero natural N, que independente do ponto x, na De-
finigdo (E=X), teremos a:
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Definicao 4.3.1 Diremos que uma sequéncia de funcées (f,)nen, definidas em A C R
(isto é, f, : A — R) converge uniformente, no conjunto A para uma fungdo f: A — R,

se dado ¢ > 0, podemos encontrar

N, = N,(e) € N, (4.22)
de modo
se n>N,, teremos |fy(x)—f(x)|<e, paratodo x€A. (4.23)
Neste caso escreveremos
fo—f, em A. (4.24)

Observacao 4.3.1

1. Notemos que escrever
Ifo(x) —f(x)| < e, paratodo x€A
€ equivalente a escrever
—e < fu(x) —f(x) <e, paratodo x€A

ou ainda,
f(x) —e < fo(x) <f(x)+e, paratodo x€A.

Assim, a sequéncia de fungdes (fn)nen Satisfaz a condigdo (E223) se, e somente se,
seu grdfico estd contido no ” tubinho”, de raio £, em torno do grdfico da funcao f

A figura abaizo ilustra a situagdo acima.

A
y —
- T, ., ///_\\:
S} \/
TN .
| } fn
d
ra f
T —TT
\//;
x

Logo, do ponto de vista acima,

>

fo — f,  uniformemente no conjunto
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se dado ¢ > 0, podemos encontrar um N, = Ny(¢) € N, de modo que, para todo
n > N,, a representagao geométrica do grdfico das fungdes f,, estardo contidas
no "tubinho”de raio ¢ em torno da representacao geométrica do grdfico da fungao
f, definido acima.
2. Segue imediatamente da Defini¢bes (E21) e (E2), que a convergéncia uniforme

de uma sequéncia de fungcdes em um conjunto, implicard na convergéncia pon-
tual dessa sequéncia de fungcdes no mesmo conjunto, isto €, se uma Ssequéncia
de fungébes (fn)nen converge uniformemente em A, para uma fun¢do f, entdo a
sequéncia de funcées (fn)nen converge pontualmente para a funcdo f, no conjunto
A, ou ainda,

se f, 5f em A, entdo f, >f emA. (4.25)

A reciproca € falsa, isto €, existem sequéncias de fungdes (f,)neny que conver-
gem pontualmente para uma funcdo f, em um conjunto A, mas a convergéncia
sequéncias de fung¢des (f,)nen naO serd uniforme, como mostram os Exemplos
(B), (E23) e (EZ), que exibiremos a sequir.

Exemplo 4.3.1 Mostre que a sequéncia de fung¢ées (fn)nen, onde para cadan € N, temos
qua a funcgdo f, : R — R é dada por

, para cada x€R, (4.26)

f(x) =0, paracada x€R, (4.27)

mas NAO converge uniformemente em R.

Resolucgao:
Notemos que, do Exemplo (E=Z) item 1. (veja (EH)) temos que

fn&f, em R.

isto é, a sequéncia de fungdes (f,)ncy converge pontualmente para a fungio f em R.

A convergéncia da sequéncia de funcdes (fy)nen NAO é uniforme em R.
De fato, suponhamos, por absurdo, que a

Entado, dado

deveria existir um N, = N,(¢) € N, de que se

n > N,, deveriamos ter fa(x)—0| <1, paratodo xe€R.
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Em particular, deveriamos ter
X
No

Ix| <N,, paratodo xeR,

<1, paratodo x€eR,

ou, equivalentemente

o que é um absurdo, pois escolhendo x € R, tal que
x > No,

a desigualdade acima serd falsa !
Portanto nao existe N, € N, de modo que

Ifo(x) —f(x)|<e=1, paratodo x€R.

161

Logo a sequéncia (f},)nen converge pontualmente para a fungéo f, em R, mas nao converge

uniforme para a fungdo f, em R
A figura abaixo ilustra a situagdo acima.

Observagao 4.3.2 Observe que se no Exemplo (E21) acima, considerarmos

A =[a,b],

entdo a convergéncia da sequéncia (f.),.y serd uniforme em A = [a,b], como mostra

o ezemplo a sequir, no caso de

a=0 e b=10.

Exemplo 4.3.2 Consideremos a sequéncia de fungées (fn)nen, onde A = [0,10] e para

cadan € N, a fungdo f, : A — R € dada por

, para cada x € [0,10].

(4.28)
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Mostre que a sequéncia de funcgdes (fn)nen converge uniformemente para a fungdo
f:[0,10] —» R, dada por

f(x) =0, para cada x € [0,10]. (4.29)

Resolugao:
Observe que, como vimos no Exemplo (E=3)

fnDf, em A=1[0,10].

Analisemos se a convergéncia é uniforme.
Notemos que, dado ¢ > 0O, se consideraros N, € N de modo que

10
N, > ?, (430)
entdo, para
n >N, (4.31)
teremos:
EZ3) e X
fal) = £(x)] L= 2
n
10
S R
n

para todo x € A, mostrando que
fn o f, em A=1[0,10]

isto é, a sequéncia de fungbes (f,)ney converge uniformemente para a fungio f, no conjunto
A.

A figura abaixo ilustra a situagao acima.

| f1(x) =x
v .
3 fZ(X):j
— Do) =%
[~ e L
P =5
10
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Observacao 4.3.3 No Ezemplo (E33) acima, poderiamos desenvolver o mesmo Ta-
ctocinio, considerando o intervalo A = [a,b].
Dewzaremos a resolugdes deste caso como ezxercicio para o leitor.

Exemplo 4.3.3 Consideremos a sequéncia (f,)nen, onde para cada n € N, a funcgdo
fno: A — R € dada por
fo(x) =x", para cada x€R (4.32)

Mostre que a sequéncia de fungdes (fn)nen converge pontualmente para a fungdo f,
no conjunto A =1[0,1], onde a fun¢do f:[0,1] —» R, dada por

fx) = (4.33)

0 , paraxecl0,1)
1 , parax=1 .

mas a convergéncia da sequéncia de fungdes (fy)nen NAO converge uniformente para
a fungdo f, no conjunto A =1[0,1].

Resolucgao:
Como vimos no Exemplo (E=ZT) item 2. (veja (EI0)), que

fnDf, em A=1[0,1],

porém a convergéncia NAO serd uniforme em [0, 1].
De fato, suponhamos, por absurdo, que a convergéncia seja uniforme em A = [0, 1], isto
€,
fo—f, em A=1[0,1].

Consideremos

e=. (4.34)

Entao, deveria existir N, € N, de modo que se

1
n>N,, deverfamos ter |[f (x)—f(x)|<e= 3y Dbara todo x€ A=1[0,1]. (4.35)

Observemos que para cada n € N, podemos encontrar x, € [0, 1), de modo que

Xo € ( 1), (4.36)

pois

Assim, para

1
Xo € (3—31 y 1> s (437)
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teremos

Portanto, a convergéncia da sequéncia de fungdes (f.), .y nao poderd ser uniforme, no
conjunto em A = [0, 1].
A figura abaixo ilustra a situagdo descrita acima.

y A

Mais adiante veremos novamente, usando outro procedimento, que esta convergéncia da
do Exemplo (E33) acima, ndo poderd ser uniforme em [0, 1].
O

sequéncia de fungdes (fn), y;

Deixaremos como exercicio para o leitor o:

Exercicio 4.3.1 Consideremos a sequéncia de fungdes (f,)neny €, para cada n € N, a
fungdo f, : R — R é dada por
L xr4nx

fo(x) = —, » para cada x € R. (4.38)

e f:R — R definida por
f(x) =%, x€eR.

No Ezemplo (EZT) item 3. (veja (EIT)) vimos que
fnof, em R,
onde funcao f:R — R é dada por
f(x) =x, para cada x€R. (4.39)

Mostre que a convergéncia sequéncia de fungdes (f,)neny nNao € uniformemente em
R.

Resolucao:
A demonstragdo deste fato serd deixada como exercicio para o leitor.
A figura abaixo ilustra a situagdo descrita acima.
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N

Temos também o: O

Exercicio 4.3.2 Consideremos a sequéncia de funcgdes (f,)nen onde, para cada n € N,
a fungado f, : R — R é dada por

1
fu(x) = - sen(nx+mn), para cada x € R. (4.40)
Mostre que

fo—of, em A=R, (4.41)
isto €, a sequéncia de funcées (f,)neny converge uniformemente para a fungdo f, no

conjunto A =R, onde a fungdo f: R — R € definida por
f(x) =0, para cada x € R. (4.42)

Resolugao:

Deixaremos como exercicio para o leitor a verificagdo do fato acima.
Sugestao: para cada n € N, temos:

1 1
‘—sen(nx—kn)‘ < —, paracada x€R.
n n

A figura abaixo ilustra a situagao descrita acima.

P /\\

if] (x) = sen(x + 1)




166 CAPITULO 4. SEQUENCIA DE FUNCOES

O

Temos também o:

Exercicio 4.3.3 Consideremos a sequéncia de funcgées (f,)neny onde, para cada n € N,
a fungdo f, :[0,00) — R € dada pela representacdo geométrica do seu grdfico, como na
figura abaizo e a fungdo f:[0,00) — R € definida por

f(x) = 0, para x€(0,00) , para cada x € [0,00). (4.43)
1, para x=0
Mostre que
fnf, em A=[0,00), (4.44)

mas a convergéncia nao € uniforme em A = [0,00), ou seja, a sequéncia de funcgdes
(fn)neny converge pontualmente para a fungdo f, em A = [0,00), mas nao € uniforme-
mente em A = [0,00).

Resolucao:
Deixaremos a verificagao deste fato a cargo do leitor.
A figura abaixo ilustra a situagdo descrita acima.

A

Xo

W=
M= e

Podemos tratar do:

Exercicio 4.3.4 Consideremos a sequéncia de funcgées (f,)neny onde, para cada n € N,
a fungdo f, : R — R é dada por:

1
fn(x) = T=3 i, para x € (=n,mn) , paracada x€R  (4.45)

0 , para x € (—oo,mn]U[n,o0)
e a fun¢ao f: R — R dada por

f(x) =1, para cada xé€R. (4.46)
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Mostre que
fnf, em A=R, (4.47)

mas a convergéncia nao € uniforme em A =R, ou seja, a sequéncia de fungdes (fn)nen
converge pontualmente para a funcdo f, em A = R, mas nao é uniformemente em
A =R.

Resolucgao:
Deixaremos como exercicio para o leitor a verificagdo deste fato.
A figura abaixo ilustra a situagdo descrita acima.

Para finalizar temos o:
O

Exemplo 4.3.4 Consideremos a sequéncia de funcées (fn)nen onde, para cadan € N, a
fungdo f,: (0,1] - R € dada por

1
fo(x) = 5 Para cada x € (0,1] (4.48)
e a funcdo f: (0,1] = R € definida por
f(x) =0, para cada x€A. (4.49)

Mostre que
fnf, emA=1[0,1), (4.50)

mas a convergéncia nao € uniforme em A = [0,1), ou seja, a sequéncia de funcgdes
(fa)nen converge pontualmente para a funcgdo f, em A = [0, 1), mas nao € uniformemente
em A=1[0,1).

Resolucgao:

Deixaremos como exercicio para o leitor a verificagdo da convergéncia pontual, ou seja,
(E=m).

Suponhamos, por absurdo, que a convergéncia da sequéncia de fungdes (f,,)nen fosse uni-
forme em A = [0,1).

Deste dado, dado

>0, (4.51)
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deveriamos poder encontrar N, € N, de modo que

se n >N,
1
deveriamos ter: Ifa(x) —f(x)| < ¢ = 7 para todo x € A =(0,1],
1 1
isto é (de (E28) e (EZ9)), E—O‘<z, para todo x € A = (0,1],
. 1 1
em particular, vale para n = Ny: N x < 5 para todo x € A = (0, 1],
; T N,
como x >0 e N, € N, é o mesmo que: 0< ~ < — > bara todo x € A =(0,1], (4.52)
o que é um absurdo, pois
1
lim — =o00.
x—0T X

Logo ndo existe tal N, € N, isto é, a convergéncia da sequéncia de fungdes (f,)ncny néo
pode ser uniforme em A = (0, 1].
A figura abaixo ilustra a situagdo descrita acima.

4.4 Sequéncias de Funcgoes de Cauchy

Em analogia com sequéncias numeéricas temos a nogao de sequéncias de Cauchy para sequéncias
de funcdes, a saber:

Definigao 4.4.1 Diremos que uma sequéncia de func¢ées (f,)neny € uma sequéncia de
Cauhy em A C R, se dado ¢ > 0, podemos encontrar

N, = No(e) € N, (4.53)

de modo que

se n,m>N,, teremos |fy(x)—Tfn(x)|<e, paratodo x¢€A. (4.54)
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Temos o:

Exemplo 4.4.1 Consideremos a sequéncia de funcées (fn)nen onde, para cadan € N, a
fungdo f,, : R — R é dada por

fo(x) = ———, para cada x €R. (4.55)

Mostre que a sequéncia de funcgdes (f)nen € uma sequéncia de fungdes de Cauchy,
em R.

Resolucao:
Notemos que, dado ¢ > 0, se considerarmos N, € N, de modo que

N, > (4.56)

ST

para
n,m> N,, (4.57)

segue que

=) | sen(nx) sen(mx)
(%) — Fm(x)] = _
n m
< sen(nx) sen(mx)
< o -
— —_——
:‘SEU(nX)\‘sen(nXNS] 1 :\sen(mxl\lsen(mXNS]L
1T 1
<—+—=
noom
(E<J) 1 n 1
SN TN
() € + £ .
2 2 7

mostrando, pela Definicdo (EZ), que a sequéncia de fungbes (f,)nen € uma sequéncia de
fungdes de Cauchy em R.
OJ
Um resultado importante que relaciona a nogdo de convergéncia uniforme de uma sequéncia
de funcbes, em um conjunto, com a nogdo de sequéncia de fungOes ser uma sequéncia de
fungdes Caunhy, no mesmo conjunto, é dado pelo seguinte:

Teorema 4.4.1 (Critério de Cauchy para a convergéncia uniforme de uma sequéncia
de fungbes) Seja (fn)neny uma sequéncia de fungées onde, para cada n € N, temos que
fn:ACR— R.

A sequéncia de fungdes (f,)nen converge uniformemente no conjunto A se, e somente
se, a sequéncia de fungdes (f,)nen for uma sequéncia de Cauchy no conjunto A.
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Demonstracgao:

Suponhamos que
f, > f, em A.

Entdo, dado ¢ > 0, podemos encontrar N, = N,(¢) € N, de modo

se n>N,, teremos |f (x)—f(x)< % para todo x € A. (4.58)

Logo para
n,m>N,, (4.59)

segue que

[fn(x) = fn ()] = [[fn(x) — ()] + [F(x) — fm(x)]]
desigualdade triangular

< [ (x) — £ + [f(x) — fin(x)]
EmeEme e
27277

(4.60)

para todo x € A, mostrando que a sequéncia de fungdes (f,,)ncy € uma sequéncia de Cauchy
no conjunto A.

Por outro lado, se sequéncia de fungdes (f,)nen € uma sequéncia de Cauchy no conjunto
A, entdo para cada x € A, a sequéncia numérica (f,(x))ney Serd uma sequéncia numeérica de
Cauchy em R.

Logo, do Teorema (EZ72), a sequéncia numérica (f,(x))nen serd convergente em R, isto é,
para cada x € A, f,(x) — f(x), ou seja,

fo > f, em A. (4.61)

Precisamos mostrar que a convergéncia acima (que é pontual) é uniforme no conjunto A.
Como a sequéncia de fungdes (f,,(x))nen é uma sequencia de Cauchy no conjunto A, dado
¢ > 0, podemos encontra N, = Ny(¢) € N, de modo que

se n,m>N,, teremos |[f,(x)—f.(x)]<e paratodo x€A. (4.62)
Passando-se o limite em (E%62), quando m — oo, obteremos
Ifo(x) —f(x)| < e paratodo x €A,

ou seja,
f,—f, em A,

completando a demonstracdo do resultado.

Apliquemos as ideias acima ao:
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Exemplo 4.4.2 Mostre que a sequéncia de fungées (fn)neny do Ezemplo (BEZZ), converge
uniformemente para a fungdo f, onde a funcdo f: R — R € dada por

f(x) =0, para cada x € R. (4.63)

Resolucgao:
Notemos que, para cada x € R temos que
. sen(nx
(=), sen(nx)

lim f.(x)
n—oo n—oo n

sen(nx)|<1 e limp o0 =0
sen{nx ° oy 0
ou seja, a sequéncia de fungdes (f,,)nen converge pontualmente para f em R.
Como vimos no Exemplo (EZT), a sequéncia de fungdes (f,)neny € uma sequéncia de
funcgdes de Cauchy, em R.
Logo, do Teorema (E—Z) segue que (f,)nen converge uniformemente para f em R.

4.5 Propriedades da Convergéncia Uniforme de Sequéncias
de Funcoes

A seguir daremos algumas aplicagdes importantes da convergéncia uniforme de sequéncias de
funcoes.
Comegaremos observando que, no Exemplo (EZ3) acima (e o Exemplo (EZT)), temos
que
u
fo—f, em A,

as fungdes f, sdo continuas em R (veja (EEH)) e a fungdo f, também € continua em R (veja
Isto ocorre em geral, como afirma o resultado a seguir:

Teorema 4.5.1 Suponhamos que (f,)necn S€ja uma sequéncia de fung¢des onde, para cada
n € N, temos que a fungdo f, : A CR — R € uma fungdo continua no conjunto A e que
a sequéncia de funcgdes (fn)nen converge uniformemente para f, no conjunto A.

Entdo a funcao f serd continua nmo conjunto A.

Isto é, para cada x, € A, temos

lim f(x) = f(x,) (4.64)

X—Xo

ou awnda:

lim [lim fn(x)] = lim {lim fn(x)} , para cada X, € A. (4.65)

X—Xo Ln—oo n—oo [x—xe
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Demonstracgao:

Precisamos mostrar que a fungdo f é continua para cada x, € A.
Faremos a demonstragao quando

o
Xo €A .

Para o caso do ponto x, pertencer a fronteira do conjunto A, fazemos algumas adaptagdes
do processo abaixo para mostrar a conclusao.

Deixaremos os detalhes deste caso como exercicio para o leitor.

Dado ¢ > 0, do fato que

fo—f, em A,

segue que podemos encontrar

de modo que
se n>N,, (4.66)

teremos |fn(y) — f(y)| < % paratodo ye€A,

€
em particular, |[fn,(y) —f(y)l < 3 paratodo ye€A. (4.67)
Como, por hipétese, a fungdo fn, € continua em x,, podemos encontrar 6 > 0, tal que

se |x—xo| <&, segueque |[fn,(x)— TN, (X0)| < £ (4.68)

3
Assim, se

X — Xo| <8, (4.69)

teremos:

[T(x) — F(xo)l = [f(x) — i, (%) + g (%) = i, (Xo) + T, (Xo) — T(Xo)]

des. triagular
<0 = g ()] [ (%) — g (X0 )[4 [, (%6) — F(%0)|
(==3) ;,(m) . (e=3) ;,() . (e23) :,(m) e
< 3 < 3 < 3

<£+£—|—E—s
3 3 3 7

Portanto,

lim f(x) = f(x,),

X—Xo

isto é, a funcdo f é continua em x, € A.



4.5. PROPRIEDADES DA CONVERGENCIA UNIFORME 173

A identidade (EE4) pode ser obtida da seguinte maneira: se x, € A, teremos:

lim [hm fn(x)} ™= lim f(x)
X—Xo Ln—oo X—Xo

f é continua em xo

= f(xo)

fn é continua em xo _, .
= — lim {hm fn(x)} ,

n—oo [x—xo
obtendo a identidade (E64) e completando a demonstragdo do resultado.

U

Uma outra aplicagdo importante da convergéncia uniforme de sequéncia de fungdes é dado
pelo:

Teorema 4.5.2 Consideremos a sequéncia de fungées (fn)nen onde, para cada n € N a
fungdo f,, : [a,b] C R seja continua em [a,b] e que que a sequéncia de funcdes (fn)nen
converge uniformemente para f, no conjunto [a,b].

Entao
b b
J f(x)dx = lim J fo(x) dx, (4.70)
ou seja,
b b
J [lim fn(x)} dx = lim U fr(x) dx] . (4.71)
a n—oo n—oo a
Demonstragao:

Como sequéncia de fungbes (f,)ncn converge uniformemente para f, no conjunto [a,b] e,
para cada n € N, a fungdo f,, é continuas em [a,b] segue, do Teorema (EL) acima, que a
fungdo f serd continua em [a, b].

Logo, por um resultado do Calculo 1, segue que a fungdo f serd integravel em [a, b].

Como

fn —=f, em [a,b],

dado ¢ > 0, podemos encontrarN, = N,(¢) € N, de modo que

se n>N,, teremos [fa(x)—f(x)]< b—sa’ para todo x € [a,b]. (4.72)

Logo, para

n>N,, (4.73)
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teremos:

b
j (£a(x) — F(x)) dx

a

[Tn(x) —f(x])| dx

propriedades da integral de Riemann b
<

a

dx

(m)e(nz)‘l‘b €

<

b—a
13

:b—a(b_a)ze’

fa(x) dx>

a

b b

converge para J f(x) dx, ou seja,

a

isto é, a sequéncia numérica (J

a neN

lim {

n—oo

Jb fu(x) dx] = Jb f(x) dx,

isto é, vale (EZ7D).
A identidade (EZ7T) pode ser obtida da seguinte maneira:
b w. (b
J [lim fn(x)] dx f“QfJ f(x) dx

a n—oo a

= lim Ub £, (x) dx] ,

n—oo a

obtendo a identidade (EZ7T) e completando a demonstragdo do resultado.

Observacao 4.5.1

1. O Teorema (EBE3) actma nos dd condigoes suficientes, para podermos trocar um
limite em n, com uma integral definida (que é o que diz a identidade (EZZT)).

2. Podemos provar um resultado andlogo ao acima substituindo-se a hipdtese de
continuidade dos termos da sequéncia de fungdes, por integrabilidade e limitagdo
uniforme das mesmas.

3. A conclusdo do resultado pode nao ser verdadeira se retirarmos a hipdtese da
convergéncia ser uniforme da sequéncia de fungdes, como mostra o exemplo a
sequir:

Consideremos a sequéncia de fungdes (f,)nen, onde para cada n € N, a funcgdo
fo:[0,1] 5 R € dada por sua representacdo geométrica, como na figura abaizo.

A
3

f1 f2 f3

w|—=
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Observemos que

f(x) =0, para cada x € [0,1], (4.74)

mas nao converge uniformemente para a fung¢do f, no conjunto [0,1].
De fato, pois

r f(x)dx =0, (4.75)

mas, para cada n € N, temos que

1
J fo(x) dx = % , (4.76)

pois a drea da regido delimitada pelo grdfico das fungdes, nao-negativa, f, serd

. 1 . .
1gual a 7 (veja as figuras acima).

Portanto
1

1
1
lim J fa(x) dx = #£0 =) J f(x) dx,
e 2 .
mostrando, pelo Teorema (EE2), que a sequéncia de fungébes (f,)nen ndo poderd
convergir uniformente para a fun¢do f, no conjunto [0, 1].

Observacao 4.5.2
Tendo em vista os Teoremas (EB) e (ER2) extbidos actma, podemos pensar se algo
semelhante poderd ocorrer para a diferenciacdo de sequéncias de funcgdes.

Isto é: se uma uma sequéncia de func¢bes (f,)nen converge uniformemente para
f:(a,b) = R, em (a,b) onde, para cadan € N, a fung¢do f,: (a,b) = R € diferencidvel
em X, € (a,b) implcard que a fungdo f é diferencidvel em x, e valerd a identidade

f'=lim f, ?

n—oo

Infelizmente 1sto nao é verdade em geral, como mostram os exemplos abaizo.

Exemplo 4.5.1 Consideremos a sequéncia de fungdes (fi)nen, cujas representagdes geo-
métricas dos grdficos dos seus termos sdo dadas pelos seus grdficos abairo, definidas
em R e a funcao f: R — R dada por

f(x) = x|, para cada x€R.



176 CAPITULO 4. SEQUENCIA DE FUNCOES

Mostre que
f.—=f, em R,
par cada n € N, a fungdo f, € diferencidveis em x = 0, mas a fungdo f nao € dife-

rencidvel em x = 0.

Resolucao:
Deixaremos como exercicio para o leitor verificar que

f, = f, em R.

Notemos que, para cada n € N, temos que a fungdo f, é diferencidvel em x = 0 (a
representacgdo geométrica do gréfico de f, ndo tem "bicos”), mas a funcdo f nao é diferencidvel
em x = 0 (visto no Célculo 1).

O

Exemplo 4.5.2 Consideremos a sequéncia de fungdes (f,)nen onde, para cadan € N, a
funcao f, : R — R € dada por

1
fo(x) = —sen (n*x), para cada x€R (4.77)

e a funcao f: R — R definida por
f(x) =0, para cada xé€R. (4.78)

Mostre que
f.—=f, em R,
par cada n € N, a fungdo f, € diferencidveis em R, a fungdo f € diferencidvel em R
mas nao vale a tdentidade

f’(x) = lim f,/(x), para cada x€R.
n—oo
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Resolugao:
Deixaremos como exercicio para o leitor verificar que

fn—f, em R.
Notemos também que a funcdo f é diferencidvel em R e
f'(x) =0, paracada xé€R. (4.79)

Por outro lado, para cada n € N e x € R temos
o/ (x) = ncos(n?x)
e assim, o limite

lim f,/(x) = lim ncos(n’x)
n—oo n—oo

nem sempre existird, por exemplo, ele ndo existe se x =0 .
A figura abaixo ilustra a situagdo descrita acima.

O
Para resolver este problema temos o:

Teorema 4.5.3 Suponhamos que (f,)ncn Seja uma sequéncia de fungbes continuamente
diferencidveis em [a,b] tal que, para algum x, € [a,b], a sequéncia numérica (f,(Xo))nen
converge.

Se a sequéncia de fungdes (f.') converge uniformemente para alguma fungdo g,
em [a,b], entdo a sequéncia de fung¢dbes (f,,) serd uniformemente convegente para uma
funcdo f, em [a,b], onde a funcgdo f:[a,b] = R serd continuamente diferencidvel em
a,b] e

f'(x) =g(x), para cada x € [a,b], (4.80)
1sto é:
[lim fn} "(x) = lim [f)/(x)] , para cada x € [a,b]. (4.81)

n—oo n—oo
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Demonstracgao:

Como

f 5 g, em [a,b]

e, para cada n € N, a fungdo f, é continua em [a, b] segue, do Teorema (EET), temos que a
fungéo g seréd continua em [a, b].

Como a sequéncia numeérica (f,(x,)) converge para algum nimero real, que denotaremos
por ¢ € R entdo, dado ¢ > 0, podemos encontrar N; € N, de modo que

se n>N;, teremos |[f (x,)—c|l< % (4.82)

Definamos a fungdo f : [a,b] — R, dada por

f(x) =c +J g(t)dt, paracada x € [a,Db]. (4.83)

Xo

Como a fungéo g é continua em [a,b], segue (do Cdlculo 1) que ela serd uma fungéo
integrdavel em [a,b], ou ainda, para cada x € [a,b], temos que existe a integral definida
X

J g(t), ou seja, a fungdo f estd bem definida.

Do Teorema Fundamental do Célculo (visto no Cdlculo 1), segue que a fungdo f serd
continuamente diferencidvel em [a, b] e, além disso,

f'(x) =g(x), paracada x € [a,bl], (4.84)

pois a fungdo g é continua em [a,b].
Mostremos que

f, — f, uniformemente em [a,b].

Para isto, notemos que , por hipétese,
f.' — g, uniformemente em [a,Db],

logo, dado ¢ > 0, podemos encontrar
N, = Nz(&) < N,

de modo que

3

m y Ppara todo x € [a,b] . (485)

se n>N,, segueque |f)/(x)—g(x)<

Logo, se
n Z max(N1 ,Nz) y (486)
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segue que:

[ (x) — £(x)| = |

Hg}

Teor. Fund do Célculo |:fn Xo /(t) dt:| —C _J g(t) dt‘

[fal( U /(1) dt—J: g(t) dt” XO

X

X

f/(t) dt — J g(t) dt|

Xo

desigualdade triangular

< rfn(xo)—c|+rj

Xo

b
< [fnlxe) — | +J /() — g(t)] dt

a

n>N,N; logo, valerd (E=3) e (E23) ¢ n e (b )
< —4+——(b—a)=¢
2 2(b—a) ’
mostrando que
f, — f, uniformemente em [a,b]

completando a demonstaragao.
O

Observagao 4.5.3 Podemos provar um resultado andlogo ao Teorema (ER3), trocando-

se a hipdtese da sequéncia de fungdes (fn)nen Ser continuamente diferencidvel em [a,b],

para ser diferencidveis em [a,b] e de modo que as derivadas sejam integrdveis em [a,b].
Dewzaremos a elaboragdo desta situagdo como ezxercicio para o leitor.

Para finalizar o capitulo temos o:

Exemplo 4.5.3 Consideremos a sequéncia de func¢des (f,,)neny onde, para cadan € N, a
fungdo f,, : [0,271] — R € dada por

fo(x) = w, para cada x € [0,27]. (4.87)
Mostre que
fo—f, uniformemente em [0,27], (4.88)

onde a fungdo f:[0,27] — R € continuamente diferencidvel em [0,27] e
f(x) =0, para cada x€[0,2m7].

Resolucgao:
Observemos que, para cada n € N, a fungdo f, é continuamente diferencidvel em [0, 2 7]
(na verdade ela pertence a C*([0,2n]; R)).
Além disso, para cada n € N,, temos que
(z=7) cos(n x)

fl(x) = — . paa cada x€[0,2m7]. (4.89)
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Se definirmos a fungdo g: [0,27] — R por
g(x) =0, paracada xe€[0,27], (4.90)

utilizando o critério de Cauchy par sequéncias de fungdes (isto é, o Teorema (EZ1) ), podemos
mostrar que
f, > g, em [0,27].

A verificagdo deste fato serd deixada como exercicio para o leitor.

Como
(zz2) sen(n0)

£ (0) -

=0, paracada neN,

temos que a sequéncia numeérica (f,(0))nen serd convergente (para zero).
Logo o Teorema (E23) acima, segue que

f.—=f, em [0,27],
e, além disso segue que
f'(x) =g(x) =0, paracada xe€[0,27],

assim a fungdo f serd constante em [0, 2 7).
Mas
£(0) = lim £,(0) "= 0,

n—oo

portanto f(x) = 0, para todo x € [0, 27|, completando a resolugéo.

4.6 Exercicios



Capitulo 5

Séries de Funcoes

5.1 Séries de Funcoes

Comecgaremos introduzindo a:

Definicao 5.1.1 Dada uma sequéncia de fungées (f,)neny onde, para cada n € N, temos
que a fungdo f, : A C R — R, podemos construir uma outra sequéncia de fungdes,
(Sw)nen onde, para cada n € N, a fun¢do S, : A CR — R serd dada por

Sn(x) = f] (X) +oeet fn(x)

= Z fr(x), para cada x € A. (5.1)
k=1

Tal sequéncia de funcdes é denominada série de fungoes associada a sequéncia de

funcoes (f,)nen € indicada por Z fn ou, por stmplicade, Z fn.

n=1 n

Observacgao 5.1.1

[ee]
1. Observemos que a série de fungoes E f. pode ser olhada como uma soma infinita
) n=1
de funcgoes, isto €,

Z fo(x) = f1(x) + fo(x) + f3(x) +---, para cada x € A.
n=1

2. A sequéncia de fungdes (Sy)nen (que € a serie de fungdes) também serd demomin-
oo

dada de sequéncia (de fungoes) das somas parciais associada d série E fi.
n=1

Cada termo dessa sequéncia de fungdes (ou da série de fungdes) a saber, S,, serd

dito soma parcial de ordem n da série de fungoes Z fn.

n=1

o9}

Para cada n € N, a fungdo f, serd dita termo da serie de fungoes Z fn .

n=1

181
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Consideremos os seguintes exemplos:

Exemplo 5.1.1 Seja a sequéncia de fungbes (fn)nen, onde para cada n € N a func¢do
fo:R— R é dada por

n

fo(x) =x", para cada xe€(—1,1). (5.2)

(o)
Encontre a série de funcgoes E fn.

n=1

Resolucgao:
Notemos que série de fungdes, isto é, a sequéncia de fungdes (S )nen, terd como termos,

as seguintes funcgodes:

)

Si(x) ="fi(x)

=,

(=)

Sa(x) fi(x) + f2(x)

152,

=)

S3(x) f1(x) + f2(x) + f3(x)

(g)x+x2+x3,

Su(x) = (%) + fa(x) + F3(%) + -+ + Fu(x)

= x+xF+xC+ X,

para cada x € (—1,1), ou seja,

an(x):Zx“
n=1 n=1
=x+x*+x*+---, paracada x € (—1,1). (5.3)

0

Exemplo 5.1.2 Seja a sequéncia de fungdes (f,)neny onde, para cada n € N, a fun¢do
fo:R— R é dada por

fn(x) =—, para cada x € R. (5.4)

o0
Encontre a série de funcgées E fn.

n=1
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Resolugao:

Notemos que série de fungdes, isto é, a sequéncia de fungdes (S )nen, terd como termos,
as seguintes funcgdes:

wn

x
S—
=

x
N—r

—~

@ g v@ g
vx

x
+

=
®

Su(x) 2 1(x) + Fax) + F3(x) + - + Fu(x)
x4 42
o 2 3 n’

para cada x € R, ou seja,

[e.e] OOX
fo(x) =y =
; (x) ;n
—x+x+x+
B 2 3
=1
— -, da xeR. 5.5
XZn para cada x (5.5)

n=1

Exemplo 5.1.3 Seja a sequéncia de fungées (fn)neny onde, para cada n € NU{0}, a
funcao f,, : R — R € dada por

Xn
_')

fal(x) = o para cada X € R. (5.6)

[e.e]
Encontre a série de funcgdes E fn.

n=0

Resolugao:
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Entdo a série de fungbes (S, )nen terd como termos:

So(x) © £,(x)
&_
B
$1(x) 2 £o(x) + £1(x)
= +x,
B
$2(x) 2 £ (x) + £1(x) + F2(x)
2
(E3) X
="1 +x + Z,
B
$3(x) 2 £,(x) + 1 (x) + F2(x) + f3(x)
& X X
BT
:)
S () &

n(x) =" fo(x) + f1(x) + f2(x) + f3(x) + - - + (%)
@) _, x2 X3 X"
== +X+Z_!+§+“.+H)

M
para cada x € R, ou seja,
> X2 X3
Zofn(x) =THx+5+5+
o0 Xn
= Z ) paa cada x € R. (5.7)
n=0 '

Observacao 5.1.2 Para cada x, € A a série (S.(x,)) serd uma série numérica.
Logo podemos verificar se esta série numérica € convergente ou na@o, como veremos
na prorima se¢ao.

5.2 Convergéncia Pontual de Séries de Funcoes

Lembremos que podemos estudar a convergéncia de uma sequéncias de funcoes de, pelo
menos, dois modos diferentes, a saber:

convergéncia pontual e/ou convergéncia uniforme.

Como uma série de fungdes € uma sequéncia de funcgdoes ”especial” , podemos estudar
sua convergéncia também desses dois sentidos.
Mazis especificamente, temos:
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Definicao 5.2.1 Considere a sequéncia de funcées (f,)neny onde, para cada n € N a
fungdo f, : A CR — R.

o0
Diremos que a série de funcgoes E f, converge pontualmente para a funcao f, em
n=1
A, se a sequéncia de fungdes (Sy)nen converge pontualmente para f no conjunto A, isto
(o]

€, se para cada x € A a série numérica E fo(x) converge para f(x), em R.

n=I1
Neste caso diremos que

f(x) = an(x), para cada Xx €A (5.8)
n=1

o0

€ a soma da serie de funcoes E f. e denotaremos

n=1

Y fu=f, em A. (5.9)
n=1

Observacao 5.2.1 Como no caso de séries numeéricas, o simbolo

denotard duas coisas diferentes, a saber: a série de fungées (Sy)nen, 2Sto €, a sequéncia
das somas parciais associtada a mesma € a fun¢do que é a sua soma, ou seja, o limite
da sequéncia das somas parciais, caso erista.

Consideremos os seguitnes exemplos:

Exemplo 5.2.1 Seja a sequéncia de fungdes (fn)nciopun onde, para cada n € {0}UN, a
fungdo f,, : [0,1) — R € dada por

n

fo(x) =x", para cada xe€[0,1). (5.10)

Mostre que a série de fungoes Z f. converge pontualmente para a funcdo f:[0,1) —

n=0

R dada por

f(x) = , para cada x€[0,1). (5.11)

Resolucao:
Notemos que, para cada x, € [0, 1) fixado, a série numérica

é uma série geométrica de razdo x, € [0, 1), portanto convergente (veja o Exemplo (EZ3)).
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Além disso, sabemos que, neste caso (veja o Exemplo (B=3H))

> 1
Zxon =1, Dbaa cada x, € [0,1),
n=0 o

o
ou seja, a soma da série de fungdes E f, serd a fungdo

n=0
f(x) = T Dpara cada x€1[0,1).

Portanto

= 1

Zx“:f(x):1 , paracada xe€[0,1),
n=0 X

onde a convergéncia da séries de funges acima serd pontual em [0, 1).

O

Observagao 5.2.2 A série de funcdes do Ezemplo (E22) acima nao é pontualmente
convergente em x = 1.

De fato, pois a série geométrica ndo é convergente, se a razdo for igual a 1 (veja o
Ezemplo (B23)).

Exemplo 5.2.2 Seja a sequéncia de funcées (fn)ney onde, para cada n € {O}UN, a
fungdo f, : R — R é dada por

X
fa(x) = > Dpara cada x € R. (5.12)
Mostre que a série de funcgdes an ndo converge pontualmente em R\ {0}.
n=0

Resolucao:
Notemos que, se x, # 0, temos que a série numérica

ndo serd convergente pois:
o0 oo
Xo 1
_ = XO —
Z n Z n
n=1 n=1
o0
e sabemos que a série numérica E — € divergente (série harménica, veja o Exemplo (BE=28)).
n

n=1

o0
- " L
Logo a série de fungdes E — s6 converge em x = 0.
n

n=1
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Exemplo 5.2.3 Consideremos a sequéncia de funcées (f,)nen onde, para cada n € {0} U
N, a fung¢do f, : R — R é dada por

fo(x) = —, para cada x € R. (5.13)

Mostre que a série de fungdes an é convergente pontualmente em R.
n=0
Resolucao:
De fato, se x, € [0, 00) entdo definindo-se

an, = %, paracada n € {0}UN, (5.14)
teremos que
Xon+1
. a . 1)!
lig St & + )
n—oo (p n—oo Xo
nl
= lim 2 =0<1.
n—oo N 1

Logo, do critério da razdo, por limites, para séries numéricas cujos termos sdo ndo-
negativos (veja o item M. do Teorema (B5H)), segue que a série numeérica

n!

n=0
serd convergente, para cada x, € [0, 00).
Se x, € R, a série numérica
0 n
Y Xo_
n!
n=0
serd absolutamente convergente.
De fato, pois
Xo"| %ol
| = 0 Dera cada ne{0jUN. (5.15)
n! !

Como [x,| € [0, 00), segue, da 1.a parte, que a série numeérica

i Ixo|™
n!

n=0

serd convergente.

Mas se uma série numeérica é absolutamente convergente ela serd convergente (critério da
convergéncia absoluta de séries numéricas, veja o Teorema (BEE)).

Portanto a série de fungdes

converge pontualmente em R.
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Observacao 5.2.3 Veremos mais adiante que a soma dessa série de fungdes serd a
fungdo e*, isto é,

X - Xn
ef = Z L0 para cada x €R, (5.16)
n=0
em particular, fazendo x =1, obteremos
>
e=> —- (5.17)
n=0

5.3 Convergéncia Uniforme de Séries de Funcoes

o)

Definicao 5.3.1 Diremos que a série de fungdes E f, converge uniformemente para
n=1
a funcgdo f, no conjunto A, se a sequéncia de fungdes (S, )neny converge uniformemente

para a funcao f, em A.

Observacao 5.3.1 Logo, das Defini¢ées (E231) e (E2), a série de fungdes an con-
n=I1
verge uniformemente para fung¢do a f, no conjunto A se, e somente se, dado ¢ > O,

podemos encontrar N, € N, de modo que
se n>N,, deveremos ter |S,(x)—f(x)|<e, paratodo x€A, (5.18)

onde, para cada n € N, a fungdo S,,: A —» R, é a soma parcial de ordem n associada a

0
série de fungées an (veja a (ED))
n=I1
Antes de exibirmos mais alguns exemplos de convergéncia de séries de fungdes e daremos
alguns resultados que serdo tuteis em varias situagdes.
O primeiro deles é consequéncia imediata dos resultados vistos sobre convergéncia uni-
forme de sequéncias de fungdes, a saber:

o0

Corolario 5.3.1 Suponhamos que a série de fungdes an, onde para cada n € N,
n=1
temos que f,, : [a,b] = R, seja uniformemente convergente para a funcdo f:[a,b] — R,

em [a,b], isto &, f = an onde a convergéncia da séries de fungdes é uniforme em
n=1
[a,b] .
1. Se, para cada n € N, a fungdo f, for continua em [a,b], entdo a fungdo f serd

continua em [a,b], isto €,
lim f(x) = f(x,), (5.19)

X—Xo

TS RIS

n=1

ou ainda,

Lh—g} fn(x)} . (5.20)
- o
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2. Se, para cada n € N, a fungdo f,, for continuas em [a,b], entdo

o9}

Jb flt)dt=>) Jb fo(t) dt

a n=1 a

15to €,

@ Ln=1

189

(5.21)

(5.22)

ou ainda, a série de funcdes Z f.(x), pode ser integrada termo a termo em [ab].

n=1

3. Se, para cada n € N, a fungdo f, é continuamente diferencidveits em [a,b], para

o0

algum x, € [a,b], a série numérica E fu(xo) converge em R, a série de fungdes

n=1
oo

an’ converge uniformemente para uma fung¢do g : [a,b] — R, em [a,b], entdo

n=1

a série de funcgoes Z f. converge uniformemente para uma funcdo f:[a,b] — R,

n=1

em [a,b], onde a funcdo f serd continuamente diferencidvel em [a,b] e

f'(x) =g(x), para cada xE€ [a,b],

1sto €,
00 =) f/(x)
n=1
ou ainda,
d |y 2 [df,
dx [; fn(x}] B n=1 [E(X)] , para cada x € [a,b],

(5.23)

(5.24)

(5.25)

ou seja, a série de funcdes an(x), pode ser derivada termo a termo, e [a,b].

n=1

Demonstracgao:
De 1.:

Como, para cada n € N, a funcdo f, é continua em [a, b], temos que, para cadan € N, a

fungéo S,, : [a, b] — R dada por
Sn(x) = fi1(x) + -+ fulx)

— ka(x) , paracada x € [a,b],

também serd uma fungdo continua em [a,b] (pois é uma soma finita de fungdes continuas).



190 CAPITULO 5. SERIES DE FUNCOES

Mas, por hipétese,, a sequéncia de fungdes (S, )nen converge uniformemente para a fungio
fem [a,b].

Logo, do Teorema (EE), segue que a fungdo f serd continua em [a, b].

De 2.:

o
Da Definigdo (E=2), dizer que a série de fungdes an converge uniformemente para
n=I1
a fungdo f, em [a,b], é o mesmo que dizer que a sequéncia de fungdes (S, )nen converge
uniformemente para a funcédo f, em [a,b].

Entédo segue, do Teorema (E22), que

b rb
J flt)dt=| Y fu(t)dt

a Ja n=1

rb
= lim Sk(t) dt

Uak—)oo

mostrando a validade da identidade (E=22).
De 3.:

Lembremos que, da Definigdo (E22T), dizer que a série de fungdes an converge em
n=1

Xo € la,b], é o mesmo que dizer que a sequéncia numeérica (S, (X,))nen converge em R.

o0

Além disso, por hipétese, temos que a série de fungdes E ) converge uniformemente
n=1

para a fungdo g, em [a, b], ou seja, (da Definicdo (E=2T)) temos que a sequéncia de fungdes
(S;)nen converge uniformemente para a fungdo g, em [aa,, b], pois

dx

k=1

n
soma finita ) f(x), paracada xE€ la,b].
P



5.3. CONVERGENCIA UNIFORME DE SERIES DE FUNCOES 191

Logo, do Teorema (E=3), segue que a sequéncia de fungdes (S, )nen converge uniforme-
mente para uma fungio f, em [a,b] e, além disso,

f'(x) =g(x), paracada x€ [a,b],
isto é,
o0 / (o]
(Z fn) (x) = Z f./(x), paracada x¢ [a,b],
n=1 n=1

completando a demonstragao do resultado.

Observacgao 5.3.2

1. O Coroldrio (E2XT) actma, trata de algumas consequéncias da convergéncia uni-
forme de séries de funcgdes.
Sem a presenca da convergéncia uniforme as conclusées do resultado podem nao
ocorrer.

2. No item B. do Coroldrio (EZ) acima, basta que as fungbes f, e f sejam in-
tegrdveis e uniformemente limitadas em [a,b] .
No item 8. basta que as fungées f, sejam diferencidveis em [a,b].

3. As conclusées do Coroldrio (E2X1) permanecem wvdlidas para fungdes de vdrias
varidvels reats, a valores retas (ou complezos).

Dewzaremos a elaboragdo e demonstragdo deste como ezxercicio para o leitor.

Um resultado extremamente importante, que nos dé condigdes suficientes para assegurar
a convergéncia uniforme de séries de fungdes, é o:

Teorema 5.3.1 (critério de Weierstrass ou Teste M. de Weierstrass) Seja (fy)nen
uma sequéncia de fungbes onde, para cadan €N, f,: ACR — R.
Suponhamos que exista uma sequéncia numeérica (M, )nen, tal que, para cada n € N,

temos que
Ifo(x)] < Myn, paracada x€A. (5.26)
Se a série numérica Z M., for convergente em R, entdo a série de funcgoes an
n=I1 n=I1

converge uniformemente e absolutamente para uma fungcdo f: A — R, em A.

Demonstracgao:

o0

Como a série numeérica E M,, converge em R, segue de (E28) e do critério da comparagédo
n=1
para séries numéricas cujos termos sdo ndo-negativos (veja o item i. do Teorema (B53)), que

para cada x € A, a série numérica
oo
3 Ifa(x)
n=1
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converge em R.

[e.e]

Logo, a série de fungdes Z f, serd absolutamente convergente para uma fungdo f : A — R,
n=1

no conjunto A, isto é,

f(x) = Z fo(x), paracada xe€A. (5.27)
n=1

Para cada N € N, definamos a fungdo Sy : A — R, dada por

N
Snix) = Z fa(x), paracada x € A, (5.28)
n=1

o0
ou seja, a soma parcial de ordem N da série de fungdes E fr.

n=I1
Notemos que, para cada x € A, temos:

N
1£00) = Sn () V=Y £ - Y faly)
n=1 n=1
= Z fn(x)
n=N+1

"des. triagular”

n=N+1
EB) &
< ) M. (5.29)
n=N+1

o0

Como a série numeérica E M., converge, denotando-se sua soma por M, do item 3. da

n=I1
Observagdo (BEZX), teremos que, dado ¢ > 0, podemos encontrar N, € N, de modose N > N,,
teremos

<e. (5.30)

Notemos que

n=1 n=1 n=1
— Z M.,
n=N+1
Mn20 > My, (5.31)
n=N+1
logo, de (E20) e (EX3T), segue que
> Ma<e. (5.32)
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Assim, se n > N,, segue que

(E=3)
<,

para todo x € A, que, pela Observagdo (E=3T), é o mesmo que dizer que a série de fungdes

Z f. converge uniformemente para a fungdo f, no conjunto A, completando a demonstragao
n=1
do resultado.

O

Observacao 5.3.3 Vale um resulado andlogo ao acima para fung¢des de vdrias varidveis
reais, a valores reais (ou complezos).
Dewzaremos a elaboragdo e sua respectiva demonstragdo como exercicio para o leitor.

A seguir aplicaremos os resultados acima, para estudar a convergéncia pontual e uniforme
de algumas séries de funcgdes.

Exemplo 5.3.1 Consideremos a série de funcgoes an onde, para cada n € {0}UN, a

n=0

fungdo f,, : [—1,1] = R € dada por
fal(x) = ;—n, para cada X € R. (5.33)
Mostre que a série de fungdes an converge uniformemente, em [—1,1], para a

n=0
fungdo f:[—1,1] —» R dada por

2

f(x) = 7 Para cada x € [—1,1]. (5.34)

Resolucgao:
Observemos que, para cada x € [—1,1] e n € {0} UN, temos que

=) [x"
’fn(x)| - Z_n
x"|
prm— 2_]'1
xI"
—= z—n
x€[~1,1] isto &, [X|<T ]
< 5 = Mo (5.35)
Notemos que a série numérica
>
Z n> converge em R. (5.36)

n=0
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1
pois é uma série geométrica de razdo 7 € [0,1) (veja o Exemplo (BE=Z3)).
Entéo , de (E233), (E38) e do critério de Weierstrass (isto €, do Teorema (E=37T), considerando-
L] —
se M,, = In
n=0
mente e absolutamente, em [—1, 1], para uma fungéo f: [—1,1] — R.
Notemos que, neste caso, podemos obter a fungdo f: [—1,1] — R explicitamente.
Para isto, observemos que, para cada x € [—1, 1], teremos:

para cada n € {0} UN), segue que a série de fungdes Z f, converge uniforme-

= ) — X"
E fu(x) "= oo
n=0 n=0
oo
(5)
N 2
n=0
série geométrica de razdo 5 € [0,1) - veja Exemplo (E=H) 1
- X
1—=
2
2
2—x’

isto é, a soma da série de funcgdes Z f, serd a fungdo f: [—1,1] — R, dada por:

n=0

f(x) = 7 Para cada x € [—1,1].

Observacao 5.3.4
1. Notemos que, no Ezemplo (EZZT) actma, mesmo que nao conhecessemos a func¢do

soma da série E fn, poderiamos concluir que ela serd uma func¢do continua em
n=0
Para ver 1sto, basta notarmos que, para cada n € {0}UN, a funcdo f, € continua
o0
em [—1,1] (veja (E233)) e a convergéncia da série de fungdes E fn € uniforme em

n=0

=1, 1.

Logo segue, do item 0. do Coroldrio (E3), que a fungdo f = Z f, serd continua
n=0
em [—1,1].

(o)

2. Na verdade, no Ezemplo (EZZT) actma, mostraremos que a série de fungdes E fn
] n=0

converge para f, pontualmente em x € (—2,2), e a convergéncia serd uniforme em

qualquer intervalo
[Cl,b] g (_2)2))



5.3. CONVERGENCIA UNIFORME DE SERIES DE FUNCOES 195

como veremos mais adiante.

Exemplo 5.3.2 Seja a > 0 fizado e consideremos a série de fungdes an onde, para
n=0
cada n € {0}UN, a fungdo f,:[—a,a] = R é dada por
XTL
fo(x) = o) para cada x € [—a,a]. (5.37)
Mostre que a série de fungdes Z f. converge uniformemente, em [—a, al, para uma
n=0
funcgdo f:[—a,a] — R.
Resolucao:
Observemos que, para cada x € [—a, al e n € {0} UN, temos que
(=) | X"
|fn(x)| = -
n!
XM
T onl
X"
Tl
x€[—a,al, ou seja, [x|[<a) N
< o (5.38)
Do Exemplo (E223) (com x = a), segue que a série numérica
o0 an
Z —j» converge em R. (5.39)

n=0

Entéo , de (E238), (E239) e do critério de Weierstrass (isto €, do Teorema (E=3T), considerando-

a" . ~ .
se M,, = —, bara cada n € {0} UN), segue que a série de fungGes E f. converge uniforme-
n!

n=0
mente e absolutamente, em [—a, a], para uma funcdo f: [—a,a] — R.

O

Observacao 5.3.5

1. Notemos que, no Ezemplo (E33) acima, para cada n € {0}UN, a fung¢do f, €

o0
continua em [—a,a] (veja (EE22)) e a convergéncia da série de fungdes an é

n=0

uniforme em [—a,al.

Logo, do item 0. do Coroldrio (E23), seque que a fungdo f = an serd continua

n=0
em [—a,al.
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2. Mostraremos que, no Ezemplo (E33) actma, a série de fungées an converge,

n=0

pontualmente em R, para a funcdo f: R — R, dada por
f(x) =e*, para cada x€R
e, além disso,m a convergéncia serd uniforme em qualquer intervalo
[a,b] CR,

como veremos mais adiante.
o0

Exemplo 5.3.3 Consideremos a série de fungdes Z fn onde, para cadan € N, a funcdo

n=1

fo: R — R é dada por

fa(x) = ———, para cada x€R. (5.40)

[e0]
Mostre que a série de funcgoes E f. converge uniformemente, em R, para uma

n=1
fungdo f: R — R que é continua em R.

Resolugao:
Observemos que, para cada x € R e n € N, temos que

(ezm) | sen(nx)
()] "= EETE
|sen(n x)|
= 3—1’1
|sen(nx)|<1, para x€R ]
< - (5.41)
Notemos que a série numérica
>
Z 3> converge em R. (5.42)
n=1

1
pois é uma série geométrica de razdo 3 € [0,1) (veja o Exemplo (BEZ3)).
Entéo , de (E220), (E22) e do critério de Weierstrass (isto é, do Teorema (E=3T), considerando-

L] : . .
se M,, = 3n para cada n € N), segue que a série de fungdes Z f, converge uniformemente

e absolutamente, em R, para uma fungdo f: R — R.
Notemos que, para cada n € N, a fungéo f,, é continua em R (veja (EZ0)) e a convergéncia

[e.o]

n=0

da série de fungGes Z f, é uniforme em R.
n=1
Logo, do item M. do Coroldrio (EX3T), segue que a fungédo f serd continua em R.
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o0

Exemplo 5.3.4 Consideremos a série de fungoes Z f, onde, para cadan € N, a fun¢ao
n=1

fo:R— R é dada por

fa(x) = ——=——, para cada x€R. (5.43)

o0

Mostrar que a série de funcgdes E f. pode ser derivada, termo a termo, em R.
n=1

Encontre uma expressdo para f'(x), para cada x € R, onde

f(x) = Z fa(x), para x€R. (5.44)

n=1

Resolucao:

o0
Notemos que a série numérica E f.(0) converge para 0, pois

n=1

0
f.(0) =) &?) =0, paracada neN.
n

Observemos que, para cada n € N, a fungéo f, é continuamente diferencidveis em R (veja
(E3)) e, além disso, para cada x € R, temos:

=) d sen(nx)
dx n3

regra da cadeia COS(T'L X) n
- 3

n
cos(nx
= (2 ). (5.45)
n
Por outro lado, para cada x € R e n € N, temos que
(emm) | cos(nx)
(X)) =" |
n
_ |cos(nx]|
2
(lcos(nx)|<1, para x€R 1
< < (5.46)
Observemos que a série numérica
= 1
Z 3 converge em R, (5.47)
n=1

pois é uma p-série, com p =2 € (100) (veja (EZZ13)).
Entéo , de (EZ18), (E212) e do critério de Weierstrass (isto €, do Teorema (E=3T), considerando-

1 . .
se M, = el para cada n € N), segue que a série de fungbes E f, converge uniformemente,
n=0

em R, para uma fungdo g: R — R.



198 CAPITULO 5. SERIES DE FUNCOES

[e o]

Portanto, do item B. do Corolédrio (E23), segue que a série de fungdes an converge
n=1
uniformemente para uma fungdo f : R — R, que é continuamente diferencidvel em R, em

particular,
f(x) = Z fn, paracada x€R (5.48)
n=1

e satisfaz
f'=g.

o0
Isto é, a série de fungdes E f, pode ser derivada termo a termo, em R, ou seja, para cada
n=1
x € R, teremos:

[
Exemplo 5.3.5 Calcule, se existir
1 oo
J sen(nx) o (5.49)
0 n=1 n
Resolugao:
Para cada n € N, definamos a fungdo f,, : [0, 1] — R, dada por
. sen(nx)
fu(x) = ——5—, paracada xc[0,1]. (5.50)
n
Afirmamos que a série de fungbes Z f, é uniformente convergente em [0, 1].
n=I1
De fato, pois para cadan € N e x € [0, 1], temos:
(e=m) | sen(nx)
[fa(x)| "= — 3
n
_ |sen(nx)|
=
|sen(nx)|<1, para x€[0,1] ]
< -5 (5.51)

n
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Notemos que, a serie numérica
(0.0)
1
E 3 converge, (5.52)
n=1

pois é uma p-série, com p =2 € (100) (veja (EZI)).
Entéo , de (E220), (E52) e do critério de Weierstrass (isto é, do Teorema (E=3), considerando-

L] . .
se M,, = vt para cada n € N), segue que a série de fungdes Z f, converge uniformemente,
n=0

em [0, 1], para uma fungdo f: [0, 1] — R, em particular, teremos

f(x) = Z f., paracada xe€[0,1]. (5.53)
n=1
Como, para cada n € N, a fungdo f, é continua em [0, 1] (veja (E20)) segue do item O.

do Coroldrio (EZ3), segue que a série de fungdes Z f, pode ser integrada, termo a termo,
n=1

em [0, 1], ou seja,

1 1
J f(x) dx =) J Z fa(x) dx

0 0

n—=

—_ =

CoRS
B3
= E fa(x) dx
n=1 70
S|
=) sen(nx)
= Z ———dx
n=1"0 n
oo x=1
Teorema Fund. do Célculo para cada n € N Z - COS(T'L X)
= —
n=1 n x=0

n=I1 n
ou seja,
1 o
sen(nx) 1 —cos(n)
dx =
[
Exemplo 5.3.6 Encontre, se existir, a fun¢do g:(—1,1) — R dada por
g(x) iJ (=)™ t*"dt, para cada x € (—1,1). (5.54)

0 n=1

Resolugao:
Para cada n € N, consideremos a fungdo f,, : (—1,1) — R, dada por

fo(x) = (—=1)"x*", paracada x¢€ (—1,1). (5.55)
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Pode-se mostrar (utilizando-se o teste M. de Weierstrass (isto é, do Teorema (E31)) que a
série de fungdes Z f, converge uniformemente para uma funcdo f: [—a,a] - R, em [—a, a

n=1
para todo a € [0, 1) fixado, em particular, teremos
x) = Z fo(x), paracada x € [—a,al, (5.56)

para cada a € [0, 1) fixado.
Deixaremos a verificagdo deste fato como exercicio para o leitor.

Logo, deste fato e do item B. do Coroldrio (EX2T), segue que a série de fungdes Z fn
n=1
pode ser integrada, termo a termo, em qualquer intervalo contido no intervalo [—a, al, ou

seja, para cada x € (—1,1), temos que

J f(t) dt ()J ;fn(t) dt

0

(E:ss)i[

n=1

JX(—U“ t2n dt]

0

00
Teorema Fund. do Célculo para cadan € N Z [ tz ntl
B +1

t=x
n=I t=0
0 2 n+1
=) (-1 :

n=1

ou ainda, para cada x € (—1, 1), teremos:

x 5 o0 XZn-H
-1ttt dt = —n" 5.57
| X Y e (5.57)
n=I n=1
O
Observacao 5.3.6
1. Observemos que, para cada t € (—1,1), temos que:
Y rer=3 ()
n=1 n=1

série geom. de razdo c i:ftz € [0,1) - veja (E=D) —tz . (558)

1+t
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Portanto, para cada t € (—1,1),

D (et =1+ Z
n=0
() —tz
= 1
1412 *
1+1t%) —t?
= —( ) +1
1412
1
= . 5.59
1+t (5:59)
Logo, para cada x € (—1,1) temos que
x 0 — X 1
J (—1)" 2ndt (?)J _dt
0 o 0 ] +t
visto no:Cdlculo 1 I'Ctg(X) ’ (560)
isto €, para cada x € (—1,1), teremos
arctg(x J M2 dt
0 n=0
(EEZ) i 2n+1
)
ou ainda,
o0 2n+1
f(x) = arctg(x Z , para cada x € (—1,1). (5.61)

n=1
2. Observemos que a fungdo f definida (EED) acima, é uma fungdo ‘mpar, ou seja,
f(—x) = —f(x), para cada x € (—1,1)

e a série de fungdes em (BEED), cuja soma € a fungado f, s6 possut poténcias impares
de x.

z

Como veremos, no proximo capitulo, 1sso ocorre em geral, 1sto €, se uma fung¢ao
for impar (respectivamente, par) e possuir uma representacdo em série de fungées
do tipo acima (que serd denominada série de poténcias de x), entdo a série de
fungdes (isto €, de poténcias de x) s6 possuird poténcias impares (respectivamente,
pares), ou seja, os coeficientes das poténcias pares (respectivamente, impares)
serao 1guais a zero.
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3. Notemos também que se pudermos fazer x =1 em (BEEI), obteremos:

; = arctg(1)
(EE) ( ])n 12n+1
— 2n+1
R
3 4 5

como haviamos afirmado anteriormente (veja a Observagdo (BEE3R), ou ainda,

Exemplo 5.3.7 Mostre que

0
=)
n=0

| x

n
|

, para cada x € R. (5.62)

2

Resolucgao:
Para cada n € {0} UN definamos a fungdo f,, : R — R, dada por

para cada x € R. (5.63)

XTL
fn(x) = E)

Com isto, para cada n € N, a fungdo f,, serd continuamente diferencidvel em R.
Além disso, para cada x € R e n € {0} UN, teremos

df, (x) ) d [x"
dx ~ dx [n!
n—1
Célculo1 X
= —. 5.64
(n—1)! ( )
Fixando-se a € [0, o), para cada x € [—a,a] e n € N, temos que
n—1
E&mm) | x
) =
1001 S |y
_
 (n=1)!
’Xlni]
 (n=1)!
x€[—a,al, isto é, [x|[<a an*]
5.65
- (n—1)! ( )
Notemos que (veja o Exemplo (E233), com n = n — 1) a série numérica
0 anfl
; mon converge em R. (5.66)



5.3. CONVERGENCIA UNIFORME DE SERIES DE FUNCOES 203

Portanto, de (E63), (EE0) e do teste M. de Weierstrass (isto é, do Teorema (EZ2)), segue
que a série de funcdes
2_f
n=1

¢ uniformemente convergente em [—a, a], para cada a € [0, 00).

Como a série numeérica - -
(Em3) "
MACLAR .

n=0 n=1

converge (com soma igual a 1) segue, do item B. do Corolario (E23), que a série de fungdes

Z f, converge uniformente, em [—a, a], para uma fungio f: [—a,al — R, ou seja

n=0

f(x) = Z fo(x), paracada xe€[—a,al. (5.67)

n=0

e poderd ser derivada, termo a termo, em [—a,al, para cada a € [0,00), isto é, para x €
[—a, al, temos que

= £(x), (5.68)

ou seja, a funcao f, dada por

f(x) = Z %, para cada x € [—a,d], (5.69)

m=0

deve satisfazer a seguinte equagdo diferencial ordindria:
f'(x) =f(x), para x¢€[—a,da], (5.70)

para cada a € [0, c0).
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Do Célculo I, sabemos que uma fungdo que satisfaz (BE270), deverd ser a funcédo

X

f(x) =ce*, paracada xé€R, (5.71)
para algum c € R.
Notemos que
c (e=m) com x=0

£(0)

(E2m) com x=0 > On_
=) =1,
n=1

logo, deveremos ter c=1,

portanto, de (EZ71), teremos: f(x) =€*, paracada x €R
ou seja:
n
—, Dbara cada x € R,
“—mn!

como queriamos mostrar.

Observacao 5.3.7 Em particular, fazendo x =1 em (BEB2), obtemos

)
CZE —
n!

n=0
como haviamos afirmado anteriormente (veja a Observagdo (E223) , ou ainda, (E17)).
Toépicos adicionais, bem como outros exemplos e resultados podem ser encontrados na biblio-

grafia mencionada no fim destas notas.

5.4 Exercicios

Até aqui para a 1.a Prova




Capitulo 6

Séries de Poténcias

Neste capitulo estudaremos uma classe especial de séries de fungdes, denominadas séries
de poténcias.
As perguntas que serdo respondidas aqui estardo relacionadas com os seguintes tépicos:

1. Quando podemos aproximar uma fungio ”bem comportada” (por exemplo de classe C*)
por um polinémio em algum intervalo [a, b]?

2. Como obter esse polinémio (seus coeficientes)?

Como veremos, a nocao de "estar préximo de” estard intimamente ligada a nogdo de
convergéncia de sequéncia (mais expecificamente, séries) de fungbes, tratada no capitulo
anterior.

Comegaremos com a introdugdo do objeto principal do estudo desse capitulo, a saber:

6.1 Definicoes

Definicao 6.1.1 Um série de funcgdes do tipo

n __ 2
n (6] .
E a, X a, +aix+a)x” + (61)

n=0

onde
a, € R, para cada ne{0,1,2,---},

serd denominada série de poténcias de x (ou centrada em x =0) .
Mas geralmente, uma série do tipo

Zan(x—c)“:ao+a1(x—c)+a2(x—c)2+--~ (6.2)

n=0

onde
a, € R, paracada ne{0,1,2,---},

serd denominada série de poténciasde (x —c) (ou centrada em x =c¢) .

205



206 CAPITULO 6. SERIES DE POTENCIAS

Os numeros reais
an €R, para cada ne{0,1,2,---},

serdao ditos coeficientes da série de poténcia.

Observacao 6.1.1 Uma série de poténcias centrada em x = 0, respectivamente em x =
c, € um caso particular de série de funcgdes.

De fato, basta considerar a sequéncia de funcgdes (fn)nen onde, para cada n € {0}UN,
a fungdo f, : (a,b) = R € dadas por

fo(x) =a.x™, para cada x€ (a,b), (6.3)

respectivamente
fo(x) =an(x—c)*, para cada x € (a,b). (6.4)

A seguir exibiremos alguns exemplos de séries de poténcias:
Exemplo 6.1.1 A série de funcgdes

oo Xn
Z o Ppara cada x €R (6.5)
n=0

€ uma série de poténcias de x (ou centrada em x =0).

Resolucgao:
De fato, a série de fungdes (EH) pode ser colocada na forma (ET), bastando, para cada
n € {0} UN, definirmos o n-ésimo coeficiente da mesma, ou seja,

an = — (6.6)

e assim

—~

[ee]
(emz
=) Zanx“, para cada x € R.

n=0
O
Exemplo 6.1.2 A série de funcgdes
0 -1 2n
Z %, para cada x € R (6.7)

n=0

¢ uma série de poténcias de (x — 1) (ou centrada em x =1).
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Resolugao:
De fato, a série de fungdes (EZ2) pode ser colocada na forma (ET), bastando, para cada
n € {0} U N, definirmos o n-ésimo coeficiente da mesma, ou seja,

: .o ]
Aone1 — 0 e Ayp = ﬂ,——H . (68)

e assim

= (x—1)P" & 1 N
> m+1) _Z(n+1)("_”2

n=0 n=0
= a, (x—1)", paracada x€R.
n=0
0
Exemplo 6.1.3 A série de funcgdes
> sen(nx)
Z ———, para cada x€R (6.9)
n+1
n=0
nao é uma série de poténcias.
Resolucao:
A série de fungbes (EX9) ndo pode ser colocada na forma (E) ou (EX2).
Logo ndo serd uma série de poténcias.
0

6.2 Convergéncia Pontual de Séries de Poténcias

A seguir passaremos a estudar a convergéncia das séries de poténcias.

Observacao 6.2.1 Observemos que uma série de poténcias de x, 1sto €,

o0
E a, x",
n=0

sempre converge (com soma tgual a a,) quando x = 0.
De fato, pois

Zan-O“:ao+a1-O—|—az-Oz+.--
n=0

=aq,.

De modo andlogo, uma série de poténcias de (x —c), isto €,

o0
Z Qn (X - C)n )
n=0
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sempre converge (com soma tgual a a,) quando x = c.
De fato, pois
o0

Zan(c—c)“:ao+a1 (c—c)+ar(c—c)+---

n=0

=aq,.

Comegaremos estudando as séries de poténcias de x (isto é, centradas em x = 0), ou seja,
a série de fungdes (ET).

Mais tarde trataremos do caso das séries de poténcias de (x — c) (isto é centradas em
X = ¢), ou seja, a série de fungdes (E2).

Um primeiro resultado importante é o:

Teorema 6.2.1 Sejam

Xoy, X1 #0 (6.10)
e consideremos a séries de poténcias
[ee]
E anx". (6.11)
n=0
1. Se a série numérica
oo
E an X" (6.12)
n=0
for convergente, entdo a série de poténcias (EEI0) serd absolutamente convergente
para
X € (—[xolyI%0l), 2sto €, para |x| < |xo. (6.13)
o0 o0
2. Se a série numérica E a, x1" for divergente, entdo a série de poténcias E a, x"
) n=0 n=0
serd divergente para
(—oo, X)) U (Ix1],00), 1isto €, para |x| > |xq]. (6.14)
Demonstragao:
De 1.:
oo
Sabemos que a série numérica E an X, € convergente e x, # 0.
n=0

Logo, do critério da divergéncia (veja o Teorema (EZ3)) segue que

lim a,x," =0.
n—oo

Assim a sequéncia numérica (a, x,")nen serd limitada, ou seja existe M € R, tal que

lan X'l < M, paratodo ne{0}UN. (6.15)
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Notemos que fixado
X C (_JXO%’XOD

entdo, para cada n € {0} U N, teremos:

Xn

n
(0]

0
lan X" 2 @y X"

onde

pois

X € (_+XOM|XOD)

logo x| < [xol,

implicando que:

Como r € [0, 1), segue que a série numérica

o0 o0
E M1 =M E ™ converge em R,
n=0 n=0

pois é uma série geométrica de razdo r € [0, 1) (veja o Exemplo (EZ3)).

209

(6.16)

(6.17)

(6.18)

Logo, do critério da comparagdo para séries numeérica cujos termos sdo ndo-negativos
(isto é, o item m. do Teorema (BT53)) segue que para cada x € (—[x,|,[x,|), a série numérica
o0

E |a, x| serd convergente.

n=0
o0

Portanto a série de poténcias E a, x" serd absolutamente convergente para cada

n=0
X € (_+X0L|X0D)

como queriamos demonstrar.
De 2.:
Sabemos que a série numérica

o0
E an X"
n=0

é divergente.
Suponhamos, por absurdo, que exista

X2 € (—o0, [x1]) U (|x1], 00)
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de modo que série numérica
o0
E an X"
n=0

seja convergente.
Entdo do item [. provado acima, segue que a série

serd convergente em (—|x;|,|x2|), o0 que é um absurdo, pois como x; € (—oo,|x1|) U (|x1], 00)
segue que
x1(—Ixal, [x2l)

[e.e]

isto é a série numérica E a, X" seria convergente, o que contraira a hipdtese que a série

n=0
o

numeérica E a, xq" é divergente.

n=0
00

Portanto a série de poténcias E a, x" serd divergente em

n=0

(—o0, [x1]) U (Ix1l, 00) ,

completando a demonstracao do resultado.

Observacao 6.2.2

1. Para o caso que

Xo >0,

a figura abaizo ilustra a situagdo do item 0. do Teorema (EZZ):

a série de poténcias converge em X = Xg

/

—Xo 0 Xo

~—_—

o item B. do Teorema (BE=Z) wmplicard que ela convergird para X € (—Xo yXo)

2. Para o caso que
x; >0,

a figura abaizo ilustra a situagdo do item B. do Teorema (EZZ):
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a série de poténcias diverge em X = X1

o item B. do Teorema (B=Z=D) implicard que ela serd divergente para x € (—oo, —x1) U (x7 ,00)

3. O item 0. do Teorema (EZZ) acima, mos diz que se uma série de poténcias
converge num ponto (diferente de zero) entdo ela convergird, pontualmente, em
todo ponto do intervalo simétrico em relagdo a origem, aberto e de amplitutide
1gual ao valor absoluto do ponto onde ela converge.

Isso é uma propriedade intrinseca das séries de poténcias.

4. Séries de fungbes em geral nao vale a propriedade acima, como por exemplo, a
série de fungébes (que nao é uma série de poténcias)

i sen(nx)
n=1

s6 converge nos pontos

x=km, paracada k€EZ.

Aplique as ideias acima aos:

Exemplo 6.2.1 Aplique o Teorema (E22) acima, para estudar a convergéncia da série

de poténcias

n
> X (6.19)
n=0
no wntervalo (—1,1).
Resolugao:
Notemos que a série de poténcias (ETJ) é convergente em
Xo = 1. (6.20)
De fato, pois a série numérica
S =g
n! [
n=0 n=0 n:

é convergente (veja o Exemplo (EIT) com x = 1).
Logo, do item 1. do Teorema (EZX1) acima, segue que a série de poténcias (E19) serd
absolutamente convergente para

(—1,1).

X € (—IXol, [%ol)

A figura abaixo ilustra a situagdo acima:
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a série de ponténcias converge em x = 1

pelo item 1. do Teorema (E=Z), convergird para x € (—1,1)

O

Exemplo 6.2.2 Aplique o Teorema (E22) acima, para estudar a convergéncia da série
de poténcias

D (= (6.21)
no intervalo (—a, a), para cada a € [0,1).

Resolucgao:
Notemos que para cada
aelo,1), (6.22)

(0.0
a série de poténcias E (—=1)"x*™ é convergente em X, = a.

. n=0

De fato pois,

(=) xS" = Z [(=1)x]" . (6.23)

n=0 n=0
para cada n € {0} UN, temos que:
2
|( 1)x02} =x02—\a/2_/(<)1
Mas série numérica Zr“ é convergente, pois é uma série geométrica de razdo (veja o
n=0

Exemplo (BE=Z3))
EZ3
r=a? 2 0,1).

Logo, do Teorema da comparagdo para séries numéricas cujos termos sdo ndo-negativos
o0

n,2n

(isto é, do item i. do Teorema (B52)) segue que a série numérica E (—1)"x;" serd conver-

(o]
n=0
gente.

Logo, do item 1. do Teorema (EZZT) acima, segue que a série de poténcias Z(—U“xz“
n=0

serd absolutamente convergente para cada
X € (—[xoly|%0]) = (—a,a), paratodo ae€ [0,1), ouseja, para x € (—1,1).

A figura abaixo ilustra a situagdo acima.
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pelo item 1. do Teorema (E=Z), serd convegente para [x| < 1
[e.0]

Por outro lado, a série de poténcias Z(—] )" x*™ é divergente em x; = 1.
n=0
o0
De fato, pois a série numérica E (—1)"™ é divergente, pelo critério da divergéncia (veja o
n=0

Teorema (BZ3)).
Logo, o item 2. do Teorema (EZZT), implicard que a série de poténcias (EZZ0) serd diver-
gente em

(=00, —=x1) U (Ixi],00) = (=00, =1) U (T,00), isto ¢, para [x|>1.

A figura abaixo ilustra a situagdo acima.

a série de poténcias diverge em x =1

/

X

pelo item 2. do Teorema (E=Z), sera divergente para [x| > 1

Para finalizar, notemos que a série de poténcias (EZZ0) é divergente em x; = —1.
A verificagdo deste fato serd deixada como exercicio para o leitor.
Com isto, do ponto de vista da convergéncia/divergéncia, para a série de poténcias

Z(—1 )"x*", teremos a seguinte situagéo, ilustrada na figura abaixo:

n=0
a série de poténcias (EIW) converge, para |x| < 1

X

a série de poténcias (EEID) diverge, para [x| > 1

OJ
Em geral temos a seguinte situagao:
Teorema 6.2.2 Dada a série de poténcias
D anxt (6.24)
n=0

uma, e somente uma, das situacoes abaizro ocorre:
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1. a série de poténcias (E24) sé converge em x =0,
2. a série de poténcias (E224) converge absolutamente em R,

3. existe R >0, de modo que a série de poténcias (E2Z4) € absolutamente

convergente em (—R,R) e diwergente em (—oco,—R)U (R, 0), (6.25)

ou ainda,
convergente para |x| <R e divergente para |x| > R. (6.26)

Demonstragao:

Notemos que se o item 1. ocorrer, os itens 2. e 3. ndo ocorrerao.
Vamos supor que o item 1. ndo ocorre, ou seja existe x, # 0 tal que a série numérica

o0
> anx"
n=0
seja convergente.

o0
Logo do item 1. do Teorema (EZZT), segue que a série de poténcias E a, X" serd conver-

n=0
gird absolutamente para

x| < xo| =5
Denotemos por S, o subconjunto dos nimeros reais, formado por todos os r > 0 que tém

o0
a propriedade acima, isto é, a série de poténcias Z a, x" converge absolutamente em

n=0

x| <r.
Observemos que o conjunto S é ndo vazio, pois
T, €S.

Se o conjunto S ndo for limitado entdo o item 3. ocorrerd, ou seja a série de poténcias
(E223) serd convergente em R.

Se o conjunto S for um subconjunto limitado de R, afirmamos que o item 2. ocorrera.

De fato, so conjunto S for um subconjunto limitado de R, como ele é ndo vazio, entdo
existe

R =supS € (0,00).

Afirmamos que R € (0, 0o) satisfaz o item 3. .
De fato, seja

reS, talque 1€ (0,R)

Xo ER, talque [xo]<T.
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Como
reS e [|xJl<r,
(o]
temos que a série numérica E an X, serd convergente.
n=0
o0
Logo, do item 1. do Teorema (EZXT), segue que a série de poténcias E a, x" serd abso-
n=0
lutamente convergente para x| < .
o0
Como consequéncia teremos que a série de poténcias E a, x" serd absolutamente con-
n=0

vergente para [x| < R.

Afirmamos que se

X1 € (—oo,R)U(R,00) ouseja, [|x1] >R,
o0
a série numérica E a, X" serd divergente.
n=0
o
De fato, suponhamos, por absurdo, que a série numérica E a, x1" seja convergente.
n=0

Ent&o, pelo item 1. do Teorema (E2X), teremos que a série de poténcias Z a, x" devera

n=0
ser convente para

x € (=hal,kal),  ouseja, leS,

0 que é um absurdo pois

|| > R =supS.
[e.¢]
Portanto a série de poténcia Z a, x" serd diverge em
n=0

(_OO)R)U(R>OO)>

mostrando que R € (0, 00) satisfaz o item 2., completando a demonstragdo do resultado
O

Observacgao 6.2.3

1. O Teorema (E2Z32) acima mos diz que uma, e somente uma, das possibilidades
abaizo, para uma série de poténcias

Z an x" (6.27)

poderd ocorrer:

1.1 ou
R =0; (6.28)

A figura abaizo ilustra essa situacao:
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a série de poténcias (BE=ZA) s converge em x = 0

/

0

1.2 ou
R = o0; (6.29)

A figura abarzo ilustra essa situagdo:

a série de poténcias (BE=ZA) converge em R

1.3 ou
Re(,00). (6.30)

A figura abaizo ilustra essa situac¢do:

a série de poténcias (BE=2A) para [x| < R

a série de poténcias (B=ZA) diverge para |x| > R

Neste ultimo caso, podem ocorrer todo tipo de situagdo em relagdo a con-
vergéncia da série de poténcias (E222) nos pontos

x=—R e x=R,
como veremos em ezxemplos a sequir.

2. O numero real
R € (0,00), (6.31)

obtido no item 3. do Teorema (EZZ2) acima, terd uma tmportdncia muito grande
no estudo das séries de poténcias, como veremos mais adiante.

Baseado nos fatos acima, podemos introduzir a seguinte:

o0

Definicao 6.2.1 Definiremos raio de convergéncia da série de poténcias E a, x" como

n=0

sendo R € [0, 0], obtido no Teorema (E222) actma

o0
O conjunto formado por todos os x € R, onde a série de poténcias E a, x" € con-

n=0
o0

vergente serd dito intervalo de convergéncia da série de poténcias § a,x" .

n=0




6.2. CONVERGENCIA PONTUAL DE SERIES DE POTENCIAS 217

Observacao 6.2.4

1. Do Teorema (EZZ3) actma, seque que que toda série de poténcias tem um (unico)
rato de convergéncia e portanto um (dnico) intervalo de convergéncia.

2. O raio de convergéncia de uma série de poténcias pode ser igual a
0, wstoé, R=0
e portanto o intervalo de convergéncia da série de poténcias serd
[= {O}>

ou seja, o conjunto formado por um ponto, que na verdade nao é um intervalo,
como mostra o Exemplo (E23) a seguir.

3. O raito de convergéncia associado a uma série de poténcias pode ser infinito, ou
seja,
R =00,

e assim o intervalo de convergéncia serd
[=R,
como mostra o Ezemplo (EE23) a seguir.

4. Se
R € (0,00),

a priori, nenhuma conclusdo podemos tirar sobre o comportamento da série de
poténcia nos pontos

Podemos ter situagdes, como veremos, que a série de poténcias converge em um
dos pontos e diverge no outro, ou diverge nos dois ou ainda converge nos dois.

Um desses casos é mostrado no Ezemplo (EZZ3) a segquir

A seguir consideraremos alguns exemplos onde aplicaremos as ideias desenvolvidas acima.

Exemplo 6.2.3 Consideremos a série de poténcias
> ntxt. (6.32)
n=0

Mostre que
R=0 e I={0}. (6.33)
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Resolugao:
o0
Observemos que, para todo x, > 0 fixado, a série numérica E n"x" é divergente.
n=0

De fato, para cada x, > 0 fixado, temos que

1
lim ™ x,")™ = lim (nx,)
n—oo n—oo
20 > 1.

(6.34)

Logo, do critério da raiz, por limites, para séries numérica cujos termos sdao ndo-negativos
(isto é, o item B. do Teorema (B51)) segue quea série numérica

o0
E n"x,"
n=0

é divergente.

o0
Assim, a série de poténcias E n"x" sé converge quando x = 0, isto &,

n=0

R=0
e assim, o intervalo de convergéncia da série de poténcias é
[ ={0}.

A figura abaixo ilustra a situagdo acima.

a série de poténcias (EE23) sé converge em x = 0

/

0

OJ
Exemplo 6.2.4 Consideremos a série de poténcias
[e.°] Xn
> - (6.35)
n=0
Mostremos que
R=oc e I=R. (6.36)

Resolucao:
0 n
z_ e 7. XO 2
Observemos que para cada x, > 0 fixado, temos que a série numérica E — € convergente
n!
n=0

em R.
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De fato, pois

XOnH
1 X
lim (n+n) =1
n—oo Xo n—oo N + 1
nl
=0<1,

Logo, do critério da razdo, por limites, para séries numérica cujos termos sdo ndo-negativos
n

o0
. ’ . 7 . s X 2
(isto é, o item M. do Teorema (BE23)), segue que a série numérica E L' € convergente para
n!
n=0
cada x, € (0, c0).
n

o
. . - i X
Assim, segue do item . do Teorema (E=ZT), segue que a série de poténcias E — converge
n!

. n=0
em R, isto é,
R =00,
e o intervalo de convergéncia da série de poténcias é
[=R,
completando a resolugéo.
A figura abaixo ilustra a situagao acima.
a série de poténcias (E==3) converge em R
0
U
Exemplo 6.2.5 Consideremos a série de poténcias
oo —1 n
> ED® o (6.37)
n
n=I1
Mostre que
R=1 e I=(-1,1]. (6.38)

Resolucgao:
Observemos que a série de poténcias (E221), converge em

Xo =1,

1)

e .e]
pois a série numeérica E é convergente (é a série harmonica alternada - veja o Exemplo

n=1
Logo, do item M. do Teorema (EZZ), segue que a série de poténcias converge em

(—1,1).



220 CAPITULO 6. SERIES DE POTENCIAS

Por outro lado, a série de poténcias (E31), diverge em

X]Z-],

pois ela serd igula a série numérica E — que é divergente (é a série harmonica - veja o
n

n=I1
Exemplo (Z73)).
Logo, do item B. do Teorema (EZZ1), segue que a série de poténcias diverge em
(—OO,—]) U (] )OO)-
Com isto temos que o raio de convergéncia da série de poténcias (E31) serd

R=1,

e o intervalo de convergéncia é
= (_1 y —1] ’

em particular, a série de poténcia converge (E231) em
e diverge em
A figura abaixo ilustra a situagdo acima.

a série de poténcias (BE=) converge se x € (—1,1]

/_H

\/

a série de poténcias (E=3A) diverge se x € (—oo,—1] U (1, 00)

O

Exemplo 6.2.6 Encontre o raio de convergéncia e o intervalo de convergéncia da série

de poténcias abaizo.
> nix (6.39)
n=0

Resolucao:
Notemos que, se x, > 0, temos que a série numeérica

o0
E n!x,"
n=0
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serd divergente pois, para cada n € {0} U N, definido-se

Xo>0

An=nlxt > 0, (6.40)
teremos
. Ann Em .. (A D)IxM!
lim — "=’ lim ————
n—ooo A, n—o0 n!xt

=lim(n+1)x,
n—oo

X0 >0

="o00>1.

Logo, do critério da razdo, por limites, para séries numérica cujos termos sao ndo-negativos
o0

(isto é, o item O. do Teorema (BE=3)), segue que a série numeérica Zn! Xo' € divergente,
n=0
para cada x, > 0.
Portanto, do item B. Teorema (EZX), segue que a série de poténcia sé converge em x = 0,
isto é, o raio de convergéncia é
R=0

e o intervalo de convergéncia é
[ ={0}.

A figura abaixo ilustra a situagdo acima.

a série de poténcias (E=H) s6 converge em x = 0

/

0

O

Exemplo 6.2.7 Encontre o raio de convergéncia e o intervalo de convergéncia da série
de poténcias abaizo.

> T n, (6.41)

Resolucao:
Notemos que, se x, > 0, temos que a série numérica

serd convergente pois, para cada n € {0} U N, definido-se

n 0>0
At xS <o, (6.42)
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teremos
n-+ 1 X n+1
. A Em .. n+1)17°
lim —— =" lim —
n—oo A, n—oo Zym
! (0]
X
=lim =2=0<1.
n—oo T

o0
o1 s » ~ . 7 n P
Logo, do critério da razdo segue que para todo x, > O a serie numeérica E —’XO“ é
n!

n=0
convergente.

Portanto, do item @M. do Teorema (EZ2), segue que a série de poténcia (EZI) converge
em R, isto é, o raio de convergéncia é

e o intervalo de convergéncia é

A figura abaixo ilustra a situagdo acima.

a série de poténcia (&) converge em R

0

O

Exemplo 6.2.8 Encontre o raio de convergéncia e o intervalo de convergéncia da série
de poténcias abaizo.

= 1
—x" 6.43
D (6.43)
n=1
Resolucgao:
Notemos que, se x, > 0, temos que a série numérica
o
1
23
n=1

serd convergente pois, para cada n € {0} UN, definido-se

. 1 nx0>0
An - FXO > O) (644)
teremos
] Xn—H
Anpt =) . (n+1)27°

T‘}—)oo An o T}LIEO 1 n
7 %o
n

Exercicio
pu— 0 .
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Logo, para
X, €[0,1),
do critério da razdo, por limites, para séries numérica cujos termos sdo ndo-negativos (isto é,
(0.0
1

os itens M. e B. do Teorema (B=H)), segue que a serie numérica E Xo' Serd convergente

n2
n=1

e para
Xo € (1, 00)

serd divergente.
Portanto, dos itens 0. e B. do Teorema (EZZT), segue que a série de poténcia (EZ3) serd
convergente em

(_] )1)

e diverge em
(_OO)_]) U (1 )OO)
isto é, o raio de convergéncia sera

R=1. (6.45)

Para encontrarmos o intervalo de convergéncia, precisaremos estudar o que ocorrre com
a série de poténcias (EZ3) para x = —1 e para x = 1.
Notemos que em

x =—1

a série de poténcias (EZ3) serd a série numérica

e (1"
e

que é convergente pelo critério da série alternada (veja o Teorema (BEG)).
Deixaremos como exercicio para o leitor a verificagdo deste fato.
Observemos em

x =1

a série de poténcias (EZ3) serd a série numérica
o0
1
2 o3
n=1
que é convergente, pois é uma p-série, com p =2 € (1, 00) (veja o (E2M3)).
Portanto o intervalo de convergéncia da série de poténcias (EZ3) serd

I=[-1,1]. (6.46)

A figura abaixo ilustra a situagdo acima.
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a série de poténcia (EZ3) converge em [—1,1]

—

\/

a série de poténcia (BEZA) diverge em (—oco, —1) ,00)

OJ
A seguir daremos um processo mais simples para encontrar o raio de convergéncia de uma
série de poténcias dada, a saber:

Teorema 6.2.3 Dada uma série de poténcias

Z anx™, (6.47)
n=0
consideremos
o= lim | (6.48)
n—oo an
quando existir.
Entao:
1. se
p=0, (6.49)

segue que o raio de convergéncia da série de poténcias (EZ1D) serd

R=o00. (6.50)

p=o00, (6.51)

segue que o raio de convergéncia da série de poténcias (EZ1D) serd

R=0. (6.52)
3. se
€ (0,00), (6.53)
segue que o raio de convergéncia da série de poténcias (EZ1D) serd
1
R=-. 6.54
. (654

Demonstracgao:
Fixemos x, # 0 e apliquemos o critério da razdo, por limites (isto é, os itens . e @. do
Teorema (BE5H)) para a serie numérica

oo
D lanxs"
n=0
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Para cada n € {0} UN, definamos

An = lanxst > 0. (6.55)
Com isto teremos:
fim At @& gy [ane %]
n—oo An n—oo |(1n X0n|
. An1
= lim Xo
n—oo an
a
_ |X0| 1 ’ T1+1’
—00 |an|
Ez3
= 1o, (6.56)

Logo, do critério da razdo, por limites para séries numéricas cujos termos sdo ndo-negativos
(isto é, os itens 0. e D.do Teorema (BE5H)), segue que se

Plxo| < T,
o0
a série numérica Z lan xo'| serd convergente, e se
n=0
plxol > 1,
o0
a série numérica Z lan xo"| serd divergente.
n=0

Baseado nisso temos:
1. Se
p=0, teremos plx,/]=0<T.

Logo a série de poténcias (EZ1) serd convergente em R, isto é, o raio de convergéncia
da série de poténcias (EZ1) serd
R=00.

A figura abaixo ilustra a situagdo acima.

a série de poténcias (EZA) converge em R

0

2. Se
p =00, entdo para x, # 0, teremos p|x,| =00 > 1.

Logo a série de poténcias (EZ1) serd divergente, exceto quando x, = 0, isto é, o raio de
convergéncia da série de poténcias (EZ1) serd

R=0.

A figura abaixo ilustra a situagdo acima.
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a série de poténcias (EZA) sé converge em x = 0

/

0

3. Se
pe (0,00), como plx, <1
ou seja,
1
|Xo| < =,
p

a série de poténcias (EZ7) serd convergente e para
plxol > 1,

ou seja,

1
’Xo| > )

a série de poténcias (EZ1) serd divergente, isto é, o raio de convergéncia da série de
poténcias é (EZ1) serd

1
R=—-.
p

A figura abaixo ilustra a situagdo acima.

Aplicaremos o resultado acima para os seguintes exemplos:

Exemplo 6.2.9 Encontrar o raio de convergéncia e o intervalo de convergéncia da série
de poténcia abaizro:

= ]
—x". 6.57
Resolugao:
Para cada n € N, defininamos
L
a, = —. (6.58)

="
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Com isto teremos:

|an+1 |

p = lim
n—oo |(1n|
1
) lim n+1
nsoo 1

n

. n Exercicio
=lm —— "=

Jim (6.59)

Logo, do item . do Teorema (E223) acima, segue que o raio de convergéncia da série de

poténcias (E21) serd
R— L& (6.60)
p

Portanto, do item B. do Teorema (E222), podemos garantir que a série de poténcias (E22)
convergente em (—1,1) e divergente em (—oo,—1) U (1, 00).

Para completar o estudo dessa série de poténcias (E=27), precisamos analizar o que ocorre
nos pontos

Notemos que, em

o0
a série de potenmas (EEZ) S€ra a Se€ri€ numerica E — que € d1vergente (pOlS € a serie
n
n=1

harménica - veja o Exemplo (EZZ8)).
Por outro lado, em
x=-—1,
o - s v (DT
a série de poténcias (E21) serd a série numérica Z

n=1

que é convergente (é a série

harmoénica alternada - veja o Exemplo (BEE2)).
Portanto o intervalo de convergéncia da série de poténcias (E21) é

[=[-1,1). (6.61)
O

Exemplo 6.2.10 Encontrar o raio de convergéncia e o intervalo de convergéncia da
série de poténcia abaizro:

=
> X (6.62)
n=I1 n
Resolucgao:
Para cada n € N, defininamos
1
an = —. (6.63)
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Com isto teremos:

0= Lim lan 1]
n—oo |(1n|
‘ 1
2
) o (Gl I+ 1)
n—oo |an| n—oo 1
nZ
. nZ Exercicio
= lim =1 (6.64)

n—oo (n_|_ ])2

Logo, do item B. do do Teorema (EZ23) acima, segue que o raio de convergéncia da série
de poténcias (EB32) serd
1
R= . &,
p
Portanto, do item B. do Teorema (EZ23), podemos garantir que a série de poténcias
= ]
Z Fx“ converge e (—1,1) e diverge em (—oo,—1) U (1, 00).
n=1
Para completar o estudo dessa série de poténcias (E&2), precisamos analizar o que ocorre

nos pontos

Notemos que em

o0
a série de poténcias (ET2) serd a série numeérica serd série numérica E — que € convergente,
n

n=1

pois é uma p-série, com p =2 € (1,00) (veja (E213)).
Por outro lado, em
x=-—1,

(="

o0
a série de poténcias (EBJ) serd a série numérica serd série numérica E 5
n

gue também
n=1

é convergente (veja o Exemplo (BE23)).
Portanto o intervalo de convergéncia da série de poténcias (E62) sera

[=[-1,1].

O

Observagao 6.2.5 Os Teoremas (E2X1), (EZ22) e (EZ3) acima podem ser adaptados
para séries de poténcias em (x — c), isto €, centradas em x = c, ou seja, 4 serie de
poténcias do tipo:

D an(x—c)". (6.65)
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Para ver 1sto basta observar que definindo-se:
y=x—c (6.66)

a série de poténcias (EBD) actma, tornar-se-d a seguinte série de poténcias:

i a,y". (6.67)
n=I

Para esta ultima, podemos aplicar os Teoremas (E2Z1), (E222) e (E23) e depois
voltarmos com a mudanga de varidveis que fizemos (EE8), ou seja,

Xx=Y+c, (6.68)

para obter todas as informagébes que queremos sobre a série de poténcias (EED).
Para ilustrar, suponhamos que a série de poténcias (EE1D) tenha rato de convergéncia
R e seu intervalo de convergéncia seja

[_R ) R) )
1sto €, a série de poténcias (EED) converge se, e somente se,
y € [-R,R). (6.69)

Logo, considerando-se (EER), segue que a série de poténcias (EBH) converge se, e
somente se,

(5zm)

x—c = y€[-R,R), ouseja, x€lc—R,c+R). (6.70)

Logo o intervalo
I=[c—R,c+R)

serd o intervalo de convergéncia da série de poténcias (EE3), ou seja, da série de

poténcias Z a, (x —c)™.

n=I1
Baseado nas consideragdes acima, podemos introduszir a:

Definicao 6.2.2 Definimos
R e [0,00],

obtido na Observagdo (EZ3) actma, como sendo o raio de convergéncia da série de

[e.e]
poténcias Z a, (x —c)™.

n=1

o0

O maior subconjunto de R onde a série de poténcias E a,(x —c)" € convergente

n=1
o0

serd denominado intervalo de convergéncia da série de poténcias E an(x —c)".

n=1
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Apliquemos as ideias acima ao:

Exemplo 6.2.11 Encontrar o raio de convergéncia e o intervalo de convergéncia da
série de poténcias:

o0 o 2 n
Yy =27 (6.71)
n=1 n
Resolucao:
Definamos
y=x—2. (6.72)

Logo a série de poténcias (EZ71) tornar-se-d a seguinte série de poténcias:
Z = => Sy (6.73)
n=1 n=1

A série de poténcias (EZ73) foi estudada no Exemplo (EZX8), e vimos que seu raio de
convergéncia é igual a (veja (EZ3))
R=1

e seu intervalo de convergéncia é (veja (EZ4))

I, = [-1,1]. (6.74)

Entdo, da Observagdo (E223) acima, segue que o raio de convergéncia da série de poténcias
(BZ7D) serd igual a
R=1

Notemos que, de (E74), a série de poténcias (EZ71) serd convergente, se, e somente se
x—2¢e[-1,1], 1istoé, xe=][1,3].
Portanto o intervalo de convergéncia da série de poténcias (EZ7Q), ou seja, da série de

— 2)“ .
poténcias Z ———, sera:

L =1[1,3].
A figura abaixo ilustra a situagdo acima.
a série de poténcias (BE=Z0) em (1, 3]
/_/h
1 2 3
~—— ~——

a série de poténcias (E=A0) diverge em (—o0, 1) U (3, 00)
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Exemplo 6.2.12 Encontrar o raito de convergéncia e o intervalo de convergéncia da
série de poténcias:

o0 5 n
Z x+5)" . (6.75)
n
n=1
Resolucgao:
Definamos
y=x+5. (6.76)

Com isto teremos que série de poténcias (EZ7H) acima tornar-se-d a seguinte série de

i % (6.77)

n:

poténcias

Observemos que a série de poténcias (E272) foi estudada no Exemplo (EZZ9) e, como vimos,
seu raio de convergéncia serd igual a (veja (EE0))

R=1
e seu intervalo de convergéncia serd (veja (EE1))
L =[-1,1). (6.78)

Entédo, da Observagdo (E221) acima, segue que o raio de convergéncia da série de poténcias
(E73) serd igual a
R=1

Notemos que, de (EZ78), a série de poténcias (EZ73) serd convergente, se, e somente se

)

x5y e-1,1), istoé xel-6,-4).

Portanto o intervalo de convergéncia da série de poténcias (EZ3), ou seja, da série de
e (x5
oténcias —F , sera:
poténci ; T Ser
I =[-6,-4).

A figura abaixo ilustra a situagao acima.

a série de poténcias (BE=A0) converge em [—6,—4)

—_——

\/

a série de poténcias (EEl) diverge em (—oo, —6) 4, 00)

X



232 CAPITULO 6. SERIES DE POTENCIAS

Exemplo 6.2.13 Encontrar o raio de convergéncia e o intervalo de convergéncia da
série de poténcias:

- (x—2)"
> - (6.79)
n=0
Resolucgao:
Definamos
y=x—2 (6.80)

Com isto teremos que série de poténcias (EZ7J) acima tornar-se-4 a seguinte série de

i fl— i nl (6.81)

Observemos que a série de poténcias (E21) foi estudada no Exemplo (EZZ4) e, como vimos,
seu raio de convergéncia serd igual a (veja (E228))

poténcias

R =00
e seu intervalo de convergéncia serd (veja (E=38))
I, =R. (6.82)

Entédo, da Observagdo (E223) acima, segue que o raio de convergéncia da série de poténcias
(B7M) serd igual a
R =00

Notemos que, de (E=0), a série de poténcias (EZ73) serd convergente, se, e somente se
x— 2= yER isto é, x e R.

Portanto o intervalo de convergéncia da série de poténcias (EZ79), ou seja, da série de

2
poténcias Z —) sera:

n=1

I =R.
A figura abaixo ilustra a situagdo acima.

a série de poténcias (EE4) converge em R

0

Para finalizar esta segdo temos o seguinte exercicio resolvido:

Exercicio 6.2.1 Estudar a série de poténcias

i 2" (6.83)
— In(n+ 3)
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Resolugao:
Para cada n € {0} U N, definamos

a, = 2 (6.84)
" Inn+3)° '
Deste modo, teremos:
0= lim |an+1|
n—oo |C1n|
2n+1
(£=z3) lim In(n +4 ‘
= Jlim |
ln (n+ 3
Exegicio 2 (685)

Logo, do item B. do Teorema (EZ23), segue que o raio de convergéncia da série de poténcias
serd igual a
=) 1 @&=3) 1
R'="-"="=.
P 2

Para finalizar precisaremos estudar a convergéncia da série de poténcias (E23) nos pontos

1 . . . .
Notemos que, em x = i a série de poténcias (EE3) serd a série numérica

A -
; Ln(n+3) (Z) ] :é In(n+3)° (6.86)

Afirmamos que
n+3>In(n+3), paracada n € {0}UN.

A demonstragdo deste fato serd deixada como exercicio para o leitor.
Como consequéncia teremos
1 1

< < .
0< T3 S mi3) paracada ne€{0}UN

Como a série numérica -
>
n+3
n=0
é divergente (é a série harmonica, translada de 3 - veja o Exemplo (EZ2H)) segue, do critério
da comparagdo para séries numéricas, cujos termos sdo ndo-negativos (ou seja, o item 0. do
Teorema (BX53)), que a série numérica (E22H) serd divergente, ou seja, a série de poténcias

(B23) serd divergente em x = 7
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Notemos que, em x = a série de poténcias (E23) serd a série numérica

2)
oo Zn

-\ & (=
; Ln(n+3) (7) ] - ; In(n+3)° (6.87)

Aplicando o critério da série alternada (veja o Teorema (BE)), pode-se mostrar que a
série numérica (EZ1) é convergente.

A verificagdo deste fato serd deixada como exercicio para o leitor.

. . 1
Logo a série de poténcias (E23) serd convergente em x = —=.

Logo, das informagoes obtidas acima, podemos conclui que o intervalo de convergéncia da
série de poténcias (EZZ3) serd
[ = {_1 1)
2°2)°
1 1

série de poténcias (E523) converge em |:77 7)

272
—_—

X

1
2

\/

série de poténcias (E=23) diverge em (—oo, —5 % y oo)

O
6.3 Convergeéncia Uniforme de Séries de Poténcias
Comecaremos esta se¢do com a seguinte importante observagao:
Observacao 6.3.1 Suponhamos que a série de poténcias
> anx" (6.88)
n=0

converge em x, # 0.
Com 1sto podemos afirmar que a série de poténcias convergird absolutamente uni-
formemente em
[—a,al, para cada a € (0,[x,]). (6.89)

[e o]

De fato, se a série numérica E an X, € convergente em R entdo, do critério da
n=0
divergéncia (isto €, do Teorema (BEZ3)) segue que

lim (a,x,") =0.

n—oo

Logo a sequéncia numérica (anXo"), oy serd limitada em R, isto €, podemos encontrar
M € R, de modo que

anXo'| <M, para cada ne{0}UN. (6.90)
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Logo, para cada

a€ (0,lxl) fizado,

1sto €, 0<a<|xl,
. a
ou ainda, 0< — <1,
[Xol
segue que, se
x € [—a,d]
teremos:
n
n| X070 | X
lan X" "= an %o | o
(0]
(5=m) a
< M|
Xo
n
a
XO
=M,
onde
a | (&=m)
r=|—| < 1.
Xo
Notemos que a série numérica
o0 (o]
g Mt =M E ™
n=0 n=0

235

(6.91)

(6.92)

(6.93)

é convergente em R (é uma série geométrica cuja razdo r, de (E23), satisfaz r € [0,1)

- veja o Ezemplo (E23))..

Logo, do teste M. de Weierstrass (isto é, o Teorema (EZ)), seque que a série

[ee]
de poténcias E a, x" serd absolutamente uniformemente convergente em [—a, al, para

n=0

cada a € [0, [x,|) fizado.
A figura abaizo ilustra a situagdo acima.

a série de poténcias (B23) converge uniformemente em [—a , a]

—R —Xo —a 0 a Xo R

~~
a série de poténcias (BE=Z3) converge pontualmente em (—|xo !, [xo|)

Em geral temos o:

Teorema 6.3.1 Consideremos a série de poténcias

o0
E a, x"
n=0

(6.94)
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cujo rato de convergéncia € R € (0, 00].
Entdo a série de poténcias (E594) serd absolutamente uniformemente em qualquer

intervalo fechado e limitado contido dentro do intervalo (—R,R), isto €
intervalo

, em qualquer

[a,b] C (—R,R). (6.95)

Demonstracgao:
Seja

[a)b] g (_R)R) .
Podemos supor, sem perda de generalidade que
lal < |b].

O caso em isso ndo ocorre serd deixado como exercicio para o leitor.
Deste modo, segue que
[a,b] C (—Ibl,[bl) . (6.96)

A figura abaixo ilustra a situagao acima para o caso que |b| =b > 0:

—Ibl  a bl =1

Observemos que podemos encontrar
Xo € (0,R), demodoque —x,<—|b|<|bl<x,.

A figura abaixo ilustra a situagao acima

SR —lxol—=lbl 0 Il Ixel R
0
Como x, € (—R,R) temos que a série numérica Z an.X,' serd convergente.
n=0
0
Logo da Observagdo (EZ3) acima, podemos concluir que a série de poténcias Z an X"
n=0

convergird absolutamente uniformemente em [—|b|, |b]).
o0

Portanto, de (EH), a série de poténcias E a, x" convergird absolutamente uniforme-
n=0
mente em intervalo [a, b], como queriamos demonstrar.

0J
Como consequéncia do Teorema (EZ3) acima, temos o:
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Corolario 6.3.1 Suponhamos que a série de poténcias
Z an x" (6.97)
n=0

tenha raio de convergéncia igual a R € (0, 00].
Considere a funcdo f: (—R,R) — R dada por

f(x) = Z a,x", para cada x € (—R,R). (6.98)
n=0

Entdo a funcgdo f serd continua em (—R,R).

Demonstragao:

Mostremos que a fungdo f é continua em x, € (—R, R).
Para isto consideremos a e b tal que

—R<a<x%x, <b<R,

que sempre existem pois
—R <%, < R.

Do Teorema (EZ3T) acima, sabemos que a série de poténcias (E597) converge absolutamente
uniformemente em [a, b].
Notemos que, para cada n € N, a fungdo f, : R — R dada por

fo(x) =a,x™, paracada x€R, (6.99)

é continuas em R, em particular, serd continua no intervalo [a,b].
Logo, do item M. do Corolédrio (E23), segue que a fungdo f serd continua em [a,b], em
particular em x, € [a,b] C (—R,R).
Portanto, a fungdo f serd continua em (—R, R), completando a demonstragdo do resultado.
O

Observacao 6.3.2 Todas as séries de poténcias estudadas nas se¢ées anteriores, con-
vergem absolutamente uniformemente em cada intervalo fechado e limitado [a,b],
que estd contido mo interior dos intervalos de convergéncia das respectivas séries de
poténcias.

Logo suas fungdes somas definem fungdes continuas, nos respectivos interiores dos
intervalos de convergéncia das séries de poténcias.

6.4 Integracao Séries de Poténcias

Para integrar uma série de poténcias temos o seguinte resultado:
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Teorema 6.4.1 Suponhamos que a série de poténcias
D anx" (6.100)
n=0

tenha raio de convergéncia R € (0, 00].

Entao, para cada x € (—R,R) fizado, a soma da série de poténcias (EIOD) é uma
funcgdo integrdvel em [0,x], se x € (0,00), ou em [x,0], se x € (—0,0), e a integral da
mesma pode ser obtida integrando-se a série de poténcias (EEID), termo a termo, mo
intervalo [0,x], se x € (0,00), ou em [x,0], se x € (—o0,0), ou seja,

0 n=0
aq ap a
:a0x+7x2+?x3+-~-+n_:]x”“---, (6.101)
ou ainda,
x [ oo 1 o0 X
J D) aptt| dt=) a, U t dt} : (6.102)
0 L n=0 i n=0 0
ou seja,
r D antt|dt=) In_jntt, (6.103)
0 n+ 1
L n=0 i n=0
Demonstragao:

Suponhamos que x € (0, 00).

A demonstragdo do caso x € (—o0,0) é semelhante a que faremos e serd deixada como
exercicio para o leitor.

Para cada x € (—R, R), temos que

[0,x] € (—R,R).

Logo, do Teorema (BEZX), segue que a série de poténcias (EIO0) serd uniformemente
convergente em [0, x].

Portanto, do item B. do Coroldrio (E23), segue que a série de poténcias (EI00) pode ser
integrada, termo a termo, em [0, x|, ou seja,

[|Zee] = ([ aral

n=0

[eS)
Teor. F‘undamental do Célculo Z

t=x
n + 1 t_()] '

n=0
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completando a demonstracdo do resultado.
O

A seguir faremos mais algumas consideragdes importantes sobre o comportamento de uma
série de poténia.:

Observacao 6.4.1

1. Suponhamos que a série de poténcias
> anx" (6.104)
n=0

tenha raio de convergéncia R € (0,00] e x € (—R,R).
Seja

Po =) lim

n—oo

Qn41
an

: (6.105)

obtido pelo Teorema (EZX3).

Notemos que, também pelo Teorema (EZ), a série de poténcias (EZI04), pode
ser integrada, termo a termo, no intervalo [0,x], se x € (0,00), ou em [x,0], se
X € (—00,0).

Além disso, a aplicagdo do resultado acima produzird uma nova série de poténcias
de poténcias, que € a série de poténcias dada por (EIO3), isto €, a série de
poténcias

- an n+1
> T (6.106)
n=0

para x € (—R,R).

Neste caso os coeficientes da série de poténcias (EI08) serdo dados por

an
n-+1

A, = , para cada mne{0}UN. (6.107)

Encontremos o raio de convergéncia desta nova série de poténcias (E10G).
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Para 1sto, basta calcularmos:

(=) An-H
P1 = lim
Tl*}oo‘ An
An1
(D) .. n+2
o nhon On
n+1
= lim _n—|-1 Ontd

. n 1 . A1
= |lim —— lim
n—oo N + 2 n—oo | A
|

Ezegz'ciu]

. An41
= lim |—
n—oo an
(EIIE)
= Poy

ou seja, as duas séries de poténcias (E104) e (EI0D) (a original e a integrada,
termo a termo) tém o mesmo rato de convergéncia, pois

P1 = Po- (6.108)

De modo semelhante, a série de poténcias (EI0), ou seja,
= a
Z n XnH,
n—+1
n=0

por ser uma série de poténcias com raio de convergéncia R € (0,00] (que € igual ao
da série de poténcias original, isto €, (E104)), para cada x € (—R,R), poderd ser
integrada, termo a termo, no intervalo [0,x], se x € (0,00), ou no intervalo [x,0],
se x € (—o0,0), obtendo-se, deste modo, uma nova série de poténcia, a saber

- Qn n+
Z(n+1)(n+2)x B

n=0

que terd o mesmo raio de convergéncia R € (0,00], da série original, isto €, da
série de poténcias (E104).

Podemos repetir esse processo indefintdamente obtendo-se, em cada passo do pro-
cesso, uma nova série de poténcias, que terd o mesmo raio de convergéncia da
série de poténcias a qual inictamos o processo, isto €, da série de poténcias (E104).

Conclusao: se R € (0,00] € o raio de convergéncia de uma série de poténcias, para
cada x € (—R,R), integrando-se a série de poténcias no [0,x], se x € (0,00), ou no
intervalo [x,0], se x € (—o0,0), obteremos uma nova série de poténcias, cujo raio
de convergéncia serd igual a R, ou seja, serd o mesmo da série de poténcias que
1NLCIamos.
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3. Como veremos, em alguns exemplos a sequir, os intervalos de convergéncia nao
precisardo, necessariamente, serem iguais, 1sto €, 0s raios de convergéncia das
séries de potécias acima consideradas sao iguais, mas os respectivos intervalos de
convergéncia poderao ser diferentes.

4. Se denotarmos por 1,, o intervalo de convergéncia da série poténcias (EI04) e por
I1, o intervalo de convergéncia da série poténcias (EEI08), em geral, teremos:

I, C Ly, (6.109)
ou seja, o intervalo de convergéncia da série de poténcias obtida da integracdo de

uma série de poténcias dada pode, eventualmente, ”aumentar” .

Veremos, adiante, ezemplos onde isto ocorrerd (veja o Exemplo (EZ)).

3. Notemos que podemos demonstrar um resultado andlogo ao Teorema (EZ), trocando-
se o wntervalo [0,x], para x € (0,00), por um intervalo

[b)c] g (_R)R)>

ou seja, podemos mostrar que

c ©° B 0 c
[Eeeumme$ [aeu
b n=0 b

n=0
o0

Teor. Fund. Cdlculo Z

n=0

_ Z nc:_l] (Cn+1 _bn+1)
n=0

o
as séries numeéricas sGo convergentes an an
s > -y b (6.110)
n=0

a

n+1

n+1 n+1

n=0
A verificagcao deste fato serd deixada como ezxercicio para o leitor.
Apliquemos as ideias acima ao:

Exemplo 6.4.1 Considere a série de poténcias

E (—1)"x". (6.111)
Encontre os ratos de convergéncia, o intervalo de convergéncia da série de poténcias
e da série de poténcias integrada, termo a termos, associada a mesma.

Resolucao:
Para cada n € {0} UN, definamos

an = (—1)". (6.112)
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Notemos que

Po = lim

n—oo

Ant1
an

=1, (6.113)

-1 n+1
=) ‘ (=1
n—oo

(=1

logo, do item B. Teorema (EZ3), segue que o raio de convergéncia da série de poténcias
(ET1D) sera

1
R, = — "=, (6.114)

Observemos que, para

2_=mm=3 (=
n=0 n=0

que, pelo critério da divergéncia (isto é, o Teorema (EZ)) é uma série numérica divergente.
De modo semelhante, notemos que, para

x=—1,

a série de poténcias (EZTT), tornar-se-4 a série numérica

[e o]

(= (=1r =) 1
=0 n=0

mn:

que, pelo critério da divergéncia (isto é, o Teorema (BZ2)) também é uma série numérica
divergente.
Portanto intervalo de convergéncia da série de poténcias (ETT) serd

I, = (—1,1). (6.115)

Além disso, a soma da série de poténcias (EITT), serd a fungdo f: (—1,1) — R, dada por

f(x) iZ(—U“ﬂ‘:]%, para cada x e (—1,1). (6.116)
n=0

Lembremos que, para cada x € (—1,1) fixado, a série de poténcias (EZTT1) tornar-se-a uma
série geométrica razdo —x, com |x| < 1, logo convergente e sua soma serd dada por (EI14)
(veja o Exemplo (EZ3)).

Notemos agora que, do Teorema (EZ) acima, segue que a série de poténcias (EZIT0) pode
ser integrada, termo a termo, em qualquer intervalo fechado e limitado contido dentro do seu
intervalo de convergéncia, ou seja em [a, b] onde [a,b] C (—1,1) .
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Assim, para cada x € (—1,1) fixado, aplicando-se o argumento acima, ao intervalo [0, x],
se x € (0,00), ou ao intervalo [x,0], se x € (—o0,0), segue que:

fo(t) at = JX [i(_nnxn dt]

0 | n=o

=) i UXH )t dt]
n=0 0

— i (=1 X", (6.117)

Notemos que a série de poténcias (ETT7) é convergente em x = 1.
De fato, pois a série de poténcias (EIT4) em x = 1 tornar-se-d a série numeérica

que a série harménica alternada que, como vimos (veja o Exemplo (E53)), é convergente.
Notemos que a série de poténcias (ETT7) é divergente em x = —1.
De fato, pois a série de poténcias (EEIT1) em x = —1 tornar-se-d a série numeérica

= (1) Ny
B LN
e A I
n=1 n=1
que a série harménica que, como vimos (veja o Exemplo (BE=28)), é divergente.
Logo o raio de convergéncia da série de poténcias (EIT4) (que a série de poténcias inte-
grada da série de poténcias (ECI11)) serd igual a

Ry =1 (6.118)

e o intervalo de convergéncia da série (E117) integrada (que a série de poténcias integrada
da série de poténcias (EZTTT)) serd igual a

L = (—1,1]. (6.119)

Logo, neste exemplo, de (E114), (EE03), (ET13) e (EI1Y), segue que

ROEVT1TE R e L= (1, c (1,111, com LA (6.120)

O
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Observacgao 6.4.2

1. Um outro modo de obtermos a expressao da funcdao que nos fornece soma da série
de poténcias (EXILD), ou seja, (ECI18), € o sequinte:

Para cada x € (—1,1) fizado, temos que :

Logo

f(x) =1—xf(x),

1
portanto: f(x) = o3 para cada |x| <1,

como apresentado em (EI1H).

2. Notemos que, para cada x € (—1,1), temos que

[ ra=]

t=x
Teor. Fun:d Cadlculo ].Il(] +t)
=0
=1In(1+x),
logo
In(14+x) = i (=1 x" ara cada x € (—1,1) (6.121)
- — n ) p ) M .

n=1

Fazendo x = 1 na identidade (EITI8) acima (notemos que a série numérica obtida é
convergente em R ), obteremos

n(2) =) (=D : (6.122)

n
1

o0
n=

como haviamos afirmado antertormente (veja a Obsevagdo (BEE2)).

Temos também o:
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Exemplo 6.4.2 Consideremos a série de poténcias

o0 o0

(1) =) (=) (6.123)
=0

n n=0

Encontre os ratos de convergéncia, o intervalo de convergéncia da série de poténcias
e da série de poténcias integrada, termos a termo, associada a mesma.

Resolucgao:
Notemos que, defindo
y = —x, (6.124)

a série de poténcias (EI23) torna-se-a a série de poténcias

iy“. (6.125)

n=0

Notemos que, para cada y € R fixado, a série de poténcias (ET2H) é uma série geométrica,
cuja razdo € igual a y.
Logo, do Exemplo (B=2H) e o Teorema (B=ET), segue que ela serd convergente se, e somente
se,
ye(=1,1). (6.126)

Além disso, para cada y € (—1,1) fixado, a soma da série numérica (E123), serd (veja
(B330)) dada por

= 1
" 12

Logo, de (ET24) e (E1ZM), segue que a série de poténcias (E123) serd convergente se, e

somente se,

—x? ()ye (=1,1), ouseja, xe(=1,1).

Portanto, o raio de convergéncia da série de poténcias (E123) serd
Ry =1 (6.128)
e o intervalo de convergéncia série de poténcias (E123) sera
I, =(—1,1). (6.129)

Além disso, de (ET24) e (EI2Q), segue que a fungdo soma da série de poténcias (E123),
serd a fungdo f: (—1,1) — R dada por

» (Emm) e (2m) 1
) = (=)
1
=3 et paracada x € (—1,1). (6.130)
X
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Logo, para cada x € (—1,1) temos:

flx) =) (=1)"x"
n=0
=1 x>+ xt—xC x4 (6.131)

Notemos agora que, do Teorema (EZ1) acima, segue que a série de poténcias (ET23) pode
ser integrada, termo a termo, em qualquer intervalo fechado e limitado contido dentro do seu
intervalo de convergéncia, ou seja em [a, b] onde [a,b] C (—1,1) .

Assim, para cada x € (—1,1) fixado, aplicando-se o argumento acima, ao intervalo [0, x],
se x € (0,00), ou ao intervalo [x,0], se x € (—o0,0), segue que:

JX f(t) dt =) JX [i(q Jm2n dt]

0 0 | h=o

(r-gn)i{

n=0

J:(—1 i dt]

o0

Teor. Fund. Célculo Z

n=0

(_1 )n 2n+1
2n+1

t=x
t=0

— i D o (6.132)

Notemos que o raio de convergéncia da série de poténcias (EI32) (isto é, da série de
poténcias integrada da série de poténcias (ET13)) é

Ry =1. (6.133)

A verificagdo deste fato serd deixada como exercicio para o leitor

Encontremos o intervalo de convergéncia da série de poténcias (E1332) (isto €, da série de
poténcias integrada da série de poténcias (ET13)).

Para isto notemos que se fizermos x = 1 na série de poténcias (EI32), obteremos a série

numérica
— (-1 e (=1
ZZn—l—] L],)_/_Zzwr]

n=0 -1 n=0

que, pelo critério da série alternada (veja o Teorema (BEXE) ou o Exemplo (BE3), fazendo
m =n — 1 naquela), temos que ela serd convergente.

Por outro lado, se fizermos x = —1 na série de poténcias (EI33), obteremos a série
numeérica

— (—1)" i v (1T
ZOZnHQ,_/_ ZOZnH
n= - n=

que, como vimos acima, é convergente.
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Logo, o intervalo de convergéncia da série de poténcias (E2I32) (isto é, da série de poténcias
integrada, termo a termo, da série de poténcias (E113)), serd

I =[—1,1]. (6.134)

Logo, neste exemplo, de (E128), (E133), (E129) e (EI34), segue que

(=) | =) o (5x=9)

R, 1 L= (1,1 c 1,115, com L% (6.135)

0

Observacao 6.4.3 Notemos que, no Ezemplo (E23) acima, para cada x € [—1,1], tere-

mos
X (=m) [© 1
f(t)dt " =
Jo ®) Jo 1+t

t=x
Teor. F'u'réi. Calculo arctg(x)
t=0
= arctg(x).
Logo, de (EI32), segue que
arctg(x) = i (=1" x*™ para cada x € [—1,1]. (6.136)
— 2n+1

Em particular, se fizermos x = 1, temos que

e (6.137)

como afirmamos anteriromente (veja o Ezxemplo (BE3), na verdade (B2ZA), fazendo
m=n-—1).

Temos também o seguinte exercicio resolvido:

Exercicio 6.4.1 Considere a série de poténcias

i o (6.138)
n=0

Encontre os ratos de convergéncia, o intervalo de convergéncia da série de poténcias
e da série de poténcias integrada, termo a termo, associada a mesma.
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Resolugao:
Notemos que, para cada x € R fixado, a série de poténcias (ET38) é uma série geométrica,
cuja razdo € igual a x.
Logo, do Exemplo (B=2H) e o Teorema (B=ET), segue que ela serd convergente se, e somente
se,
x e (—1,1). (6.139)

Além disso, para cada x € (—1,1) fixado, a soma da série numérica (EI38), serd (veja
(B30)) dada por

> 1
Y Xt = (6.140)
n=0

T—x'
Portanto, o raio de convergéncia da série de poténcias (EI33) serd
Ro =1 (6.141)
e o intervalo de convergéncia série de poténcias (EI33) serd
I, =(—1,1). (6.142)

A funcéo soma da série de poténcias (EI38), serd a fungdo f: (—1,1) — R dada por

f(x) = T paracada x € (—1,1). (6.143)
Notemos agora que, do Teorema (EZ) acima, segue que a série de poténcias (EI38) pode
ser integrada, termo a termo, em qualquer intervalo fechado e limitado contido dentro do seu
intervalo de convergéncia, ou seja em [a, b] onde [a,b] C (—1,1) .
Assim, para cada x € (—1,1) fixado, aplicando-se o argumento acima, ao intervalo [0, x],
se x € (0,00), ou ao intervalo [x,0], se x € (—o0,0), segue que:

Jx £(t) dt =) JX [i t dt]

0

n=0
m) w— [ [~
6= )Z { t dt]
n=0 0
Teor. Fund. Céleulo 1 =
eor. Fund. Calculo n-+1
Z n+1 _
n=0 t=0

=
=> XM (6.144)
—n+ 1

Notemos que o raio de convergéncia da série de poténcias (ETZ4) (isto é, da série de
poténcias integrada da série de poténcias (EI33)) é

Ry =1. (6.145)

A verificagdo deste fato serd deixada como exercicio para o leitor
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Encontremos o intervalo de convergéncia da série de poténcias (ETZ4) (isto é, da série de
poténcias intergrada da série de poténcias (EI33)).
Para isto notemos que se fizermos x = 1 na série de poténcias (EIZ4), obteremos a série

Lt Lo

=1 n=0

numeérica

que é uma série divergente (veja o Exemplo (EE53)).
Por outro lado, se fizermos x = —1 na série de poténcias (EI3d), obteremos a série

numeérica

o 1 n_oo (_.I)n
Zn—ﬂ(_” _Zn+1

n=0 n=0

_M8

que, pelo critério da série alternada (veja o Teorema (EXE1) ou o Exemplo (BE53)) temos que
ela serd convergente.

Logo, o intervalo de convergéncia da série de poténcias (E1Z4) (isto é, da série de poténcias
integrada, termo a termo, da série de poténcias (E133)), serd

L =[-1,1). (6.146)

Logo, neste exemplo, de (E1Z1), (E1Z22), (E123) e (EIZH), segue que

(z)

1&g, e 1, &

R, (=1,1) (=1, V1, com LI (6.147)

O

Observacao 6.4.4 Notemos que, no Ezemplo (EI38) actma, para cada x € [—1,1),

teremos

X X 1

J f(t) dt (EE”)J . dt

0 1—1t
t=x
t—O]

Teor. Fund. Cdlculo
= [— In(1T —x)

=—In(1—x)+1n(1)
hnr

= —In(1 —x)

de (E1Z34), segue que In(1—x) , para cada x€[—1,1). (6.148)
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Em particular, se fizermos x = —1 em (BEZIZ3), obteremos

(ETZ3) com x=—1 > (—1 )n+]
In(2) = E
= n+l

LS (6.149)
2 3 ‘ '

— 1
+ 4

6.5 Derivacao de Séries de Poténcias

Para derivar séries de poténcias, termo a termo, temos o seguinte resultado:

Teorema 6.5.1 Suponhamos que a série de poténcias

D anx" (6.150)

tenha raio de convergéncia igual a R, € (0, co].
Entao a fun¢do soma da série de poténcias (EI00), usto €, a fungdo f: (—R,,R,) = R
dada por

f(x) = Z a,x", para cada x € (—R,,R,), (6.151)
n=0

serd uma fungdo diferencidvel em (—R,,R,) e, além disso, a série de poténcia (EZIRD)
pode ser derivada, termo a termo, em (—R,,R, ), isto €,

f'(x) = Znanx“_] , (6.152)
n=1
. d |« N = d N
ou seja, M Z an x| = Z M [an, x"] (6.153)
Ln=0 i n=1
‘ d o0 oo
ou ainda, ™ Z a, x"| = Znanx“_1 , para cada x € (—R,,R,). (6.154)
X L n=0 i n=1
Demonstracgao:
Seja
0o =) lim || (6.155)
n—oo an

obtido pelo Teorema (E23).
Encontremos o raio de convergéncia, que denotaremos por R’, associado a série de poténcias

D mayx™. (6.156)
n=I1

Para isto, para cada n € N, definamos

A, =na, (6.157)
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e calculemos

=
<

(Mm+1)an

na,
n+1

= | lim —— [lim

An-H

=) . ‘
= 1m
n—oo

n+1
n

Ant1
an

n—oo

zlim[

An41
an

n—oo n n—oo

|

0o - (6.158)

ExeLcicio]

An41
aTL

(6=3)

= lim
n—oo

Como
p, = Poy

segue que, do Teorema (E223), que os raios de convergéncia das série de poténcias (E1=8) e
(EImD) sédo iguais, ou seja,
R'=R,.

Em particular, a série de poténcias (EI58) serd uniformemente convergente em qualquer
intervalo fechado e limitado, contido no intervalo (—R,,R,), isto é, em [a,b] C (—R,, R,).

Logo, do item B. do Teorema (EZZ), segue que a funcdo soma da série de poténcias
(EImD) (isto é, a fungdo f dada por (EIRD)) serd uma fungdo diferencidvel em (—R,,R,) e,
além disso, a a série de poténcias (ECIo0) poderd ser derivada, termo a termo, no intervalo
(—Ro, R, ), ou seja, para x € (—R,, R, ), teremos:

n=
oo
Caélcilo 1 _
= E na,x" ',
n=1

como queriamos mostrar.

Observacao 6.5.1

1. O Teorema (EX) actma nos diz que a série de poténcias

D anx" (6.159)
n=0
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pode ser derivada, termo a termo, no intervalo (—R,, Ry).

Além disso, sua derivada,
D nagx! (6.160)
n=I1

também serd uma série de poténcias, cujo raito de convergéncia € igual ao da série
, serd igual ao da série de poténcias (EI29).

z

de poténcias original, isto é

Vale observar que os respecivos intervalos de convergéncia podem, em geral, ser

diferentes, como serd tratado no item 1. da Observag¢do (EB23), que vird a sequir
2. Notemos também que (EIB0) € uma série de poténcias.

Logo podemos aplicar Teorema (EET) acima a ela prdpria.

Com isto a fungdo f, dada por (EIR0), serd duas vezes diferencidvel em (—R,,R,)
e, além disso, podemos derivar a série de poténcais (EIE0), termo a termo, em
(—Ry, Ry ), e assim obter uma nova série de poténcias, ou ainda,

d
f'(x) = a [f '(x)]
= d [ina w]
dx —
===) d [ net
= — na,x }
= dx
Ezegz’cio Z n (T'L o 1) an anz . (6161)
n=2

Notemos que, pelo Teorema (EE) actma, a série de poténcias (ECIEN) terd o rato
de convergéncia da série de poténcias (EOIBO) que, por sua vez, tem o mesmo
raito de convergéncia da da série de poténcias inical, 1sto é, da série de poténcais

Podemos repetir o processo indefinidamente e assim obter a sequinte consequéncia

do Teorema (EXR) acima:

Corolario 6.5.1 Suponhamos que a série de poténcias

D anx" (6.162)
n=0

tenha raio de convergéncia igual a R € (0, 00].
Entao a fungdo soma da série de poténcias (EIB3), tsto €, a fungdo f: (—R,R) = R
dada por
f(x) = Z a,x", para cada x € (—R,R), (6.163)

n=0
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pertencerd C* ((—R,R); R).
Além disso, para cada k € N, a série de poténcia (EI62), pode ser derivada k-vezes,

z

termo a termo em (—R,R), isto €, para x € (—R,R) teremos:

:in(n—1)(n—2)---(n—k+”anxn_k- (6.164)

Demonstracgao:

Consequéncia do Teorema (EE) acima.

Para obter (E154), basta notarmos que, para cada x € (—R,R), de (EI53) e indugdo,
sobre a ordem de derivagdo, segue que

8

Calculol e indugdo _
¢ g Mm—2)---(n—k+1)apx"*,

completando a demonstragao

Observacao 6.5.2

1. Como resumo, temos que uma série de poténcias, cujo raio de convergéncia € igual
a R € (0,00], representa uma funcgdo que possui derivada, de qualquer ordem, mo
intervalo (—R, R).

O raio de convergéncia de qualquer uma das séries de poténcias obtidas da série
de poténcias inicial, derivando-se termo a termo, continua o mesmo.

O wntervalo de convergéncia de uma série de poténcias, obtida da derivacdo da
série de poténcias dada, pode mudar.

Em geral, temos
I'CI, (6.165)

onde I e I’ denotam os intervalos de convergéncia da série de poténcias inicial e
da série de poténcias deriwvada termo a termo, respectivamente.

Pode ocorrer situagdes em que
I' £1. (6.166)

Um caso em que isto ocorre é no Ezemplo (EZ32) olhado da seguinte forma:
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Vimos, no Ezemplo (EZ32), que a série de poténcias

(_] )n 2n+1
TR (6.167)

M8

Il
o

n:

tem como intervalo de convergéncia o intervalo

1=[—1,1] (6.168)

Notemos que, a série de poténcias obtida derivando-se a série de poténcias (E1E1),
termo a termo, serd a série de poténcias

(=1 X" (6.169)
=0

n

que tem como wntervalo de convergéncia
I/ = (_] ) ]) )

ou seja, o intervalo de convergéncia I/, da série de poténcias obtida por derivacgdo
da série de poténcias (EI5D), estd contido, propriamente, o intervalo de con-
vergéncia I da série de poténcias (EIED).

As propriedades obtidas nos resultado acima, sao intrisecas de séries de poténcias,
ou seja, 1sto pode nao ocorrer, em geral, para séries de fungdes, como mostra o
sequinte exemplo:
A série de fungdes
sen(nx)

n2

M8

1

3
[

(que nao é uma série de poténcias) é uniformemente convergente na reta R, como
vimos no Ezemplo (E233).

Notemos que, se derivarmos a série de fungoes acima, termo a termo, obteremos
a sequinte série de funcoes

que nao converge em, por exemplo,
x =0,
na verdade, ndo converge em x = 2km, para cada k € N,

Para a € R fizado, vale o andlogo do Coroldrio (EX) acima, para a série de
poténcias

i an (x —a)® (6.170)
n=0
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no wntervalo (a —R,a+ R), onde R € (0,00] € 0 raio de convergéncia da série de
poténcias (ELM).

Mais precisamente, a fun¢do f: (a —R,a+ R) — R, dada por
f(x) iZan (x—a)", wpara cada x € (a—R,a+R), (6.171)
n=0

pertencerd C* ((a —R,a+ R); R).

Além disso, para cada k € N, a série de poténcia (EETZ0), pode ser derivada k-vezes,
termo a termo em (a — R,a+ R), isto €, para x € (a — R, a+ R) teremos:

I (x) :Zn(n—ﬂ m—2)---nm—k+1)an(x—a)"*. (6.172)
n=k

Dewzaremos a demonstragdo do mesmo como exercicio para o leitor.

Podemos utilizar a representacao em séries de poténcia de fungdes conhecidas para obter
uma representagdo em série de poténcias para outras fungdes, como mostram os exemplos
aseguir:

Exemplo 6.5.1 Considere a funcdo f:(—1,1) = R dada por

:
f(x) = q 7 para cada x € (—1,1). (6.173)
—X

Obter uma representagdo em série de poténcias para a fung¢do f, no intervalo (—1,1).

Resolugao:
Observemos que, para cada x € (—1,1), teremos:

d 1 1
dx {1 —x} == (1—x)? =1

-~ (1—x)?
=) ¢(x). (6.174)

Como vimos no Exemplo (E2) (ou ainda, (ETZ0)),

] (o]
]_X=Zx“, paracada x € (—1,1), (6.175)
n=0

que é uma série de poténcias cujo raio de convergéncia é R = 1.
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Logo, do Teorema (BEX5) acima, segue que a série de poténcias em (BEZIZd) pode ser
derivada, termo a termo, no intervalo (—1, 1), ou seja, para cada x € (—1, 1), teremos:

() d 1
f = —
() dx {1 —x}
= d |¢ .
n=0
=)« [d .
B ; [dxX }
=3 nx*'. (6.176)
n=I1
Portanto,
] o0
0 x? = ZTL)C"1 , paracada x¢€ (—1,1), (6.177)
n=1

serd a representacdo da fungdo f, dada por (ET73), em séries de poténcias, no intervalo
(—1,1), completando a resolugo.

O
Temos também o:
Exemplo 6.5.2 Consideremos a série de poténcias
= (_] )n 2n
. 6.178
> 2 (6.178)
n=0

Mostre que a o intervalo deconvergéncia da série de poténcias (EIZ3) € igual a R.
Além disso, se fungdo soma da série de poténcias (EEI13), que demotaremos por
f:R = R, dada por

0 1)
f(x) = Z (2 )' x*", para cada x €R, (6.179)
— (2n)!
mostre que
f(x) =cos(x), para cada x € R. (6.180)
Resolucao:

Notemos que

= (D" ;v (=DM
nZ_O (zn)!xz :nZ_O e A" (6.181)

Logo, definido-se

y=x* paracada x€R, (6.182)
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segue que basta estudarmos a série de poténcias

— (—1)"
> T (6.183)
- (2n)!
Para cada n € {0} UN, definamos
L=
An= S (6.184)
Calculemos:
T An—H
Po = nLngo‘ A,
_(])n—H
=) .. |[2n+1)]!
= lim
=00 —("
(2n)!
1 xercicio
= lim Berciclo g,

nhee 2+ 2)2n 1)

Logo, do item [@. do Teorema (E223), segue que o raio de convergéncia da série de poténcias
(EI23) serd

R=0o0,
ou seja, a série de poténcias (EIE3) converge em R, ou ainda, o intervalo de convergéncia da
série de poténcias (EI23) serd
I, =R.
Logo, de (EI22), temos que a série de poténcias (EI73) terd intervalo de convergéncia
igual a
I,b, =R.
Em particular, do Corolério (E2), segue que a fungdo soma da série de poténcias (E113),

isto é, a fungdo f : R — R, dada por (EZI79), pertencerd a C*(R; R) e a série de poténcias
(ET3) poderd ser derivada, termo a termo, a qualquer ordem.
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Logo, para cada x € R, teremos

ou seja,

f'(x) = i = X2t (6.185)
( ! '

2n+1

) d ~ (_] )n—H
- - 2n+ 1!

B 0 d E_])n—H -
_Z&[(znﬁ)zxz 1}
)
(

(24T,

ou seja,
f’(x) = —f(x), paracada xcR. (6.186)

Notemos que
—1)n
2n)!

-
—
(&
—
x
[l
o
g
1=
f
&
M

%" =1 (6.187)
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m+1

x=0 em (EI:EE > 2m+] .
£100) Z 2m+1 —0, (6.188)

n=

isto é, a funcdo f satisfaz ao seguinte PVI

f”(x) =—f(x), paracada xé€R,
f(0) =1,
f'(0) =0

Na disciplina de Equagdes Diferencias Ordindrias, foi mostrado que existe uma tnica
funcdo que tem essas trés propriedades e, esta fungdo é a fungao cosseno, ou seja,

f(x) =cos(x), paracada x € R.

Portanto

n:O(Zn)!
x x* x°
:1—E+I—a+---, paracada x € R, (6.189)

completando a resolugéo.

O
Como consequéncia, temos o:
Exemplo 6.5.3 Mostre que
0 n+1 ]
sen(x Z Zn 1)1
n=1
3 5 7
X X7 X
_X_§+§_ﬁ+”" para cada x € R. (6.190)

Resolucgao:

Notemos que, para cada x € R, temos:

d
™ cos(x) = —sen(x).

Logo podemos obter uma representagdo em série de poténcias para a fungao seno utilizando-
se representacdo em série de poténcias para a fungdo cosseno, masi precisamente, para cada
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x € R, temos

sen(x) = _dix cos(x)
=) d ¢ —()" 5,
T dx [% (Zn)!X2]

Teorema(EEﬂ > d (_‘I)n In
nZd [(z i
i 2 Zn 1
n=1 )

0 n+1 o
; 2n—1

_ X
=X— y + g + -
ou seja,
& n-H :
sen(x -
Z 2n—-1)!
n=1
3 5 7
x> X7 x
= —§+§—7+ , paracada xe€R,
completando a resolugdo.
0J

A seguir temos os seguintes exercicios resolvidos:

Exercicio 6.5.1 Encontrar uma aprozimacao de

67] y

com um erro menor que 107%, ou seja, trés casas decimais ezatas.

Resolucao:
Do Exemplo (E37) segue que

= 1
Z; , paracada xeR. (6.191)

Logo
= 1]
Zf o

= (=1
:Z y x", paracada x€R. (6.192)

n=1
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Notemos que, para cada x, € (0, 00), teremos que a série numérica

R A

— n!

é uma série alternada, que satisfaz do critério da série alternada (veja o Teorema (BTE)).
Logo deste, segue que

|e_XO - Sn(XON S An1 (Xo) y

onde, para cada n € {0} UN, definimos

an(xo) = — (6.193)
e S.(x,) denota a soma parcial de ordem n da série numérica acima, isto é,

0

XOnJr]

S R (6.194)

e o —

n
k=0

Isto pode nos ser 1til para obter aproximagdes de e *°, para cada x, € (0, 00), por meio

o0
.. . . (" .
das somas parciais da série numérica E —'xo“, sabendo-se que o erro serd menor ou igual
n
n=1
a
Xt
n! -’

Com isto, fazendo x, = 1 em (EI94), obteremos, para cada n € {0} UN, que:

oy 0

k=0

1
n+ 1)

(6.195)

<
(
Observemos que para que

1 4 4
I !
( i <10 se, e somente se, (n+1)! > 10%,

que ocorre quando
n>7,

pois
8! = 40320 > 10*.
Logo, de (ECTUH), segue que

Notemos que

(-1
S;(1)=) ~0,36786

1

é uma aproximagio de e', com erro inferior a 107, completando a resolugio.
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Exercicio 6.5.2 Calcule um valor aprorximado de

1
J e dx (6.196)
0

com um erro inferior a 107%, ou seja, trés casas decimais ecxatas.

Resolucgao:
Do Exemplo (E237) segue que

=1
= Z ;y“, paracada y € R. (6.197)
Logo, fazendo y = —x* em (EZIU7), obteremos

2 = n
e X — Z m (_XZ)

o0 _] n
= Z =1 x*™, paracada x¢€R. (6.198)

Portanto, do Teorema (EZT), a série de poténcia (ETU8) acima, pode ser integrada, termo
a termo, no intervalo [0, 1], ou seja,

n=0

0
Teor. Fund. Célculo Z
= o

n=0

+1

3_.

n2n+1)

M8
—
2,
|
3
x
Ah |—|I—l
o
Pad

I
iM:

Observemos que a série numérica acima é uma série alternada que satisfaz do critério da
série alternada (veja o Teorema (BE)).
Assim, do critério da série alternada, segue que

1
J e dx — Sa
0

onde, para cada n € {0} UN, definimos

< Angty (6.200)

(6.201)
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e Sn(x,) denota a soma parcial de ordem n da série numeérica acima, isto é,

1 n 1
- d < . 6.202
J . ék' 2k+1 | =+ )l 2n+3) (6.202)
Observemos que para que
1
mET 2 T3) <10 se, esomentese (n+1)(2n+3)>10%,
que ocorrerd, por exemplo, se
n>>5,
pois
6!15 = 10800 > 10*.
Logo
r e dx — i S P T
0 — k!(2k+1)| — 6!15 '
Notemos que
5
1)
=y ,(z—)1 ~0,74684
—nl(2Zn+1)
sera4 uma aproximacio de e~', com erro inferior a 10~*, completando a resolucéo.
O

6.6 Série de Taylor e de McLaurin

Lembraremos de um resultado importante do Cdalculo I, que nos serd muito ttil logo a frente,
a saber o Teorema do Valor Médio:

Teorema 6.6.1 Seja f : [a,b] » R uma funcdo continua em [a,b] e diferencidvel em
(a,b).

Entdo podemos encontrar ¢ € (a,b) tal que

/ f(b) —f(a)
f'(c) P
ou equivalentemente, f(b) =f(a)+f'(c)(b—a). (6.203)

Geometricamente, temos a sequinte situagdo:
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Observacao 6.6.1

1. O Teorema (BEE) actma nos diz que podemos determinar o valor da fungdo f em
x = b (isto €, f(b)) conhencdo-se o valor da f em x = aa (isto ¢, f(a)) e o valor
da derivada da fung¢do f em um ponto intermedidrio c, que estd entre a e b (isto
é, f'(c), para algum c € (a,b)).

z

2. Se para cada x € [0,b], a funcdo f € continua em [0,x] e diferencidvel em (0,x)
entdo, do Teorema (EE1) actma (aplicado no intervalo [0,x]), seque que podemos
encontrar ¢, € (0,x) tal que

f(x) =1(0) + ' (cy) x. (6.204)

Como consequéncia deste temos o Teorema de Rolle (também visto no Célculo 1):

Teorema 6.6.2 Seja f : [a,b] — R uma fun¢do continua em [a,b], diferencidvel em

(a,b) e satisfazendo
f(a) =1f(b) =0. (6.205)

Entdo podemos encontrar ¢ € (a,b), tal que

f/(c) =0. (6.206)

Geometricamente temos a sequinte situagdo:

y
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Demonstragao:
Aplicando o Teorema (EE1), a segue que podemos encopntrar ¢ € (a,b), de modo que

£(0) — f(a) @z

Fle) = b—a

concluindo a demonstragdo do resultado.
U
Podemos estender o Teorema do Valor Médio (isto é, o Teorema (E61)), como mostra o:

Teorema 6.6.3 (Teorema de Taylor) Sejam n € N e f: [a,b] — R uma func¢do tal que
a fungdo f™ € continua em [a,b] e diferencidvel em (a,b) (isto €, erwiste f™ em

(a,b)).

Entdo podemos encontrar um ¢ € (a,b), de modo que

f(b) = f(a) + f/](,a) (b—a) + f”z(,a) (b—a)+ ”;(,a) (b—a)+--
f(n)(a) N f(n-H)(C) .
+— (b—a) —m(b—a) L (6.207)
Demonstracgao:
Consideremos a funcdo F: [a,b] — R, dada por:
Fix) = £(0) — 100 — 1 o) = T o2 - 0 g
) (x . k .
. Ot gy (bt (6.208)
onde k € R é escolhido de modo que
Fla) =0, (6.209)
isto é,
k= o) ()~ 1 o)~ D e - T o
W (a) Al (1)
——(b—a) o —aT (6.210)
Notemos também que:
F(b) = f(b) — f(b) — f’1(}’) (b—b)— f"z(!b) (b—b?— fgﬂ (b—b)—--.
f(n)(b) n k n+1
T (b b (n+1)! (b—b)™
=0, (6.211)

Como a funcdo f™ é continua em [a,b] e diferencidvel em (a,b), segue que a funcdo F
serd continua em [a,b] e diferencidvel em (a,b).
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Para cada x € (a,b), temos que:

PuﬂQFO—f%d—11§Ub—m+f¥?c4ﬂ“rzghb—xf+f;”2w—mﬂ—”
[ m (4) "
A N R AL N
_f(n+1)(x) N (n)(X . k N
— |7 =X+ —=n(—x "(— )]_(n+1)!( X)* (—1)
_ w(b LY (6.212)
n!
Como
Fb) =" 0 = F(a),

segue do Teorema de Rolle (isto é, o Teorema (EB3)), que podemos encontrar ¢ € (a,b) tal
que

F/(C) = 0»
que, de (EZ13), implcard em: ™ (c) = k. (6.213)
Assim
“=Fa)
"= () — f(a) - f}f‘) (b—a)+ fﬂz('a) P O U i C P
! ! 3! n!
Kk n+1
BT
=11t~ o) - L o= G - ap - B - B o
f“‘*”(c) .
C (n+1)! (b—a)™,
isto é,
f(b) = fla) + - /](,“) (b—a)+" ”2(,“) (b—a)?+ f";(,a) (b—a) +
" (a) A n
+ (b—a)" + CESII (b—a)™,
como queriamos demonstrar.
L]

Observacao 6.6.2

1. O Teorema (EB3) acima também é conhectdo como Férmula de Taylor com resto

de Lagrange.
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2. Com as hipdteses do Teorema (BEEB3) satisfeitas, para cada x € [a,b], se aplicar-
mos o Teorema de Taylor ao intervalo [a,x] (isto €, o Teorema (EB3) no intervalo
[a,x]), obteremos a seguinte expressao:

10 = fla) + Y e —ay+ A ey ";(!a) e
f(ﬂ) f(n+1) . N
" n(!a) ot +(1C)') (e —a)™, (6.214)

onde ¢, € (a,x), que serd denominada Férmula de Taylor associada a fungao f,
emx=a .

3. Na situagdo actma, (EZI4), pode ser reescrita na forma

f(x) = Pn(x) + Ra(x), (6.215)
onde
P.(x) = f(a) + f’](!a) (x —a)+ fﬂz(!a) (x —a)® + ”;(!a) (x —a)® +
f(“)(a) N
- (x —a) (6.216)

serd dito polinédmio de Taylor, de grau n, associado a funcao f, em x =a e

f(n+1)(cx)

RalX) = 137

(x—a)™', (6.217)

serd dito resto de Taylor, de grau n, associado a fungao f, em x = a.

Neste caso, (E2211) serd dito resto de Taylor na forma de Lagrange (1783-1813).

4. Na situagdo acima, se consideramros

a=0, (6.218)
de (EZ14), segue que
! " " (n)
f(x) :f(0)+1c I e U ) PR () VS
1! 2! 3! n!
f(n+1] (Cx) .

onde ¢, € (0,x), que serd dita férmula de McLaurin associada a fungao f.

5. Na situagdo acima, (EZ19), pode ser reescrita ma forma
f(x) = Pn(x) 4+ Ra(x), (6.220)

onde

! " " (n)
Pn(x)if(O)Jrf(o)erf (O)x2+f (O)x3+~~+f ©)
1! 2! 3! n!

X" (6.221)
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serd dito polinédmio de McLaurin, de grau n, associado a funcao f, em x =a e

ey

n+1
e (6.222)

Rn(x) =

serd dito resto de McLaurin, de grau n, associado a funcao f.

A férmula de Taylor, isto é, (E214) (ou a formula de McLaurin, ou seja, (E219)),
pode ser usada para aproximar uma fungdo f "bem comportada”, por um po-
linémio, que € o polinémio de Taylor associado d funcdo f, isto é ,(EZXIH) (ou
o polinémio de McLaurin, ou seja, (E2221)), se soubermos controlar o resto de
Taylor, isto é, (EZIA) (ou o resto de McLaurin, ou seja, (E223)).

Suponhamos que f € C*([a,b]; R), e que podemos encontrar um limitante € > 0,
para o resto de Taylor associado a fungdo f (isto é, (E22I1)), mats precisamente,

IRn(x)| < &, para cada x € [a,b], (6.223)
Neste caso, teremos
223
[f(x) — Pn(x)] =) IR (x)] ( < ) e, para cada x € [a,b],
ou seja, f(x)—e <Pn(x)<f(x)+e, paracada x€ [a,b]. (6.224)

Portanto se, dado € > 0, podemos encontrar n € N, de modo que (E2Z3) ocorra,
teremos que (EZ224) também ocorrerd, ou seja, a sequéncia de fungbes formada
pelos polinémios de Taylor de ordem n (isto d a sequéncia de fungbes polinomiais
(Prnen) trd convergir uniformemente, no intervalo [a,bl, para a fungdo f, ou
ainda

P, = f, em [a,b], (6.225)
onde, para cadan € {0}UN, a fun¢do polinomial P, é dada por (EZ13).
A ezpressdo da formula de Taylor, isto €, (E214) (ou da formula de McLaurin, ou

seja, (EZ1) ) também é conhecida como desenvolvimento de Taylor (respectiva-
mente, de McLaurin), de ordem n, da fungao f, em torno de x = a

Apliquemos as ideias acima ao:

Exemplo 6.6.1 Encontrar a férmula de McLaurin, de ordem m > 5, para a fung¢do
f:R — R dada por

f(x) =x*—2x*4+2x—1, para cada xé€R. (6.226)
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Resolugao:

Observemos que a fungdo f tem derivada de qualquer ordem em R (pois é uma fungio
polinomial).

Logo podemos aplicar o Teorema de Taylor (isto é, o Teorema (E53)) em qualquer intevalo
[a,b] C R.

Em particular, se aplicarmos para

a=0 e b=x,

ou seja, aplicaremos férmula de McLaurin (veja o item B. da Observagdo (EE2)) que nos
garante a existéncia de ¢ € (0,x), se x € (0,00), ou ¢ € (x,0), se x € (—o0,0), de modo que:

/(0 (0 (0 (0 fint
(23 ©) 0, 0 5 F(O) (c)

n+l
T 3! nl X (6227)

f(x) f(0) +

Mas,

f(x) =x*—2x*+2x—1, logo: f(0)=—1;
(x) =4x>—6x*+2, logo: f'(0)=2;

"(x) =12x*—12x, logo: f"(0)=0;

(x) =24x—12, logo: f"(0)=—-12;

fP(x) =24, logo: fY(0)=24;

(x) =0, paratodon >5, logo: f™(c)=0, para n>5 e ccR. (6.228)

Sustituindo (E22Z8) em (E2221), obteremos

(5=zz) £/00)  f7(0) ,  £"(0) 5 fY0) 4, ) .
f(x) ="f(0)+ T X + T + T + X +(n+1)!

(E=Z=m) 2 0 , (=12) 5 24, 0 5

= —1+ﬂx+zx +—3' X +IX +ax

=x'—=2x+2x—1,

para todo x € R, isto €, a prépria funcdo (que é um polinémio!).
O

Exemplo 6.6.2 Encontrar a féormula de McLaurin, de ordemn € N, da fungdof: R - R
dada por
f(x) = sen(x), para cada x € R. (6.229)

Resolucgao:

Observemos que a fungdo f tem derivada de qualquer ordem em R.

Logo podemos aplicar o Teorema de Taylor (isto é, o Teorema (E53)) em qualquer intevalo
[a,b] CR.

Em particular, se aplicarmos para
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ou seja, aplicaremos férmula de McLaurin (veja o item 4. da Observagdo (EB3)), que nos
garante a existéncia de ¢ € (0,x), se x € (0,00), ou ¢ € (x,0), se x € (—o0,0), de modo que:

(E223) f'0)  f"(0) , f"(0) ; ) ™ (e)
f(x) =" f(0)+ T x + TR + 3l X4 X + (n+”!x . (6.230)
Notemos que
f(x) = sen(x), logo: f(0)=0;
f'(x) =cos(x), logo: f’(0)=1;
f”(x) = sen(x), logo: f”(0)=0;
f"”(x) = —cos(x), logo: f"(0)=-—1;
fP(x) = sen(x), logo: f¥(0)=0. (6.231)
Em geral,
f(x) =0 e fI(x) =41,
mais precisamente,
0 g :
fM)y=<" jesnepar (6.232)
(—=1) 7, sen éimpar
Susbtituindo (E2232) em (E=230), obteremos:
(E=19) f/00) f"(0) ,, f"(0) 5 f¥(0) , ) ™)
f(x) ="f(0)+ 1 X+ o1 X"+ 3 Pl oy X4+ I X +(n+1)!’
(E=3) T .0, 15 04 T 5 f0) | ™ (e)
R TR TR TR TR R ey Ry i b7
SO O AP i C) B g 0
731 5 n! m+1n1°
para cada x € R.
O

Observagao 6.6.3 Observemos que o resto de McLaurin de ordem (n+ 1), associado a
fungdo f do Ezemplo (EBE2) actma (veja (E223)), terd a sequinte propriedade:

f(n+1)(c)
(m+1)!
B |f(n+1)(c)|
BCESD
(b‘-'<ml) 1

- (n4+1)!

(Eizz) n+1

Rn (x|

|X|n+1

XM, (6.233)

po1s
fot(c) = £sen(c) ou ™ (c) = +cos(c),
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implicando que
‘f(““)(c)‘ <1, paracada c€R e neN, (6.234)

Assim, se
x| <b,
seque, de (E2234), que
1

Rn(x)] < m

b, (6.235)

Notemos que a série numérica

- 1 n+1
2 i

n=0

€ convergente em R.
Para verificar este fato, basta aplicar o critério da razdao por limites para séries
numéricas cujos termos sGo ndo-negativos (isto €, o item 0. do Teorema (ER3)).
Dewzaremos os detalhes da verificagdo deste fato como exercicio para o leitro.
Logo , do critério da divergéncia para séries numéricas (isto é, o Teorema (BEZ32)),
seque que
lim _ b =0,
n—oo (M4 1)!

ou seja, dado ¢ > 0, podemos encontrar N, € N, de modo que se n > N, temos
IRn(x)| < €&, para todo x € [—b,b].

Portanto, para n > Ny, o polinémio de McLaurin, calculado em x € [—b,b], associ-
ado 4 fungdo f, aprozimar-se-d do valor da fungdo f em x (ou seja, de f(x) = sen(x)),
com erro menor que € >0 (o erro serd o resto de McLaurin).

Com 1sto podemos concluir que a sequéncia de fungdes formada pelos polindmios
de McLaurin, (P,)nen, converge uniformemente para a func¢do f, em cada intervalo
limitado e fechado da reta R.

Acabamos de ezibir um modo de aproximar uma funcdo f, por um polinémio, no
caso, por meio da formula de McLaurin.

Podemos obter uma outra expressdo para o resto de Taylor de ordem (n + 1), asso-
ciado a uma fungdo f, em x = a, isto é, R, = R,(x), dado por (E2I7), chamado de
resto de Taylor na forma integral:

Teorema 6.6.4 Sejam n € N e f: [a,b] = R uma funcdo de modo que f™ é uma
fungdo continua em [a,b], P, e R, sdo o polinémio de Taylor de ordem n, associado a
funcao f, em x = a, e o resto de Taylor de ordem n, , assoctado & funcdo f, em x = q,
respectivamente, dados por (EZZIH) e (EZXI7Q).

Entao

‘] X
Rn(x) = EJ (x —t)"f™(t)dt, para cada x € [a,b]. (6.236)
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Demonstracgao:

A demonstracao é feita por indugao.
Daremos a seguir uma ideia da demonstragdo.
Do Teorema Fundamental do Célculo segue que:
f(x) — f(a) = J f'(t) dt,
ou seja, f(x) =f(a) +J f'(t) dt, (6.237)

a

ou ainda, f(x) = P,(x)+ Ro(x),

onde N
Po(x) = fla) e RO(X)ijf’(t)dt.

a

Com isto mostramos que o resultado é valido para n = 0.
Utilizando (EZZ37) e integragdo por partes na integral definida, teremos:

tx) = 1(a) + J £/(t) dt,

a —u =dv

u="f'(t), logo: du="~"(t)dt
dv =dt, logo: v=t—x

=f(a) + f'(a) (x—a)—l—J (x —t)f"(t) dt (6.238)

onde
X

Pi(x) =f(la)+f'(a)(x—a) e Ri(x) iJ (x —t)f"(t) dt.

a

Com isto mostramos que o resultado é valido para n = 1.
Utilizando (EZ238) e integragdo por partes na integral definida, teremos:

f(x) = f(a)+f'(a) (x—a)+Jx(x—t)f”(t) dt
u="f"(t), logo: du="f"(t)dt
< )

dv = (x —t) dt, logo: v=— 3

t=x

(x —t)?

5 f ”(t)

— f(a) +'(a) (x—a)—[ +Jxﬂf’”(t) dt

« 2

X (t—X)z
2

t=a

(x—a)2++J

a

£(t) dt
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onde

f'(a) f(a)
21

X (t_X)Z

2 f7(t).

(x—a)* e Ry(x)= J
a

Com isto mostramos que o resultado é valido para n = 2.

Podemos prosseguir utilizando integracdo por partes uma vez mais.

A prova pode ser completada utilizando-se indugdo matemadtica e esses detalhes serdo

deixados como exercicio para o leitor.
O
Apliquemos as ideias acima ao:

Exemplo 6.6.3 Encontrar o desenvolvimento de McLaurin de ordem n, para a func¢ao
f:R — R dada por
f(x) =e*, para cada x€R. (6.239)

Resolugao:
Notemos que f € C*(R; R) e, para cada n € N, temos que

f(x) =e*, paracada xeR, (6.240)

em particular
fM(0) =1, paracada >0. (6.241)

Assim, da férmula de MacLaurin (isto é, (E2219)), segue que, existe ¢, € (0,x), se x €
(0,00), ou ¢, € (x,0), se x € (—0,0), tal que:

(£2m9) £'(0)  £"(0) ,  f"(0) ; ) o, f™V(e)
f(x) ="f(0)+ 1 X+ ol X"+ 30 X A4+ l X +m
(E=Zm) To 1.5 T » e™  _an

Neste caso, o polindmio de McLaurin de ordem n, associados a funcao f, serd dado por:

1 1 1
Pn(x) £1+x+5x2+§x3+---+ﬁxn, para cada x € R (6.243)

e o resto de McLaurin de ordem n + 1, associados a fungdo f, serd dado por:

e
RTL(X) = m Xn—H y para Ca.d.a. X € R) (624:4:)
ou seja, (E222), (E223) e (E224), teremos:
ex FEY f(x) = Pn(x) + Rn(x), paracada x € R. (6.245)
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Observacao 6.6.4 Observemos que, se
x € [a,b],
podemos encontrar M € (0,00), de modo que
[a,b] C [-M,M],

e assim, teremos

(6==zz3) e’ 1
R.(x)] " =" | ———x""
efc |X|n+1
(m+1)!
cx€(—M ,M) e ezponencial é crescente: CM
: e
XI<M eM veja o Ezemplo
< S et e () o Jeemplo (55 (6.246)
(n+1)!

quando . — oo.
Ou seja, a sequéncia de funcdes formada pelos polinémios de McLaurin, associados
d funcdo f, isto €, a sequéncia de funcdes (P )nen, onde, para cadan € {0}JUN, a funcdo
polinomial P, € dada por (E2Z3), converge uniformemente para f, no intervalo fechado
e limitado [a,b] C R.
Como, para cadan € N, a func¢do P, € a soma parcial de ordem 1, associada a série
de poténcias
° f(“)(O)

X (6.247)

n=1
das discussées acima (isto é, de (E2Z3) e (BE224H)), podemos concuir que a série de
poténcias (E22Z1) converge uniformemente para a fungdo f, em [a,b].

Em particular, teremos

X = ]
e = Z mx“, para cada x € R. (6.248)
n=I1
Temos também o:
Exemplo 6.6.4 Encontrar o desenvolvimento de McLaurin para a fungdo f: R — R

dada por
f(x) =cos(x), para cada x € R. (6.249)

Resolucao:
Notemos que f € C*(R; R) e, para cada n € N, temos que temos:
, logo: f(0)=cos(0)=1,

, logo:

, logo:

)
) f
= —cos(x), logo: f"(0)=—cos(0)=—1,
) f
), logo: fW(0)=cos(0)=1. (6.250)
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Cm isto teremos que:

£ (0) = 0, semnéimpar
)] (-1Z, senépar

Assim, da férmula de MacLaurin (isto é, (E219)), segue que, existe ¢, € (0,x), se x €
(0,00), ou ¢, € (x,0), se x € (—o0,0), tal que:

(E=zT3) f/(0) f7(0) , f"(0) , £ (0) ()
f = + + n n
(x) f(0) TR T + TR + o+ 4+ X + CESI] X
(6==m) T, 1, f™(0) fm D (ee) i
=/ 1_ _ — n ntl _
Tk +4!x+ + ! x+( 1)!x (6.251)

Neste caso, o polindmio de McLaurin de ordem n, associados a fungdo f, serd dado por:

. T, 1, )
Pn(x)—1—ix +mx +-- 4+ X

para cada x € R (6.252)

e o resto de McLaurin de ordem n + 1, associados a fungdo f, serd dado por:

Ru(x) = % XM (6.253)

ou seja, (E22=1), (E2532) e (E253), teremos:

cos(x) (=) f(x) = Pn(x) + Ru(x), paracada x € R. (6.254)
[
Observacao 6.6.5 Observemos que, se
x € [a,b],
podemos encontrar M € (0,00), de modo que
[a)b] g [_M)M])
e assim, teremos
Fn+1)
o)) 2 |1 s
(m+1)!
’f(n+1)(c)’(z§5:)] 1
< ’X|n+1
(m+1)!
IXEM 1 n+1
- (n+1)!
veja (E2ZZH) do_E)memplo (EE3) 0 ) (6255)

quando . — oo0.
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Ou seja, a sequéncia de fungdes formada pelos polinémios de McLaurin, associados
a funcgdo f, isto €, a sequéncia de fungées (P, )nen, onde, para cadan € {0}UN, a fungdo
polinomial P, € dada por (E253), converge uniformemente para f, no intervalo fechado
e limitado [a,b] C R.

Como, para cadan € N, a fungdo P, € a soma parcial de ordem n, associada a série
de poténcias

° f(n)(o) N
> X (6.256)
n=1

z

das discussées acima (isto é, de (E2h4) e (B225H)), podemos concuir que a série de
poténcias (E258) converge uniformemente para a fungdo f, em [a,b].
Em particular, teremos

1)
cos(x) = Z ( n') x*", para cada x € R, (6.257)
n=1 )

6.7 Representacao de Funcoes em Séries de Poténcias

Como vimos no Coroldrio (E50), podemos utilizar uma série de poténcias para definir uma
fungdo, cujo dominio serd o intervalo de convergéncia da série de poténcias.
Lembremos que (veja o Coroldrio (E221)), se R € (0, o0] é o raio de convergéncia da série
[e o]

de poténcias Z a,x", entdo a fungdo f: (—R,R) — R dada por

n=0
f(x) = Z a,x"
n=0
—a,+ayx+ax* +a3x*+---, paracada x € (—R,R), (6.258)

estd bem definida e pertencerd a C>*((—R,R); R).

Definicao 6.7.1 Na situagcdo acima, diremos que a série de poténcias Z a, x" € uma
n=0
representacao da funcao f, por meio de uma série de poténcias, ou ainda, que a fungao
f pode ser representada pela série de poténcias Z ax™.
n=0
Para ilustrar temos o:
Exemplo 6.7.1 Representar a funcdo f:(—1,1) — R dada por
o1
f(x) , para cada x € (—1,1), (6.259)

T 14x

em série de poténcias de x, em (—1,1).
Resolugao:
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Observemos que (veja (EIZH), trocado-se x por —x) a série de poténcias

(ezm) |
o T4x

=3 Z(—U“xn, para cada x € (—1,1), (6.260)

n=0

f(x)

pode ser derivada termo a termo, para x € (—1,1), quantas vezes quisermos.
Para cada n € {0}UN, definamos

ap = (—1)". (6.261)

Deste modo, temos que

f(X) () Z(_] )n ™
n=0

(=) Z a,x", para cada x € (—1,1). (6.262)
n=0
Notemos que
£(0) =015 q, = q, 01

Observemos também que, para x € (—1,1), temos:

f,(X) () % [Z(_])nxn]

n=0
Teoremi(EEU) > 1 i n
==3 { dxx}
=> (=D)'nx*", (6.263)

n=1

em particular, f’(0) (B89 comx=0_ (&) ar1!.

De modo semelhante, temos

Teorema (B2 > n d n—
2EDN [ax ‘}
n=1

=> (—D'nm—1)x"7, (6.264)
n=2
em particular, f”(0) (5=28m) com x=0 (&) a,2!.
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Podemos repetir o procedimento e assim, obter

£ = < ()
(=) dix g(—ﬂ“n(n— 1) x™
corema = d
Teorema (BE53) ;(—1)“n(n— 1 = [Xn—l}
= i(—])“n(n— H(n—2)x"73, (6.265)
n=3
em particular, f"(0) (6288) comx=0 _ ¢ (5 as3!.
Assim, neste ezemplo, podemos mostrar (por indugdo) que
fY(0)=a,n!, para cada ne{0}JUN,
1sto €,
f(x) = f(0) + f'](!o) X+ f/;O) Xt + f/;(!o)x3 4+ f(:l('o) X

para x € (—1,1)
Como veremos, no resultado a seguir, isto ocorre em geral, a saber, temos o:

Teorema 6.7.1 Consideremos a € R e suponhamos que a fun¢do f:(a—R,a+R) =R
seja uma funcdo dada por uma série de poténcias, centrada em x = a, ou seja,

f(x)iian(x—a)“, x € (a—R,a+R). (6.266)
n=0

Entdo f € C*°((a—R,a+R); R) com e, além disso, teremos:

fix) = f(a) + /1(!“) (x—a)+ Hz(la) (x — a)? + f";(!a) (x—a)+--
4 f(n)(’a) (x—a)* +--- (6.267)
n!

ou seja, para cada n € {0}UN, temos que

(6.268)

Demonstragao:

Como a série de poténcias (E268) converge para x € (a — R, a + R) segue que sua soma
define uma funcéo, f: (a — R,a + R) — R que, do item B. da Observagdo (E52), segue que
a fungdo f pertencerd a C*((a — R,a+ R); R).
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Além disso, a série de poténcias (E226H) pode ser derivada, termo a termo, no intervalo
(a —R,a+ R), a qualquer ordem e, além disso, teremos:

'-1'1 n
f(X) = Zan (X—(l) )
n=0
logo: f(a)= Z a, (a—a)" =aq, 0
n=0
fx) TS G —at
n=I1

logo: f'(a) = Z an(a—a)" ' =a 1!

logo: f"(a) :Zann(n—ﬂ(a—a)“’2:a2~2-1 =a2!;,

n=2
o0

fm(X) :Zann(n—])(n—Z) (X—Cl)nf3)

n=3
o0

logo: f"'(a) =Zann(n—1)(n—2)(a—a)n_3:a3-3-2-1 = a33!,

n=3

e assim, por indugdo, podemos mostrar que

£ (x) :Zann(n—ﬂ(n—Z)---(n—k—i—])(x—a)”‘k,
n=k

paracada k € {0}UNe x € (a—R,a+ R).
Deixaremos como exercicio para o leitor a verificagdo deste fato.
Em particular, segue que:

¥ (a) :iann(n—ﬂ(n—Z)---(n—k+1)(a—a)“k
n=k

=ap-k-(k—=1)---3-2-1
= a k!. (6.269)

Portanto, de (E263), segue que
f™(a)

n!

a, = y

para n € {0} UN, comletando a demonstragio

Observacgao 6.7.1
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1. A série de poténcias (E2Z68), serd denominada série de Taylor da funcao f, em
X =d.

Para cada n € {0} UN o niumero real a,, dado por (EZGR), serd denominado
coeficiente de Taylor, de ordem n, da funcao f, em x = a ou n-ésimo coeficien-

te de Taylor da funcao f, em x = a .

2. Se no Teorema (EZZ) acima,
a=0,

a série de poténcias obtida serd denominada série de McLaurin da fungao f, isto
€, se a série de poténcias

D anxt (6.270)

é converge em (—R,R), entdo a fungdGo soma da série de poténcias (EZM), que
indicaremos por f: (—R,R) — R, terd a sequinte representagdo:

(0
f(x) =f(0) +f'(0)x +--- + n(' )x“+--- , para cada x € (—R,R), (6.271)
1sto €,
f(”)(O)
a, = , para cada mne€{0}UN, (6.272)

n!
que serd denominado coeficiente de MacLaurin, de ordem n, da funcao f ou n-
ésimo coeficiente de MacLaurin, da fungao f, em x = a .

3. O Teorema (EZd) acima nos diz que se uma fungdo f: (a—R,a+ R) — R possuz
representacdo em série de poténcias de (x—a) (ou seja, centrada em x = a), entdo
esta série de poténcias deverd ser a série de Taylor da fungdo f, em x = a, ou
seja, temos a unicidade de representacdo em séries de poténcias.

4. O Teorema (BEZZD) acima nao nos fornece condigbes suficientes para garantir a
existéncia de uma representacao em series de poténcias para uma dada funcao f.

Para 1sto tratar desta questao, temos o:

Teorema 6.7.2 Suponhamos que a funcdo f : (b,d) — R tem derivada de qualquer
ordem em (b,d), isto é, f € C*((b,d));R) ea € (b,d).
Suponhamos que
lim R,(x) =0, (6.273)

n—oo

para cada x € (b,d) onde, para cada n € {0}UN, R, = R.(x) € o resto de Taylor, de
ordem n, associado a fung¢do f, em x = a, ou ainda

f(n+1 ) (Cx)

M+ 1) (x—a)""", para cada x€(a—05,a+08)C (b,d), (6.274)

Ru(x) =

para algum ¢, € (a—0,a+ ), para 6 > 0, suficientemente pequeno.
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Entdo a funcao f pode ser representada em série de Taylor em x = a, 1sto €,

/ " " ()
700 = fla) + 9 (x ) 1 TG g2 T gy PO gy
1! 2! 3! n!
° f(n)(a) N
:Z i (x—a)", paracada x€(a—56,a+9d). (6.275)
n=0 ’
Demonstracgao:

Observemos que, para cada n € {0} UN, temos que o polinémio de Taylor, de ordem n,
associado a fungdo f, em x = a, serd dado por (veja (EZZIH))

fW(a)
n!

n

(x—a)

que coincide com a soma parcial, de ordem n, da série de poténcias

> f(n)
Z la) (x —a)®

n!

n=0

ou seja, as somas parciais da série de poténcias associada a fungdo f, em (x — a), sdo os
polinémios de Taylor, associados a fungdo f, em x = a.

Mas
(emean:|
1£(x) — Pu()] =7 [Ru(x)] B 0,
para cada x € (a — &, a+ d), por hipdtese.
Logo, da Definigdo (E=X), segue que
£/ " £ (m)
fx) = fla) + W o _ gy T e TR s TR ey
1! 2! 3! n!
> f(n)
:Z nﬁa) (x —a)", paracada x€ (a—05,a+3d),
n=0 )

como queriamos demonstrar.

Observacao 6.7.2

1. Para cada a € (b,d), a convergéncia da série de poténcias (E2ZZ3) acima, serd
uniforme em qualquer intervalo fechado e limitado contido em dentro do interior
do seu intervalo de convergéncia.

De fato, pois uma série de poténcias converge uniformemente em qualquer inter-

valo limitado e fechado contido no intervalo de convergéncia da série de poténcias.

2. O resultado nos dd condi¢bes suficientes sobre uma funcao f, para que ela possua
uma representacao em séries de Taylor, em x = a.
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3. Ezitem fungdes f € C*((b,d); R), cwa série de Taylor (ou de McLaurin) nao

converge para a fun¢do, como mostra o exemplo a sequir:
Considere f : R — R dada por

A
fx) =4 € » para x#0 (6.276)
0, para x =0

Afirmamos que f € C*°(R; R) e que

f™(0) =0, para cada n € {O{UN. (6.277)

Observemos que para x # 0, da regra da cadeia, a fung¢do f, tem derivada de
qualquer ordem.

O problema é no ponto x =0, que passaremos a estudar a seguir.
Mostremos que a funcao f € continua em x = 0.

Para 1sto notemos que

X

lim f(x) A0 e (B i e

x—0 x—0

Portanto, a funcao f é continua em x = 0.
Mostremos que a fung¢do f é diferencidvel em x = 0.

Para 1sto calculemos:

X#0 em:(m)efé x=0 em (6Z73)

0
~ =~ ~ =~ 1
. f(h) —  f(0) . e n?
lim = lim
h—0 h h—0

Ezercicio O

Com 1sto mostramos que a fungao f é diferencidvel em x =0 e

f'(0) =0. (6.278)

Assim, da regra da cadeta (para x #0) e de (E213), seque que a fungdo f': R — R

serd dada 5
1
_x3e <2 para x #0

f'(x) = (6.279)

0, para x =0

Pode-se mostrar que a func¢do f’ é continua em R.
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Como a composta de fun¢des continuas € uma func¢do continua, seque que a func¢ao
' é continua em R\ {0}.

Deizaremos como exercicio para o leitor, mostrar que a f' é continua em x = 0.

Prosseguindo, por induc¢do, podemos mostrar que f € C*(R) e que

f(0) =0, para cada ne{0JUN.

Dewzaremos como ezxercicio para o leitor a verificagcdo deste fato.
Portanto a série de McLaurin associada a fung¢do f, serd dada por

&=),
s fM(0)
——x" =0 # f(x),

n!
n=0

para x # 0, isto €, a série de McLaurin associada & fung¢do f, nao converge para
a propria fungdo associada d fungdo f (exceto se x =0).

Introduziremos agora a:

Definicao 6.7.2 Seja I um intervalo aberto de R.

Diremos que uma fungdo f : I — R € analitica (real) em I se para cada a € 1,
podemos encontrar & = 6(a) > 0, de modo que a série de Taylor associada d fung¢do f,
em x = a, 1sto €, a série de poténcias

for converge para f(x), para cada x € (a —&,a+ 0), isto €,

> f(n)
f(x) = Z n('a) (x—a)", paracada x€(a—06,a+9). (6.280)
n=0 ’

Uma funcdo f : R — R serd dita funcgao inteira se ela for analitica em qualquer
intervalo aberto de R.

A seguir daremos algumas fungdes e suas respectivas representacdes em série de poténcias
(de McLaurin):

Exemplo 6.7.2 Do Ezemplo (EB3), temos que a fung¢do f: R — R, dada por
f(x) =e*, para cada x€R, (6.281)

possut representacdo em série de McLaurin na reta R dada por

WL >° 1
et 2 Z = x", para cada x€R. (6.282)
n=0
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Exemplo 6.7.3 Como consequéncia do Ezemplo (EE2) e da Observagdo (EB3), seque
que a fung¢do f: R — R, dada por

f(x) = sen(x), para cada xé€R, (6.283)

possut representacdo em série de McLaurin na reta R, dada por

00 R RN
sen(x) = Z ﬁ x*™1 . para cada x €R. (6.284)

n=0
Exemplo 6.7.4 Do Ezemplo (EB4), seque que a fungdo f: R — R, dada por

f(x) =cos(x), para cada x€R, (6.285)

possut representacdo em série de McLaurin na reta R, dada por

00 1)
cos(x) = Z ((Zn))’ x*™, para cada x € R. (6.286)

n=0

Exemplo 6.7.5 De (EI7H), seque que a fungdo f:(—1,1) —» R, dada por

f(x) = T Para cada x € (—1,1), (6.287)

possut representacdo em série de McLaurin em (—1,1). dada por

1

T (=) Zx”, para cada x € (—1,1). (6.288)

n=0

Exemplo 6.7.6 Da Observagdo (EZ3), seque que a fungdo f:(—1,1) = R, dada por
f(x) = arctg(x), para cada x € (—1,1), (6.289)

possui representacdo em série de McLaurin em (—1,1), dada por

(o) _-] n
arctg(x) =3 Z (=1 x*™1 para cada x € (—1,1). (6.290)

Exemplo 6.7.7 Do item B. da Observagdao (EZ3), segue que a funcdo f:(—1,1) = R,

dada por
f(x) =In(x+1), para cada xe€ (—1,1), (6.291)

possui representacdo em série de McLaurin em (—1,1), dada por

—1 n—1
In(x + 1) =) Z ( Tz x", para cada xe€(—1,1). (6.292)
1

o
n=

A seguir vamos obter uma representacdo em série de Taylor para:
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Exemplo 6.7.8 Considere a funcdo f: R — R, dada por
f(x) = sen(x), para cada x € R. (6.293)
Obter uma representacdo da funcao f em série de Taylor, em x = g

Resolucgao:
Observemos que f € C*(R; R).
Além disso, par 6 > 0 fixado, para cada

)x - g‘ <3, (6.294)

. N ~ Tt .
temos que o resto de Taylor, de ordem n, associado a fungdo f, em x = o satisfaz:

e=m) [T (cy) ( ﬂ)“
Rn = |—" ——
[Rn (]| mt+1) "6
’f(k)( )’§1 ‘X — E "
< L6l
- (m+1)!
= 611+] Xemplo
(=) . pl—>(m) 0, quando n— oo.

(n+1)!

Ou seja,
lim R,(x) =0, para cada ‘x— g’ <9.

n—oo

s
Logo, do Teorema (E732) acima (com a = E)’ segue que

- ()
7T n
f(x)zZ—G x——] , paracada xe€R. (6.295)
— n! ( 6)
Mas,
sen(x), k=4m, para me {0}UN,
£l4) () — cos(x), k=4m+1, parame{0}UN,
)] —sen(x), k=4m+2, parame{0JUN
—cos(x), k=4m+3, parame{0}JUN
Logo
(1
7 k=4m, param € {0}UN
3
i %, k=4m+1, parame {0}UN
(T _
f <6> ] (6.296)
3 k=4m+2, parame {0JUN
—?, k=4m+3, param e {0}UN

\
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Assim, substituindo (E2Z98) em (E2294), obteremos:

o g (T
-5 e -y

6

Observemos que a convergéncia da série de poténcias acima serd uniforme, em cada in-
tervalo [a,b] C R.

6

O

Observacao 6.7.3

1. Todas as fungdes dos Exzemplos acima sdo analiticas nos seus respectivos dominios.

A wverificagcdo deste fato serd deirada como exercicio para o leitor.
2. Lembremos que se 0 € (—a,a) e f:(—a,a) - R € uma fun¢do impar entdo

£(0) =0. (6.297)

De fato, pois
f(—x) = f(x), para cada x € (—a,a).

Logo —x € (—a,a) e assim

ou seja, 2f(0) =0,

assim: f(0) =0,
como afirmamos.

2. Seja R € (0, 00].

Observemos que se uma fung¢do f: (—R,R) — R possui representa¢do em série de
McLaurin no intervalo (—R,R) e ela é uma fungdo par, isto €,

f(—x) =f(x), para cada x € (—a,a),

entdo sua série de McLaurin sé apresentard poténcias pares (isto €, do tipo x*™),
ou seja, os coeficientes das poténcias impares (isto é, de x*™) serdo iguais a
zero.

Lembremos que a funcao f, em particular, deverd ter derivada de qualquer ordem
em (—R,R).

De fato, pois se a funcdo f é uma funcgcdo par entdo, da regra da cadeia, seque que
sua funcdo derivada, isto €, a fun¢do f':(—R,R) — R, serd uma funcdo impar.
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A verifiacagdo deste dao serd deizado como exercicio para o leitor.
Logo, de (BE291), segue que

f'(0) =0. (6.298)
Suponhamos que a funcdo f’ € uma funcdo impar entdo, da regra da cadeia, seque
que sua func¢do deriwada segunda, isto é, f”:(—R,R) — R serd uma fung¢do par.
Logo, novamente, da regra da cadeia, seque que sua fun¢do derivada terceira, isto

é, " :(—R,R) — R serd uma fun¢do impar e assim, de (EZ91), deveremos ter:

£7(0) =0. (6.299)

Prosseguindo o raciocicio, por indugdo, podemos mostrar que todas as derivadas
de ordem impar, isto é, f2"1  serdo funcées impares.

Logo deveremos ter

fent1(0) =0, para cada m € {0}JUN. (6.300)

Portanto a série de McLaurin associada a fungdo f (veja (EZXZD)) tornar-se-d:

=) « f™(0)
)= Z n!

n=0

M para cada x € (—R,R).

3. Seja R e (0, 00].

De modo andlogo, se uma fungdo f: (—R,R) — R possuz representacdo em série
de McLaurin (—R,R) e ela é uma fungdo impar, isto €,

f(—x) = —f(x), para cada x € (—R,R),

entdo sua série de McLaurin sé apresentard poténcias impares (isto €, do tipo

z

x*"1), ou seja, os coeficientes das poténcias pares (isto €, do tipo x*") serdo
19UQlsS a 2ero, ou seja,

Z(2n+1 x*™ . para cada x € (—R,R).

Para msotrar a afirmagdao acima, basta observar que se uma fungdo € impar e €
diferencidvel em um intervalo aberto simétrico em relagao a origem, entdo sua
derivada serd uma funcdo par nesse intervalo aberto.

Assim, de (E2297)), seque que

f2Y(0) =0, para cada mn e {0}UN. (6.301)
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Um resultado final sobre a convergéncia de séries de Taylor é dado pelo:

Teorema 6.7.3 Sejam a € R, R € (0,00] e a fun¢do f: (a—R,a+R) — R tal que a fungdo
f tenha derwada de qualquer ordem em (a—R,a+R) (isto €, f € C°((a—R,a+R); R)).
Além disso, suponhamos que existe M > 0, de modo que

‘f(“)(x)|§M para todo me{0JUN e x€(a—R,a+R). (6.302)

Entdo a funcgdo f pode ser representada em série de Taylor, em x = a, 1sto é,

s f(a) N
f(x) :Z oy (x—a)", wpara cada x € (a—R,a+R). (6.303)
n=0
Demonstragao:
Observemos que se

x € (a—R,a+R) ouseja, [x—al <R, (6.304)
temos que o resto de Taylor, de ordem n, associado a fungdo f, em x = a, vai satisfazer:

&= [100e) (i
(m+1)!
‘f(n+1)(c)‘
— (n+1)!
(m)z() M
- (m+1)!
Exempg(m) O,

R (x)]

| |X - a|n+1

n+1

quando N — 0.

Logo, do Teorema (E73), segue que

> f(n)
f(x):Z n('a) (x —a)", paracada x€ (a—R,a+R),
n=0 ’

como queriamos demonstrar.

OJ
Apliquemos o resultado acima ao:
Exemplo 6.7.9 Considere a fung¢do f: R — R dada por
f(x) = sen(x), para cada x € R. (6.305)
Mostre que
f(x) = i %inﬂ , para cada x € R. (6.306)

n=0
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Resolugao:
Notemos que f € C*(R; R) e, para cada n € N, temos que

b

£ (x)] = |sen(x)|, paran f'z Par
|cos(x)|, paran é impar

ou seja,
}f(“)(x” <1, para x€R.

Portanto, pelo Teorema (EZ73) acima, segue que série de MacLurin, associada a fungéo f,
converge para a funcdo f, em R, ou seja, vale (E308).

O
Exemplo 6.7.10 Considere a funcdo f: R — R dada por
f(x) =cos(x), para cada x € R. (6.307)
Mostre que
f(x) = i ((;:L))T x*™, para cada x € R. (6.308)

n=0

Notemos que f € C*(R; R) e, para cada n € N, temos que

£ (x)] = |cos(x)|, paran é, Par ,
|sen(x)|, paran é impar

ou seja,
[f™(x)] <1, para xeR.

Portanto, pelo Teorema (E7Z3) acima, segue que série de MacLurin, associada a fungdo f,
converge para a funcédo f, em R, ou seja, vale (E=0R).
O

Observacao 6.7.4 Podemos mostrar que as fungdes dos dois exemplos acima sdo funcgoes
inteiras.
A verificagdo deste fato serd deixada como exercicio para o leitor.

Com isto podemos resolver o:

Exemplo 6.7.11 Encontre uma série numérica convergente cuja soma € igual a

1
J sen(x) 4. (6.300)

0 X
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Resolugao:
Do Exemplo (EZ7d) acima, temos que (veja (E20H)):

n:0(2n+1)'
XX I
:x—§—§+ﬁ+--~+mx +.--, paracada x€R. (6.310)

Notemos que, se x # 0, segue que

sen(x) (e=m) 1
X X

XM (6.311)

Observemos que em

a série de poténcias em (EZZIT), converge para 1.

Observagao 6.7.5 Isto nada mais é que uma outra demonstragao do primeiro limite

fundamental, a saber, que
. sen(x)
lim
x—0 X

=1.

Podemos mostrar que o raio de convergéncia da série de poténcias (E3I1) é R = oc.

Em particular, do Teorema (EZ3), a série de poténcias (E210), converge uniformemente
em [0, 1].

A verificagdo deste fato serd deixada como exercicio para o leitor.

Logo podemos integrar a série de poténcias (E2311), termo a termo, em [0, 1], isto &,

! sen(x) (=) e (=) n
| [Zm o

m)ZU 2n+1 anx]

Teor. Fund. Céclulo N (_] )n
- Z(2n+1)!(2n+1)

2n+1

% Zn—H 2n—|—1)

finalizando o exercicio.
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Observacao 6.7.6 A série numérica (E312) é uma série alternada, que satisfaz as
condi¢bes do Teorema da série alternada (veja o Teorema (BE)).

Logo podemos concluir deste resultado que (na verdade de (B2Z4)), para cada n €
{0}UN, teremos

1
senix
J' ()dX—Sn < Qanq1,
o X

onde,

=3 e
— 2k+1 2k+1)°
1sto €, S, € soma parcial de ordem n da série numérica (EZ12) e

1

O TP TSR
ou seja,
! sen(x) = (—1)k 1
L x d"_kz_o(zk+1)!(zk+1) S Znt3)2k+3) (6.313)

1
sen(x) dx

Deste modo podemos obter uma aprozimacao para o valor da integral J

0
utlizando-se (E313).

6.8 Série Binomial
Do Bindémio de Newton, segue o:

Teorema 6.8.1 Sea,beR emeN entdao

(a+b)™ i ( ) a"b™ ™, (6.314)

onde
m . m!
( 0 > = —(m—n)!n!' (6.315)

Demonstracgao:

A demonstragdo desse fato serd deixada como exercicio para o leitor.

Observacao 6.8.1

1. Tomando-se
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na erpressdo (E314) actma, obteremos:

(14+x)m = i ( 1: ) xmn

n=0

mm-—1) , mm—1)(m—-2) ,

:1—|—mx—|—2—!x+ 3 X
k—fatores
mm-—1)---m—(k—1
4 ( )kf ( )]xk+-~-+xm>

2. A expressdo acima coincide com a soma da série de McLaurin da fungdo f: R — R,
dada por

f(x) =(14+x)™, para cada x€R (6.316)
onde m € N estd fizado.

A verificagdo deste fato serd deixada como exercicio para o leitor.

3. Observemos que para m € R\ N fizado, a série de poténcias

- - 2
1+mx+m(m 1)X2+m(m 1) (m )x3+
2! 3!

k—fatores

mm—1)---m—(k—1)]
. . S (6.317)

€ a soma da série de McLaurin que representa a fungao f:I C R — R, dada por
f(x)=(14+x)™, para cada x€l, (6.318)

onde 1 € o intervalo de convergéncia da série de poténcias (E3IQ).

A demonstragdo deste fato serd deizada como exercicio para o leitor.

Defini¢ao 6.8.1 A série de poténcias (E311) serd denominada série binomial.

Observacao 6.8.2

1. Determinemos o raio de convergéncia da série binomial (E3172).

Para isto, observamos que, para cada m € R\ N fizado, e para cada n € {0} UN,
definamos:

anim(m—l)--T-l['m—(n—U]. (6.519)
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Com 1isto, teremos:

|
1 Ant1 | (EZI) m (n+1)!
n—oo | Qp n—oo m(m—])-~(m—n—|—1)
n!
m —n|
= lim
n—oo n+]
— lim | - Mg,
nmeomM+1 n+1

Portanto, do Teorema (EZ3) (ou de (EZ3)) o raio de convergéncia da série bino-
mial (E2310) serd igual a
R=1,

ou seja, a série binomial (E3IQ)

converge em (—1,1) e diverge em (—oo,—1)U(1,00). (6.320)

2. Observemos que para m € N fizado, a série binomial (E3I1), tornar-se-d:

o0

T+x)™ =) anx", (6.321)
n=0
onde
aq :],
o — m(m—l)"‘[m_(n_”], para cada mne€{2,3,---,m},

n!
a, =0 para ne{m+I,m+2,m+3,---}.

Apliquemos as ideias acima ao:

Exemplo 6.8.1 Considere a fungdo f:(—1,1) = R, dada por

=(1 +x)_%, para cada x € (—1,1). (6.322)
Encontrar uma em série de poténcias de x, que represente a fungdo f em (—1,1).

Resolugao:
Tomando-se
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na expressdo da série binomial (E23T7), obteremos:

o0

= E ax",
n=0

onde a,=1,

N|=

(1T+x)"

n-fatores

G -Fe]

an, = y , paracada neN. (6.323)
Ou seja,
ao:]>
1
a]n:]em:(m) 2
1!
1
:—z)
L L
n:Zem_(EIB) 2 2
@2 = 2!
3
_4
-2
3
o220
1 1 1
—(—==1)(—-3-2
n=3 em (EZ23) 2( 2 >< 2 )
G 3]
~—1-3-5
o233
orinuéo]' S5 2n—=1) (=1
q,, PO v 3 én:t' ) ), paracada n €N, (6.324)
ou ainda,
1 1
=(T+x)2
1+x ( )
==, 1 13, 1:3.5 1-:3.5---2n—1)(=1)"
5 TR E TR 2l i, (6:325)
para cada x € (—1,1).
U

Como exercicio para o leitor temos os
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Exercicio 6.8.1 Encontrar o desenvolvimnto em série de McLaurin da fung¢do f: (—1,1) —
R dada por

flx) = —
V1 —x?
1
=(1—=x%) "%, paracada x€(—1,1). (6.326)

Resolucgao:
Como vimos no Exemplo (EZ) acima (na verdade em (EZZ3)), a série de McLaurin da
fungdo g: (—1,1) — R dada por

1

gly)=(1+y) 2, paracada ye(—1,1),
¢ dada por:

gly) = (1+y) 2
1 1-3 5 1-3-53 m+1~3-5-~-(2n—1)(—1)“

—1_ = _
PRI ST B T TR 2 nl

Yt -, (6.327)

paracaday € (—1,1).
Logo, para x € (—1,1), temos que

UiXZG(—LU)

assim, de (E321), teremos:

o 1 13, 2 1:3:5 5
(]_XZ) :1_2(_7(2)—’_222' (_Xz) - 233' (_Xz) +o
1-3.5-2n—1)(=1)" , un
N

1, 1.3, 1.3.5 ,
— 1 (=) = Xt — (1
1—( 1)2x +222!x (—1) 33 X
.3.5...2n— 1) (=1)"
BREER-BHCUES IS INC I
2"n!

1 1. 1.3. 1-3.5...0211—1
:1—|——X2+—3X4—|—j6 -+ 35 (2n )XZTL

2 2727 PEEY X 4 - I +---, (6.328)

para cada x € (—1,1).
]

Exercicio 6.8.2 Encontrar a série de McLaurin que represente a funcdo f:(—1,1) - R
dada por
f(x) = arcsen(x), para cada x € (—1,1). (6.329)

Resolugao:
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Observemos que, do Célculo 1, sabemos que, para cada x € (—1,1), teremos:

x 1
arcsen(x) = | ——dt
() Jo VvV1—+t2
= J ;] dt. (6.330)
0 (1-1%)2

Do Exercicio (E22) acima, temos uma representagdo da fungdo do integrando de (EZ320)
em série de poténcias.

Sabemos, pelo Teorema (EZ), que a série de poténcias (E3Z3) pode ser integrada, termo
a termo, no intervalo [0,x], se x € [0, 1), ou em [x,0], se x € (—1,0).

Com isto obteremos:

o
H-

arcsen(x) (=) J _
0 (1—1%)2

=[[Eere

n

=3 e [f e

n=0

Caélculo 1
ety g,
n=0

B 00 ]-3-5---(211—1) ]
X+Z 7l 2nt 1) x"" ) paracada xe€ (—1,1). (6.331)

6.9 Resolucao de PVI’s associados a EDQO’s via Séries de
Potencias

A seguir daremos um método para encontrar solugdo para o problema de valor inicial (PVT)
associado a uma Equagdo Diferencial Ordindria (EDO), utilizando-se séries de poténcias.
Para o desenvolvimento do método precisamos supor que a solugdao do PVI pode ser
representada em série de poténcias.
A verificagdo dessa condigdo serd estudada no curso de Equagdes Diferenciais Ordindrias.
Para exemplificarmos o método, consideraremos o seguinte exemplo, que fisicamente cor-
responde ao movimento de um sistema massa-mola, com uma forca externa agindo no sistema:
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Exemplo 6.9.1 Encontrar uma funcdo x : (—R,R) — R que possua representacdo em
série de McLaurin, isto é,

x(t) = Z a,t", para cada te€(—R,R) (6.332)
n=0

que satisfaz o sequinte problema:

x”(t) +x(t) = sen(t), para cada te€ (—R,R)
x(0) =0 : (6.333)
x'(0) =1

Resolucgao:

Suponhamos que (E2333J) seja a representagdo da solugdo do PVI (EZ2Z3), no intervalo
(—R,R), para algum R € (0, oc].

Do Teorema (EXL), temos que a série de poténcias (E332) pode ser derivada, termo a
termo, em [a,b] C (—R,R), ou seja,

=Y qunt! (6.334)

=Y anmn—1)t"7, (6.335)

para cada t € (—R,R).
Do Exemplo (EZ71) temos que (veja (EZ0R)):

oo 1
sen(t) = Z ﬁ t?™*! paracada teR. (6.336)

n=0

Logo substituindo (E3332), (E323) e (E338) na EDO de (E3233), obteremos, para cada
t € (—R,R), a seguinte identidade:

Zann(n—ﬂt“z—l—i a, t" = i((_—”ntz‘”] . (6.337)
n=0

2n+1)!

n=2 n=0

=I
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Fazendo

m=n-—2

na série de poténcias I, (E2337) tornar-se-a:

- (=" .,
m 2 m N n__ n+1
E A2 (M+2) (m+1)t" + E a,t nE_O—(2n+1)!t ,

m=0

ou seja (fazendo m =n):
i 2 1 n __ - (_1 )n 2n+1
(a2 (N + ) +a th=) st (6.338)
n=0 n=0 '

para cada t € (—R, R).

Identificando os correspondentes termos nas duas séries de poténcias de (E333), segue
que (observemos que, no lado direito da identidade acima, os coeficientes dos termos das
poténcias de ordem par, sdo todos iguais a zero), para cada n € {0} U N, teremos:

W2 2n+2)2n+ 1)+ a;, =0, (6.339)
1
Qonsn+2 [+ 1)+ 212N+ 1)+ 1+ apnr = ﬁa
ou seja,
="
A)n+3 (Zn + 3) (Zn + 2) + arny1 = m (6340)
Notemos que, em (E=339), fazendo:
n=0: a-24+a, =0,
ou seja, a; = —% (6.341)
n=1: aq-4-34+a,=0,
) a; (=) Qo
ou seja, a4 = —4—23 = 13 (6.342)
n=2: a-6-54+a4=0,
ouseja, ag=——+ EZ____G
& T s T T6.5.4.3.2°
Por indugdo, pode-se mostrar que
1)
a,, paracada neN. (6.343)

Q2=

A verificagdo deste fato serd deixada como exercicio para o leitor.
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Por outro lado, em (EZ3Z0), fazendo:

n=0: a3;-3-24aq =1,

. T—a
ou seja, az = EWE (6.344)
1
n=1: as-5-44a3= —3
1 a
BT 3 B_327 —2
ou seja, as = 35'—4 (=) %, (6.345)
: !
n=2: a7-7-6+a5=§,
1
ou seja, a; = 51" P e 3o
y Q7 ="5—— = —o—.
7-6 7!
Por indugdo, pode-se mostrar que:
oy = (1) %, para cada mn € N. (6.346)

A verificagdo deste fato serd deixada como exercicio para o leitor.
Deste modo obtemos os coeficientes

a,, paracada ne{0jUN

e portanto a fungdo x = x(t), dada por (E332), que serd a candidata a solugdo do PVI (E333).
Notemos que deveremos ter

t=0 em (E2ZZ3)

0 =x(0) = Qo
ou seja, de (E323), segue que
an =0, paracada neN. (6.347)
Por outro lado
1= /(O)t 0 em (E333) a
ou seja, de (E32H), segue que
—1
! n paracada neN. (6.348)

Arn41 = (— m>

Logo, substituindo (E3Z7) e (E328) em (E332), obteremos

o0 n+1 -1
; 2n+ 0 t?™*1 paracada te (—R,R), (6.349)

serd uma representagdo em série de MacLaurin da solugdo do PVI (E333) em (—R,R).
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Observacao 6.9.1

1. Notemos que a série de poténcias (E329) pode ser reescrita na sequinte forma:

o) n+1 ( ]) .
—R,R .
=t ng_o 2n+1 (t))", para cada te (—R,R), (6.350)

2. Para cada n € N, definamos

-1 n+1 -1
A, =L ()2nf;)! ). (6.351)

Observemos que, que

p = lim

n—oo

‘Anﬂ
An
( ])(nﬂ +1 (n+1)
=) [(Zn+1)+ 1]
n—00 (=)' -1
‘ (2n+1)!

‘(—U““nl

. 2n+2)!

:3550‘(—1)““ D)

|
)\

2nt)
lim n (21’1 + ])' Ezercicio 0
nseo 2n+3)(n—-1) '

Portanto, do Teorema (E23) (ou de (EZ3)), segue que o rato de convergéncia da
série de poténcias é

R =00,
1sto €, a série de poténcias converge em R, ou seja, a solugdo do PVI dada pela
série de poténcias (E329) pertencerd a C*(R; R).

3. Notemos que na solugdo obtida em Ezemplo (EE) actma (isto €, em (E3Z3)) ,
se fizermos
t — o0,

teremos que
x(t) — o0o.

A verificagdo deste fato serd deixada como ezxercicio para o leitor.

No curso Equagdes Diferencias Ordindrias serd desenvolvido a teoria e outros exemplos
associados a problemas do tipo acima.

6.10 Exercicios



Capitulo 7

Séries de Fourier

7.1 Introducao

Nas préximas segdes estudaremos uma outra classe especial de séries de fungdes, denominadas
séries de Fourier.

O objetivo é representar fungbes f : R — R que sejam periédicas (por exemplo, 2 7-
periddicas) na forma de uma série de fungbes que envolvem somente senos e cossenos.

Mais precisamente, para o caso 27-periddico, corresponderia a representar uma fungao
f:R — R, que é 2 -periddica ”bem comportada” (que serd explicitado no decorrer das notas)
da seguinte forma:

f(x) = % + Z[an cos(nx)+ b, sen(nx)], paracada xe€R. (7.1)

n=1

As perguntas que serdo respondidas estardao relacionadas com os seguintes tépicos:
1. Se a fungdo f puder ser representada na forma () acima, quem serdo os coeficientes
a,, paracada ne{0}JUN
e os coeficientes b,, paracada neN? (7.2)
2. Que propriedades a fungdo f deve ter para pode ser representada na forma (1) acima?

3. Em que sentido a série de funcgdes ([ZT) converge pontualmente, uniformemente, em
algum subconjunto de R ?

Na verdade estudaremos uma situagdo um pouco mais geral, a saber, para o caso em que
a funcdo f: R — R é 2 [L-periédica e a representacdo que procuraremos, para a fungdo f, sera
da forma

intervalo

f(x) = % + ; [an cos (T%tx) + b, sen (nTﬂxﬂ , paracada xe€l C R. (7.3)

301
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Observacao 7.1.1 Notemos que no caso em que
L=m
temos que a série de fungdes (3) tornar-se-d a série de fungdes () acima.

Para motivar o estudo das séries de fungdes do tipo (3), introduziremos um método
(denominado método da separacao de varidveis) que, como consequéncia, nos levard a
necessidade de estudarmos fungdes que possuam representagdo em série de fungdes do tipo
(=3).

7.2 Meétodo das Separacao de Variaveis

Para motivar os tépicos que serdo desenvolvidos nas préximas segées vamos introduzir um
método para encontrar solugdo para uma Equagédo Diferencial Parcial (EDP) importante nas
aplicagdes, denominada Equacao do Calor.

Tal método, que pode ser aplicado a outros problemas relacionados com outras EDP’s, por
exemplo, a Equagdo da Onda, a Equacdo de Laplace e é denominado Método da Separacao
de Variaveis.

Como dito acima, aplicaremos o método para encontrar (ou tentar encontrar) uma solugéo
para o problema da distribuigdo de calor, em um fio finito, de comprimento L € (0, c0), para
0s quais conhecemos a temperatura em cada ponto do mesmo, no instante inicial, ou seja,
t = 0, que esté isolado termicamente, por exemplo, o fio estd dentro de um isopor, e cujas
extremidades sdo mantidas temperatuda 0° C, ao longo de todo o processo.

Vamos imaginar que o fio é o intervalo

0,L]CR

e que
u=u(t,x],
nos fornece a temperatura no ponto x € [0, L] do fio, no instante t € [0, c0).

Tempertatura no instante t no ponto x do fio é: u(t,x)

Matematicamente, o problema acima corresponde a encontrar um fungdo
u=mu(t,x), paracada (t,x)e€[0,00)x[0,L],

que venha satisfazer o seguinte problema:

ou 5, 0%u
ﬁ(t,x) = W(t,x), para cada (t,x) € (0,00) x (0,L) (7.4)
u(0,x) =f(x), paracada xe€[0,L], (7.5)

u(t,0) =u(t,L) =0, paracada te[0,00). (7.6)



7.2. METODO DAS SEPARAGAO DE VARIAVEIS 303

A condigdo (ICH) nos diz que, no instante inicial, isto é, t = 0, a temperatura no ponto
x € [0, L] do fio é igual a f(x)°C.

A condigdo (CH) nos diz que a temperatura nos extremos do fio igual a 0°C, ao longo de
todo o processo, isto é, para t € [0, c0).

A Equagdo Diferencial Parcial (4) é denominada Equacao do Calor.

A constante

x € (0,00),

estd relacionada com a condutibilidade térmica do fio, isto é, depende do material que o fio
é feito.
No nosso caso, vamos supor que
x=1.

O caso geral serd tratado mais adiante.

O método que desenvolveremos a seguir é simples e o préprio nome ja nos diz o que
faremos.

Observemos, inicialmente que, por questdes de compatibilidade, deveremos ter:

x=0 em (3

) 1(0,0)

t=0 em (ICB)

f(0)

0

t=0 em (3) LL(O ’ L)

x=L em (=3) f(l_) ’

ou seja, f(0)=f(L)=0 (7.7)

Do ponto de vista matemadtico é razodvel, a primeira vista, procurarmos solugbes u =
u(t,x) na seguinte classe:

ue C([0,00) x [0,L]; R) N C%((0,00) x (0,L); R) (7.8)

o que implicard, por ([3), que

( (=3)
f(-) ="u(0,-) € C([0,L]; R), (7.9)

A EDP (II2) é uma equagdo importante que ocorre em muitas aplicagdes e também é um
exemplo importante das EDP’s lineares de tipo parabdlico.

Um dos primeiros a estudar, de modo sistemdtico, o problema da condugdo de calor foi
Joseph B. Fourier (1768-1830).

Ele desenvolveu o método que trataremos a seguir, dito Método de Fourier.

O método consiste em procurar solugdes do problema acima do tipo

u(t,x) =9(t) p(x), paracada (t,x)e[0,00)x €[0,L], (7.10)

isto é, solugdes do tipo variaveis separadas, dai o nome do método.
Comegaremos tentando solugbes do tipo acima para ([Z4), ([Z8H) e, posteriormente, uti-
lizaremos (Z3).
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De ([IR) e (1O) segue que
P e C([0,00); R)NC*((0,00);R) e ¢ e C([0,L]; R)NC*((0,1L);R). (7.11)
Na verdade estaremos interessados em solugdes ndo nulas, isto é,
u(t,x) #0, paraalgum (t,x) € [0,00)xx€[0,L],
0 que implicard que
P(t),d(x) #0, paraalgum te[0,00) e x€[0,L]. (7.12)

Supondo que as fungdes P = P(t) e ¢ = d(x) satisfagam (1), de (IO), para cada
(t,x) € (0,00) x (0,L), teremos:

ou (zmm) 0
6% S S () ¢
=%/t $(x) (7.13)
€
0? 0?
50 S ¢0)
= (1§ (x). (7.14)

Substituindo ([C13) e (14) em (F), obteremos
V() d(x) =(t) ¢"(x), paracada (t,x)€ (0,00)x (0,L).

Dividindo a igualdade acima por P (t) ¢(x) (nos pontos onde P(t) ¢(x) # 0), obteremos
a seguinte identidade:

Vo) w(t)d"(x)

V() b(x)  P(t)d(x)

Como P (t), (x) # 0, teremos:
vt ¢"(x)

B(t) dx)’

Notemos que o lado direito da identidade (ZTH) acima, é uma fungdo que depende de Xx,
enquanto o lado esquerdo da mesma é uma fungdo que depende de t.
Logo ambos deverdo ser iguais a uma constante, que chamaremos de

para cada (t,x) € (0,00) x (0,L).

para cada (t,x) € (0,00) x (0,L). (7.15)

—A. (7.16)

O motivo do sinal negativo serd justificado mais adiante.
Portanto, de (I3), segue que

¢ "(x)

B(t) o) 0 PHE cada (t,x) € (0,00) x (0,L),
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que dardo origem a duas Equagdes Diferencias Ordindrias (EDO), a saber:

P'(t) = —AYP(t), paracada te (0,00), (7.17)
¢"(x) =—Ad(x), paracada x¢€ (0,L). (7.18)

Impondo a condigdo ([CH), devermos ter:

B(t) p(0) T =T (¢, 0)
@),
= u(t,L)
TR ) (L)
ou seja, VP(t)d(0) =P(t)Pp(L), paracada te[0,o00). (7.19)

Como
P(t) #0, paraalgum te (0,00),

dividindo ambos os membros da identidade (ZT9) por 1 (t), obteremos
¢(0) =0=¢(L), (7.20)

Portanto, de (13), (=20) e (1), segue que a funcdo ¢ = ¢(x) deverd satisfazer o
seguinte problema de valor de contorno:

¢"(x) =—-Adp(x), paracada xec (0,L) (7.21)
$(0) = b(1) =0 (7.22)
¢ € C([0,L]; R)nC*((0,L); R). (7.23)

Observacao 7.2.1

1. Um wvalor A, para os quais (C21)-(22) admite solugdo, ndo nula, na classe ([C23)
serd dito autovalor do problema (I21), e as solugées ndo triviais da equagdo
(=20), na classe
eqrefE8 serdo ditas autofuncoes correspondentes ao autovalor A.

2. Como estamos procurando solugbes reais, 1sto €,
u(t,x) € R, para cada (t,x) € [0,00) x [0,L],
S0 mos interessard o caso em que

AeR.

O item a seguir mostrard que A deverd ser um numero real maior do que zero,
1sto €, que
A€ (0,00).
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3. Afirmamos que
A€ (0,00) (7.24)
(em particular, A € R).

De fato, suponhamos que a fungdo ¢ = &(x) satisfaz (C20), (22) e (23), em
[0, L], para algum A € C.

Afirmamos que existem os limites laterias

¢"(07) e (7).
De fato pois:

¢ "(07) = lim ¢ "(x)

x—0+
= _\ lim ¢(x)

x—0+
| ramac |
= _x¢(0)
=)

¢ "(L7) = lim ¢ "(x)

x—L—

=) _\ lim ¢(x)

x—L—
= AL

(=) 0
- )

(7.25)

(7.26)
ou seja, de (CZH) e (2H), segue que
¢"(0")=0=¢"(L). (7.27)

Por outro lado, como ¢ € C([0,L]; R)NC*((0,L); R), para x € (0,L), teremos:

—A J ¢(y) dy = lim U —Ad(y) dy]

0 a
= i [[ 0w ay
a—0t a
Teor. F'undamthal do Cdlculo lim [d) /(X) . d) /(a)]
a—0t

—$/(x) — [hm b '(a)} , (7.28)

a—0t

jb Ably) dy}

X

L
[ oty ay = jim {

X

Teor. Funda.mgltal do Cédlculo b]i.'[{lﬁ [(I) /(b) . (I) /(X)]

- [lim b ’(b)] —'(x), (7.29)

b—L—
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portanto, de (28) e (™), segue que existem os limites lateriais

¢'(07) = lim d'(a) e ¢'(L7)= lim ¢'(b). (7.30)

a—0+ b—L—
Logo podemos integrar as fungdes ¢’ e ¢”, no intervalo [0,L], o que permite
fazermos os sequintes cdlculos a segquir.

Observemos que

2Z

L , L
AJ|¢dex”£ AJ¢MJ(de
0 0

a— 0t La
b—L"
) __|x=b b
Integmgao:por Partes . lim { [d) /(X) (X) ] . J d) /(X) d) ,(X) dX}
a— 0" x=a a
b— 1"
N t 2
—— tim [ (0)900) - (@ Bl - |l G0 dx
a— 0" 0
b— L~
(=m) =Y (T naryn : "(%) 2
= /(L) 90 - 60190 - | 1'0x)F ax
~—~— ~— 0
=)_, =),
L
:J b /(x)]> dx > 0. (7.31)
0 R/—’ZO
Afirmamos que
L
J b /() dx > 0. (7.32)
0

De fato, suponhamos, por absurdo que
L
| 100 ax—o.
0

Como a fungdo ¢’ € continua em (0,L) (veja (L2Z3)), teriamos que ter

¢'(x) =0, para cada x¢€ (0,L)
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ou seja , a fungdo ¢ seria constante em (0,L).

Mas a fungdo ¢ € continua em [0,1] (veja (23)) e, de (Z=X), teriamos
d(x) =0, para cada xe€[0,L],

que m@o nos interessa pois meste caso

u(t,x) =9P(t)d(x) =0, para cada (t,x) € [0,00) x[0,L].

Assim

rancw}
(>)0,

L L

AJ BOP dx (m:)j b ()1 dx
0 0

—_—

€(0,00)

mostrando que A > 0 (em particular, A € R), como haviamos afirmado.

Observemos que se
7\1 )}\2 € (0 ) OO)

s@o autovalores distintos do problema (ZZI)-(23) e a fungdes

Pr=0b(x) e 2= da(x)

sao suas correspondentes autofuncdes, entao:

L o L o
mj 1 (x) B2 (x) dx :J s 1 ()] B2 0] dx
0 0

L
(=) J —d1 " (x)] balx) dx

0

Integragao por Partes
= - { [dh "(x) d2(x)

x=L L
] - L or'(x) b2 () dx}

x=0

L
— 3 61 (L) (L) =1 '(0) a(0) | — J 1 (%) b () dx
—— ——
=), =),

L
= J d1 ' (x) 2 '(x) dx

0

Integragao por Partes
= [d)l (x) 2 "(x)

L
— | $1(L) §2"(L) — 1(0) §,(0) —J 1) b "(x) dx
—— NI 0

= =

L
— —JO 1) b2 "(x) dx
(=)

L
= —J 0100 [ 6] dx
0

M eER t Y
= | o) BT a,
0
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ou seja, ) )
M | 00 Bl dx = s | () BalT
0 0
ou ainda , )
(7\1 — }\2) J (1)1 (X) d)z(X) dx = 0. (733)
0
Como
}\1 7é }\2 )

de (3), segue que
L
| o0 ax o,

0
ou seja, as fung¢des &1 = d1(x) e b = dy(x) sdo ortogonais, relativamente, ao
produto interno de C([0,L]; C) definido por:

L [—
(f,q) = J (x) 9x) dx,

para f,g € C([0,L]; C).

5. Como
A>0,

temos que a solugdo geral real da EDO ([CZ0) serd dada por:
b(x) = acos (\/XX) + b sen (ﬁx) , para cada x € [0,L], (7.34)

onde a e b sdo constantes.

A verificagdo deste fato serd deizada como exercicio para o leitor (visto na disci-
plina de EDO).

Mas a funcdo ¢ = d(x), deve satisfazer as condigdes ((CZ2), ou seja:

(=2)

a =" ¢(0)
=
logo,  &(x) " b sen (x/Xx) , (7.35)
b sen <ﬁL) =) )
=. (7.36)

Como
®(x) #0, para cada x€[0,L],

seque que deveremos ter
b#0,
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pows a = 0.

Assim, da identidade (C38) actma, seque que

sen(\/XL):O,
ou seja, \/XL:TLTt, para cada m € N,

1sto €,
n?

A=A\, = —z > Dpara cada meN, (7.37)

e assim, para cada n € N, de (38) e (Z31), teremos que:

$00 = o) = sen [ 1/ T x
= sen (nTW x) , para cada x € [0,L]. (7.38)
6. Resolvendo a EDO ([CI4) com
7\=7\n=¥> para cada mMm €N,
obtemos, para cada n € N, que
P(t) =Pn(t) = e*niigzt, para cada t€[0,00). (7.39)

A verificagdo deste fato serd deizada como ezxercicio para o leitor (visto na disciplina
de EDO)

Podemos resumir tudo nisso no seguinte resultado, cuja demonstragao foi feita na Ob-
servagdo (1) acima:
Proposicao 7.2.1

1. Se A € C é um autovalor a fungdo ¢ = d(x) € autofungdo assoctada a A, para os
problemas ([CZ0)-(23), entdo

isto 6, A=A, € R" ¢

d(x) = dn(x) = sen (T%t x) , para cada x € [0,L].
Além disso, toda solugdo de ([ZD)-(I23) é combinagdo linear finita das fungées
abaizo:

$n(x) = sen (TLTHX> : (7.40)

para cada x € [0,L] en € N.
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2. Toda solugdo de (ICI2) com

Yo(t) = "L, (7.41)

para cada t € [0,00) en € N.
Observacao 7.2.2

1. Obtwemos, agindo segundo a Observagdo (), para cada n € N, solugées de
(3) e (A) da forma:

T
wn(t,%) = P (t) pulx)
(zzm) e (Z3) _nzgzt nm
= e 2 sen <_I_ x), (7.42)

para cada (t,x) € [0,00) x [0, L].

Tentaremos encontrar solugbes do problema (4), (1), (B) da forma:
u(t,x) = anu'n(t>x)
n=I

=Y bakalt) balx)

n=1

e - _nZn? nm
() < (=) Z bpe 2 'sen <Tx) , (7.43)

n=1
para cada (t,x) € [0,00)x € [0, L].

Observemos que se soubermos que a série de fungées (CZ3) acima, pode ser deri-
vada, termo a termo, uma vez, em relagdo a t e duas vezes, em relacdo a x, em
(t,x) € (0,00) x (0,L), entdo a funcdo u =u(t,x), dada por (CZ3), ird satisfazer
(£2) e (LB).

Isto ocorrerd porque, para cada n € N, a fungdo
Un(t,x) =UPn(t) dn(x), para cada (t,x) € [0,00)x € [0,L],

tem essa propriedade, por construgdo.

A verificagcao deste fato serd deixada como ezxercicio para o leitor.
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Para que a fung¢do u=u(t,x), dada por (LZ3), venha satisfazer a condigdo (3),
deveremos ter:

f(x) "="u(0,x)
=0 em > _le’}'l‘z Tt
t=0 em (C23) an e "0 gen (nTX)
n=1 =1

= Z b, sen (nTﬂ x) , (7.44)

para cada x € [0, L].

Ou seja, devemos saber expressar a fungdo f = f(x), como uma série do tipo (CZ3),
1sto €, uma série de senos.

2. Podemos aplicar as mesmas 1deias acima a sequinte situagdo:

Vamos tmaginar que o fio do problema anterior, estd isolado termicamente e que
suas extremidades ndo troquem calor com o meio ambiente.

Matematicamente, o problema acima corresponde a encontrar uma func¢do
u=u(t,x), para cada (t,x) e [0,00)x [0,L],

que satisfaz as sequintes condigoes:

ou 0%u

a—t(t,x) =32 para cada (t,x) € (0,00) x (0,L) (7.45)
u(0,x) =f(x), para cada x€[0,1], (7.46)
a—u(t,O):a—u(t,L)zo, para cada te€ [0,00). (7.47)
0x 0x

A condi¢do (CZH) nos diz que a temperatura no ponto x € [0,L] do fio é igual a
f(x)° C.

A condi¢ao ([CZ3) nos diz que os extremos ndo trocam calor com o meio ambiente.
A verificagdo deste fato serd deixada como ezxercicio para o leitor.

Observemos, inictalmente que, por questoes de compatibilidade, deveremos ter:

, %(m) com x=0 OUW
(o) HELT R g g

(=Z3), com t=0

0
(=), com t=0 a_U.
B ox

-4 (zzm), com x=L

- = fl“—)»
ou seja, f'(0)=f'(L)=0. (7.48)

(0,0)
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Do ponto de vista aplicado € razodvel procurarmos solu¢des u = u(t,x) na sequinte
classe

ue C'([0,00) x [0,L]; R) N C*((0,00) x (0,L); R), (7.49)

o que implicard que

f(Ea)u(O,.) e C'([0,L; R).

Como no caso tratado anteriormente (veja (I0)), procuraremos solugdes do pro-
blema do tipo

u(t,x) =9P(t) d(x), para cada (t,x) e [0,00) x [0,L], (7.50)

1sto €, solugdes do tipo variaveis separadas.

Comecaremos tentando solugbes do tipo actma para (Z3), (CZ17) e posteriormente
utilizaremos ([CZ4).

De ([Z3) e (CX0) segue que

P e C'([0,00); R)NCH(0,00); R) e e C'(0,L];R)NC*(0,L); R). (7.51)

Estaremos interessados em solugbées nao constantes, isto €,
u(t,x) #C, para cada (t,x) € [0,00) x [0, L]
o que tmplicard que
P(t),db(x) #C, para algum te€[0,00) e xe€l[0,L], (7.52)

para qualquer C € R fizado.

Supondo que as fungdes P = P(t) e & = d(x) satisfagam (C21), de (=0), para
cada (t,x) € (0,00) x (0,L), teremos:

ou (cm) 0
E(tax) = at[ll)(t)(b(x)]
=1 '(t) d(x) (7.53)
e
%u (zm) 0
W( yX) = w[ﬂ)(t)d)(x)]
=(t) ¢ "(x). (7.54)

V() p(x) =(t)p"(x), para cada (t,x) € (0,00) x (0,L).
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Dividindo a identidade acima por P(t) ¢(x), nos pontos de [0,00) x [0, L] onde este
€ diferente se zero, obteremos:

V(1) d(x) _ w(t)d"(x)

YO e v o) P cada (t,x) € (0,00) x (0,L).

Como P(t),d(x) #0, em algun ponto de [0,00) x [0, L], seque que

vt ¢"(x)
Y(t) P’

para cada (t,x) € (0,00) x (0,L). (7.55)

Como no caso tratado anteriormente (veja (CIH)), o lado direito da identidade
(=3), € uma funcgdo de x, enquanto o lado esquerdo da mesma, é uma funcdo de
t.

Logo ambos os lados da identidade ([C23) deverdo ser iguais a uma constante que
chamaremos de —A.

O motwo do sinal negativo serd tratado a seguir, como no caso anterior (veja

Portanto

DY) 9
(1) o)

para cada (t,x) € (0,00) x (0,L).

Com 1sto obtemos duas Equagdes Diferencias Ordindrias (EDO), a saber:

P'(t) = —AYP(t), para cada te (0,00) (7.56)
¢”"(x) =—-Adp(x), para cada xc (0,L). (7.57)

Impondo as condi¢ées ([CZ17), teremos:

060 = 0
0x
=) ,
= oy )
0x
(= P(t)d'(L), para cada tc[0,00). (7.58)

Como
Y(t) #0,

dividindo ambos os membros da identidade (CB3), por P(t), obteremos

$'(0)=0=¢ (L), (7.59)



7.2. METODO DAS SEPARAGAO DE VARIAVEIS 315

ou seja, a funcdo ¢ = &(x), deverd satisfazer o sequinte problema de wvalor de

contorno:
¢"(x) =—-Ad(x), para cada x € (0,L) (7.60)
$'(0)=¢'(L)=0 (7.61)
¢ € C'([0,L);R)nC([0,L]; R). (7.62)
3. Afirmamos que
A€ (0,00) (7.63)

(em particular, A € R).

De fato, suponhamos que a func¢do ¢ = ¢(x) satisfaz (BD), (CED), (BA), para
algum A € C.

Observemos que existem os limites laterias:
¢"(07) e $"(L7).
De fato, notemos que

$"(07) = lim ¢ "(x)

x—0+
= lim A d(x)]
x—0F
— ) lim &(x)
x—0+
¢ € continua em x =0 - veja (B2
L0 B N g(0),
¢ "(L7) = lim ¢ "(x)
x—L
= Jim A ¢(x)]
x—L—
= -\ lim ¢(x)
¢ é continua em X = 0 - veja (EB3) Y (1)“_) .

Logo podemos fazer os sequintes cdlculos:

L L
AJ o(x) H(x) dx:J A ()] B0 dx
0 0

L

(=) J [ "(x)] P(x) dx

0

L
=—J & " (x) Bx) dx

0

integrag@o por partes Y
= Z—{ltb’(?c) (x)
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- . L
— oW D - ¢(0) $0) —J /()P dx
—— —— 0

@==3), @),
L
= J lp'(x)Pdx > 0. (7.64)

Afirmamos que

L
b/ (x)[*dx > 0. (7.65)
Jo

De fato, suponhamos, por absurdo que

oL
b '(x)]Pdx =0.
0

Como ¢ € C'([0,L]; R) seque que
¢'(x) =0, para cada xe€[0,L],
ou seja, a fungdo ¢ = P(x) deveria ser constante, o que contraria ([C23).

Assim

L Ty L
AJ (x)P dx “?)j 0/ x)EFdx = 0
0 0
implicando que

A>0,
como afirmamos.
Em particular, A € R.
4. Observemos ainda que se
}\1 e }\2

satisfazem o problema (ICED), (CB1), (CE2) e as fungdes
dr=0di(x) e 2= da(x)

sdo duas correspondentes solugdes do problema acima, entdo:

L L
7\1J 1(x) $2(x) dx:J s o1 ()] B2 () dx
0 0

(zzmm)

L
= L —1 " (x)] $a(x) dx
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L
- L 1 '(x) $270x) dx

x=L
x=0

L
— | ¢1(L) $270 —1(0) $:700) —J 1) B2 7(x) dx
— ~——

(=)

integrag@o por partes -7
= [Cbl (x) b2 '(x)

0 =

L e
_— L $1(x) $2 7(x) dx

L
| o) R bl dx
0
L
Mgk AZJ 1(x) B2 () dx. (7.66)
0
Logo:
L . m L
M| 400800 ax Fhs | a0l x,
0 0
L
ou seja, (A7 —Az) J d1(x) dpa(x)dx =0. (7.67)
0
Logo, se

Y 7é Az )
de ([CED), segue que

L [
J $1(x) $a(x) dx = 0,

0
ou seja, a sfung¢des &1 = d1(x) e b, = ¢y(x) sdo ortogonais, relativamente, ao
produto interno de C([0,L]; C) definido por:

L [
(f,q) = L f(x) gx) dx,

para f,g € C([0,L]; C).

5. Como
A>0,

temos que a solugdo geral da EDO ([ZED) é dada por:
d(x) = a cos <\/XX> + b sen <\/Xx> , para cada x € [0,L], (7.68)

onde a e b sdo constantes reais.
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A wverificagdo deste fato serd deizada como exercicio para o leitor (visto na disci-

plina de EDO)

Com 1sto, seque que
¢ '(x) =) _ 4 VA sen (ﬁx) +bVA cos (ﬁx) ,

para cada x € [0, L].

Mas a funcgdo ¢ = d(x), deve satisfazer:

como VA > 0, teremos: b=0
bx) " g cos <\/Xx>

logo, —a VA sen <\/XL> =) ¢ (L) =y,
Como
$(x) #C
seque que
a#0,
pois b =0.

Assim, de (D), seque que

sen (\/XL) =0,

ou seja, \/XL:TLTI, para cada mn €N

1sto €,

para cada m €N,

e assim, de (M) e (), seque que

$(x) = Pn(x)

P(t) =Pu(t)=e 2", para cada tec[0,00).

(7.69)

(7.70)

(7.71)

(7.72)

(7.73)

(7.74)
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7. Obtivemos, para cada n € N, agindo da forma actma, solugdes de ([CZ3) e ([CZ7),
da forma:

nm
para cada (t,x) € [0,00) x [0, L].

Utilizando o principio da superposi¢cdo (infinita), tentaremos encontrar solugdes
do problema (ICZ3), (1), (CZ2), da forma:

e - nz T
(= £ ) % +) ane i ‘cos <n_ x) , (7.76)

para cada (t,x) € [0,00) x [0, L].

Observemos que se soubermos que a série de func¢des acima puder se derivada
parcialmente, termo a termo, uma vez em relagdo t e duas vezes, em relacdo a x,
a fungdo uw=u(t,x), dada por (@), ird satisfazer (Z3) e (Z7).

A verificagcao deste fato serd deixada como ezxercicio para o leitor.

Finalmente, para satisfazer ([CZ3), deveremos ter:

f(x) = w(0,x)

= % + ; a, Ccos (nTT[ x) , (7.77)

para cada x € [0, L].

Ou seja, devemos saber expressar a fungdo f = f(x) como uma série do tipo (Z77),
1sto €, uma série de cossenos.

8. Uma outra situagdo, é o estudo da temperatura em um fio, cujo fluzo de calor nas
extremidades do fio seja proporcional a temperatura nas extremidades do mesmo.

Matematicamente, em uma versao simplificada, o problema acima corresponde a
encontrar um afung¢do

u=u(t,x), para cada (t,x) € [0,00) x [0,L]
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que satisfaca:

ou o%u
—(t,x

o (t,x) = ™ 2(t x), para cada (t,x) € (0,00) x (0,L) (7.78)
u(0,x) =f(x), para cada x€[0,L] (7.79)
ou

O 0y fult,0) =0 =M

™ ™ (t,L)+u(t,L), para cada te0,00). (7.80)

Agindo como nos dois casos anteriores, ou seja, aplicando o método da separagdo
de varidveis, podemos mostrar que, neste caso chegaremos a seguinte erpressao
para as solugdes do problema (ICZ3), (ZM), (Z20):

X) = % + ; e 12 t |:Cln Cos (nTTt X) + bn Sen (nTTI X>:| ) (781)

para cada (t,x) € [0,00) x [0, L].

Observemos que se soubermos que a série de funcgdes acima puder se derivada
parcialamente, termo a termo, uma vez, em relagdo a underlinet, e duas vezes,
em relagdo a x, em (0,00) x (0,L), entdo a fungdo u = u(t,x), dada por (IZ=1),
1rd satisfazer ([CZ3) e

eqrefE2/.

Para satisfazer (CZ9) deveremos ter:

'.L

f(x) u(0,x)
=0 em (B2 Go +Ze e [an cos (nTﬂx) + b, sen (nTT(X)]
— % + ; [an coSs (TLTT[ x) + b, sen <TLT7I Xﬂ R (7-82)

para cada x € [0, L].

Ou seja, devemos saber expressar a fungdo f = f(x) em uma série do tipo (CE3),
1sto €, uma série de senos e cossenos também denominada de série de Fourier da
fungao f.

Isto nos motiva a estudar as fungdes que podem ser representadas messe tipo de
séries de funcgdes.

Podemos aplicar o método da separacdo de wvaridveis para estudar outros tipos
de problemas, como por exemplo, o problema da corda de comprimento L > 0,
vibrante num plano com as extremidades presas.

Suponhamos que a corda acima, esteja estendida sobre o eixo dos Ox e que seus
extremos sejam
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10.

Neste caso, a funcao, que denotaremos por
u=ul(t,x),
que nos fornece a deflexdo da corda, em relacdo a posi¢cdo de repouso, sendo
f="Ff(x) e g=g(x), paracada xe€][0,L],

a posi¢cao wnicial da corda e a velocidade inicial de vibragcdo da corda, respec-
tivamente, entdo, matematicamente, a funcdo u = u(t,x), deverd satisfazer ao
sequinte problema:

%u ,0%u

W(t,x) —c W(t,x} =0, paracada (t,x)e (0,00)x (0,L) (7.83)
u(0,x) =f(x), para cada x € [0,L] (7.84)
0

a—ltl(O,x) =g(x), para cada x€[0,L] (7.85)
u(t,0) =u(t,L) =0, para cada tel[0,c0). (7.86)

Notemos que, (IC24) nos diz que a posi¢do da corda, no ponto x € [0,L], serd igula
a f(x), e (23), nos diz que e velocidade inicial, no ponto x € [0,L], serd igual a
g(x), respectivamente.

Além disso, (IZ28) nos diz que as extremidades da corda estdo fizas.
A cosntante ¢ > 0 depende do material com que a corda € feita.

A figura abaizo ilustra a situagdo acima.

u(0,x) = f(x)
ou
—(0,x) = g(x)

A EDP (IZZ3) acima é conhecida como Equagao da Onda.

Essa equacdo € um exemplo importante de EDP’s do tipo hiperbdlico.

Podemos considerar outros tipos de problemas relacionados com a corda vibrante.

Eles aparecerdo nas listas exercicios.
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11. Owutro problema importante que podemos aplicar o método da separacao de varidveis
€ para encontrar uma fung¢do

aberto
u=1u(x,y), paracada (x,y)cQ C R?,
que satisfaz as sequinte condigdes:
o*u o*u
W(x,y}-&—w(x,y):o, para cada (x,y) € Q (7.87)
u,, =1 (7.88)

onde 0Q € a fronteira do conjunto Q, em R?.

O problema acima é conhecido como Problema de Dirichlet.

Também podemos considerar problema de encontrar uma fungdo
u=u(x,y), paracada (x,y) € QCR?,

que satisfaz as sequinte condigbes:

o%u o*u

m(x,y}%—w(x,y):o, para cada (x,y) € Q (7.89)
0

au\ag =f, (7.90)

onde Fo" denota a deriwada direcional na direcdo do vetor normal unitdrio exterior
v

da fronteira de Q, em R?, que é conhecido como Problema de Newman.

12. Esses dois ultimos problemas, aparecerdo nas listas de exercicios para serem tra-
tados mos casos em que
Q= (Cl,b) X (C>d)>

ou seja,o interior de um retangulo em R?, e no caso em que
Q={(x,y); ¥ +y* <R},

ou seja, o intertor da circunferéncia de centro na origem (0,0) e tem raio igual
aRe (0,00) firado, em R?, respectivamente.

Passaremos, a seguir, a estudar as funges que possuem representdo na forma (I232).

7.3 Os Coeficientes de Fourier

Comegaremos tentanto responder a 1.¢ questdo colocada no inicio do capitulo (veja (2)),
isto é, sabendo-se que a fungdo f pode ser representada por uma série de fungdes do tipo
(3), como deverdo ser os coeficientes a, € by, paracada m € {0(jUNen € N ?

Para isto, introduziremos uma classe de funcdes que nos ajudard a tratar da resposta a
essa pergunta.
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Defini¢ao 7.3.1 Dado ¢ € R, diremos que uma fungdo real (ou compleza) de varidvel
real f: I\{c} = R (ouC), onde 1 é um intervalo de R tem uma descontinuidade de 1.% es-
pécie em x = ¢, se a fung¢do f nao for continua em x = c, mas existem e sao finitos os

limites lateriais

lim f(x) e lim f(x).
x—ct X—c™

Neste caso, denotaremos por

f(ct) = lim f(x)

x—ct

e f(c7)= lim f(x). (7.91)

X—C

A figura abaizo ilustra a situagdo acima, para o caso da funcdo ser a valores reais
(isto €, f:I\{c} = R).

Diremos que a fungdo f é continua por partes em I (ou seccionalmente continua
em [), se em cada intervalo (a,b), contido em I, a fungdo f, tem, no mdrimo, um
numero finito de pontos de descontinuidade de 1.“ espécie.

A figura abaizo ilustra a situagcdo acima, para o caso da func¢ao ser a valores reais.

y

N

O conjunto formado por todas as fungdes a valores reais (respectivamente, com-
plezos), continuas por partes (ou seccionalmente continuas) em 1 C R, serd indicado

por
SC(I; R) (respectivamente, SC(I; C)). (7.92)

Observacgao 7.3.1

1. Do ponto de vista geométrico, dizer que uma funcao f tem uma descontinuidade
de 1.“ espécie em x = c € equivalente a dizer que a representag¢do geométrica do
seu grdfico tem um salto finito, em x =cC.
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2. Do ponto de vista geométrico, dizer que uma funcao f € continua por partes em 1 é
equivalente a dizer que a representag¢do geométrica do seu grdfico tem um numero
finito de saltos, em cada intervalo (a,b) contido em 1.

3. Sef, g€ SC(I; R) (respectivamente, SC(I; C)) e x € R (respectivamente, C) entdo
(f+g),(xf) € SC(I;,R) (respectivamente, SC(I; C)), isto €,

SC(I; R) (respectivamente, SC(I; C))

€ um espago vetorial sobre R (respectivamente, C), quando munido das operagdes
usuais de adigdo de fungdes e multiplicacdo de mumero real (respectivamente,
complezo) por uma fungdo.

A seguir exibiremos alguns exemplos importantes de seccionalmente continuas definidas
em [ =R.

Exemplo 7.3.1 Considere a fungdo f: R — R dada por

1, para x € [0, )
fix) =< —1, para x € [—m,0) . (7.93)
f(x +2m) =f(x), para cada x € R

Mostre que a fungdo f é seccionalmente continua (ou continua por partes) em R.

Resolugao:
Notemos que os pontos de descontinuidade da fungdo f serdo somente os pontos da forma

x =km, paracada keZ.

Observemos que, em cada um desse pontos, a funcdo f tem um ponto de descotinuidade
de 1.“ espécie pois, para cada k € Z, existem os limites laterais

lim f(x) e lim f(x).

x—(k7)+ x—(km)—

De fato, se k € Z for par, isto é,
k=2m paraalgum mecZ,
teremos que:

1i f(x) = I f
X—)](-]IQI}T)'*' (X) X*)(%ITE-T[)'*' (X)

x€(2mm,2(m+1) ), logo, (F23) 1
lim f(x)= 1lim f(x)
x—(km)— x—(2mm)~

x€((2m—1) n,ZEn), logo, (=3)

—1.
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Por outro lado, se k € Z for impar, isto é,

k=2m+1 paraalgum mecZ,

teremos que:

lim f(x) = lim f(x)
x—(k7m)t x—[(2m+1) o+

x€(2m+1m,2(m+1) 7)), logo, (E=3)

_])

lim f(x) = lim f(x)
x—(k7m)— x—[(2m+1) ]~

x€((2m)m,(2m+1) m), logo, ()

= 1,

mostrando que a fungdo f tem um ponto de descontinuidade de 1.“ espécie no ponto x = k1,
para cada k € Z.

Logo em qualquer intervalo limitado [a, b], a fungdo f terd, no maximo, um niimero finito
de pontos de descotinuidade de 1.¢ espécie, pois em cada intevalo [a,b] existe, no médximo,
um numero finito de pontos do tipo x = km, para cada k € Z.

O

Observagao 7.3.2 A func¢do f do Ezemplo ([L21) serd denominda onda quadrada.
A representagdo geométrica do grdfico da fun¢do f do Exemplo (Z20) é dada pela
figura abaizo.

=Y

—3n 27 =TT g 2 3w

Onda Quadrada

Outro exemplo importante é:

Exemplo 7.3.2 Considere a fun¢cdo f: R — R, dada por

(7.94)

flx) = X, para x € [—m, )
] f(x+2n) =f(x), paracada x €ER

Mostre que a funcgao f é seccionalmente continua (ou continua por partes) em R.
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Resolugao:
Notemos que os pontos de descontinuidade da fungao f serdo somente os pontos da forma
x=(2k+1)m, paracada keZ.

Observemos que em cada um desse pontos a funcdo f tem um ponto de descotinuidade
de 1.¢ espécie pois, para cada k € Z, existem os limites laterais

lim f(x) e lim  f(x).
x—[(2k+1)7]+ x—[2k+1)7]—

Como a fungdo f é 2 t-peridédica basta estudarmos os pontos de descontinuidade da fungao
no intervalo [—7, 71}, ou seja, nos pontos

—7T € Tt.

Notemos que

se x € (m,3m), segueque: f(x) =) X —27 (7.95)
se x € (=3m,—m), segueque: f(x) =) 5 +2m (7.96)
Logo
XIL% fx) xe(m,37), logo, (IH) Xlifg(x o)
= —m,
Xlll;l;l, fx) xe(—m,m), logo, () XILI}}, N
=m,
e
lim f(x) xelmmm Jogo, (55 iy
x——7rt x——7rt
= —m,
XE{E{, fx) x€(~3m,~), logo, (B) XIEITE(X Lo

:7‘[,

mostrando que a fungdo f tem um ponto de descontinuidade de 1.¢ espécie no ponto x =
(2k + 1) 7, para cada k € Z.

Logo em qualquer intervalo limitado [a, b], a fungdo f terd, no maximo, um nimero finito
de pontos de descotinuidade de 1.% espécie, pois em cada intevalo [a,b] existe, no médximo,

um numero finito de pontos do tipo x = (2k + 1) 7, para cada k € Z.
[

Observacao 7.3.3 A fungdo f do Exemplo (L33) serd denominda onda dente de serra.
A representagdo geométrica do grdfico da fungdo f do Exemplo (33) é dada pela
figura abaizo.
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ks

3

Onda Dente de Serra

Temos também o

Exemplo 7.3.3 Considere a fungdo f: R — R, dada por

, parax € (0,00)
f(x) = . (7.97)

0, para x € (—oo, 0]

Mostre que a fung¢do f nao € seccionalmente continua (ou continua por partes) em
R.

Resolucgao:
De fato, a fungdo f tem um, tinico ponto de descontinuidade, que é o ponto x = 0.
Notemos que no ponto x = 0 a fungao f tem uma descotinuidade que nao é de 1.“ espécie,
pois ndo existe

Observacgao 7.3.4

1. Notemos que, uma funcdo seccionalmente continua em [a,b] nao precisa, neces-
sariamente, estar definida em todo o intervalo [a,b] mas apenas em uma reunido
finita, do tipo

N
(Xj ,XH) y
j=0

)
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onde x; € [a,b], para cada j €{1,2,--- ,NL
Além disso, para cada j € {1,2,--- ,N}, deverd ser uma fungdo continua em
(xj,xj_1) e existirem e serem finitso, os limites laterais

lim f(x) e lim f(x).

x—x;T X=X~

Essas observagdo serdo tmportantes para incluirmos as derivadas de fungées (a
valores reais ou compezos), cujas representagbes geométricas dos grdficos sdo for-
madas por poligonais.

A figura abaizo tlustra a situacao acima, para o caso da fung¢do considerada ser
a valores reais.

a = Xo X1 X2 X3 X4 b = x5

Observemos também que, toda funcdo f secionalmente continua em [a,b] € uma

fungdo limitada em [a,b], isto €, existe M € (0,00) tal que

If(x)] < M, para cada x € [a,b]. (7.98)

De fato, como a func¢do f € secionalmente continua em [a,b] seque que existem, no
mdzimo, um nimero finito de pontos x; € [a,b], paraj €{0,1,2,---,N}, de modo
N

que a funcao f € continua em U(Xi—‘ yXj) e, além disso, existem, e sdo finitos, os
j=1
litmates laterais

lim f(x) e lim f(x),
x—x;t X=X~

excetuando-se, eventualmente, se x, = a e xy = b que, neste caso, seriam consi-
derados, nos extremos do intervalo [a,b], os limites laterias

lim f(x) e lim f(x)

x—at x—b—
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serem finitos.

Assim, para cadaj € {1,2,---,N}, a restricdo da fun¢do f a cada um dos intervalos
abertos (xj_1,%;), que denotaremos por

F=f

‘(Xj,] ,x)—) )

pode ser estendida a uma fungdo continua no intervalo [x;_1,x;], definido-se

Fj (Xj,]) = lim f(X) e Fj(xj+1) = lim f(X),

X=X X=X 417
e portanto esta serd uma funcdo limitada nesse intervalo, implicando que a fungdo
f também serd uma funcao limitada nesse intervalo.
Como temos somente N intervalos desse tipo, seque que a funcdo f serd uma

funcgdo limitada em [a,Db].

3. Notemos também que toda fungdo f: 1 C R — R (respectivamente C) continua em
I serd uma funcao seccionalmente continua em 1, ou seja,

C(I; R) CSC(I; R) (respectivamente, C(I; C) C SC(I; C)).

A verificagdo deste fato serd deirada como exercicio para o leitor.

4. Para finalizar temos que toda fungdo f : [a,b] — R (respectivamente, C) que é
seccionalmente continua em [a,b] € uma funcdo integrdvel em [a,b]

A verificagdo deste fato serd deizada como ezercicio para o leitor (visto em Cdlculo

1).

Definicao 7.3.2 Dadas as fungées f,g:[a,b] = R, seccionalmente continuas em [a,b]
(isto €, a valores reais), definiremos

b
(f,9)= | 100 gxyax < &, (7.99)

a

ou seja,
(-, ) :SC(la,b]; R) x SC([a,b]; R) = R,

dada por (3).
Se as fungées f,g : [a,b] — C sdo seccionalmente continuas em [a,b] (isto €, a
valores complezos), definiremos

(fyg) = Jb f(x) g(x) dx € C, (7.100)

onde, se

com A,B € R, entdo definimos
Z=A-Bi, (7.101)
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dito conjugado do niimero complexo Z, ou seja,

(-, -): SC(la,b]; C) x SC([a,b]; C) = C,
dada por (ITO0O).
Com isto temos as seguints propriedades de < , >:

Proposicao 7.3.1 A fungdo ( -, ) : SC([a,b]; R)xSC([a,b]; R) = R (respectivamente,
(-, ) :SC([a,b]; C) x SC([a,b]; C) = C) tem as sequintes propriedades:

Se f, g, h € SC([a,bl; R) (respectivamente, SC([a,b]; C)) e x € R (respectivamente,
x € C), temos que:

1. (af+g,h) = (f,h)+(g,h), (7.102)
2. (f,g) =(g,f) (respectivamente, (f,g) = (g,f)), (7.103)
3. (f,f) >0. (7.104)

Demonstragao:
Faremos a demonstragdo para o caso ( -, -) : SC([a,b]; R) x SC([a,b]; R) — R.
O caso de funcgdes a valores complexo, serd deixado como exercicio para o leitor.

De 1.
Notemos que:

(af+g,h) = Jb (af+g) (x) h(x) dx

a

b
:J [ £) + g ()] hix) dx

a

b
propriedades da integral definida ~ J
a

=)« (£, 1) + (g,h)

mostrando a validade da identidade ([ZT02).

De 2.:

Observmeos que

()

b
(f,g) = jf(x)g(x) ax

. b
Proprledédes deRJ Q(X) f(X) dx

(=)

= <9>f>>

mostrando a validade da identidade (TO3).



7.3.

De 3.:

OS COEFICIENTES DE FOURIER 331

Notemos que:

if, f) =) r £(x) f(x) dx

a

b ) propriedades da integral definida
— | f2(x) dx > 0,
o ~—~—
>0

mostrando a validade da identidade (ZT04), completando a demonstragédo do resultado.

O

Observacao 7.3.5

1. A funcao

(-, -) : SC([a,b]; R) x SC([a,b]; R) = R,
dada por (CM) (respectivamente, ( -, -) : SC([a,b]; C) x SC([a,b]; C) — C, dada
por (IO0) € quase um produto interno no espago vetorial real (respectivamente,
complezo) (SC([a,bl; R),+,:) (respectivamente, (SC(la,b]; C),+,-)), onde + de-
nota a operac¢ao usual de adi¢do de funcgdes e - denota a operagdao multiplicagcao
de numero real (respectivamente, complezo) por uma fungdo.

Para a fungdo ( -, -) ser um produto interno mo respectivo espago vetorial, ela
teria que satisfazer, além das propriedades da Proposig¢do (1) (ou seja, 1., 2.
e 3.), também deveria satisfazer a sequinte propriedade:

se f € SC([a,b]l; R) entdo (f,f)=0 se, e somente se, =0,
(respectivamente, em SC([a,b]; C)).

Mas essa propriedade nao vale em SC([a,b]; R) (ou em SC([la,b]; C)), como mos-
tra o sequinte exemplo:

Constidere a funcdo f:[0,1] —» R, dada por

flx) = 0, para xe€(0,1] (7.105)
1, para x=0
Observemos que f € SC([0,1]; R) e
1 .
<f,f> (=) com:a—() e b=1 J fz(X) dx E:cegzcw 0’
0
mas
f#0.
Mesmo assim, a fungdo ( -, ), dada por (CX) (respectivamente, (I00)) desem-

penhard um papel inportante na determinagcdao dos coeficientes
an € by, para me{0}JUN e neN,

da expansdo ([3), assoctada a fungdo f, como veremos mats adiante.
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2. Notemos que a func¢do ( -, -), dada por (CE9) (respectivamente, (I00)) satisfaz

a desiguladade de Cauchy-Schwartz, isto é€,

Dadas f,g € SC([la,b] :,R) (respectivamente, SC([a,b] :,C)), seque que

[(fy 9 < 1IflHlgll (7.106)

onde
[fll =/ (f, 1), (7.107)

que serd demominada semi-norma da funcao f.

Faremos a demonstracdo da desigualdade acima para o caso de fung¢des a valores
reais, isto €, em SC([a,b] :,R).

O caso de fung¢des a valores complezo, 1sto é, em SC([a,b] :,C), serd deizado com
exercicio para o leitor.

Notemos que, dada A € R\ {0}, sabemos que

()

0 < (Af+g,Af+g)
| ramusw |
EIN (N FA g A (9,f)  +{g,09)

(m):caso real £
=N {f,f)+2A(f,g)+(g,9)
()
= f12A2+2(F,9) A+ lgll . (7.108)

Logo o trindmio do 2.0 grau a direita deverd ser mdo negativo, para todo A €
R\ {0}, para que isto acontega é mecessdrio e suficiente, que o discriminante, que
indicaremos por A, do trinémio do 2.0 grau a direita deverd ser nao positivo, isto

e
A<O,

ou seja,
(zm)
0>A"="4(f, 9" —4]f|*|gl,

que dwidindo por 4, implicard em

[(Fy9) < (Il gll,
como queriamos demonstrar.
Como consequéncia de (ZI08), temos que a fungdo || | : SC([a,b]; R) - R (res-
pectivamente, || || : SC(la,bl; C) — R) satisfaz a, assim denominada, desigualda-
de triangular , ou seja:

1T+ gll < lIf][ + 19l (7.109)

onde f,g € SC([a,b]; R) (respectivamente, SC([a,b]; C)).
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De fato, notemos que

(m
I+ gl2 =" (f+9g,f+g)

Vi +(f,90+  (9,f)  +(g,9)
~——

(3) )_caso real

(f,9)
()
1] 2+2 (f,9) +lgll®
<112+ 21(f, g)l + 9]l *

()
< [IF1*+ 2106l ligll + llgll 2

= (Ifll + g1’

mostrando que
1T+ gl < [Ifl[ +llgll »

como queriamos demonstrar.

4. Além disso 'Uale o assitm denominado Teorema de Pitagoras, ou seja, se f,g €
SC([a,b]; R) (respectivamente, SC([a,b]; C)), entdo

(f,g) =0 se, e somente se, |+ gH2 ||ﬂ|2+ HgH2 (7.110)

If -+ gll* = [IfI* + [Ig]1” (7.111)
De fato, notemos que

(cm)
If+gl* = (f+g9,9+9)

S0+ (9,0 +(g,9)
~—~—

(=) )_caso real

(EEDJ
IF[1* +2 (f, g) + gl * (7.112)

Logo, de ([112), segue que
(f,g) =0 se, e somente se, |[f+g|l*=|f]*+]g]*
como queriamos demonstrar.

A segui exibiremos algumas propriedades gerais de integrais definidas de algumas classes
de funcdes especiais, que serdo importantes no calculo dos coeficientes

a, e b,, para me{0}JUN e meN

na expressdo (3).
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Observagao 7.3.6 Seja L € (0,00) fizado.
Observemos que:

1. Se a fungdo f: R — R (respectivamente, f: R — C) é 21— periddica, ou seja,
f(x +2L) =f(x), para cada x€R, (7.113)

e € integrdvel em [—L L], seque que

2L L
J f(x)dx = J f(x) dx. (7.114)
0 L

Em geral, para cada x, € R fizado, temos:

Xo-+L L
J f(x)dx = J f(x) dx. (7.115)
L

Xo—L

De fato, notemos que

L 0
propriedades da integral definida
J f(x) dx =
—L

—L

2L L
f(x) dX—i—J f(x)dx. (7.116)

f(x) dx+J .

0
Aplicando mudanga de varidveis na integral definida, obteremos:

y=x—2L, logo: dy=dx

L : L
assim x =y +2L J
f(x) dx = = f 21)d
LL (x) dx x=2L, logo: y=0 0 (y+2L)dy
x =1L, logo: y=—-L
L
=
| iyl ay
0
0
:—J fly) dy. (7.117)
-1

Substituindo (CI12) em ([CIIH), obteremos

JLL f(x) dx = JOL f(x) dx + LZL f(x) dx — JOL £(x) dx

2L
= J f(x) dx, (7.118)
0

mostrando a validade da identidade ([T14).

A wverificagdo da identidade (CI13) serd detzada como exercicio para o leitor.

2. Suponhamos que a fungdo f:[—L,L] — R (respectivamente, f:[—L,L] — C) é uma
funcgdo par, isto é,

f(—x) = f(x), para cada x € [—L,L]. (7.119)
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e wntegrdvel em [—L,L].

Entao teremos L .
J f(x)dx =2 J f(x) dx. (7.120)
L

De fato, notemos que

L

f(x) dx +J f(x)dx. (7.121)

L 0
propriedades da integral definida
J f(x) dx =
—L 0

-1
Mas, de uma mudanga de varidveis na integral definida, obteremos:

y=—x, logo :dy=—dx

0 B assim : x = —y B 0
| foxrax= < N S > = | ) -ey)

x=0, logo:y=0

0

ranmue |

(=)—J fly) dy
L

L
propriedade da integral definida J

fly) dy, (7.122)
0

ou seja,

0 L
J f(x)dx = J f(x) dx. (7.123)
-1
Portanto, substituindo (12Z3) em ([I21), teremos
L L L
J f(x)dx = J f(x) dx+J f(x) dx
-1

0 0

L
= ZL f(x) dx,

como queriamos demonstrar.

3. Suponhamos que a fungdo f: [-L,L] — R (respectivamente, f: [-L,L] — C) seja
uma funcao impar, isto €,

f(—x) = —f(x), para cada x € [-L,L], (7.124)

e integrdvel em [—L,L].
Entdo, teremos

L
J f(x)dx =0. (7.125)
-

De fato, observemos que

L 0
propriedades da wintegral definida
J f(x) dx =
—L —L

f(x) dx +J f(x) dx. (7.126)
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Mas, de uma mudanca de varidveis na integral definida, obteremos:

y=—x, logo: dy=—dx

0 /| assim: x=—Yy B 0
JLf(x) dx = < x= L, logo: y=L > = JL f(=y) (=dy)

x =0, logo: y=0

()_JL
0

f(y) dy,

ou seja,

0 L
J f(x) dx = —J f(x) dx. (7.127)
-1 0

Portanto, substituindo (CI2Z7) em ([CI28), teremos

como queriamos demonstrar.
. Lembremos que se f,g : [-L,L] — R (respectivamente, f,g : [-L,L] — C) sdo
funcdes pares, entdo as fungoes
f
f- 9, f+ 9, f— 9, € -
g
(na dltima, onde ela estiver definida) também serdo fungdes pares.

Por outro lado, se as fung¢do f,g:[—L,L] — R (respectivamente, f,g:[—L,L] — C)
forem fung¢des impares, entdo as fungoes

(esta dltima, onde estiver definida) serdo fungdes pares e as funcgées
f+g e f—g

serao fungobes impares.

Por fim se a fungdo f:[—L,L] — R for uma fungdo par e a fungdo g:[—L,L] -5 R
for uma funcao impar (respectivamente, f,g:[—L,L] — C) entdo as fung¢des

f-g e -
g
(esta dltima, onde estiver definida) serdo fungdes impares.

As demonstrac¢oes destes fatos serdo deixadas como exercicio para o leitor.
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5. No resultado que vem a segquir, precisaremos das sequintes relacoes trigonométricas:

cos(a+b) =cos(a) cos(b) — sen(a) sen(b) (7.128)
cos(a —b) = cos(a) cos(b) + sen(a) sen(b) (7.129)

Notemos que, somando-se (LIZ8) com ([CI29), obteremos

cos(a) cos(b) = cos(a +b) ercos(a—b) (7.130)

e subtraindo-se (I28) de (CI23), teremos

_ cos(a—"b) —cos(a+b)

sen(a) sen(b) = > . (7.131)

Além disso,
sen(a + b) = sen(a) cos(b) + sen(b) cos(a) (7.132)
sen(a —b) = sen(a) cos(b) — sen(b) cos(a) (7.133)

Notemos que, somando-se (I32) com ([CI33), obteremos

sen(a) cos(b) = sen(a +b) ; sen(a—b)- (7.134)

A seguir definiremos duas familias de fungdes que serdo muito importantes no estudo das
fungdes que podem ser expandidas em uma série de fungdes do tipo (I3).

Definicao 7.3.3 Para cada n € N, defintremos a funcao ¢, : R — R, dada por

bn(x) = sen (nTﬂ x) , para cada x € R, (7.135)

e para cada m € {0}UN, definiremos a fun¢do V., : R — R, dada por

P (x) = cos (%[ x) , para cada x € R. (7.136)

Estas duas famfilias de fungdes tém as seguintes propriedades:
Proposicao 7.3.2
1. Para cadan € N, as fungées Y, e ¢, sdo 2?L—perio’dicas.
Em particular, todas elas serao 2 L-periddicas,;
2. Para cada n € N, a fungdos ¢ € uma fungdo impar,

3. Para cada m € N, a fungdo Vyn € uma fungdo par,
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4. Valem as seguintes i1dentidades:

0, para k,m € {0}UN, com k#m
(B, bm) =< L, para k=meN : (7.137)
2L, parak=m=0
(U, dn) =0, para me{0}JUN e neN; (7.138)
0, paran,jeN com n#j
(@n, by) {L, paran=j €N ( )
Demonstracgao:
De @.:
Seja n € N e consideremos
2L
T=2—. (7.140)
n

Para a funcdo ¢, teremos:

Para cada x € R, temos que

Onlx+T) =) sen [TLTW (x + T)}

(=Tzm) {TLTC ( ZL)}
="sen|— | X+ —
L n
nrw
= sen (TX+27T>
sen é 2 m-periédica sen (TI_TL' X)
N L

= palx) .

Logo o niimero real T, dado por (ZTZ0), é um periodo para a fungéo ¢,.

Por outro lado, notemos que se T’ € (0, 0o0) é um outro periodo para a fungéo ¢, entéo,
para cada x € R, deveremos ter

Pn(x +T) = dn(x
de (CI33), teremos sen [ (x+T') ] en ( ) ;

de (CI32), segue que sen ( X) ( >

+ cos ( x) ( ) = sen (%t x) . (7.141)

Tomando-se

«— L
- 2n’
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na identidade ([ZTZ1), obteremos:

sen <§> cos (nTﬂ T’) + cos (;) sen (nTﬂ T’) = sen (g) ,

——
isto é, cos (T%T T/> =1,
logo, “T”T' — 2k,
para algum k € Z.
Portanto 51
T =k T,

para algum k € Z, mostrando que T, dado por (IZTZ0), é o periodo fundamental da
fungdo ¢, para cada n € N.

Para a fungdo y:
Para cada x € R, temos que

P(x+T) (=) cos [nTﬂ (x + T)]

(zTzm) lnﬂ ( ZL)}
='cos |— | X+ —
L n

nim
= COS (Tx+27r>

cos é 2m-periédica nm
= Cco T X

= Pax).

Por outro lado se T’ € (0, 00) é um outro periodo para a fungéo \{, entédo, para cada
x € R, deveremos ter

Vu(x+T) =Va(x)
de (T=1), teremos cos [%r (x + T’)} = cos (— x) ,

de (I2A), segue que COS <nTrr x) cos (nﬂ T’)
+ sen (TLTH x) sen <T T’) = cos (nTT[ x) . (7.142)

Tomando-se

na identidade ([ZTZ3), obteremos:

cos(7t) cos (n_Tr T') + sen(7r) sen (n_Tr T’) = cos(m),
isto &, cos (nTTt T’) =1,

logo, nTHT’:Zkrc,
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para algum k € Z.

Portanto

DL Ie
n

mostrando que T, dado por ([ZTZ0), é o periodo fundamental da fungéo ., para cada
n € N, completando a demonstragdo do item 0. .

De 0.:
Observemos que, para cada n € N e x € R, temos que:
=3 nm
on(—x) = sen [T (—X)]
sen € uma fungdo impar nr )
= —sen [ —x
(%
(=3)
- _(bn(x) )
mostrando que a fungdo ¢, € uma funcdo impar, completando a demonstragdo do item
2
De B.:
Observemos que, para cada m € N e x € R, temos que:
=83 mmt
(=) = cos [T ()|
cos é uma fungio par (TTLT[ >
= cos | —x
L
ramsciz )
= ll)m(x) )
mostrando que a fungdo ,, € uma fungdo par, completando a demonstragdo do item
a. .
De @.:

Notemos que, para k, m € N, teremos:

(=m)

(D ) J i) rn () lx
J cos< ) cos <m_L7'r x) dx
m7t kT mr g
J [cos(—x—FTx)—Fcos(Tx—Tx)} X

= JL {cos {M ] + cos [M x}} dx. (7.143)

N =
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Logo, se k # m, segue que:

L
Wiy Pim) = % JL {cos {m x] + cos [m x} } dx

Teorema Fundamental do Calculo 1 (k =+ m) Tt L
= = SENn X (

2 L k+m)m

—L

(k—m)m L .
+ sen[ [ X} k—m)m|_ .
- % {m{sen[(n +m) 7 — sen[(k + m) (—0)]}
+ —— {sen[(k — m)n — sen[(k — m) (—ﬂ)]}}
(k—m)m
_o. (7.144)

Se k =m € N, teremos:

L —
<1-I)m)1l)m>(:)1j cos MX + cos k—k«)T[X dx
2] L L

1 (* 2nm
—EJL[COS< 3 X)—H} dx

Teorema Fundamental do Calculo l n 2 mrt x L +x .
N 2 L 2mm 1
1 L
== sen(2mm) +L — sen(—2mm) —L
2| 2mm — — 2M7MT ————
=0 =0
=1L.

Se k =m =0, teremos:

1 L
<1b0)ll)o>(:)zJ' 2dx
L

=21,

com isto completamos a demonstragdo de (CI=17).
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Por outro lado se n,j € N, teremos:

(=)

L
(b ;) L Pnlx) By (x) dx

2
=)

COS

~
\ =1 J

— % JEL {1 — Cos :—(n +Ln) ﬂx} }

Teorema Fundamental do Célculo 1 2 nT7m L
= z X — CO8 L X
x—L

1 2nm L 2n7t
:z{[l_—cos( T L) 2TL7'[:| — [(—L —cos 2n

x=L

1 L L
_z{ L —cos(2nm) m}— —L —cos(—2nm) 2—
—COSZTI’/'I
1 L
==<¢ |L—cos(2nn) =—| — |-L—cos(—2nm)
2 —_——— 2T %,—/ZTLT[
I =
1 L L
SRS 8 | S R S .
=L

mostrando (T39).

Por outro lado j # n, teremos:

(bn s &) = ; JL {cos [—(n _Lj)ﬂx} — cos [—(n J{j)ﬂx]}
L
=0.

A verificagdo da 1ltima igualdade acima é semelhante ao que fizemos em (TZ4) e assim,
deixaremos os detalhes como exercicio para o leitor.
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Além disso, se n € {0}UN e m € N, segue que

(=)

L
(D s ) j () ()

L
( );( )J Cos <n—ﬂx> sen (Mx> dx
1 L L

=) JL ] [sen (nﬂx+mnx> + sen (nﬂx—mﬂxﬂ dx
)2 L L L L

JL {sen {m x} + sen {w x} } dx. (7.146)
L L L

1
2
Se n # m, segue que:

(W, Gm) = %JL {sen {w x} + sen {w x} } dx
1

L
Teorema Fundamental do Calculo | |:(TL + m) Tt :| L =t
= = § —COs X
2 L m+m)m | _
Mm—m)m L =t
— COS X
L m—m)m | _
Exegicio 0
e, finalmente, para n = m € N, teremos:
( =0 \
' (n+n)m ( g )T
nr—n n—m
<1l)n y ¢n> (EEE) J sen [— X:| +sen | —Xx dx
L L L
\
L
= 1J sen (Znnx) dx
2], L
Teorema Fundamental do Célculo 1 2nm L =t
= — 7.147
o () pm|

Exercicio O

)

mostrando (I38) e completando do item B. e do resultado.

Observacao 7.3.7
1. Suponhamos que a funcdo f:[—L,L] — R pode ser representada por uma série de
funcgdes do tipo

o0

f(x) = % + Z [an cos (nTn x) + b, sen <nTT[ x)] , (7.148)

n=1



344

para cada x € [—L,L], que, de (I38) e (IZ3), € 0 mesmo que escrever

f(x) =

+Z [an Wn(x

Formalmente, notemos que:

)+ bn dn(x)] .

<f>1b0> (E:EE) <% P, + Z[anll)n + by dnl >1|)o>
n=1

todo cuzdado’ ao

(o, +Z an (n s o) +0n (P o)
——
(vzm)ZL (vzm)o =),
a
=22L
2
= Qo L )
ou seja,
1
a0 = = (F o)
'.!L 1 L
= —J F(x) Wo(x) dx
L)y
1 L
=1 J_L f(x).dx
De modo andlogo, se m # 0, temos:
a, >
<f>1|)m> = <71J)0 + ; [an Y + by dnl >¢m>
todo cuidado! Qo >
= 7 Z an <1bn )Ibm>
(m) com m.7500 — C(lnnym#o 0 . se n # m
L, sen=m

:amL)

ou seja, para m € N, teremos

(zz=3) 1

am = E <f»ll)m>

(=) 1
L

=2 l JL f(x) cos <
L

L

L
- JL f(x) P (x) dx

m—Lﬂx> dx.

CAPITULO 7. SERIES DE FOURIER

(7.149)

(7.150)

(7.151)

+bn (Gn s Pm)
—_—

===3),

(7.152)

(7.153)
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Finalmente, para k € N, temos:

<f>¢k> = <%¢o +Z [an¢n+bn¢n] ,¢k>

oocuzao’ ao >
ot o < > + Z <ll)n ) ¢k> +bn <¢n ) d)k) ]
H—/ - T/)_/ —— —
== =3
= =70 == |0, sen#k
L, sen=k
=b L, (7.154)

=) 1 (" k
(=3) _J f(x) sen (Tﬂ x) dx. (7.155)
L

Conclusdo, de (I20), (I=3) e (I0H), segue que os coefictentes da série de
fungdes (CIZ3) (ou, equivalentemente, da série de fungdes (CIZJ)) serdo dados
por:

1 L
Ay = —J f(x) cos (M x> dx, para cada me{0}UN (7.156)
L), L
e
1t kT
by = T f(x) sen Tx dx, para cada k€ N. (7.157)
L

. A obtengdo de (158) e (IR7) for formal, isto €, sem o rigor matemdtico ne-
cessdrio com relagdo a convergéncia das séries de fungdes envolvidas.

Na verdade precisariamos justificar o "todo cuidado!” mnos cdculos do teim O
actma.

. Dada uma funcgdo f : [—L,L] — R que seja integrdvel em [—L,L], seque que os
coeficientes ([I2B) e ([IR7) existem, e podemos considerar a série de fungdes,
que denotaremos por Slf]:

SIf : i [an cos ( ) + b, sen (nTﬂ xﬂ y (7.158)

n=1

ou ainda,

. G, =
S[ﬂ — 7 1l)o + ;[an wn + bn (bn] ) (7159)
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onde, para cada m € {0} UN, o coeficiente a., serd dado por ([LIEB) e, para cada
k € N, o coeficiente by serd dado por ([LI51), e assim podemos pensar em estudar
a convergéncia da serie de func¢bes ([In3) (ou, equivalentemente, da série de
fungées (123)).

A féormulas ([CI58) e ([CIE7), que nos fornecem expressées para os coeficientes na
série de fungdes (CIB3) (ou, equiavelentemente, da série de fungbes (IR9)), sdo
denominadas formulas de Euler-Fourier.

Com isto podemos introduzir a:

Definigao 7.3.4 Sejam L > 0 fizado e f: [—L,L] — R uma fung¢do integrdvel em [—L,L].

A série de fungdes (CI58) (ou, equivalentemente, da série de fung¢bes (In9)), onde

0s coeficientes am e by sdo dados por (C158) e ([LI57), respectivamente, serd denomi-

nada série de Fourier associada a fun-cao f.

Os coeficientes an e by, dados por (I58) e ([CIh7), respectivamente, serdo ditos

coeficientes de Fourier associados a funcao f.

A seguir faremos algumas observgdes sobre as consideragdes acima.

Observacao 7.3.8

1. Se f € SC([-L,L]; R), logo serd uma funcdo integrdvel em [—L,L].

Portanto, existem os coeficientes de Fourier associados a funcdo f, ou seja, os
coeficientes an e by, para cada m € {0}UN e k € N, dados por (I58) e (Z121),
respectivamente.

Do item . da Proposi¢do (C33), seque que cada termo da série de fungdes ([CI53)
(ou, equivalentemente, da série de fungdes (LI29)) serd uma fung¢do 2 L-periédica.
Logo se a série de fungdes (CIB3) (ou, equivalentemente, da série de fungdes
(I29)) for convergente, ela serd convergente para uma fungdo que deverd ser
2L-periédica em R.

Em particular, se a funcdo f € SC([—L,L]; R) tem a propriedade
f(—L) # f(L), (7.160)

ndo poderemos esperar que a série de Fourier associada a funcao f, ou seja, a
série de fungdes (CI28) (ou, equivalentemente, a série de fungdes (CI29)), venha
a convergir para a fungdo f, em [—L,L], pois a f deveria possuir uma extensdo
2L-periddica a R, que denotatemos por F: R — R, e esta deveria satisfazer

f(—]_) Feé eztegdo de f F(—L)

Fé ZL—griédica F(—L + ZL)
=F(L)

Feé e:ctegdo de f: f(L)

Y
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contrariando ([IB0).

Portanto, € natural estudarmos as séries de Fourier associadas d fungoes que estao
definidas em R e que sejam 21 -periddicas, ou ainda, se a funcdo f:[—L,L] — R,
entao deveremos ter

f(—L) = f(L) (7.161)

e assim, se a série de Fourier associada d funcdo f, ou seja, S[f], for convergente

para a fungdo f, em [—L, L], entdo a série de fungdes S[f] ird convergir para uma
funcao F: R — R, de modo que a funcao F serd a extensao 2L-periddica da funcao
faR.

3. Observemos que se a funcdo f:[—L,L] - R € uma func¢do integrdvel em [—L,L] e
for uma fungao par, entdo, para cada m € {0}UN, temos que a func¢do
T
x — f(x) cos <mT x)

também serd uma fungdo par e, para cada k € N, a fung¢do

x — f(x) sen (kTﬂ x)

serd uma func¢ao impar.

Logo, dos itens B. e @. da Observagdo ([CZ38), para cada m € {0} UN, teremos:

c=m) 1 [F mm
am( = I U_Lf(x) Ccos (Tx> dx
fungdo par
() 2 (" mT
= — | f(x)cos (— x) dx (7.162)
L Jo L

e, para cada k € N, seque que

b, =

L kT
JL f(x) sen (T x) dx

N
fungao impar

0. (7.163)

==

(cxz9)

4. Observemos que se a fungdo f:[—L,L] -5 R € uma funcdo integrdvel em [—L,L] e
for uma fungao impar, entdo, para cada m € {0}UN, a funcdo

x — f(x) cos (%[ x)

serd uma funcao impar e, para cada k € N, a fung¢ado

x — f(x) sen (kTﬂ x)
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serd uma fun¢ao par.

Logo, dos itens B. e @. da Observagao
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(=1), para cada m € {0}UN, teremos:

c=m) 1 (F mrt
A (=) i J_L f(x) cos (T x)J dx
fungdo impar
= (7.164)
e, para cada k € N, seque que
1 k
by (=) I I f(x) sen (Tn x> dx
fung?i:? par
2 (* k
= 2 f(x) sen <—7t x) dx. (7.165)
L Jo L

Apliquemos os conceitos desenvolvidos acima aos seguintes exemplos:

Exemplo 7.3.4 Encontrar a série de Fourier, qua denotaremos por S[f], associada a

funcgdo f:[—1,1] = R, dada por

{

_X)
X”

f(x)

Resolucgao:

para cada x € [—1,0)
para cada x € [0,1]

(7.166)

A representagdo geométrica do gréfico da fungdo f é dada pela figura abaixo.

y

l Onda Dente de Serra

Notemos que, neste caso, temos que

e a fungdo f é continua e par em [—1,1].
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Logo

(T=3) com m=0 1

L
ao = — J_L f(x) dx

i 1
()ZJ x dx

Teor. Fund. Céleulo [X

Exegicio 1 (7167)
Por outro lado, m € N temos:
L
am (E=738) com meN J f(x) cos (M x> dx
L L
= (!
= J f(x)cos(mmx) dx
-1
. 1
f e cos sdo pares,(:EEEZ) com m € N 2 J f(X) COS(mTEX) dx
0
(=) , ['
=2 J x cos(m7rx) dx
0
u =x, logo, du = dx
dv = cos(mmx) dx, logo, v = %
sen(mmx) |~ (' sen(mnmx)
=2 (x— —| ————dx
mm o Jo mrt
-0 =0
— » x=1
Teor. Fund. Géleulo sen(mr) _ sen(m70) cos(m7x)
- m mm Mo’ |
=(=nm =1
—— ——
_ cos(mm) B cos(mm0)
(mm)? (mm)?
2
= 1M -1
=m0
4 )
5—, paracada m impar
_ ) m'm , (7.168)

0, paracada m par
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e, para cada k € N, teremos

L
[I57) com k
bk( ) < kENJ f(x) sen <Tﬂ x) dx
L

L=1

= f f(x)sen(k7x) dx
-1

f é par e sen é impar - (IB53)

0. (7.169)
Portanto, de (I67), (CI63) e (C169), segue que
S[ﬂ (X) ()éom =1 Q4

>+ Y lay cos(nmx) + by sen(nmx)]

n=1

e (153 1 i
(=) & (=m9) 2 + Z a, cos(nmx)

n=1

ﬁ cos[(2n —1)mtx)]. (7.170)

O
Temos também o:

Exemplo 7.3.5 Encontrar a série de Fourier, que denotaremos por S[f], associada a
funcgdo f:[—mt,n] —» R, dada por

0, wpara cada x€[-m,0) ou x=m
f(x) = ’ ’ . 7.171
) { T, para cada x € [0,m) ( )

Resolucao:

A representacdo geométrica do gréfico da fungdo f é dado pela figura abaixo.

y

Onda Quadrada

Notemos que, neste caso
L=m
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e a fungdo f é seccionalmente continua em [—7t, 71}, logo é uma fungdo integravel em [—7t, 7.
Assim temos que

(ZT58) com m=0 |

L
ao = — JL f(x) dx

=T. (7.172)

Por outro lado, para cada m € N, temos:

com M ] L
am (F38) com meN J f(x) cos (_mn x) dx
L), L

t=r 1 r f(x) cos(mx) dx

— L UO f(x) cos(mx) dx+J

7_-[ —7 0
() | J "
X=TT

x—O}

Bxerciclo (7.173)

f(x) cos(mx) dx]

7t cos(mx) dx
0

Teor. Fund. Célculo sen(mx)
Tm

Finalmente, para cada k € N, teremos:

com ] L k
by (F52) com keN 1 J f(x) sen <—7T x) dx
L), L

1 [T
=l J f(x) sen(kx) dx
s —Tt
1 7(° m
- U f(x) sen(kx) dx+J f(x) sen(kx) dx}
. 0
= ! J 7t sen(kx) dx
0
Teor. Fund. Caleulo | COS(kx) |7
a k x=0
=(-1)¥
1 ——
= E[_ cos(k ) +1]
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1
= — 1— (—1)k
k
i para cada k impar
(7.174)
0, paracada k par
Portanto, de (CI2), (CTA) e ( , segue que:
S[f](x) (F==3) com L=r ao Z a, cos(nx) + b, sen(nx)]
=) ao Zb sen(nx)
(m)e(m) n Z PP sen[(2n —1)x)]. (7.175)
O

Antes de prosseguirmos faremos algumas consideragoes que serdo importantes no estudo

da convergéncia de series de Fourier associadas a certas fungdes.

Observacao 7.3.9

1. Utilizando varidvers complezas, vamos encontrar as expressbes para os coeficientes
de Fourier a, e by, para m € {0}UN e k € N, dados por (I28) e (I27),

repectivamente, em uma forma diferente.

Para 1sto lembremos que

e'* =cos(x) +1isen(x), para cada x€R, (7.176)
onde
=1,
Logo
e ' = cos(—x) + 1 sen(—x)
=cos(x) —isen(x), para cada x€R. (7.177)
Somando-se (I78) com ([CIZ4), obteremos
cos(x) = %, para cada X € R, (7.178)
e subtraindo-se (CIT74) de ([CT78), obteremos
eix o e—ix
para cada x € R. (7.179)

sen(x) = —57
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Em particular, para cada n € N, teremos:

nm el T X e T X
cos (TX>: +2 - , para cada x € R, (7.180)

e, para cada k € N, seque que

k7t el X — et
sen | —x | = _
L 21

) e—ikT”x_eikT”x
=1 5 , para cada x€R. (7.181)

~

Com 1sto, para cada x € R, temos que

SIf](x) =) ao + Z [an cos (Tﬂ x) + b, sen (ET x)}

L
(CT=D) e (CTET) 0 > .M _1¥X ,e_inTﬂX_einTnx
= bn
N L
- bn nn L Hibn onn
+Z |: —1i 1TX_|_ %e—le} ) (7.182)
Defininamos a funcgdo f:Z - C, dada por
f(0)= %» (7.183)
N n ib,
e f(n) =" 21 (7.184)
= ntiby
f(—) = Gn T 100 +21 , para cada mMmeEN, (7.185)
seque, de ([[122), (I=3), (I=34) e ([CI23), que
S0 =T (0)+ 3 [T () e ™ + T (-m) e 7]
n=1
= %\ (O) + Z |:/f\ (n) elnTX _|_ ? (_n) el(f‘z)ﬂx]
n=1
= ) flmetr, (7.186)

onde a ulttma série de fungbes considerada em ([CIEH), serd encarada como uma
série do tipo valor principal, isto €, para cada x € R, definimos

N

Z f(m)e' T :1\}5%0 ZNf(m)e Cx. (7.187)

m=—o00 m=—
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Para cada m € Z, o coeficiente f (m), dado por (1=23), (I=23) e (CI=23), serd de-
nominado m-ésimo coeficiente de Fourier na forma complexa, associados a fun-
cao f.

A série de fungdes (CI28) serd denominada série de Fourier na forma complexa,
associada a funcao f.

2. Estudar a convergéncia da série de Fourier associada d fungdo f:[—L,L] - R na
forma (CI22) € equivalente a estudar a convergéncia da série de Fourier, na foma
comeza, isto €, na forma (CIER), associada d fungdo f (no sentido ([CIZ1)).

3. Observemos que teremos:

-~ a,
fo =2
L
(T=3) com m=0 lJ f(x) dx
L)L
1t ’—jT
N _J fx) e 7 dx, (7.188)
L)
Além disso, para cada n € N, seque que:
Fm) (=) an —1iby
2
(= )i(EEZ) 111 L nT ) 1 JL -
< 5 [L J_Lf(x) cos( 3 x) dx—1ir Lf(x) sen( 3 x) dx
1 L
=31 J_L f(x) [COS (nTﬂ x) —1isen (—ﬂ x)] dx,
(T=M) e (ZIED) 1 L ei%x_ke—l%ﬂx ,€1¥X—6_1HTHX
-2 - d
2L L ( )[ 2 T } *
Tercicio 1 L _inmy
o ZL‘C(X)e Codx, (7.189)
?(—n) (TZ=3) an +1iby
2
(zz=m) e (zz=2) 1 | 1 t nm B JL o
= 7 [L JLf(x) cos( T x) dx-l—lL 7Lf(x) sen< T x) dx
1 nrm . nm
=57 JL f(x) [cos (T x) + 1 sen <T x)] dx
(m)i(m)l L et X et X ,einTﬂX—e*i"T"X
- JLf(X) { 2 BT } &

Brepcicio JL f(x) el T ¥dx
-2,

1 L i (7n)ﬂx
=57 JL f(x) et T *dx. (7.190)
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Portanto, de ([CI53), ([CI2Y) e (IU0), segue que

- 1 L s M7
f(m)= HJ f(x)e "' T *dx, paracada MmEZ. (7.191)
L
4. Mesmo para fungbes a valores reats, isto €, fungbes f : [-L,L] — R (que foi o

caso que estdvamos tratando no problema da condu¢cdo de calor mo fio no inicio
do capitulo), os coeficientes de Fourier, na forma compleza, associados d fungdo
f sdo, em geral, numeros complexos e ndo reais, excetuando-se o caso em que 0s

b, =0, paracada neN,

isto é, o caso que fungdo f é uma fungdo par (veja o item @. da Observagdo
(23), ou ainda (IB3)).

7.4 Interpretacao Geométrica dos Coeficientes de Fou-
rier

Observemos que a maneira como obtivemos os coeficientes de Fourier associados a uma fungdo
f:[-L,L] — R (isto é, am, para m € {0} UN e by, para k € N, dados por (T8) e (ZI57),
respectivamente) é bastante natural olharmos os mesmos do modo que faremos a seguir.

Consideremos, no espago vetorial real (R™,+,-) (onde + € a operagdo de adigdo usual de
n-uplas e : é a mulplicagdo usual de nimero real por n-uplas), o produto interno usual, a
saber:

n
(X,y) = ZX)' Yj» (7.192)
j=1
onde os vetores i,V € R", sdo dados por:
z:(XHXZ»"')Xn) € g:(yhyl»"'»yn)' (7'193)
Para cada i€ {1,2,---,n}, definamos o seguinte vetor de R™:

i-ésima posigao

l
éii(O,---,O, 1 )O)"')O)° (7194)

Como foi visto na disciplina de Algebra Linear, temos que o conjunto
{61 y€2,y )en}

é uma base ortonormal do espago vetorial real (R™,+,-), relativamente ao produto interno
(CT92).

Tal base é denominada base canénica de (R™,+,-), ou seja, para i,j € {1,2,---,n},
teremos:

L 1, se i=]
iy €j) = L, 7.195
(€,¢) {O) A (7.195)
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Notemos que, se X € R" é dado por (T93), teremos:

Q(EEE) (X],Xz,"' >Xn)
:(XHO)"' )O)+(O>X2)O)"')O)+"‘+(O>)"'>O>Xn)
:X1'(]>O)"')O)+X2'(0)]>O)"' )O)+"'+Xn'(oy"'>oa1)

=X1-€1+x2-€ -+ +Xn-€En

n
=D x-§. (7.196)
j=1
Com isto, para cada i€ {1,2,---,n}, teremos:

n
- = ramneiz] — —
(X, €) = <ij~ej,ei>
=1

n
propriedades de produto interno RN
= > % (&,&)
j=1
(T=m)
= Xiy

ou seja, Xi - € = (X, &) - €,
o que significa dizer que, geometricamente, para cada i € {1,2,---,n}, temos que o vetor
Xi éi

é a projecdo ortogonal do vetor X, na direcdo do vetor (unitdrio) €;.
A figura abaixo ilustra a situagdo acima.

®l

Xi - €4

Apliquemos as ideias acima para o caso de séries de Fourier:

Observacgao 7.4.1

1. Notemos que
C([-L,L; R),

o conjunto formado por todas as fungbes continuas, a valores reais, definidas em
[—L, L], € um espago vetorial sobre R, quando munido das operac¢ées de soma de
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funcgodes, indicada por +, e multiplicagao de numero real por fungdo, indicada por

A wverificagdo deste fato for vista na disciplina de Algebra Linear e serd deizada
como ezxercicio para o leitor.

Com iso o espago vetorial real (C([-L,L]; R),+,-), poderd ser munido do sequinte
produto interno

(f,9) = JLL f(x) g(x) dx, (7.197)
onde f,g € C([-L,L]; R). :
A verificagcao deste fato serd deixada como ezxercicio para o leitor.
2. Do item [J. da Proposigdo (33), seque que o conjunto
{Pm; me{0}UN}U{dy; k € N} (7.198)

€ um subconjunto do espaco vetorial real (C([—L,L]; R),+,-), que é ortogonal,
relativamente ao produto interno (CI97) (veja (CI33), (CI323) e (CI59)).

Notemos que o conjunto (LT98) serd ortonormal, relativamente ao produto interno
(1), se
L=1,

excetuando-se o caso de m =0 (veja ([CI31), (I38) e (CI29)).

3. Embora o conjunto (CIT98) nao seja uma base para o espago vetorial real
C([_L)L];R)>+"))

no sentido algébrico, se uma fung¢do f € C([—L,L]; R) puder ser expandida em
série de Fourier (assoctada a4 mesma), se a série convergir para a fungdo f, em
[—L,L], e se a série de Fourier puder ser integrada, termo a termo, (por exemplo,
se a convergéncia da série de Fourier for uniforme, em [—L,L]), entdo podemos
justificar as contas formais (onde se vé: todo cuidado!) feitas na Observagdo
(32), para obter as formulas de Euler-Fourier ([C158), (Z1=23) .

4. Para ilustrar consideraremos o caso em que L =1, ou seja, o conjunto (CT98) é
um conjunto ortonormal, relativamente ao produto interno (ZI91), exceto quando
m = 0.

Neste caso, para cada m € {0}UN e n € N, teremos:
1 L
A (=9 i J_L f(x) cos <m_L7'c x) dx

=] fL £(x) Pm(x) dx

L=1

1
= L (%) W (x) dx

(zz=)

<f>¢m> )
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(cz=2)

<f’ (le> )
ou seja, para cada m € {0}UN e n € N, os vetores
m - u)m € bn : ¢’n

serdo as projecbes ortogonats da funcgdo f, na diregGo dos vetores ., e ¢, (neste
caso, serdo unitdrios), respectivamente, relativamente ao produto interno (CIT91).

5. Observemos que se L # 1 entdo, para cada m € {0}UN e n € N, trocando-se as

fungdes
Y e bn
pelas fungoes
Y. e @,
respectivamente, dadas por:
Y. (x) = 1|I|):l)—(x||) D, (x) = %(T’), para cada X € R, (7.199)

onde, para cada f € C([-L,L]; R), definimos

i = v = ([ ) (7.200)

(que é uma norma no espago vetorial real (C([-L,L]; R),+,)), entdo o conjunto
{Wi; me{0UNIU{D,,; n € N} (7.201)

serd um conjunto ortonormal, relativamente ao produto interno (CIT9A), e pode-
remos aplicar as mesma tdeias do item [J. acima, utilizando o conjunto ([ZZOT),
para concluir que, para cada m € {0}UN e n € N, os vetores

an Y e b, -0,

serdo as projegbes ortogonais da fungdo _f, na dire¢Go dos vetores (unitdrios) V.,
e ©,, respectivamente, relativamente ao produto interno ([ZIT91).
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Notemos que, neste caso, teremos:

=1 m
An = LJLf(X) cos( ] x) dx

() e () 1

= (Fybm)

Lt W) (7.202)

:i<

L

e ([T ]
() e () (0 (7.203)

= 1" m
b, = JLf(X) sen( 3 x) dx

para cada m € {0}UN en € N.

Utilizaremos algumas das ideias acima para obter algumas propriedades da séries de Fou-
rier associada a uma f: [—L,L] — R, que é fungio integravel em [—L,L].

Consideraremos o espago vetorial real (SC([—-L,L]; R),+,-) em vez do espago vetorial
real (C([-L,L]; R),+,-) para o que faremos a seguir.

O primeiro resultado interessante é dado pela:

Proposicao 7.4.1 Para f € SC([—L,L]; R) consideremos a série de Fourier associada d
fungdo f, isto €, ((I58) (ou (I29)).
Entdo para M € {0}UN e N € N fizados, se considerarmos

Cm,dn €R, para cada me{0,1,--- M} e ne{1,2,--- N} (7.204)

teremos:

M N M N
a, Co
f_[7¢0+n;am¢m+;bn¢n] S f_[?d)o_i_n;cmlpm"f’;dnd)n] )
(7.205)
onde as fungdes Y e Gn sdo dadas por (CIZM) e ([LIZT), respectivamente.
Além disso, a ocorrerd tgualdade em ([C20H) se, e somente se,
Cn=0a, € dy=Db,, paracada me{0,1,--- M} e ne{l,2,--- N} (7.206)

Demonstracgao:

Dados M,N € N definamos o conjunto Syn, como sendo o seguinte subconjunto de
SC([-L,L]; R):

Smn i{ll)m;mé{())] y' oo )M}}U{(bn;ne{] )2>"' >N}} (7'207)

Observemos que o conjunto Syn € um conjunto finito de vetores de L.I., do espago vetorial
real (SC([-L,L]; R),+,").



360 CAPITULO 7. SERIES DE FOURIER

De fato, pois da Proposicdo (32) (veja (CL31), (I38) e (Z133)), segue que o conjunto
Smn um conjunto ortogonal, relativamente ao produto interno ("), e formado por vetores
ndo nulos.

Consideremos o subespago vetorial gerado pelo conjunto Syn, do espago vetorial real
(SC([-L,L]; R),+,-), que indicaremos por [Smn], isto é, o conjunto formado por todas as
combingdes lineares de elementos do conjunto Syn, do espago vetorial real (SC([—L,L]; R),+,-).

Mais precisamente:

M N
. Co
[SMN]:{?¢0+§ Cm¢m+§ dnd)n; Cm)dneR»
m=1 n=1

paracada me{0,1,--- M} ene{l,--- ,N}}. (7.208)

Definamos a funcdo g : [-L, L] — R, dada por:

M N
g(x) = f(x) — [% Yo(x) + Z_1 A P (%) + ; by, (bn(x)] : (7.209)

para cada x € [—L,L].

Deste modo, teremos:

M N
(911h0) = <f— [ﬂ . Zam¢m+zbn¢n] ,¢0>
m=1 n=1

item 1. da Proposigdo (=)

G,
<f>1|)0> 5 1I)o» o Zan Ll)ru

2
(m) com m=0

(m) com m:OL o HL

(m)o

+ Zb (G bo)
=),
Qo

—La,— 201
™7

=0.

Por outro lado, para k € N fixado, teremos:

M N
(9, 0x) = <f— l%w +Zam¢m+zbn¢n] ,¢k>
m=1 n=1



7.4. INTERPRETAGCAO GEOMETRICA DOS COEFICIENTES DE FOURIER 361

item 1. da Proposigéo (=) a,
p g <f l-pk> _7 q)mlbk Z Qm <1-|—’m)1bk>
(@)L ar (m) com k#]o (EE) 0 ’ se M. % k
L,sem=k
N
+ by ny P
; <¢ ) k>
=),

M N
<9)¢k> = <f_ [%%-anmll)m-i-zbnd)n] >¢k>
m=1 n=1

M
item 1. da Proposigdo (IZ=1) QAo
=" E o) =5 (o, b — > am (b, i)
n=1
<==3==>Lb (E23) com A1 N
N
+ Z bn <d)n ) (bk>
— ~————
(=) 0, sen#k
L,sen=k
=Lby—Lbyg
=0,

isto é, a fungdo g, dada por (ZZ3), ¢ ortogonal a cada um dos elementos do conjunto Sy.
Logo, como os elementos do conjunto Syn sdo geradores do subsepaco vetorial gerado

pelo vetores do conjunto Smn, segue que a fungdo g serd ortogonal a todos elementos do

subespago vetorial [Sywml (a ortogonalidade é relativa ao produto intermo ([Z793)), ou seja,

g L [Smn]. (7.210)

Definamos a fungdo h: [-L,L] — R, dada por

M N
h(x) = )+ D (am—cm) m(x) + D (bn — dn) dn(x), (7.211)
m=1 n=1

para cada x € [—L,L].
Notemos que a fungdo h é uma combinacdo linear dos elementos do conjunto Syn, ou
seja,
h € [Saml. (7.212)
Logo, de ([C2Z10) e (ZX13), segue que a fungéo g serd ortogonal a fungéo h, relativamente

ao produto intermo (), ou seja,
gLlh. (7.213)
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Portanto, pelo Teorema de Pitdgoras (isto é, o item B. da Observagdo ([Z3H), ou ainda,
(11m)), segue que

M N
f— [%wo"f—;cmlbm"}_zdnd)n]

n=1

2

M N
+ %lboJrn;amll)eran(bn

n=1

M N
=||f— [%ll)o‘f_zamll)m'i‘zbnd)n
m=1 n=I1

~~

(=)

9

c M N
- [?011)0 + Zcmll)m‘i‘z dnd)n]
m=1 n=1

2

M N
a, — Co
= 9+ 2 ¢0+Z(am_cm)1l)m+z{bn_dn)d)n
m=1 n=1
i =y i
=g +n|?
gLh e (ZTm) (*)
= llgl* +|nf? > gl (7.214)

>0

M N
fo [“Tp +Zam¢m+an¢n]
m=1 n=1

2
(=zm)

)

isto é,

M N
f— [%w +Zcm¢m+zdn¢n]
m=1 n=1

mostrando a desigualdade (Z03).
Observemos que se

2 2

M N
f— l%w +Zamwm+an¢n]
m=1 n=1

Cmn=0a, € d,=D>by,, paracada me{0,1,--- M} e ne{1,2,---,N}
entdo vale a igualdade em (Z3).
Reciprocamente, se vale a igualdade em (203), de (*) em (214), teremos:

|2 Pitégoras || |2 vale a iguald_ade em (*

)
lgll* + IR g+hi = gl
ou seja,

)* =0,

L
isto é, de (99), deveremos ter: J Ih(x)]* dx = 0. (7.215)
L
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Como a fungdo h é uma fungdo continua em [—L, L] (veja (=210)) e
h(x)| >0, paracada xe€[-L,L] e vale (@),

segue que que
h(x) =0, wparacada x[-L,L],

que, de (ZZId), é equivalente a:

M N
aozColl)o_i_n;(am—cm)lj)m—i—;(bn—dn)cbn:O, em [-L,L]. (7.216)

Como o conjunto Syn é um conjunto L.I. no espacgo vetorial real (SC([—L,L]; R),+,-),
segue que todos os coeficientes da combinagdo linear (ZZIH) devem ser iguais a zero, ou seja,

Cmn=0, € d,=Dby,

parame{0,1,--- ,N}eme{1,2,---, M}, completando a demonstragdo do resultado.
]

Observacao 7.4.2 A Proposi¢do (ZZ1) acima, nos diz que a soma parcial da série de
Fourier de uma funcdo que pertence a SC([—L,L]; R), nos fornece a melhor aprozimacdo
possivel entre todas as aprorimacgdes, por combinacdes lineares envolvendo senos e
cossenos, relativamente @ norma que provém do produto interno ([C03).

Uma outra propriedade importante das séries de Fourier associada a uma fungdo ”"bem
comportada”, é dado pela:

Proposicao 7.4.2 (Desigualdade de Bessel, na forma real)

Seja f € SC([—L,L]; R) e consideremos a série de Fourier associada a fung¢do f, isto
¢, (I53) (ou (CImM)).

Entdo as séries numeéricas

2
bm”,
1

(o) o0
amz e
1 n=

m=

sao convergentes e além disso, vale

2 o0 (o]
L (“20 —|—Zam2—|—an2> < 117, (7.217)
m=1 n=1

onde ]

IEIRERY (7219

€ a semi-norma que provém do ”quase” produto interno ().
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Demonstracgao:
Notemos que, para cada M, N € N, teremos

M N
fo l%xp +Zamxpm+an¢n]
m=1 n=1

M N M N
) <f—%¢o—;amk—;bl¢hf—%wo—;amwm—;bn¢n>

2
0<

M N
item 1. da Proposigio (=) a,
=" (6,0 =5 o) =3 an (Hbn) =) b (f )
—— —— — — - ——
(EZEE)”]CIIZ (=) com m:OL 0 (=2) com m;rfOL am (B;E)Lbn
a a,’ M q Noa
— = (o, f) A (eyhe) Y =am (boybm) + Y = by (o, dn)
(e=3) com m=0; (E=23) com k=m=0, m=1 (F==3) com mA0, n=1 (=3,
M M a M M
=D a (W) +) a (iodo) +) ) acan (Wi, W)
k=1 (z=m) k=1 (ET33) com k0 k=1 m=1
= T = 0 (=) 0, sem#k
L, sem=k
M N N N a N M
+ ax by O—Y b Y+ ) b= o)+ b am m
;; b (Wi, ) ; 1 (P, f) ; 15 (Pry o) ;; 1m (D1, Ym)
=, =y, =, =,
N N
+ blbn <d)l d)n>
(=) 0,sen#1
L,sen=1
L M N L L M M
T 2 2 2 2 2 2 2
= [Ifl[* = 5 a —Ln;am —L ;bn — 58+ 56 —L;ak +L;ak

N N
—L Zb8+LZb3
1=1 1=1
M N
—IfIP - a,’ 2 2
= |Ifl A+ bl (7.219)
m=1 n=1

isto é,

2 M N
0< [P 1 (“; +Zam2+an2) ,
m=1 n=1

ou seja,

2 M N
Qo 2 2 1 2
0< 5 + mE_1 an” + nE_] b, < I 1]~ (7.220)
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para todo M, N € N fixado.
Assim, segue de (ZZ0), que as sequéncias das somas parcias das séries numeéricas

iamz e ibnz, (7.221)
m=1 n=1

sdo limitadas em R.
Como

am?, by >0, paracada n,meN,

segue que as sequéncias das somas parcias das séries numéricas (ZZ1) serdo crescentes em
R.

Logo as sequéncias das somas parcias das séries numéricas (—ZZT) serdo monétonas (cres-
centes) e limitadas em R, de um resultado de Andlise I, temos que elas serdo convergentes
em R.

Portanto podemos passar os limites, quando

M,N — o0,

em (220), e com isto obteremos a desigualdade ([ZZI7), completando a demosntragdo do
resultado.

O
Temos uma versdo na forma complexa para ao resultado acima, a saber:
Corolario 7.4.1 (Desigualdade de Bessel, na forma complexo)
Suponhamos que f € SC([-L,L]; R) e
S[f](x) = Z ?(n) ei"Tn", para cada x € [—L,L], (7.222)

onde, para cada n € Z, o niumero complexo f (n) é o n-ésimo coeficiente de Fourier na
forma compleza, dado por (IZT4D).
Entao a série numérica

serd convergente e vale

< - 2
é]f(n)] < 57 1P, (7.223)
onde
L 3
e U () dx] (7.224)
L

€ a semi-norma que provém do ”quase” produto interno (ZIOO).
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Demonstracgao:

Segue, de (123), (I234) e (CI=3), que:

2

- 2
7o ==, (7.225)
4
~ 2 (=) (1“—ibn2
‘f “‘ - 2
1
=1 (an® +b,?) (7.226)
e
N 2 n .bn 2
| = [ttt
:Z(anz—i—bnz), paracada neN. (7.227)
Logo, para cada N € N temos
N 2 N 2
> [fem =[fof +Z\f mf - 3 [Fm)
n=—N n=1
(C=zz3),(E=z=3),(E2=23) Q. 1 N 1 N
o 2 2
- n bn - n b
1 +4;(a + )+4;(a +b,2)
a 1/ N
o 2 2
- >y n bn
.] az N N
o 2 2
== n b2 . 7.228

Logo, de um critério da comparagdo, na versdo complexa e da Proposigdo ([CZ3), segue
(00
- 2
que a série numérica E ‘f (n)‘ é convergente em R.

n=—oo

Lembremos que o sentido da convergéncia da série acima serd
o 2 N 2
> [ =tim Y [fn)
N—oo
n=-—o00 n=—N

Além disso, passando o limite, quando
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em (ZZ3), obteremos:

o 2 N 2

Z }f (n)‘ = lim Z ’f (n))

n=oo NHOOn——N
(z=z=3) 1(a? o n
—) . ! 0 2 2
= 1\}520 2<2 +;an +;bn>]

_1 (a"z + i an’ + ibn2>
2 = n=1 n=1

@) 1
<
< oo lfR,
completando a demonstragao.
Observacao 7.4.3
1. Seja f € SC([-L,L]; R) entdo
= () G
f0) =" —
0 =5
G'SR &
2
=1 (-0

Sen €N, teremos:

(c=3) a, —1ib,

an ‘QGR an + 1bn

2
= ()
(z=3) A, + 10y,
2
@ +1b,

2_—
a, +1iby
2

an,bn€R an, — 1bn

f (—n)

367
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ou seja,

?(n) =t (—mn), para cada M EZ. (7.229)

2. Seja f € SC(R; R) uma fun¢do 21 -periddica e consideremos a fun¢do h: R — R,
dada por
h(x) = f(—x), para cada x € R. (7.230)

Entdo, teremos que h € SC(R; R) e também serd uma funcdo 2 L-periddica.

Além disso, para n € Z, temos que:

~ 1 (t nn
() = T JL h(x) e % dx
1 L : LT
= 5T JL f(—x) e T X dx
y = —x, logo: dy = —dx 1 (L
< x =—L, logo: y=1L > ZHJ f(y)e’i%(’y) (—dy)
x =1L, logo: y=—L t
o
- ZL 1 y y
=F (),
15to €,
h (n) = f (—m), para cada MeEZ. (7.231)

3. Sejam f,g € SC([-L,L]; R) e x € R.

Entao, para cada n € Z, teremos

f+g)m) =Ffm)+gMm), (7.232)
(af)(n) = af(n). (7.233)
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De modo semelhante, , para cada n € Z, teremos:

4. As conclusées do Coroldrio ([ZZ1) permanece vdlido se a fungdo f é a wvalores
complezos, isto €, se f € SC([—L,L]; C).

De fato, se f: [—L,L] — C ¢é seccionalmente continua em [—L,L], entdo existem
fungées u,v € SC([—L,L]; R), de modo que

f(x) =u(x)+1iv(x), para cada x € [—L,L]. (7.234)
Com 1sto, para n € 7, seque que:

~ @ 1 [ nm
f(n) = ﬁ‘[ f(x)e "' *dx
L

234 ] L N ¢
= _J [u(x) +iv(x)] T dx
2L ) ¢
ropriedade da integral definida 1 L snm 1 L e
prep = ZJLu(X)e_lLdeJriZJLv(x)e“Lxdx
= am)+iv (). (7.235)
Logo, para cada n € Z, temos:
~ 2 L =
‘f (n)‘ —FTm)T(n)
(r=z=:3)
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Portanto, para N € N, seque que

N
> [fmf m)z{ )P+ ()P +1 [ (-0 ()= @ ()7 (—n)}
n=—N

N

) N
oo NG P+ ] 1Y ()T ()~ § () ()]

n=—N n=—N

N N N
= > EEP+R P +i | Y Gy - ) G mv (-

n=—N n=—N n=—N

N N
m=-n, enL() ZE: [ | _+| ( )|} +1 {[(_41)§\h1)—— :E: {[(——ﬂl){;(ﬂl)
n=—N n=—N m=N
N
=Y [l mF ] (:237)
n=—N

Como, u,v € SC([-L,L]; R), do Coroldrio (CZ), seque que as séries numéricas
SHmE e Y BmP
n—oo n—oo

serdo convergentes.

Logo, deste fato e de ([CZ3W), seque que a série numérica
o0 R 2
> [f)
n—oo

€ convergente e, além disso:

S [fof m)z[ )P+ 9 (f]

(Z3) parauwev) ]
< _
- 2L
Hfll2

(el + v11?)

(m)

ou seja, vale uma desigualdade de Bessel para o caso da fungdo f ser a valores
complezos, isto €, se f € SC([—L,L]; C), temos que:

> [Fof < 5o i, (7.238)

Como consequéncia da desiguladade de Bessel temos o:
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Corolario 7.4.2 (Lema de Riemann-Lebesgue, na forma real) Seja f € SC[-L,L]; R)
e consideremos a série de Fourier associada & func¢do f, isto é, (I53) (ou ([CI=3)).
Entao:

lim a, = lim b, =0, (7.239)

m—oo n—oo

onde, para cada m € {0}UN en € N, os nimeros reais a, e bn, sdo dados por ([LIED)
e ([Ix73), respectivamente.

Demonstragao:
Notemos que, da Proposigdo (Z2), segue que as séries numérica

o o
E am2 e E bm2
m=1 n=1

sdo convergentes em R.
Logo, do critério da divergéncia para séries numeéricas, segue que
lim a,’ = lim b, =0,
m—oo n—oo
0 que implicard que:

lim a,, = lim b, =0,
m—oo n—oo

completando a demonstracdo do resultado.

Na forma complexa o resultado acima torna-se-a:

Corolario 7.4.3 (Lema de Riemann-Lebesgue, na forma complexa)

Seja f € SC([-L,L]; R) (respectivamete, f € SC([—L,L]; C)) e consideremos a série
de Fourier assoctada a fungdo f, na forma compleza, isto €, dados por ([CZZ2).

Entao

lim f (n) =0, (7.240)
n|—oo
ou seja,
lim f (n)= lim f (n)=0. (7.241)
n—oo n——oo
Demonstracgao:

Observemos que, do Coroldrio (Z1) (ou do item B. da Observagdo (CZ3)), temos que
as sé€ries numeérica -
Y [fm
n=—oo
é convergente em R (respectivamente, C).

Logo, como consequéncia do critério da divergéncia para séries numéricas, visto em Andlise
I, segue que

‘2

lim f (n) = lim f (n)=0,
n—oo n——oo

como queriamos demonstrar.



372 CAPITULO 7. SERIES DE FOURIER

7.5 Convergéncia Pontual da Série de Fourier

A seguir iniciaremos o estudo da convergéncia da série de Fourier associada a uma funcgao
f € SC([-L,L]; R).

Nesta secdao estudaremos a convergéncia pontual da série de Fourier e na préxima secao a
convergéncia uniforme.

Antes porém, vale observar que dada uma fungéo f € SC([—L,L]; R), que satisfaz

podemos estendé-la a uma fungdo F: R — R, que é 2 L-periddica e que seja seccionalmente
continua em cada intervalo [a,b] C R, da seguinte forma:
Consideremos F: R — R dada por

F(x) =f(x — 2k L), (7.242)

onde
x—2kL e [-L,L],
para algum k € Z.

Dominio de f
A

—L x — 2kL L x

Com isto temos a:

Definicao 7.5.1 Definamos
SCper(2L) ={F:R — R; F € 2L-periddica e seccional/. continua em qualquer [a,b] C R}

e
Cper(2L) ={F: R = R; F é 2L-periddica e continua R}.

Observagao 7.5.1
1. Observemos que os conjunto
SCper(Z L) € Cper(z L)

tornam-se espagos vetorias sobre R, quando munido das operagbes usuais de soma
de fung¢des e multiplicagdo de numero real por uma fungdo.

A verificagcdo destes fatos serd deirxada como exercicio para o leitor.

2. Se f € SCper(2L), para cada x, € R, denotaremos por

f(x7)=lim f(x) e f(x;)= lim f(x). (7.243)

(o} l o
X—Xg X—Xq
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3. Podemos indentificar de maneira natural, o espaco vetorial SC([—L,L]; R) com
SCper(2L).

Para 1sto dado f € SC([—L,L]; R), redefinimos , se necessdrio,

para que a fung¢do f assuma o mesmo valor nos extremos do intervalo [—L,L].

Com 1sto podemos considerar sua extensao 2L-periddica a R, que pertencerd a
SCper(2L), como vimos em ([CZZ32).

Analogamente, se F € SCp:(2L), entdo sua restrigdo ao intervelo [—L,L], perten-

cerd a SC([-L,L]; R).

4. Se f € SCher(2L), entdo a série de Fourier de f estard bem definida (ou seja, os
coeficientes de Fourier estardo bem definidos).

Logo,
QG nrm nm
SIfl(x) = > + ; an COS (T x) + b, sen <T x) , (7.244)
onde
an = L JL f(x) cos <nnx> dx (7.245)
L) L ‘
1 (t nm
b, = I f(x) sen (T x) dx, para cada n €N, (7.246)
-L
ou
SIfI(x) = ) f(n)e ™, (7.247)
onde
N 1 (t
f(n) = ﬁj f(x)e ' T *dx, para cada neZ. (7.248)
L

Iniciaremos o nosso estudo da convergéncia pontual da série de Fourirer estabelecendo o
seguinte resultado:

Lema 7.5.1 Seja f € SCyer(2L), diferencidvel em [—L,L], exceto em um numero finito
de pontos, e de modo que que f' € SC,er(2L).
Suponhamos também que a funcao f seja continua em x =0 e que

£(0) = 0. (7.249)

Entdo a série de Fourier da funcdo f, converge para 0, no ponto x = 0, isto €,
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fazendo x =0 em ([CZZ4), respectivamente ([C2Z1), teremos:

0  w o
>+ ; a, =0 = f(0), (7.250)
respectivamente, Z f (n) =0=1(0). (7.251)

Demonstragao:
Demonstraremos a identidade para a forma complexa da série de Fourier, isto é, provare-
mos que

o) N
> fm)=lim f(n)=0.

N—oo
_ n=

Para isto consideremos a fungdo g : R — R, dada por

f
ei?(X—X)_]’ paraxe[—L,O)U(O,L]
g(x) = (7.252)
.. T/(01)
—iL =0
i ——» parax
e de modo que
g(x+2L)=g(x), paracada xe€R. (7.253)

Observemos que existem

De fato, pois:

(7.254)

Notemos que

f — f O —=z3
111(1)1 (Xx)—o() =) f'(07), que existe pois f' € SC_er(21L) (7.255)
x—0F —

€
. 1 1
oot et 1 d { }
— |e' ¢
x—0 dx x=0
L

=—. (7.256)
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Logo, de (2=3), (Z8) e (Z54), segue que

L
9(07) = £/(0) —
L

= —i=f'(0")
Tt
= 4(0),

portanto existe g(0") e é igual a g(0).
De modo semelhante, teremos:

_ .
gw)(=)£g9w)
=) 11%1 glx+2L)
x+2LE(-L L) e (ZZ53) .. f(x + 2L)
= lim —=

x—0~ e'T (+21) 1

f(x+2L)=f(x) lim f(x)

x—0— el T X el2m _

6'1271:1 . f(‘x)
= 1 —
x—=0~ e'TX — ]

X0~ x—0 ett*—1
x—0
e L
i
L
— i f(0
P10,

isto é, existe g(07).
Observemos que f € SCper(2L) e a funcéo

s T
x —=e't*—1

é continua e 2 [-periédica em R, e sé se anula em x = 0, no intervalo [—L, L].

Afirmamos que g € SCper(2L).

De fato, pois, devido a observagdo acima, além dos pontos onde a funcdo f tem uam
descontinuidade de 1.a espécie em [—L,L] (que sdo, no maximo, um nimero de pontos do
intervalo [-L, L]), o tinico ”"problema” da fungdo g no intervalo [-L, L] seria x = 0, mas nesse
ponto existem os limites laterais, como vimos acima.

Logo, do Lema de Riemman-Lebesgue, na forma complexa, (isto é, do Corolario Z3))
segue que

lim g (n)= lim g (n)=0. (7.257)

n—oo n——oo
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Por outro lado, para cada n € Z, temos que:

s ez 1 EEEN
f(n) = ZLJLf(x)e L *dx
=) lJL g(x) (e't*—1) et T xdx
2L )
propriedades da integral definida l J'L (X) e_i (n? KN dx — l JL (X) e_i % X dx
- 20 ), ° 20 ), 9
2Z3) com n—len ~
(=23 com Ggn—1)—g n). (7.258)
Logo, para cada N € N, teremos:
N ~ ~ ~ ~
Y fM)=F(=N)+f(=N+1)+-+f (N=1)+F(N)
n=—N
G N-1) =g (NI +[G (-N) =g (~N+ 1]+
+Ig(N=2)—g(N=D]+[g(N—=1)—g (N)]
=g (—N—-1)—g (N). (7.259)
Portanto,
o N N
n_Zoof (n) = 15130nZNf (n)
= 1im [§ (-N-1)—g (N] =0,

ou seja,

Y F =00

Portanto a série de Fourier associada a funcgdo f, em x = 0, converge para 0 = f(0), como
queriamos demonstrar.

O

Observacao 7.5.2

1. A demonstragdo do Lema (CE) actma mostra, na verdade, que a convergéncia

[e.e]

da série de Fourier, na forma complez,a Z f (n), ocorre em um sentido mais
n=—oo
forte, a saber,
M

lim Y f(n)=0

N—oco n=—N

M—oo
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e nao apenas no sentido de valor principal, 1sto €,
N

~

lim f(n)=0.
N—oo
n=—N
De fato, pelo que vimos da demonstragdo do Lema (C2) actma (veja a identidade

(=2m3) ) temos que:

Zf N)+f (=N+ 1)+ (M=T1)+Ff (M)
n=—N
=) 6 (CN-1) =G (=N +[G (=N} =G (=N +1)] +---

+lgM=2)—gM-1)+[g (M—=1)—g (M)]

N—oo
N =N M—o0
=g(—N—-1)—gM) — 0, devido a (Z57). (7.260)

Portanto, de ([Z60), seque que

lim Zf

N—oo n=—N

M—o0

2. A soma (Z5Y) € dita soma telescépica.

Podemos agora tratar do resultado principal, a saber:

Teorema 7.5.1 Suponhamos que f € SCp,er(2L) € uma fungdo diferencidvel em [—L,1],

exceto em um numero finito de pontos, que f’' € SC,(2L) e x, € R.

s . . . N fxg) +f(x;)
Entao a série de Fourier associada a fungdo f, em x,, converge, para ; “

. 2 7
15to €,
f(xj)—l—f(xg} nm nm
> —I— ; a, cos (T xo> + b, sen (T x0> , (7.261)
onde
1 L
n =T JL f(x) cos <nTﬂ x) dx,
1 L
b, = I JL f(x) sen <nTﬂ x) dx, para cada neN,
ou
f(X§)4‘f(X5) — - 1Ty
5 = Z f(n)et T (7.262)

L
f(n)= J f(x)e"'T Xdx, paracada MmEZ. (7.263)
L
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Demonstracgao:
Consideremos a transformacdo T : R? — R?, dada por

f(xt f(x;
T(x,y)i(x—xo,y— (XO); (XO)), para cada (x,y) € R%. (7.264)

Observemos que

( f(x§)+f(xo)><)( £xg) + ;) f(xg)+f(xo))
T Xo ) Xo — Xo

2 2 2
=(0,0) e
- + -
T(x,(x)) = (x—xo,f(x) ) erf(xo ))
Definamos a fungdo g : R — R, dada por
f(x>) 4+ f(x;
g(x) =f(x+x) — M, para cada x € R. (7.265)

2

Entdo os pontos do gréfico da fungdo g, sdo da forma:

s 900) (3 = 10 201
2, <Z o, f(z) W)
=1z, 1(2)
FE T (X A+ X, F(X + %)) (7.266)

para cada x € R.
Observemos que

=0 "o’ (7.267)

=l o (7.268)
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Logo, de (ZE1) e (CZE3), segue que

9(0") +9g(07) T [flxd) —flxg) | flxg) —f(xg)
2 2 2 2
1
=3 [f(xg) — x5 ) 4+ fxg) — f(xg)]
=0. (7.269)
Observemos que como f,f’ € SCper(2L), de (CZE3), segue que g, g’ € SCper(2L).
A verificagdo destes fatos serdo deixados como exercicio para o leitor.
Definamos a fungdo h: R — R, dada por
g(x) + g(—x)
hx)={ 2 para x € [-L,0)U (0, L] ) (7.270)
0, parax =0

h(x+2L) =h(x), paracada xé€R.

Com isto teremos que h,h' € SC,e(21).

A verificagdo destes fatos serdo deixados como exercicio para o leitor.
Além disso, a fungdo h é continua em x = 0.

De fato, pois

lim hix) 7 L pi 99
x—0+ x—0F 2

9(0") +9(07)

=) ) @)

0 (0).

Logo
— o=

lim h(x)

x—0

h(0),

mostrando a continuidade da fungao h, em x = 0.

Aplicando o Lema (&) para a fungdo h (notemos que a fungdo h satisfaz todas as
hipétese do Lema, verifique!), teremos que

0o N
;;EU”ZJE;Z%?W)

=0 =h(0). (7.271)
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Mas, para cada n € Z, temos que:

rzm) e (0z) § (D) 4+ g (—n)
2 b

(n) ( paracada neZ. (7.272)

Logo, para cada N € N, fixado, teremos

N N ~ ~
~ | (czo) g(n)+g(-m)
£ e § s

n=—N

S g o« gl-n)
:n—ZN 2 +n—ZN 2

N N
< temos que: Z g(n)= Z g (—n)>
N n=—N n=—N
=D
n=—N

Q)

(n). (7.273)

Por outro lado, para cada n € Z, segue que:

1 L : N7
=) J g(x)e T *dx

2L ),
=) 1 [ Cfxg) HF(xg) ] inay
= 37 JL {f(x—i—xo) > e T Tdx

L
propriedades da integral definida 1 _{inm
= — f(x +%x,)e " T *dx — —
2L,

Yy =x+X,, logo: dy = dx
= < na l.a integral fazendo: x = —L, logo: y=—L+x, > =
x =1L, logo: y=L+x,

L+xo N ) .
L e g LI (! e
-L

T 2L 2L 2
—i DT (y—xo) . L
yofly)e 0 WY :eZL-per,e(EIIE) lJ' f(y)e_i%yei%"" dx
2L )
1) +f(x) [0 inny
— Z 5 JL e "L *dx
nr 1 (" nn T f(xD) +f(x)) [F _in=
=e' T X | — LTy S Sh LA S B -1
et LL 7Lf(y)e L dx} 71 > JLe L *dx
-~ SN 1 f + f N L s M
EVE (et - 3T flxo) £1lxo) jZL o) JL et T Xdx. (7.274)
Observemos que, para cada n € Z fixado, temos que:
. 2L, paran =0
s x=L
_inmy _ -1t x L . )
J_L e L *“dx (< . TL”[ S [e—lnﬂ o e+1n71] — O, para n 7é 0 (7.275)
—i5" —inm -~ ”
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Assim, para cada n € Z, de (Z74) e (Z74), segue que

-~ f(xt) + f(xy)
gn={ FO-"  para =0 (7.276)
f(n)e X, para n # 0.
Logo
N N T _ N R R N B
Z f(n)einf"o_w: Z f(n)ei"—l_"xo +f(0)_f(xo);f(xo)
n=N N=-N,N#0 ) com nyo_ ~~
= g (0) (=Zm) com n:Oa(n)
(=Zm) .
=" g
n=—N
h) — ~
(=5) Zh(n)N_mO,
n=—N
devido a (ZZZ1), ou seja
> -~ N f + f N
Z f(n)e'™ X = (XO); (%) )
como queriamos demonstrar.
O

Observacao 7.5.3

1. A demonstra¢do do Teorema ([Z21) acima € devido a P.R.Chernoff (1980).

2. O Teorema ([Z21) actma, nos diz que nas hipdtese do Teorema (C2), a série de

Fourier associada a fungdo f, converge para a média do valor do salto da funcgdo
f, em x,.

3. Se além de satisfazer as hipéteses do Teorema ([C2) acima, a fungdo f for
continua em X,, entdo teremos que
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Logo, de ([Z2B1), respectivamente, ([C2Z62), seque que

QG — nrm nm
f(xo) = > + ; a, cos (T xo> + b, sen <T xo) , (7.277)
ou
fxo) = Y f(n)e T, (7.278)
onde,
1 (* mm
On = f(x) cos (T x) dx, para cada me{0}UN, (7.279)
-L
1 (* k7t
b, = I f(x) sen TX dx, para cada k€N, (7.280)
-L
ou
f + f nN - s LT
(Xo) —;— (Xo) — Z f (n) elTXo , (7281)
onde,
N 1 (* -
f(n)= 71 J f(x)e "' T *dx, paracada neZ. (7.282)
L

4. Em particular, se f € C'(R; R) é uma fungdo 2L-periddica entdo, do Teorema
(=) acima, a série de Fourier assoctada d fungdo f converge, pontualmente,

z

para a funcao f, em R, isto €, para cada x € R, teremos

f(x) = % + ; a, Cos (nTﬂ x) + b, sen (nTﬂ x) , (7.283)
ou
f(x) = i fn)e'tx, (7.284)

onde, para cada m € {0}UN, k € N en € Z, os coeficientes a,,, by e ?(n), sdo
dados por ([ZM), (CZ2T) e (Z8J), respectivamente.

Aplicaremos, a seguir, as ideias e resultados acima a dois exemplos os quais jd foram
calculados os coeficientes de Fourier anteriormente.

Exemplo 7.5.1 Consideremos a func¢do f: R — R, dada por

— e[-1,0
f)=4 = P ¥ =1,0) : (7.285)
x, para x €[0,1)
satisfazendo
f(x +2) =f(x), paracada x€R. (7.286)

Estude a convergéncia da série de Fourier associtada a funcdo f.
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Resolugao:
Neste caso, temos
L=1

f(x) =|x|, paracada xe&[—1,]1]

e satisfaz (C2=8).
A representagdo geométrica do grafico da funcéo f, é dada pela figura abaixo.

A

l Onda Dente de Serra l

Vimos, no Exemplo ([Z24), para cada n € N, vimos que

b =0,
(zz=3) 1
Q, = E)
Clzn( — ) )
az 1 r-n: —4
i 2n+ 1)’

ou seja, a série de Fourier associada a funcdo f serd dada por:
4 & 1
Sifl(x) =z —— —— s cos[(2n+1)mx] . 7.287
[f1(x) 2 #%(an)z I Jmxl ( )

Observemos que f € Cp.;(2) e a fungdo f’ é seccionalmente continua em qualquer intervalo
[a,b] C R, pois, de (Z83), temos que

f'(x) =—1, paracada xec(—1,0) e f’(x)=1, paracada x¢€ (0,1).

Logo, do Teorema (IZ5) e do item B. da Observagdo (Z23), segue que a série de Fourier

associada a fungdo f (isto é, (C'Z87)) converge para a funcéo f, pontualmente em R, isto é,
1 4 &
flx) ==z—— ———cos[(Zn+1)mx ara cada x € R. 7.288
(6)=3 72 > Gaygp esl@ntmd, b (7.288)

n=0

O
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Observacao 7.5.4 Em particular, seque que

0 =" f(0)
(m)comX:O1 4 s 1
« - ——— cos[(2n+ 1) 0]
2w a1y ~ ’
n:()( n+ ) =1, para todo neN
1T 4L !
_Z_F;(znﬂ)z’
oo 1 7.[2
1sto €, Z(2n+1)2 3

Exemplo 7.5.2 Conisderemos a func¢do f: R — R, dada por

flx) = 0, para cada x€[n,0) ou x=m (7.289)
m, para cada x € [0,m)

satisfazendo
f(x +2m) =f(x), para cada xecR. (7.290)

Estude a convergéncia da série de Fourier associada a funcgdo f.

Resolucao:

Neste caso, temos que
L=m.

A representacao geométrica do grdfico da funcdao f, € dada pela figura abaizo.

y

—2m —TT

Onda Quadrada

Vimos, no Eezemplo (C23), que a série de Fourier assoctada & fungdo f € dada por:

> 2
+;2n+1 sen[(2n+1)x)] . (7.291)

SIf](x) =

N A
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Observemos que f € SCper(27) € a fungdo f' € seccionalmente continua em qualquer
intervalo [a,b] C R.
De fato, pois
f'(x) =0, para cada x¢€ (—m,0)U(0,7).

Logo, do Teorema (E) e do item @. da Observagdo (C23), seque que a série de
Fourier assoctada a funcgao f, converge para funcao f, pontualmente em R, exceto nos
pontos da forma

x=km, paracada €7,

pois a funcao f ndo é continua, somente, neste pontos de R, ou seja,

para cada x € R com x # km, para cada k € Z.
Notemos que, do Teorema ([Z2), em x =0 teremos:

sen[(2n+1)x)], (7.292)

NI:\

7 (zzm) f(07) 4 f(07)
2 2
() e (Czm) T
= 5 Z sen 2n+1) 0]

=0, para todo neN

7T
5

Notemos que, do Teorema (CE), em x = Tt teremos:

7 (=) (") +f ()
2 2
(=) e (=) T Z S \sen[(21+ 1) 7
=0 =0, para todo n€EN
o
=5
Notemos que, do Teorema ([ZE), em x = —7 teremos:
() f(=m") +f (—77)
2 2
(=2) « (== ; Z sen[(2n + 1) (—m)]

:0 =0, para todo neN

7T
7

s :
Como a fung¢do f € continua em x = 5 pelo do Teorema (2) e do item 3. da

Observagao (C23), temos que a série de Fourier associada d fungdo f serd convergente
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T\ . 3
para f (E)’ 1sto €,

2
(C=ZED) e (Z=T) TT > 2 |: 7T ]
< T 2 T
2+;2n+1 sen | ( n—H)z)
=(-1)n, p;r,a todo neN
T - 2
_I ERL
DA e )

ou seja,

7.6 Convergéncia Uniforme da Série de Fourier

O objetivo desta segdo é apresentar um resultado que garanta a convergéncia uniforme da

série de Fourier associada a uma fungdo periédica "bem comportada”.

Para a demonstragao desse resultado precisaremos de alguns outros, entre eles da:

Proposigao 7.6.1 Consitderemos f € SCper(2L) que seja uma fungdo

diferencidvel em

[-L,L], exceto em um nimero finito de pontos, e de modo que f’ € SCpe(2L).
Entdo os coeficientes de Fourier, na forma compleza, da fung¢do f e da fung¢do f’,

se relactonam da seguinte forma:

ﬁ(n) = l?—ﬂ? (n), para cada n € Z,
ou seja, se
SIfI(x) = ) f(n)e T
entao

SET(x) =) i%r?(n)ei“ﬁ.

Em relagdo aos coeficientes de Fourier, na forma real, associados
mos que:

ao/:O)
nm
/
oS P
nm
b, =——a,, paracada MnecN,;

L

(7.293)

(7.294)

(7.295)

a fungdo f, tere-

(7.296)
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onde

a, >
S[ﬂ = 711)0 + ; an‘bn +bn d)n

a,’ >
n __ Yo
S[f ] —7wo+;an/wn+bn,¢n)

com, para cada m € {0}UN en € N, as fungbes \ e ¢n, dadas por (CIZ6) e (CIZT),
respectivamente.

Demonstracgao:

Observemos que se a identidade (Z23) ocorrer, entdo as identidades em (CZ9H), também
OCOITErao.

De fato, pois:

a’ =V 257 (0)
()gmn:O)Z (O?(O))
=0,
n,_ .bn, e
Gn Z 10 EED T ()
2
(Z=3) inn?(n)
L
(=) in7m (a, —iby
N L 2
nr . N7
—b,+1—an
L 5 L , paracada neN,
ou seja,
an’:nTﬁbn e bn’z—nTﬂan, para cada mn €N,

isto é, vale as identidades em ([CZ98).
Mostremos que a identidade (Z93) ocorre.

Para isto notemos que, para cada n € Z, teremos, por integracdo por partes para a integral
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definida, que:

— (m) 1 L ST
f’'(n)" = ﬁj f/(x)e T *dx

—

3

u=e T logo: du=—i%e T *dx
dv = f’(x) dx, logo: v = f(x)

1
2L

como queriamos demonstrar.

Observacao 7.6.1

1. Observemos que a tdentidade (293), nos diz que quanto mais derwadas a fungdo

f twer, mais rdpido a sequéncia dos coeficientes de Fourier decai a zerom quando
n, tende a +oo (ou quando n, tende a too para os coeficientes complezos de
Fourier associados A funcao f).

Para ver isto, observemos que se a func¢do f: R — R for uma func¢ao 2 L-periddica
que € duas vezes diferencidvel, exceto em um numero finito de pontos do intervalo
[—L,L], e f” € SCper(2L) entdo, para cada n € Z, teremos:

o~ —

£ (n)=(f)"(n)

(===3) ‘LTI,T[FT (n)

= (). (7.297)

Em geral, para k € N fizado, se a fungdo f: R — R for uma fungdo 2 L-periddica
¢ k-vezes diferencidvel e f*) € SCper(2L), podemos mostrar, por indugdo, que que

: K
f) (n) = (%T) f(n), paracada neZz.

A verificagcao deste fato serd deixada como exercicio para o leitor.

Observemos que se f, f' € Cper(2L) e f” existe, exceto em um niumero finito de
pontos de [—L,L], e satisfas " € SC,..(2L) entdo, podemos afirmar que a série de
Fourier assoctada a func¢do f, converge uniformemente para a funcao f, em R.
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De fato, do Lema de Riemann-Lebesgue (isto é, do Coroldrio (Z3)) aplicado a
fungdo f”, seque que

lim f7 (n) =0.
n|—oo
Logo, da Proposigio (E232), segue que a Sequéncia numeérica (ﬁ (n)) serd
nez
limitada, ou seja, exite M > 0 tal que
£ (n)‘ <M, paracada MmEZ. (7.298)
Mas, para cada n € Z, com n # 0, temos que:
‘f (n)et T X = ‘f (n)‘ }elnT""‘
~
TEWASN L 2 —
() < ) ()
inm
ISR
= f (n ‘
p—. (n)
(=Zm8) ML? 1
< —5—, paratodo x €R. (7.299)
™ n
1
Como a série numérica Z — € convergente (é uma p-série, com p > 1 - veja

(B2m3) ) seque, de ([Z99) e do Teste M.de Weierstrass (isto é, do Teorema (EZ3)),

que a série de fungodes
S Fn)e

n=—o00
(a série de Fourier, na forma compleza, associada d funcdo f) serd uniformemente
convergente, em R para alguma funcdo g:R — R.

Notemos que, do Teorema (L), seque que a série de Fourier associada d fungdo
_f converge pontualmente para a fungdo f, em R, pois a funcdo f é continua em
R.

Portanto, das duas conclusées acima segue que
Z fn)e T, (7.300)

para x € R, onde a convergéncia da série de fungdes (300), serd a uniforme em
R, isto €,

'T17T

N
Z f(n) e ™ "=F f(x), unifomemente em R. (7.301)

Na verdade temos um resultado um pouco mais geral, a saber:
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Teorema 7.6.1 Consideremosf € Cyer(2L) que seja uma fungdo diferencidvel em [—L, L],
exceto em um numero finito de pontos deste intervalo, e satisfazendo f' € SC,.(2L).

Entdo a série de Fourier associada a funcao f, converge uniformemente para a
funcao f, em R, isto ¢,

lim
N—oo

N
% + ; a, cos (nTﬂ x) + b, sen (nTﬂ x>] = f(x), uniformemente em R, (7.302)

onde, para cada m € {0}UN e k € N, temos que:

1 (" 1 (" k
A = T JL f(x) cos (%T x) dx, e by= T JL f(x) sen (Tﬂ x) dx, (7.303)
ou
N ~
lim Z f(n)et T X="f(x), uniformemente em R, (7.304)
N—oo —
onde, para cada n € 7, temos que:
~ 1 (*  n
f(n)= 7T JL f(x)e T *dx. (7.305)
Demonstracgao:

Faremos a demonstragdo de (Z304).

A demonstragdo de (Z302) é consequéncia da demonstracdo de (C304) e seus detalhes
serdo deixados como exercicio para o leitor.

Notemos que, para cada N € N, temos:

i ‘?(n)‘:‘?(O)‘+ Yy ‘?(n)]
n=—N

1<In|<N

= o+ Y | =f (n)l

1<In|<N
=1 |~ L 1 =
= o+ Y i 7 ()]

1<n|<N

] }
() |~ L 1 — 2
Prolt( £ ) (e
1S|T1|SN| | 1<In|<N
o :
" L 1 =~ 2

<sfol+ X ) (X [Fo

1<nI<N n=-00

=

f’€SCper(2L) e Coroléario (ZZ) - veja (EZ23) | L 1 1
< fo)+= — | =
< Ol X ] gl
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:‘?(O)M% (Z%) £/ - (7.306)

Como ' € SC,er(2L) segue

167 = <[Lf(x) dx)z < oo. (7.307)

Logo, de ([308) e ([Z307) segue que a sequéncia das somas parciais

N o~
(2 )
n=—N NeN
€ limitada.

Como ela também é mondtona, do Teorema (EZ1), segue que serd convergente, ou seja,

existe N
Y [Fm]=tm 3 [Fm].

n=—oo

o9}

Como a série numérica E ‘f (n)‘ é convergente segue, do Teste M.de Weierstrass (isto
n=—oo

é, do Teorema (BE3T), que a série de fungdes

i f(n)e'T >

(a série de Fourier, na forma complexa, associada a fungdo f) serd uniformemente convergente
para uma funcdo g: R — R, em R.

Notemos que, do Teorema (L), temos que a série de Fourier associada a fungdo f,
converge para a funcgdo f, pontualmente em R, pois a funcdo f é continua em R.

Portanto, das conclusdes acima, segue que

f(x) = i f(n)el T, (7.308)

para x € R, onde a convergéncia da série de fungdes (303), serd a uniforme em R, isto é,

N
Z f (n)et T X Mo f(x), unifomemente em R,,
n=—N
completando a demonstragao.
O
Nas condigées do Teorema (IZE1), podemos mostrar que a desigualdade de Bessel, isot é,
(CZ) é, na verdade, uma igualdade, isto é:



392 CAPITULO 7. SERIES DE FOURIER

Teorema 7.6.2 Consideremos f,g € C,er(2L) daus funcdes que sdo diferencidvers em
[—L,L], exceto em um numero finito de pontos deste intevalo, satisfazenod f',g’ €

SCper(2L).
Entado
1 =~
51 (F:9) Z f(n)g( (7.309)
Em particular
1 ) = - 2
S Il :n;o‘f ml, (7.310)

que € conhecida como a Identidade de Parseval.

Demonstracgao:
Notemos que, do Teorema (ZE), segue que sa séries de Fourier associadas as fungoes f
e g, convergem uniformemente para a fungdo f e g, em R, respectivamente.

Em particular, teremos

[e o]

=) f(n)e> (7.311)

n=—oo

Z g (n)eTx (7.312)

para x € R.
Logo, do item B. do Corolario (EX3T), segue que:

1 (zzm) | L —
77 (60 = 50 | fa gl ax

(=) | JL T it |
= — f(n)e't g(x) dx
i | fmee

) L
convergéncia uniforme de (Z=I) e o item O. do Coroldrio (E=21) 1 Z |:J
—L

— - 1 . —i DT

n_goof (n) [ﬁ J_L g(x)e T dx}
d -~ ] L nm

=3 T |5y | gmeerax
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completando a demonstragdo da identidade ([Z203).
Para obtermos a identidade (IZ310), basta considerarmos g = f em (Z209) e obteremos a

mesma, completando a demonstragao do resultado.
O

Observagao 7.6.2

1. O Teorema (CB3) pode ser gemeralizado para situagbes mais gerais, cOmo por
ezemplo, se f,g € SCper(2L), ou até f € L*([-L,L]; R), o conjunto formado pelas
fungdes definidas em [—L, L], a valores reais (ou complezos) que tenham gquadrado
Lebesgue-integrdvel em [—L, L].

2. Em termos dos coeficientes de Fourier, na forma real, assoctados a uam funcao f
que satisfaca as hipdtese do Teorema (LBE3), as relagbes ([3M) e (Z10) tornar-
se-@o:

1 o
T (fig) ===+ ; Ay Ay + by By) (7.313)

o0

2 4 b2 (7.314)

1
—If||? =
e 1l

onde

a, >
SIf) = S bo + ; an Vn + bndn

A, =
€ S[g]—Tﬂr’o"f';Anll)n_i_Bnd)n)

onde, para cada m € {0}UN e k € N, as fungdes P, € ¢i, sdo dadas por (LIZ3) e
(I=3), respectivamente.

Para mostrar i1sso basta notar que, para:

——— (=) 0 Ao
-2 2
AoER Qo Ag
==
(T=3) an_ibnm

2 2
An ,Bn€R an _lbn An +an

2 2
1
—[lan A +ba B +1 (a, B — b ALl ; (7.316)

3
i = n i n n .Bn
neN: f(-n)g(—m) = 4 —Zlb A —;l

An,BneR a, + lbn An - 1Bn
N 2 2
1
=7 [an Ay + by By +1(—a, By + b, AL . (7.317)

(7.315)
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Logo
1 (=m) = =
C(fha) = zn;of (n)g (n)
N
=2 ngrolonZNf (Mg (n)

N
us Z |/|) . a, AO 1 .
— 2 lim { 1 + E Z[anAn—I—ann—i—l(—aan—l—bnAn)]

N

1

n n/\n an i an_ n/‘n

+;4[aA+b +i(a bA)]}
N

a, A, )

== +]\}£1(}OZ1(anAn+ann)

a, A, >
- 2 +Z(anAn+ann)>

n=1

como queriamos demonstrar.

3. No caso real, a indentidade de Parseval, tornar-se-d:
L= 1Y (a2 +b.) (7318)
L 2 — " e '

4. A identidade de Parseval pode ser muito util, tanto na forma compleza, isto €,
(=1Mm), como na forma real, o seja, (Z31R), para, por exemplo, encontrarmos a
soma de certas séries numeéricas que sabemos sao convergentes, como veremos em
alguns exemplos a segquir.

Apliquemos as ideias acima aos seguintes exemplos:

Exemplo 7.6.1 Consideremos a func¢do f: R — R, dada por e

, (7.319)

fx) = {—x, para cada x € [—1,0)

X, para cada x€[0,1)

satisfazendo
f(x +2) =f(x), paracada xé€R.

Estudar a convergéncia da série de Fourier associada a funcao f.
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Resolugao:
Vimos no Exemplo (Z5), que

f(x) = E rrZZ Zn—H) cos[(2n+1)mx)], paracada x € R,

onde a conververgéncia da série de funcdes acima é pontual em R.
Em particular, para cada n € N, vimos que

b, =0,
=
a0,
_l’.ﬁ —4
on = —. 7.320
e (2n+1)72 7 (7.320)

Como f € Cper(27) e ' € SCper(27) segue, do Teorema (IZE), que a convergéncia da
série de Fourier associada a funcgdo f, serd uniforme em R.

Logo, da identidade de Parseval, para o caso real, (isto é, do item 2. da Observagéo
(B3)), segue que (com L =1):

12 > —4 (==0) 0
- + e + I
2 ;|:(2TL+])27T] Z (a

=R

J] f(x)? dx
-1

f é fungdo par

1
g/ 2
= 2 J_] f(x)” dx

1
(=) 2 J x? dx

0
- 2 [X_3 X_1]
3 x=0

ou seja,

y .7
— (2n+1)" 9%’

Exemplo 7.6.2 Consideremos a fung¢do f: R — R, dada por

f(x) = sen(10x) 4+ 5 cos(5x) —2 sen(20x) — 4 cos(11x), (7.321)
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para cada x € [—m,7), e satisfazendo
f(x+2m) =f(x), para cada x€R.
Estudar a série de Fourier associada a funcao f.

Resolucao:
Observemos que, neste caso,
L=m.

Notemos que cada fungbes que sdo as parcelas da fungdo f tem 27 como um de seus
periodos.

Deixaremos a verificagao deste fato como exercicio para o leitor.

Com isto segue que

f(x) = sen(10x) +5 cos(5x) —2 sen(20x) —4 cos(11x), paracada x € R.

Logo teremos f € C2,(27) e, do Teorema (IZET), segue que a série de Fourier associada

a funcdo f ird convergir uniformemente para a fungdo f em R, isto é,

sen(10x) 4+ 5 cos(5x) — 2 sen(20x) —4 cos(11x) (==) £(x)

(Z=m) com L=n Qo

= > + Z a, cos(nx)+ b, sen(nx), (7.322)

n=1

para x € R, onde a convergéncia da série de fungdes acima é uniformemente em R.
Comparando, na identidade (Z322), o lado direito como o lado esquerdo, observamos que:

b, =0 para n# 10,20,
bio =1, by =—2,
a, =0, para n#5,11,
as =5, para a;; =—4,
isto é, S[f](x) = sen(10x) + 5 cos(5x) —2 sen(20x) —4 cos(11x),, paracada x € R,

ou seja, € a expresssdo da fungdo f é a expansdo da fungdo f em série de Fourier, em [—7t, 7.

O
Temos o seguinte exercicio resolvido:
Exercicio 7.6.1 Consideremos a fung¢do f: R — R, dada por
f(x) =x, para cada x € [—m,m), (7.323)

satisfazendo
f(x +2m) =f(x), para cada xé€R.

Estude a série de Fourier associada a funcgao f.
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Resolugao:
Notemos que, neste caso,
L=m.

A representacdo geométrica do grafico da funcdo f, no periodo fundamental, é dado pela
figura abaixo.

ir

Notemos que f € SCyp (2 7) e a fungdo f ' é seccionalmente continua em qualquer intervalo
[a,b] CR.
Observemos que
f'(x) =1, paracada xé& (—m,mn).

Logo, teremos que f’ € SC,.(27) e assim, do Teorema (L&), segue que a série de Fourier
associada a funcdo f, converge pontualemnte, para

f(x™) +f(x7)
2 )
para cada x € R.
Notemos que a fungdo f é uma fungdo impar em (—7, 7).
Logo, do item 4. da Observagdo (33) (veja (C164)), segue que

a, =0, paracada n=€{0}JUN. (7.324)

Por outro lado, para cada n € N, teremos:

com L=Tt ] T
(53) com T—[J f(x) sen (nx) dx

. P 2 ("
f é fungdo impar J

by

7T Jo

u=x, logo du = dx
dv = sen(nx), logov = —M

xsen(nx) dx

n
2 [ cos(nx) [ J“ cos(n x) ]

== | x—= —| -/ dx
T n —  Jo n
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=(—1)" para cada neN =0 para todo neN
2 cos(n ) sen(nx) |77
n n x=0
2
= (=1 =, (7.325)
n

Portanto, substituindo (323) em ([324), obteremos:

f + — 1 n+]
x ) sen(nx), para cada x € R.

_M8

Observemos que se
Xo #km, paracada keZ,

entdo a fungdo f serd continua em x,.
Logo, nesses pontos, a série de Fourier associada a fungdo f, no ponto x,, convergira para
a f(x,), isto é

7.7 Notas Historicas

A seguir vamos fornecer um breve relato do desenvolvimento da teria associada as séries de
Fourier.

1. d’Almbert (1747) e Euler (1748) encontraram solugdo geral para a equagdo da onda em

R?:
0%u 0%u
W(t,x} e —(t,x) =0, paracada (t,x)eR?, (7.326)
dada por:
u(t,x) =F(x+t)+G(x—t), paracada (t,x)eR?, (7.327)

onde F,G € C*(R; R).

2. D.Bernoulli (1753) afirmou que a equagdo da onda ([Z3Z8), deveria ter solugdo da forma
(caso L=m) :

u(t,x) = Z a, sen(nx) cos(nt), paracada (t,x)e€[0,00)x[0,7]. (7.328)

n=1
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3. Lagrange (1759) afirmou que a equagdo da onda em [0, 1] (caso L = 1), com dado inicial
dado pela fungdo f, e velocidade inicial dada pela fungdo g, deveria ser dada por:

1 o0

Z [ sen(nmy) sen(nmx) cos(nnt)} f(y) dy

n=1

u(t,x) =2J

0

—FZJ1 i {% sen(nmy) sen(nmx) sen(nﬂt)} g(y) dy, (7.329)

0 n=1

para cada (t,x) € [0,00) x [0, 1].
Ovservagao:

Se fizermos t = 0 em (Z3Z9) e trocarmos a integral com a série de fungbes (precisarfamos
garantir que podemos fazer isso), obteremos:

] o =1, para todo neN

Z sen(nmy) sen(nmtx) cos(nmO) f(y) dy

n=1

o) —ui0,n) =g |

0

+2 J] i % sen(nmy) sen(nmtx) sen(nmO) g(y) dy

0 _
n=1 =0, para todo neN,

1 o
=2 L Z [ sen(nmy) sen(nﬂx] f(y) dy

[5-2]

00 1
= ZZ Jsen(nﬂy)f(y)dy sen(nmx),
n=1 0

NV
n-ésimo coeficiente de Fourier.

para cada x € [0, 1].
4. Fourier (1811) obteve os coeficientes de Fourier associado a algumas fungdes e escreveu
as séries de senos e cossenos de vdrias fungoes.

Segundo consta, ele dizia que qualquer fungdo periédica poderia ser expressa por uma
tal série.

Mais tarde foi mostrado que isso, em geral, nao é verdade !

5. Dirichlet (1829 e 1837) foi um dos primeiros a reconhecer que nem toda fungédo periédica
poderia ser representada por uma série de Fourier.
Produziu os primeiros critérios de convergéncia das séries de Fourier.

6. Riemann (século XIX) propds econtrar condicdes necessdrias e suficientes para que uma
funcdo pudesse ser representada por uma série de Fourier.

Como estas questdes estavam ligadas a integragdo de fungdes, neste instante, comega o
desenvolvimento mais profundo da teoria de integragdo de Riemann.
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de Bois e Reymond (1876) construiram uma fungdo continua, cuja série de Fourier
divergia em um ponto.

Mais tarde, construiram uma outra para o qual a série de Fourier divergia num conjunto
denso de R.

Féjér (1909) exibiu exemplos, relacionados o problema acima, mais simples.

Dini (1880) obteve critérios para a convergéncia da série de Fourier, conhecio como
teste ou critério de Dini.

. Jordan (1881) demostrou outro critério de convergéncia da série de Fourier, denominado

teste ou critério de Jordan.

Observacao: Todos estes trabalhos, e muitos outros, conduziram a uma melhor com-
preensdo das fungdes descontinuas e propiciaram os trabalhos de Harnack, Hankel, Borel
e Lebesgue, culminando com a introdugdo de um novo conceito de integracdo, a saber,
a integral de Lebesgue.

Assim comecga a teoria moderna das séries de Fourier.

Riesz e Fischer (1907) mostraram a convergéncia da séire de Fourier na norma || - ||2,
para fungdes, cujo médulo, ao quadrado, sdo Lebesgue-integraveis em [0, L].

Carleson (1966) mostrou que para uma fungdo, cujo médulo ao quadrado é Lebesgue-
integrdavel em [0,L], a série de Fourier associadada a mesma converge, exceto num
conjunto de medida de Lebesgue zero, para a prépria fungao.

7.8 Exercicios



Capitulo 8

Aplicacao de Série de Fourier as EDP’s

Faremos uso da teoria das séries de Fourier desenvolvida no capitulo anterior, para resolver
alguns problemas aplicados relacionados com algumas EDP’s importantes.

Na verdade trataremos de alguns problemas fisicos que envolvem EDP’s (Equagdes Dife-
renciais Parciais).

8.1 O Problema da Conducao do Calor em um Fio

O objetivo é encontrar a temperatura em cada ponto de um fio finito, cujo comprimento é
igual
Le(0,00),
os quais conhecemos a temperatura em cada ponto do mesmo no instante inicial t = 0, sendo
o que o fio estd isolado termicamente (imagine que o fio estd dentro de um isopor) e cujas
extremidades sdo mantidas a 0° C, ao longo de todo o processo.
Se imaginarmos que o fio é o intervalo

0,LICR

e que u = u(t,x), nos fornece a temperatura no ponto x do fio, no instante t, para cada
x € [0,L] ete[0,00), entdo, matematicamente, o problema acima corresponde a encontrar
uma fungao

u=mu(t,x), paracada (t,x)e€[0,00)x[0,L],

que satisfaz:
Matematicamente, o problema acima corresponde a encontrar um fungao

u=mu(t,x), paracada (t,x)e€[0,00)x [0,L],

que venha satisfazer o seguinte problema:

aa—?(t,x) = oczzzTL;(t,x), para cada (t,x) € (0,00) x (0, L) (8.1)
u(0,x) =f(x), paracada xe€[0,L], (8.2)
u(t,0) =u(t,L) =0, paracada te[0,00). (8.3)
ue C([0,00) x [0,L]; R) N C*((0,00) x (0,L); R). (8.4)

401
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A condigdo (ET) nos diz que, no instante inicial, isto é, t = 0, a temperatura no ponto
x € [0, L] do fio é igual a f(x)°C.

A condigdo (E3) nos diz que a temperatura nos extremos do fio igual a 0°C, ao longo de
todo o processo, isto é, para t € [0, c0).

A Equagdo Diferencial Parcial (ET) é denominada Equagao do Calor.

A constante @ € (0,00) estd relacionada com a condutibilidade térmica do fio, isto é,
depende do material que o fio é feito.

No nosso caso, vamos supor que

x=1,

para facilitarmos as contas que iremos tratar.
Aplicando o método da separagdo de varidveis desenvolvido no inicio do Capitulo anterior
(veja (10)) obtemos que a fungdo u = u(t,x), deverd ter a seguinte forma (veja (Z3)):

b n? 2 7T
u(t,x) = Z boe 12 ‘sen (TLT x) , (8.5)
n=I

para cada (t,x) € [0,00) x [0, L].
Fazendo t = 0 em (BEX@) e utilizando (E3), obteremos:

fx) © wo0,x)

() com =0 Z b, sen <nTﬂ x) , (8.6)
n=I

para cada x € [0, L], isto é, precisamos saber expandir a fungdo f (o dado inicial) em uma
série de Fourier (em senos), em [0, L].

Observemos que o lado direito de (EH) (ou seja, a série de Fourier), caso seja convergente,
definird uma fungdo impar e 2 L-periédica.

Logo, precisamos estender a fungdo f, de modo impar e 2 -periédicamente, a R.

Notemos que para estender, de modo impar, a fungdo f ao intervalo [—L, L], basta consi-
derarmos a fungdo, que denotaremos por, F: [—L,L] — R, dada por:

Fix) = {f(x), para cada x € [0, L] . (8.7)

—f(—x), paracada x € [—L,0]

Notemos que (condicbes de compatibilidade):

x=0 em (E3)

£0) 2™ 40,0

t=0 em (E3) 0

"u(0,1)
x=L em (E2
:( ) f(]—) )

t=0 em (E3

ou seja,

£(0) = (L) = 0. (8.8)
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Logo como a funcédo f é continua em [0, L] e satisfaz (B3), temos que a extensdo impar
da mesma ao intervalo [—L, L], isto é, a fungédo F, dada por (B72), serd uma funcdo continua
em [—L,L].

A esquerda, na figura abaixo, temos ilustrado a representacio geométrica do grafico da

funcdo f, e a direitatemos ilustrado a representagdo geométrica do gréfico da fungdo F.

y Yy
y A

Notemos que

Logo

(E3) 0,
ou seja,
F(—L) =F(L) =0. (8.9)

Portanto, de (Ed), podemos considerar uma extensdo (na verdade, serd tinica) 2 L—periédica
da funcdo F a R, que indicaremos também por F, ou seja, F: R — R, serd dada por

F(x) =F(x+2kL), (8.10)
onde k € Z é escolhido de modo que
x+2kLe[-L,L]. (8.11)

Como f € C([0,L]; R) e satisfaz (EH), entdo teremos que sua extensdo impar e 21L-
periédica a R, isto é, a fungdo F, definida por (E7) e (ETD), satisfaz F € Cpe (2L; R) e serd
uma fungdo impar.

A verificagdo deste fato serd deixada como exercicio para o leitor.
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Logo a série de Fourier associada a fungdo F (e portanto da fungdo f) terd a seguinte
forma:

aQK — nm nm
S[f](x) = 5 + ; a, Cos (T x) + b, sen (T x) , (8.12)
onde
a, =0, paracada me{0JUN,

pois a fungdo F é uma funcdo impar (veja o item 4. da Observagdo (Z33), ou ainda, (154)
e, para cada n € N, teremos:

(cz=2) 1 t nm
b, = J_L F(x) sen< T x) dx

L
] L
:fJ e F(x) sen (%x) dx
T e
é impar

g

'
serd par

item 4. da servagdo ou ainda, (CIE3 2 L
tem 4. da Observagio (ZX3), da, (ZIE3) = J F(x) sen <nT7t x) dx
0

=2 [ nn
= J f(x) sen( 3 x) dx,

L Jo
ou seja,
an, =0, paracada me{0}JUN, (8.13)
b, = % LL f(x) sen (nTﬂ x) dx, paracada meN (8.14)

Logo, substituindo (BET3) em (ETJ), segue que a série de Fourier, associada a fungio f,
terd a seguinte forma:

S[fl(x) = i b, sen <nT7t x) , (8.15)
n=1

onde, para cada n € N, temos que o coeficientes b, serd dado por (ETI3).
Portanto, voltando a (E3X), segue que, uma candidata a solugdo do problema (ET), (EX2),
(E3), (EA), serd dada por:

2.2

u(t,x) = ibn e @ 'sen (nTﬂ x) , (8.16)

para cada (t,x) € [0,00) x [0, L], onde, para cada n € N, temos que

2 L

b, = I L f(x) sen (TLTTC x) dx. (8.17)

Para completar precisamos mostrar que a fungdo u = u(t, x), dada por (ETH), é realmente
solugdo do problema (ET), (E3), (B3), (EA), isto é:
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i. a série de fungbes (EIH) converge, para cada (t,x) € [0,00) x [0, L] ;

ii. a série de fungdes (ETIH) pode ser derivada, termo a termo, duas vezes em relagdo a x e
uma vez, relagdo a t, em (0,00) x (0,L) ;

iii. a funcdo u = u(t,x), dada por (BTIH), satisfaz (E), (E32), (B) e (EA).
Na verdade mostraremos que
u € C([0,00) x [0, L]; R) N C*((0,00) x [0,L]; R)

e que a série de funcbes (BETH), pode ser derivada, termo a termo, quantas vezes precisarmos,
tanto em relagdo a t, quanto em relagdo a x, em

(0,00) x [0, L],

se f € C([0,L)]; ) satisfaz (ER), é diferencidvel em [0, L], exceto em um nimero finito de
pontos de [0, L], de modo que f’ € SC([0,L]; R).

Notemos que, neste caso, a extensdo impar e 2 [-periédica da funcgdo f, a R, isto é, funcdo
F, dada por (ET2) e (ETD), ird satisfazer as seguintes condigdes: F € Cper(2L) é diferencidvel
em R, exceto um nimero finito de pontos de [a,b] C R, e F' € SCp,(2L).

Mais especificamente, provaremos o seguinte resultado:

Teorema 8.1.1 Suponhamos que f € C([0,L)]; R), satisfaz (BER), € diferencidvel em
[0,L], exceto um numero finito de pontos de [0,L], e f' € SC([0,L]; R).

Entdo a série de fun¢des (EI8), converge uniformemente em [0, 00) X [0, L], para uma
funcdo u, de modo que

we C0,00) x [0,1]; R) N C®((0,00) x [0,1]; R), (8.18)

e € solugdo de (ETD), (EX), (EQ)) onde, para cada n € N, o coeficiente by, serd dado por
(B13)), ou seja,

[l S}

u(t,x) =

i UL f(y) sen (nTﬂy> dy} e "t gen (TLTH x) : (8.19)
— Lo

1

Demonstragao:

Mostremos, primeiramente que a série de fungdes (ETH) (ou (ETU)) converge uniforme-
mente em [0, 00) x [0, L].

Para isto, observemos que, do Teorema (IZE1), segue que a série de Fourier associada a
funcdo f (na verdade, a sua extensdo impar e 2L-periddica a R), converge uniformemente
para a funcgdo f, isto &,

f(x) = Z b, sen <nTT[ x) ,  uniformemente em R,
n=I1

onde, para cada n € N, o coeficiente b, é dados por (ET7).
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Logo, fazendo t = 0 em (BIH), segue que a série de fungdes (ETd) (ou (EZTU)) converge
uniformemente para a fungao f em R, em particular,

u(0,x) =f(x), paracada xe€[0,L],

ou seja, a funcdo u, dada por (EI8) (ou (BETT)), satisfaz (E2).
Notemos também que, do Lema de Riemann-Lebesgue (isto é, do Corolério (Z3)) segue
que

lim b, =0.

n—oo
Em particular, (veja a Proposigdo (EZ33)) a sequéncia numérica (b, )ney serd limitada,
isto é, existe M € R tal que

lbn| <M, paracada neN. (8.20)

Paracadat, € (0, o0) fixado, mostremos que a série de fungdes (E-IH) (ou (E19)), converge
uniformemente em
[to)oo) X [O)I—] .

Para isso, observemos que para

(t,x) € [ty,00) x [0, L]

temos:
22 nm _n?n2 nm
bpe 2 'sen (Tx> = b, e 2 ' |sen (TXN
(B=23) fﬁto
<M Ze [ <1, para todo x€R
7n2 2 to
<Me 2 ", (8.21)
Para cada n € N, definamos

ch=Me 2 °>0. (8.22)

Afirmamos que a série numérica

nZ 2

i Cn = i Me 2 ' (8.23)
n=1 n=1

é convergente em R.
De fato, considerando-se a sequéncia numérica (d, )nen, oOnde

1
d, = —, paracada necN (8.24)
n
temos que:
e (E23 M o 2 °
lim S &=, Ve F
n—oo dp n—oo l
2
2
=M lim ——
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2
) . S
M lim ——
Xx—oo X T
e 2 °

Teorema (=3

)

L’Hapiti caso o M Lim dx
X—00 d XT T 4
—e 12 o

dx

X—00 2)(7'[ xzﬂzt
T o

o0
. . 1 . .
Como a série numérica E — € convergente em R (veja o Exemplo (E5TJ) , ou ainda,
n

n=1
(B2m3)) segue, do critério da razdo por limites, para séries numéricas cujos termos sdo ndo

negativos (veja o Teorema (BET5H)), segue que série numérica (EZZ3) é convergente em R.
Logo, (EZ20), (B=23) e do teste M.de Weierstrass (na verdade da Observagdo (E23)), segue
que a série de fungdes (BE1H) (ou (BET1)), converge uniformemente em

[tO,OO) X [O>L])

para cada t, € (0, 00) fixado.
Notemos que, para cada n € N, a fungdo

_n?n? nm
(t,x) — bpe 2 'sen (TX)

é continua em [0, 00) x [0, L].
Logo, do item 1. do Corolédrio (E231) (na verdade, do item 3. da Observagdo (E22)),
segue que, que
u e C([0,00) x [0,L]; R). (8.25)

Afirmamos que
ue C*((0,00) x [0,L]; R)

e que a série de fungdes (ETIH) (ou (B1d)), pode ser derivada parcialmente (a qualquer ordem),
em relacdo a t ou, em relagdo a x, termo a termo, em

(0,00) x [0,1].

Para isto, notemos que para t, € (0, 00) fixado, e para cada n € N, definamos a fungéo
u, : [ty,00) x [0,L] — R, dada por

2.2
u,(t,x) =bpe 2 " sen (n—ﬂ x) , (8.26)

para cada (t,x) € [t,,00) x [0, L].
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Com isto temos que, para cada n € N, segue que
u, € C*([to,00) x [0,L]; R).

Observemos também que:

ou, (&zm) 0 _# nm
m (t,x) = m {b C sen( 3 x)

ng ' sen <n—ﬂ x)
L

= L b e M sen <nT7tx) , (8.27)
para cada (t,x) € [t,,00) x [0, L].
Logo, para cada n € N fixado, e (t,x) € [t,,00) x [0, L], teremos:

ou, ey | n?m? _n2n2 nm
T 6| = | e sen ()
n? _n2g? nm
= e sen (1)
(=) _n2n2, —
<'M Z<e 12 ° paratodo t€[ty ,00) <1, para todo x€R
2 2 2.2
n-7r _nfr
SM—g-e o =5, (8.28)

spn =M e” 2 ', (8.29)

Teorema (E33) M 7'[2 . X
= >— lim
L X—00

L’'Hépital, caso 2: M 7'[2 ax

o0 —_—
LZ X_)wi X2712t0

(8.30)
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L’ Hop1ta1 caso % IM

2t, Hooiexzﬂzto

—3—M lim 2x
o Zto X—00 ZXT[Z x2 2 to
z ¢
3IMIL2 1

lim ———
27t2t 2 x“00 eXZL” to

Exercicio 0

e |
Como a série numérica Z = é convergente (veja o Exemplo (E513) , ou ainda, (E203))

n=1
segue, do critério da razdo por limites, para séries numeéricas cujos termos sdo ndo negativos

(veja o Teorema (B5H)), que série numérica

>
5o
n=1 n=1

2,2
Tt (8.31)

é convergente em R.
Logo, de (EZ3), (E=T) e do teste M.de Weierstrass (na verdade da Observagdo (E23)),
segue que a série de fung(")es

au“ (m) Z n 43 _n%zt sen (nTT[ x)

n=1

converge uniformemente em

Como a série de fungdes

o0 o0 7n2ﬁz n7‘[
Z]un(t,x):ane 2 'sen (TX>
n=

converge em cada ponto de [0, 00) x [0, L] segue, do item 3. do Corolério (E23T) (na verdade,
do item 3. da Observagdo (E233)), que a série de fungdes (ETTH) (ou (ETH)), pode ser derivada
parcialmente, em relacdo a t, termo a termo, em [t,,00) x [0, L], ou seja:

aa_ltl( ) a [Zb e %tsen (%x)]
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2 2.2
7T ncm n7
=—— an b,e 2 ' sen <— x) , (8.32)

para cada (t,x) € [t,,00) x [0, L].
u
Em particular, notemos que, (E=3), implicard que a fungdo — é continua em [t,,00) X

ot
[0, L], para cada t, € (0,0), ou seja,

aa—Lt‘ € C((0,00) x [0,1]; R). (8.33)

De modo semelhante, para cada n € N fixado e (t,x) € [t,,00) x [0, L], temos [t,,00) X
[0, L], para cada t, € (0, 00), temos que

0 0 n2 2
2,0 2 2 fove " sen ()|

0x 0x L
nm n? 72 nm
= by <—> e 12 'cos <—x>
L L
ni7t n? 2 t ni7t
= T b,e 12 Cos <T ) s (834)

assim

0 nm _n?n? nm
‘ LLn(t,x)‘(azzﬂl) '——bne 2 ' cos (—x)

ox L L
_ 07 |b,| e_nzL;2 ' |cos (—nﬂxﬂ
L i — L
(e=m) —nZnl
<'M Z<e L2 <1, para todo x€R
Mnn a2 to
< e 2 °=r,, (8.35)

onde, para cada n € N, definimos

e i o, (8.36)

Mas
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Mm . 3x%
= —— lim 5
L x—o 2x71 ngzto
2 toe
3ML X

d
L’'Hbpital, caso 22: 3ML . &X
= = lim ———
27‘(to x—o00 d Xzﬂzt
- 2 °
dx
3ML . 1
= 1m 22
27-[1:0 X—00 ngto e?to
3ML3 5 1
= — 1l ————
43 t02 X—00 X e"ZL;TZ to

Exercicio 0

[e.e]

Como a série numérica E — € convergente segue, do critério da razdo por limites, para
n
n=1
séries numeéricas cujos termos sdo ndo negativos (veja o Teorema (BT5H)), segue que série

numeérica

é convergente em R.
Logo, do teste M.de Weierstrass (na verdade da Observagdo (E23)), segue que a série de

fungdes
0
un (m)Z—b eT cos(%x)

n=1
converge uniformemente em
[ty ,00) x [0,L].

Como a série de funcgdes

2.2

Z u,(t,x) = Z bpe 2t sen(nTT[x)
n=I1

n=1
converge em [0, 00) x [0, L] segue, do item do Coroldrio (E23) (na verdade, do item 3. da

Observagdo (E233)), que a série de fungdes (EI8) (ou (BTU)), pode ser derivada parcial, em
relacdo a x , termo a termo, em [t,,00) x [0, L], ou seja:
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e 22
= Z TLTH bpe 2 ' cos (T%T x) , (8.37)
1

para cada (t,x) € (t,,00) x [0, L].

ou
Em particular, notemos que, (E=31), implicard que a fungdo x é continua em [t,,00) X

[0, L], para cada t, € (0,0), ou seja,

%GC((O,OO)X[O,L];R). (8.38)
Logo, de (BEZ3), (E3) e (E=3) , segue que
ue C([0,00) x [0,L]; R)NC'((0,00) x [0,L]; R) (8.39)

e que a série de fungbes (EH) (ou (BIJ)), pode ser derivada parcialmente, em relagdo a t
ou, em relagdo a x, termo a termo, em

(0,00) x [0,L].
De modo andlogo mostra-se que
u € C([0,00) x [0,L]; R) N C*((0,00) x [0,L]; R)

e que a série de funcles (ETH) (ou (BE1J)), pode ser derivada parcialmente, em relagdo a t
ou, em relagdo a x, a qualquer ordem, termo a termo, em

(0,00) x [0, L],

isto é:

oty Em) 0 MU | — w22, nm
a0 = D bue "t sen ()
(t,x) 2 e 12 sen 3 X

otkxm otk xm
©  Jktm n2n? | nmw
at X {bn e sen (T ")} )

n=1
para (t,x) € (0,00) x [0,L] e k,m € N.
A verificagdo deste fato serd deixada como exercicio para o leitor.
Finalmente, para cada (t,x) € (0,00) x [0, L], temos que:

2 2 oo n2 2
) = 2[5 e (U]
n=1

o 2 L
= 02 _n2n? nm
=3 g e e ()]

1

3
Il

M

2 oo () ()
e () ()]

7'[2 b _nznz Tt
=0 ; b,n’e 2 'sen <nT x) . (8.40)

1

3
Il

M

3
Il
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Utilizando-se (E=332) e (BZ0), obteremos:

ou 0%u () e (£2m) _n2n?, nm
a(t,x)—w(t,x) Zb n‘e 12 sen(Tx>

T 5 _ninty nm
— [—F ;bnn e 12 ~sen (_I_ x)]
:0)

para cada (t,x) € (0,00) x [0, L], isto é, a fungdo u: [0,00) x [0,L] — R, dada por (ETH)
(ou (BETM)), satisfaz a EDP (ETD), em (0, 00) x [0, L].
Além disso, para cada t € [0, c0), temos:

(ET1d)) com x=0 > _n?n2 nT7w
u(t,0) = Z bne 2 'sen (T O)
n=1 ~———
=0

e T127'[2
=Y e sen (T71)

n=1 ~———
ETH)) com x=L
=) - u(t) I—) )
isto é, a funcdo u = u(t,x), dada por (BE18) (ou (BE11)), satisfaz a condigdo (E3)).
Conclusao: A fungdo u:[0,00) x [0,L] — R, dada por

) = an e 12 'sen (nTﬂ x) , paracada (t,x)e€[0,00) x[0,L] (8.41)

é uma solugdo do problema (ET), (EX), (BA) e, além disso,
u € C([0,00) x [0,L]; R) N C*((0,00) x [0,L]; R),

onde os coeficientes
b., paracada neN,

sdo os coeficientes de Fourier da expansao impar e 2 L-periédica da fungdo f a R.

Observacao 8.1.1

1. Pode-se mostrar que a solugdo, dada por (EZD), € a unica solugdo do problema
na classe (E4).

2. De modo semelhante podemos tratar do problema de encontrar a temperatura em
cada ponto de um fio finito, de comprimento

L < (0,00),
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0s quatls conhecemos a temperatura em cada ponto do mesmo, no instante inicial,
1sto €, quando t = 0, supondo que as extremidades do mesmo nao trocam calor
com o meio ambiente, ao longo de todo o processo.

Se imaginarmos que o fio € o intervalo [0,L] C R e que a fun¢do u = u(t,x) nos
fornece a temperatura no ponto x do fio, no instante t € (0,00) entdo, matemati-

camente, o problema acima corresponde a encontrar uma funcdo uw = u(t,x), para
(t,x) € [0,00) x [0, L], que satisfaca:

2

a(t,x) = o %L(t,x), para cada (tx) € (0,00) x (0,L), (8.42)
u(0,x) =f(x), para cada xe€l[0,L], (8.43)
a—u(t,O)za—u(t,L)zo, para cada te€[0,00), (8.44)
0x 0x

ue C'([0,00) x [0,L]; R) N C*((0,00) x (0,L); R). (8.45)

A condi¢do (EZ3) nos diz que a temperatura no ponto x € [0,L] do fio é igual a
f(x)° C.

A condig¢ao (BEZ4) nos diz que os extremos ndo trocam calor com o meio ambiente.
A verificagao deste fato serd deixada como exercicio para o leitor.

No mnosso caso, vamos supor que
x=1,
para facilitarmos as contas.

Aplicando o método da separagdo de varidvets (como fizemos no item 2. da Ob-
servagdo (C2Z3) - veja ([28)), podemos mostrar que uma candidata a solugdo do
problema acima € a fung¢do u:[0,00) x [0,L] — R, dada por

- _nin? nm
u(t,x) = % +) ane 2 ‘cos <T x) (8.46)
n=I1

para cada (t,x) € [0,00) x [0,L], onde
a,, paracada ne{0JUN

sao os coeficientes da extensao par, 2L-periddica da funcdo f a R.

Neste caso, para cada n € {0} UN, teremos (veja o item 2 da Observagdo ([C23),
ou ainda, (CI832)):

an = % LL f(x) cos (nTﬂ x) dx. (8.47)

Com 1sto podemos provar o seguinte resultado, cuja demosntrag¢do € andloga ao
caso tratado acima e serd deixada como ezxercicio para o leitor.
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Teorema 8.1.2 Suponhamos que f € C([0,L)]; R) € uma funcdo diferencidvel, exceto
um numero finito de pontos [0,L], e além disso f' € SC([0,L]; R).
Entdo a série de fun¢bes (BZB) converge uniformemente em
[0,00) x [0, 1]
para uma fung¢do
u € C([0,00) x [0,L]; R) N C*((0,00) x [0,L]; R)
que € solugdo de (EZ2), (EZ3), (BZ4A), onde os coeficientes

a,, paracada n€{0}JUN,

sdo dados por (BZD).

Observagao 8.1.2 Pode-se mostrar que, como no caso anterior, que a solu¢do (BEZB) é
unica.

A seguir aplicaremos as ideias acima a um exemplo onde a temperatura inicial no fio, f,
é dada.

Exemplo 8.1.1 Determine uma solu¢do u = u(t,x) do problema:

2

Z—E:(t,x):%(t,x), (t,x) € (0,00) x (0,7), (8.48)
u(0,x) =f(x), para cada x€[0,m7], (8.49)
u(t,0) =u(t,n) =0, paracada te0,00), (8.50)
ue C([0,00) x [0,7]: R)NC*(0,00) x (0,7): R), (8.51)

onde f:[0,n] - R € dada por

X, para cada X € [O,g]
f(x) = . (8.52)
T
m—X, para cada X E (E,n}

Resolugao:

Neste caso temos que
L=m.

A representacdo geométrica do gréfico da fungdo f é dada pela figura abaixo.
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N

Consideremos a fungdo F: R — R, como sendo a extensdo impar, 2 rt-peridédica da fungao

fak.
Como

£(0) = f(rr) =0,

das observagdes feitas anteriormente (veja (B72) e o que segue a esta) segue que a fungdo F

serd continua R.

Observemos que a fungdo F: R — R, serd dada por:

e satisfazendo F(x + 27t) = F(x) para cada x € R.
A representacio geométrica do grafico da funcéo F, no periodo fundamental [7t, 71/, é dada

pela figura abaixo.

y

NI

s
—Xx —Tm, @paracada x € [—7’[,——}
—Xx, paracada x € [
X, @paracada xE€ [O,

7mT—Xx, para cada xe[—

2

71)0)

2

2]

Tt

(8.53)

")

2 )

N
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Como vimos anteriormente (veja (EZ1)), uma candidata a solugdo a fungdo u : [0, 00) X

[0,L] — R, dada por:

> n? 2 7T
u(t,x)£ane 12 tsen(TLTx>
n=1
e _n?A? nTm
= Z bpe 2 'sen (— x)
n=1 n
(8.54)

[0, L] onde, para cada n € N, temos que:

para cada (t,x) € [0,00) X

bn = EJ f(x) sen (nTTtx) dx

L
= %J f(x )sen(n—nnx) dx

% J f(x) sen(nx) dx

[ : ) sen(nx dx+J f(x) sen(nx) dx]
%
(ez3) 2 T
= = [ x sen(nx dx+J (7t —x) sen(nx) dx]
g
2 Z 7T T
= J x sen(nx) dx + 7 J sen(nx) dx —J x sen(nx)dx| . (8.55)
0 % %
Notemos que, para cada n € N, temos que
integragio por partes = 1 cdu=d
Jx sen(nx) dx fegragag por part e, oo dt * cos(nx)
dv = sen(nx)dx, logo: v=—=>"~
cos(nx) J cos(nx)
=— — | — dx
n n
cos(nx) sen(nx)
. (8.56)

= —X
n n
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Logo, do Teorema fundamental do Célculo, segue que:

b, (= 2 [ :
Tt

Tt T

JZ x sen(nx) dx + 7 J

. sen(nx)dx — J

x sen(nx) dx]

s
2

=3 l cos(n x)}
+ |7
x=0 n

NI

X=TT

(e=m) 2 cos(nx) sen(nx)
s |

xX=

B

2 mt €08 (n E) Sen <n§> 0 cos(n0) sen(no0)
)| 2 n R B {_ n n? }

. COS(TL ) B COos <Tl ﬂ)

n n

. cos(;wt) SenT(LTsz B _g cos <n 2) N Senf: 2)
B E L cos(n ) B cos (“g) B cos(nm)
om n n n
= % {—2 (—=1)"™ 4 cos (n g) . (8.57)

Observemos que:

—1)2 ara cada n pa
cos<n1[>: =1, par pat (8.58)
2 0, paracada n impar
Assim, para cada n € N, de (E=1) e (EB3), segue que
1
bZn - — [_2 - (_] )n]
n
4
banig = —. :
st = (8.59)

Com isto, segue que uma candidata a solugdo do problema (BZ3), (EZ9), (EX=0) e (E=D),
sera:

Zb e ™ sen(nx) (8.60)

para cada (t,x) € [0,00) x [0, L], onde os coeﬁc1entes b, sdo dados por (EXR3).
Observemos que f € C([0,7]; R) é uam funcgdo diferencidvel, exceto um nimero finito de
pontos de [0,L] e que f’ € SC([0,7]; R), pois

1, paracada xE€ (O , E)
£(x) = :
—1, paracada x € (%[ ,O)
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Logo, do Teorema (ET1), segue que a fungdo u = u(t,x), dada por (E&0), serd a (1inica)
solugdo do problema (EZ3), (EZ3), (EX0) e (EXD).
[
Temos o seguinte exercicio resolvido:

Exercicio 8.1.1 Determine uma funcdo u : [0,00) x [0,1] — R que seja solucdo do
problema:

ou 0*u
a(t,x) = W(t,x), para cada (t,x) € (0,00) x (0,7), (8.61)
u(0,x) =x, para cada xe€[0,m7], (8.62)
a—u(t,O):a—u(t,7t):O, para cada te€[0,00), (8.63)
0x 0x
ue C'([0,00) x [0,71]; R) N C3((0,00) x (0,7); R). (8.64)

Resolucgao:
Neste caso, temos que
L=m.

Notemos que o dado incial (veja (EB2), serd a fungdo f: [0, 7] — R dada por
f(x) =x, paracada x€[0,mn]. (8.65)

A representacdo geométrica do grafico da fungdo f é dada pela figura abaixo.

EE

Consideremos a funcdo F: R — R como sendo a extensdo par, 2 t-periédica da funcdo f a
R.

Logo, das observagdes feitas anteriormente (veja (BZ) e o que segue a esta) segue que a
funcgdo F serd continua R.

Observemos que a fungdo F: R — R, serd dada por:
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F(x) = |x|, paracada xe€ [—m,n], (8.66)

satisfazendo

F(x +2m) =F(x), paracada xé€R.

A representagido geométrica do grafico da funcgdo F, no periodo fundamental [, 7], é dada
pela figura abaixo.

Como vimos anteriormente (veja (EZH)), uma candidata a solugdo a fungdo u : [0, 00) X
[0,L] — R, dada por:

a = _nin? nT
=T L ane " oo ()
= @ n2 2 nm
"2 Z a, e F ' cos (? x)
+ Z a,e ™' cos(nx), (8.67)

para cada (t,x) € [0,00) x [0, 7], onde, para cada n € {0} UN, a, é o n-éismo coeficiente da
extensdo par, 2 m-periddica da fungdo f a R, ou seja, da fungdo F.
Logo para cada n € {0} UN, teremos:

a, (=) % JL f(x) cos <nTT[ x) dx
0
L;”T% r f(x) cos( ﬂx) dx

0
Jﬂx cos(nx)dx. (8.68)
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Notemos que, para cada n € {0} U N, segue que:

integragio por partes u=x, logo: du = dx
Jx cos(nx) dx "EECLE < » 08

dv = cos(nx) dx, logo: v = =2

sen(nx) J sen(nx)
=X — dX
n n
sen(nx) cos(nx)
= x + . (8.69)

n n
Logo, de (BE3), (EBY) e do Teorema Fundamental do Cdlculo, teremos:

2 s
a, = — | xcos(nx)dx
T

@m) 2 [ sen(nx) cos(nx)] "
= — X —l— 3
s n n x=0
=0 para todo ne{0}UN =0 para todo ne{0}UN =1 para todo ne{0}UN
— —— —
2 sen(n ) cos(n ) sen(n0) cos(no0)
= + o= |0 + 5
T n n n n

B E cos(nm) B l
B n? n?
2[(=1) — 1]
= 8.70
n’m ( )
Substituindo (B770) em (EE), obteremos
0, paran par € —2, para n impar
/_/%
2 (=)™ =1
2
t,x) = e ™ cos(n
u(t, x) ; T (nx)
g —4 2
_ —(2m+1)~t
= ————e¢ cos[(Z2m+1)x 8.71
para cada (t,x) € [0,00) x [0, 71].

[
Observemos que f € C([0,7]; R) é uma fungéo diferencidvel em (0, 7t), pois
f'(x)=1, wparacada xe (0,mn),
logo f’ € SC([0,7]; R).
Logo, do Teorema (EZTT), segue que a funcdo u: [0,00) x [0,71] — R, dada por (BZZD) é
a (dnica) solugdo do nosso problema (EET), (EB2), (BEE3) e (EBA).
Na verdade
u € C([0,00) x [0,L]; R) N C*((0,00) x [0,L]; R),
como afirma (ET3H).
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8.2 O Problema da Corda Vibrante

Consideraremos dois problemas associados as vibragdes de uma corda finita num plano, a
saber:

8.2.0.1 Corda Vibrante com as Extremidades Fixas

Trataremos a seguir do problema de encontrar a posigdo, em cada instante, de cada ponto
de uma corda de comprimento L, que vibra num plano, cujas extremidades da mesma estdo
presas.

Denotemos a amplitude da vibragdo em cada instante, t € [0,00), em cada ponto, x €
[0, L], da corda por u = u(t,x).

A figura abaixo ilustra a situagdo acima.

Y

Perfil da Corda no Instante t > 0

Entdo, um modelo matemadatico que estd associado a esse problema serd o de encontrar
uma fungdo uw: [0,00) x [0, L] — R que satisfaca:

2 2

aaTLZL(t,x) =c? %(t,x), para cada (tx) € (0,00) x [0,L], (8.72)
u(0,x) =f(x), paracada xe€[0,L], (8.73)
aa—:'(o,x) =g(x), paracada xe€[0,L], (8.74)
u(t,0) =u(t,L) =0, paracada te[0,00), (8.75)
ue C([0,00) x [0,7]: R)NC*((0,00) x (0,7); R), (8.76)

onde a constante c?, é uma constante que estd relacionada com a tensdo e a densidade da
corda.

A condigdo (BE73) nos diz que, no instante inicial, isto é, t = 0, o deslocamento do ponto
x € [0, L] do fio é igual a f(x).

A condigdo (B774) nos diz que, no instante inicial, isto é, t = 0, a velocidade do desloca-
mento do ponto x € [0, L] do fio é igual a g(x).

A condigdo (BEZ7H) nos diz que as extremidades do fio igual estdo presas, ao longo de todo
0 processo, isto é, parat € [0, 00).

A Equagdo Diferencial Parcial (E72) é denominada Equagao da Onda.
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Esta equagdo é um exemplo importante de uma classe de EDP’s do tipo hiperbdlica.
Para simplificarmos as contas, consideraremos o caso em que

c=1.

O caso geral serd deixado como exercicio para o leitor.
Aplicaremos o método da separagéo de varidveis ao problema (B72)), (E23), (BEZ4), (EH)
e (BE7@), isto é, tentaremos solugdes de (BEZ2), (E3), (BAE) e (BEZA) e (BEZA), do tipo

u(t,x) =9P(t)p(x), paracada (t,x)e[0,00) x [0,L], (8.77)

onde P :[0,00) 2 Red:[0,L] - R.
Notemos que, supondo que as fungdes \ e ¢ sdo duas vezes diferencidveis em (0, 00) e
(0,L), respectivamente, entdo, para cada (t,x) € (0,00) x (0, L), teremos:

ou &z 0
=60 S S (1) o]
— (1) b(x), (8.78)
o*u f x) = 0 [ou ¢
i =2 {a( ,x)]
Em 0
= S0 (1) b(x)]
= "(1) b(x), (8.79)
it = L i) pix)
X 0x
= (1) ' (x), (8.80)
o’u 0 [ou
Tt =2 {a( ,x)]
= 2 i) o ()
X
= (1) "(x), (8.81)
Substituindo (EZ79) e (BE=1) em (B72), obteremos:
0?2 02
0= =5 (t,x) = 55 (t,%)
EDEED ) dx0) vt b (%), (8.82)

para cada (t,x) € (0,00) x (0,L).
Supondo que
u#0,

ou seja, a solugdo trivial ndo nos interessard, deveremos ter
Y(t), d(x) #0,

para algum (t,x) € (0,00) x (0,L).
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Logo, dividindo (B=22), por

obteremos:

vt ¢ (x)

ou ainda, =

Vt)  x)

Portanto, deveremos ter:
vy ")
W(t) $(x)

para cada (t,x) € (0,00) x (0,L), ou seja, teremos:

P ”(t) = —AP(t), paracada tec (0,00), (8.83)
¢"(x) =—-Ad(x), paracada x € (0,L). (8.84)

Notemos que, para cada t € [0, 00), de (EZ73), segue:

V(1) $(0) "="u(t,0)

=) (1) d(L), (8.85)

Como P (t) # 0, para algum t € [0, 00) (pois caso contrério, teriamos u(t,x) = 0, para
todo (t,x) € [0,00)x € [0,L]), dividindo ambos os membros da identidade (E=3), por V(t),
obteremos

$(0) =0 = d(L). (8.86)

Portanto, de (E=4) e (EZD), segue quea fungdo ¢, deverd satisfazer o seguinte problema
(dito problema de valor de contorno):

¢"(x) =—-APp(x), paracada xec (0,L) (8.87)
$(0) = ¢(L) =0, (8.88)
¢ € C([0,L]; R) N C*((0,L); R), (8.89)

que ja foi tratado anteriormente (veja (CZ0), (22) e (23)).
Vimos que, para cada n € N,




8.2. O PROBLEMA DA CORDA VIBRANTE 425

e que
$(x) = dn(x) = sen (nTﬂ X> , (8.90)

para cada x € [0, L].
2

)
Temos também que, a solugdo geral da EDO (BE=3) (com A = A, = an ) serd dada por

P (t) = Acos (nTﬂ t) + B sen (nTﬂ t) (8.91)

para cada t € [0, c0).

A verificagdo deste fato serd deixada como exercicio para o leitor (veja (=4), com x =t
e A como acima).

Assim, do método da separagdo de varidveis, para cada n € N, , de (BE@0) e (E™0), temos
que a fungdo u, : [0,00) x [0,L] — R, dada por

Un(t,x) =Pn(t) dnlx),

para cada (t,x) € [0,00) x [0, L] serd da forma:

un(tyx) = d)n(t) (bn(x)

(550) < (=) [An cos (nTﬂ t) + B, sen (nTT[ t)] sen (nTﬂ x)

= A, cos (nTﬂ t) sen (TLTH x) + B, sen (TLTH t) sen (nTﬂ x) , (8.92)

para cada (t,x) € [0,00) x [0, L], serd um solugdo de (E72) e (EZH).
Logo, formalmente, temos que a fungio u: [0,00) x [0,L] — R, dada por:

=) > [An cos (nTn t) sen (nTﬂ x) + B, sen (nTﬂ t) sen <nTrr X)] , o (8.93)

para cada (t,x) € [0,00) x [0,L], serd uma candidata a solugdo para o problema (EZ72),
(BE3), (EE) e (E1@)) e (BE@).

Para que a fungdo u, dada por (E3), seja solugdo do problema, ela deverd satisfazer a
condigdo (B73)), ou seja:

f(x) =u(0,x)
=1, para todo neN =0, para todo neN

t=0 em (ET3) Z A, coS (n_ﬂ 0) sen (nT7T x> + A, sen (nTT[ O) sen (nTﬂ X)
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para cada x € [0, L], isto é, a fungdo f (ou melhor, sua extensdo impar e 2 L-periédica a R)
deverd possuir uma expansdo em série de Fourier (no caso, uma série em senos), ou seja:

An

ramuas 2 L
(=== —J f(x) sen (nTﬂ x) dx, paracada ne€N. (8.94)

0

Por outro lado, para a fungdo u, dada por (BE@3), satisfazer (EZ74) (supondo que possamos
derivar parcialmente, a série de fungdes, termo a termo, em relagdo a t), deveremos ter:

g(x) =" aa—u(0>x)
S i Aw cos (7 t) sen (S x) + B sen (1) Se“<nhﬂx>}}
cuidado ! i% [An cos (nT t) sen (nTT( x) + B, sen (nT t) sen (nTTt X)]
t=0

5 ([ () T () 0 s (70) ] (7))

=0, para todo neN =1, para todo neN
——T

o nm nm nm AT N nn nm
= Z —A, sen (T O) | sen <T x) + B, cos <T O) T sen (T x)
= i B, TL_T[ sen (TL_T[ x) , (8.95)

para cada x € [0, L], isto é, a funcdo g (ou melhor, sua extensdo impar e 2 L-periédica a R)
deverd possuir uma expansdo em série de Fourier (no caso, uma série em senos), ou seja, para
cada n € N, deveremos ter:

JOL g(x) sen <nTT[ x) dx,

ou seja,

J sen x) dx
Lnm

2
== J sen x) dx, (8.96)

paracadan € N
Portanto uma candidata u: [0, 00) x [0, L] — R, a solugdo do problema dado inicialmente,
sera:

i [A cos ( t) sen (ﬂTn x) + B, sen (nTn t) sen <nT7T x)] , (8.97)

n=1
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para cada (t,x) € [0,00) x [0, L] onde, para cada n € N, temos que os coeficientes A,, e By,
sdo dados por:

2t nm
A, = I Jo f(x) sen <T x) dx. (8.98)
B, = —2 JL (x) sen (—nﬂx> dx (8.99)
" onm |, g L ’ '

Com isto podemos enunciar o seguinte resultado, cuja demostragdo serd deixada como
exercicio para o leitor:

Teorema 8.2.1 Suponhamos que f € C*([0,L]; R) e g € C'([0,L]; R),
f(0) =f(L) =f"(0) = f"(L) = g(0) = g(L) =0. (8.100)

Entdo a série de fungdes (BEX21), converge uniformemente em [0, 00) x [0, L] para uma
funcado
ue C*[0,00) x [0,L]; R),

que € solugdo de (BE3), (EZ3), (EZ@) (EZ@) onde, para cada n € N, os coeficientes A,
e Bn, sdo dados por (ETB) e (E9), respectivamente .

Observacao 8.2.1 Pode-se mostrar que a solugdo, dada por (BH1)), acima € dnica na
classe (E7A).

8.2.0.2 Corda Vibrante com as Extremidades num Trilho Vertical

Podemos tratar, de modo semelhante, o problema de encontrar a posigdo, em cada instante,
de uma corda de comprimento L, que vibra num plano, cujas extremidades estdo variando
em um trilho vertical.

A figura abaixo ilustra a situagdo descrita acima

l Corda Vibrante com as Extremidades sobre um Trilho Vertical l

Yy
A

Se denotarmos a amplitude da vibracdo em cada instante t € [0,00), em cada ponto
x € [0,L] da corda pela fungdo u : [0,00) x [0,L] — R (veja a figura aciam), entdo um
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modelo matematico que estd associado a esse problema é que a fungdo u que satisfaca as
seguinte condigoes:

0? 0?

a—tlzl(t,x) = czﬁ(t,x), para cada [0,00) x [0,L], (8.101)
u(0,x) =f(x), paracada xe€[0,L], (8.102)
0

a—t:(o,x) =g(x), paracada xe€[0,L], (8.103)
0 0

0=, 1)=0, paracada te0,00), (8.104)
0x 0x

ue C([0,00) x [0,7]: R)NC*((0,00) x (0,7); R), (8.105)

onde c? é uma constante que estd relacionada com a tensdo e a densidade da corda.

A condigdo (ETA) nos diz que, no instante inicial, isto é, t = 0, o deslocamento do ponto
x € [0, L] do fio é igual a f(x).

A condigdo (ETO3) nos diz que, no instante inicial, isto é, t = 0, a velocidade do desloca-
mento do ponto x € [0, L] do fio é igual a g(x).

A condigdo (BETT29) nos diz que as extremidades do fio igual estdo variando em um trilho
vertical, ao longo de todo o processo, isto €, para t € [0, 00).

Trataremos, como anteriormente, o caso em que

O caso geral serd deixado como exercicio pra o leitor.

Aplicaremos o método da separagdo de varidveis ao problema (BETOT), (BETO2), (BETO3),
(BI2M) e (EImT), isto €, tentaremos solugbes de (ETTOT), (ETY), (ETO3) e (E129) e (EI0H),
do tipo

u(t,x) =9P(t)d(x), paracada (t,x)e[0,00) x [0,L], (8.106)

onde P :[0,00) 2D Red:[0,L] - R.

Notemos que, supondo que as fungdes P e ¢ sdo duas vezes diferencidveis em (0,00) e
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(0, L), respectivamente, entdo, para cada (t,x) € (0,00) x (0, L), teremos:

ou exm) 0

(
S0 = S () ()
=V '(t) d(x),
*u 0 [ou
W(tﬂ() Y {a(tﬂ()}
(exm) 0
= 1) o(x)]
=1 "(t) d(x),
R0 = 2 pit) i)
X ox
=t d'(x),
0%u 0 |[Ju
Thitx =2 [a“”‘)]
= 2 i) ¢ ()
X
= ll)(t) ¢ ”(X) y
Substituindo (BET0R) e (BE110) em (ETIOT), obteremos:
0? 0?
0= =5 (t,x) = 55 (t,%)

(ETO3) « (ETID)

V() d(x) —b(t) d"(x),

para cada (t,x) € (0,00) x (0,L).
Supondo que
u==0,

ou seja, a solugdo trivial ndo nos interessard, deveremos ter
Y(t), d(x) #0,
para algum (t,x) € (0,00) x (0,L).

Logo, dividindo (BETTTT), por

obteremos:

429

(8.107)

(8.108)

(8.109)

(8.110)

(8.111)
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Portanto, deveremos ter:

G N 1459
P(t) $(x)
para cada (t,x) € (0,00) x (0,L), ou seja, teremos:
P’ (t) =—AYP(t), paracada te (0,00), (8.112)
¢"(x) =—-Ad(x), paracada x € (0,L). (8.113)

Notemos que, para cada t € [0, c0), de (ETI03), segue:

Dit)§(0) F My o)
0x
(eTz9)
(exzm) Ou oy
ax
=), (8.114)

Como P(t) # 0, para algum t € [0, 00), (pois caso contrario, terfamos u(t,x) = 0, para
todo (t,x) € [0,00)x € [0,L]), dividindo ambos os membros da identidade (BET14), por (t),
obteremos

¢'(0)=0=0'(L),
ou seja, ¢ : [0,L] — R, devera satisfazer o seguinte problema de valor de contorno:
¢"(x) = —A d)(x) paracada x € (0,L) (8.115)
$'(0)=¢"'(L) = (8.116)
¢eum¢h)mc%m¢nm. (8.117)
2,2
cuja solugdo serd, para cada n € {0} UN, dada por (teremos A = A, = nLZT ):
$(x) = pnlx)
= cos <nTﬂx> , paracada xe€[0,L]. (8.118)

A verificagao destes fatos serd diexada como exercicio para o leitor.
Como no caso anterior (veja (EX1)), a solugdo geral da EDO (ETT12) sera :

Pn(t) = A cos (nTﬂ t) + B sen (nTﬂ t> (8.119)

para cada t € [0, c0).
Assim, para cada n € N, temos que a fungdo u, : [0,00) x [0L] — R, dada por

Un (t, %) = Pn(t)Pnlx)
(E=) = (&) A, cos (nTﬂ t> cos (nTﬂ x) + B,, sen (nTﬂ t) cos <nT7T x) (8.120)
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para cada (t,x) € [0,00) x [0L], serd uam solugdo de (BETT) e (BT29).
Logo, formalmente, a funcido u:[0,00) x [0L] — R, dada por

W0 =Y unlton)
n=1
= Z P (t) dulx)
n=1

(E3) e (E19) Z [An cos (nTT[ t) cos (nTﬂ x)
n=1

nr7 nrw
+Bn sen <T t) COS <T X):| N (8121)

para cada (t,x) € [0, 00) x [0 L], serd a candidata a solugdo para o problema dado inicialmente.
Suponnhamos que a série de fungGes em (BETTZT) seja convergente, ou seja, que a fungdo
u, dada por (ETTZT), esteja bem definida.
Para que a fungdo u, dada por (ETTZ0), seja solugdo do problema dado inicialmente, ela
deverd satisfazer (E12), ou seja:

f(x) =2 w(0,x)

=1, para todo neN =0, para todo neN
t=0 em (ETZT) nm nm nmw N nm
= Z A, cos (T 0) cos (T x) + B, sen <T O) cos (T x)

n=1

= ZA“ cos (?x) , paracada x¢€[0,L],
n=I1

isto é, a fungdo f (ou melhor, sua extensdo par e 2 L-periédica a R) deverd possuir uma
expansdo em série de Fourier (no caso, uma série em cossenos), ou seja:

2 L
A, =) I J f(x) cos <nT7t x) dx, paracada meN. (8.122)
0
Por outro lado, para que a fungdo u, dada por (ETZT), satisfaga a condigdo (BT3),
deveremos ter (derivando parcialmente a série de fungdes , termo a termo, em relagdo a t):
(emm) Ou

g(x) = £X(0,%)

=) % {i [An cos (nTﬂ t) cos (TLTH x) + B, sen (nTﬂt> cos (%T Xﬂ }

n=I1

cuidado! i % { [An CoS (nTT[ t> Ccos (nTn x) + B, sen (nTn t) cos (nTﬂ x)} }

t=0

n=I1 t=0
=0, para todo neN =1, para todo neN
0o —_—N— —_—
= Z —A, sen (n—ﬂ O> nn cos <n_7r x) + B cos (n—ﬂ O) nn cos (n—ﬂ x)
— " L L L " L L L
> T T
:ZB“nT cos <nTx> , paracada xe€[0,L],
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isto é, a funcdo g (ou melhor, sua extensdo par e 2L-periddica a R) deverd possuir uma
expansdo em série de Fourier (no caso, uma série em cossenos), ou seja, para cada n € N,
deveremos ter:

N () 2 t nm
B. = J g(x) cos( T x) dx,

L L J,
isto é,
2L (F nm
B, = Tnnm L g(x) cos (T x) dx
_ 2 JL (x) cos(““x> dx (8.123)
Conm g L ' '

Portanto, uma candidata a solugdo do problema serd a fungdo u, dada por:

i [A cos ( t) cos (T%t x) + B, sen (nTﬂ t) cos (nTT[ xﬂ (8.124)

n=1

para cada (t,x) € [0,00) x [0, L] onde, para cada n € N, os coeficientes A, e B,, serdo dados
por (BT22) e (BET23), respectivamente.

Com isto podemos enunciar o seguinte resultado, cuja demonstracdo serd deixada como
exercicio para o leitor:

Teorema 8.2.2 Suponhamos que f € C*([0,L];R) e g € C'([0,L]); R satisfcacam
£1(0) = £/(L) = ¢/(0) = g (L) = 0. (8.125)

Entdo a série de funcgées (BEIZA) converge uniformemente em [0,00) x [0,L], para
uma fungdo u € C*([0,00) x [0,L]; R) que € solugdo de (EI0T), (EIm), (E13), (EI2M)
onde, para cada n € N, os coeficientes A, e B, serdo dados por (EIZ2) e (ETZ3),
respectivamente.

Observacao 8.2.2 Pode-se mostrar que a solugdo, dada por (BTZ4), é unica na classe
C*([0,00) x [0,L]; R).

Para ilustrar, temos os seguintes exercicios resolvidos:

Exercicio 8.2.1 Determine uma fungdo u : [0,00) x [0,71] — R, que seja solu¢do do
problema:
o*u , 0%u
pre) —(t,x) =c? ﬁ(t x), para cada [0,00) x (0,7],
u(0,x) =f(x), para cada x€[0,m7],
ou

ot
u(t,0) =u(t,n) =0, paracada te0,00),

(8.126)
(8.127)
—(0,x) =g(x), para cada x € [0,mn], (8.128)
(8.129)
u e C([0,00) x [0,7]; R) N C*((0,00) x (0,7); R), ( )
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onde as fungées f,g:[0,n] — R sdo dadas por

X, para cada X € [O,g]
f(x) = (8.131)

m—X, para cada X E (g,n>
g(x) =2sen(3x) —9sen(5x), para cada x€[0,m]. (8.132)

Resolugao:
Observemos que
L=m,

e a extensdo impar, 2 m-periddica da funcgéo f € a funcdo F: R — R obtida no Exemplo (EZTT)
(veja (EB3)), que é uma fungdo que pertence & Cper(271) N SCfm(Z 7T).

Na verdade a fungdo F tem derivada de qualquer ordem, exceto nos pontos da forma (veja
(B23))

x =km, paracada keZ.

A representacido geométrica do grafico da funcgéo F, no periodo fundamental [7t, 7t], é dada
pela figura abaixo.

N

|
E|
MR
B
®

[SE}

De modo andlogo, a fungdo g, dada por (ET=ZJ), possui uma (linica) extensdo impar,
2 r-periddica a R, que serd a fungdo G : R — R, dada por

G(x) =2sen(3x) —9 sen(5x)pcx € R, (8.133)

(a mesma expressdo da fungdo g), portanto pertencerd aCpe,(27).

A candidata a solugdo do problema é dada por (EX7), ou seja:

u(t,x) =) i [An cos <nT7T t) sen (nTﬂ x) + B,, sen (nTﬂ t) sen <nT7T x)]

n=1

= Z [An cos (n?ﬂ t) sen (n?ﬂ x) + B, sen (n?ﬂ t) sen <n77r x)]
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para cada (t,x) € [0,00) x [0, 7] onde, para cada n € N, os coeficientes A, e B,, serdo dados

por (BEUR) e (BEU9), respectivamente, isto é:

(Em) 2 L nm
A, = T L f(x) sen( 3 x) dx

% L f(x) sen <n—: x) dx

Il
=N
,1’
n
a
B
:
o
=

-2 —
= g " , paracada neN, (8.134)

Arngr =

2, paracada n=3

By,=4{—-9, paracada n=5 (8.135)

0, paracada n#3,5

pois a extensdo impar, 2 m-periédica da fungdo g ja estd representada por sua série de Fourier,

com L =
Portanto, a candidata a solugdo do problema serd dada por:

u(t,x) = Z [A, cos(nt) sen(nx)+ B, sen(nt) sen(nx)]

n=1

=) Z Ajrn cos(2nt) sen(2nx) + ZA2“+‘ cos[(2n+1)t] sen[(2n + 1) x]

n=1 n=1

+ B3 sen(3t) sen(3x) + Bs sen(5t) sen(5x)

(5=) o (=) Z w cos(2nt) sen(2nx) + Z i cos[(2n+1)t] sen[(2n+ 1) x]
n=1 n n=1 n
+2sen(3t) sen(3x) — 92 sen(5t) sen(5x) (8.136)
para cada (t,x) € [0,00) x [0, 7].
O

Observacao 8.2.3 Pode-se mostrar que a fun¢do u, dada por (BI32H), satisfaz mosso
problema, exceto sobre os segmentos de retas:
+t n t n
X == e x—t=—=.
2 2
Ao longo desses segmentos de retas a funcdo u nao serd diferencidvel.
A verificagdo deste fato serd deixada como exercicio para o leitor.

Vale observar que ndo podemos aplicar o Teorema (BZZ), pois a fun¢do f nao
satisfaz as hipdtese (ela ndo é duas vezes continuamente diferencidvel em [0, 7] ).
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Exercicio 8.2.2 Determine uma func¢do u : [0,00) x [0,71] — R, que seja solugdo do

problema:
o*u o*u
W(t,x) = W(t,x), para cada (0,00) x [0,7],
u(0,x) =x, para cada x€[0,n],
0
a—t:(o,x) =cos(3x) —cos(5x) +cos(6x), para cada x € [0,mn],
0 0
a—z(t,O) = a—z(t,ﬂ) =0, paracada te€0,00),

ue C'([0,00) x [0,7; R) N C*((0,00) x (0,7); R).

Resolucgao:
Observemos que
L=m.

Neste caso, temos que as fungdes f, g : [071] — R serdo dadas por

cos(3x) —cos(5x) +cos(6x), paracada x € [0,7].

«

—

Ra?
I

(8.137)
(8.138)

(8.139)

(8.140)
(8.141)

(8.142)
(8.143)

Como no Exemplo (ET), considerando a fungdo F: R — R, a extensdo par 2 m-periddica
da funcdo f a R, teremos que a funcdo F serd continua em R, mas ndo serd diferencidvel nos

pontos
x =km, paracada keZ.

Como vimos em (BEH), a fungéo F, serd dada por:
F(x) =|x|, paracada x € [—m,n],

satisfazendo
F(x +2m) =F(x), paracada x€R.

A representacao geométrica do gréfico da fungdo F é dada pela figura abaixo.

(8.144)
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Observemos que a extensdo par, 27-periédica da fungdo g a R, serd a fungdo G: R — R
para cada x € R. (8.145)

dada por
G(x) = cos(3x) —cos(5x) + cos(6x),

Notemos que é a mesma expressdo que define a fungdo g
Uma candidata a solugdo do problema acima, serd dada por (BETZ4), ou seja

) (75 5 e (30 (75

=0 A cos (-
t An —t
u(t,x) nZ cos 3 3
= Z [A Cos ( t) Cos <n_71 x) + B, sen <n_7r t) Ccos (n—ﬂ x)}
— T e e
Z [A, cos(nt) cos(nx)+ B, sen(nt) cos(nx)] (8.146)
para cada (t,x) € [0,00) x [0,7] onde, para cada n € N, os coeficientes A, e B, sdo dados
por (BET22) e (BET23), respectivamente, ou seja
2 L
An =) I Jo f(x) cos (nTﬂ x)

L=m 2 T ni7t

= — | f(x) cos (—x) dx
T Jo T
2 s

=— | f(x)cos(nx) dx
T Jo

20(=1)"—1
e 21 =] (8.147)
n°m
1, paracada n=3
(8.148)

—1, paracada n=5
1, paracada n=6
0, paracada n=#3,5,6

pois a extensdo impar, 2 m-periédica da fungdo g ja estéd representada por sua série de Fourier

com L =7
Portanto, a candidata a solugdo do problema serd dada por

Z [A,, cos(nt) cos(nx)+ B,, sen(nt) cos(nx)]
n=1
e = 2 —1]
PR

+ sen(3t) cos(3x) —

> —4
— ; FrE cos[(2n+ 1)nt] cos[(2n + 1) nx]

+ sen(3t) cos(3x) —

cos(nt) cos(nx)

sen(5t) cos(5x) + sen(6t) cos(6x)

sen(5t) cos(5x) + sen(6t) cos(6x) (8.149)



8.3. A EQUACAO DE LAPLACE 437

para cada (t,x) € [0,00) x [0, 7]

Observacao 8.2.4 Pode-se mostrar que a fun¢do u, dada por (BEIZd), satisfaz mosso
problema, exceto sobre os segmentos de retas:

x+t=0 e x—t=1

Ao longo desses segmentos de retas a fungdo u, dada por (EIZd), nao serd dife-
rencidvel.

A verificagdo destes fatos serd deixada como exercigio para o leitor.

Vale observar que nao podemos aplicar o Teorema (BEZZ3), pots a fung¢do f ndo
satisfaz as hipdtese (ela ndo é duas vezes continuamente diferencidvel em [0, 7] ).

8.3 A Equacao de Laplace

O 1ltimo problema que trataremos associado estarad associado a uma EDP importante deno-
minada Equacao de Laplace.

Esta EDP é um exemplo importante de uma classe de EDP’s denominadas Elipticas.

Trataremos de dois problemas relacionados a Equagdo de Laplace, a saber: o problema
de Dirichlet em um retadngulo e em u circulo contidos em R?.

8.3.0.3 O Problema de Dirichlet num Retangulo

Esse problema consiste em encontrar uma fungio u: [a, A] x [b, B] — R que venha satisfazer
as seguintes condigdes:

o%u o%u

ﬁ(x,y) + W(X,g) =0, paracada (x,y)e€ (a,A)x (b,B), 8.150

8.151
8.152
8.153
8.154
8.155

yy) =fily), paracada ye€[b,B],

u

u(A
u(a,y) =f(y), paracada y € [b,B],
(
u(x

x,b) =f3(x), paracada x € [a,A],
,B) =f4(x), paracada x € [a,A],

)
)
)
)
, )
€ C(la,Al x [b,B]; R) N C*((a,A) x (b,B); R). )

(
(
(
(
(
(

A figura abaixo ilustra as condigdes (EIRT), (E152), (ET15d), (E1=3), no retangulo C R2.
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s

f2 1

Observacgao 8.3.1 Se o conjunto Q) é um subconjunto aberto de R?> o operador linear
A:C®(Q;R)— C>®(Q; R), dada por

. 0°h GR
(Ah) (XJJ)ZQ(X»U)_'—a_yZ(X)y)) (8'156)

para cada (x,y) € Q, comoh € C*(Q; R), serd denominado operador Laplaciano, em Q

Vamos considerar o caso em que
a=b=0,

o problema de encontrar uma fungdo w: [0, A] x [0, B] — R que venha satisfazer as seguintes

condigdes:
02 02
b v 0, paracada (x,y)€(0,A)x (0,B),

ﬁ(x»y) + w(xay) =

u(A,y) ="fi(y), paracada y e [0,B],
u(a,y) =f,(y), paracada ye€I0,B],
u(x,b) =f3(x), paracada xe€[0,A],
u( ,B) =f4(x), paracada xe[0,A],

€ C([0,A] x [0,B]; R) N C*((0,A) x (0,B); R).

O caso geral serd deixado como exercicio para o leitor, bastando fazer uma translagdo

especial.
Além disso, consideraremos 0 caso em que
(8.157)

fi(y) =f2(y) =0, paracada ye€[0,B]
(8.158)

fqs(x) =0, paracada x e [0,A].

A figura abaixo ilustra as restrigdes acima para as condigbes (ETRT), (EIR2), (ETIR4),

(EI=3), no retangulo de R
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Solugdo uq (x,y):

fa(x) =0

Il
)

f2(y) fi1(y) =0

f3 A x

Suponhamos que saibamos encontrar uma fungdo u = u(x,y), definida em Q = [a, A] X
[b, B], satisfazendo as condigdes (ET=0), (BEILD),(ETR2), (E154) e (ET5H), com as fungdes fi,
f,, sastisfazendo (ETE1) e a funcdo f, satisfazendo (ETB3).

Com isto poderemos obter a solugdo do problema que iniciamos (com a = b = 0),
somando-se as solugdes de cada um dos problemas abaixo.

Solugéo uy (x,y):

fa(x) =0

f2 fi(y) =0

f3(x) =0 A x

Solugéo uz(x,y):

fa(x) =0

f3(x) =0 A x
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Solugdo uy (x,y):

fa

f2(y) =0 fily)=0

f3(x) =0 A x

ou seja, a a fungdo u: [0,A] x [0,B] — R, dada por:
u(x,y) = u (X)y) +U2(X»y) +u3(X>y) —|—LL4(X,1J) y
para cada (x,y) € [0,A] x [0, B], serd a solugdo do problema (ET=0), (ETIR1),(ETR2), (E104)
e (BETIBH) que iniciamos (com a =b =0).
Assim basta tratar do problema de encontrar uma fungio u; : [0, A] x [0,B] — R, que
venha satisfaz as seguinte condigdes:

o2u, o2u,
F(X»y) + 5 ayz ( »y) O) para cada (X)y) € (OaA) X (OaB)>

w(A,y)=0, paracada y€[0,B],
w(a,y)=0), paracada y € [0,B],
u(x, )—f3( ), paracada xe€[0,A],
u(x,B) =0, paracada xe€[0,A],
w € C([0,A] x [0,B]; R) N C*((0,A) x (0,B); R),
ou seja, simplificando a notagdo, encontrar uma fungio u : [0,A] x [0,B] — R, que venha
satisfaz as seguinte condigdes:

0%u o%u

W(x,y)nta—yz(x,y)zo, para cada (x,y) € (0,A) x (0,B), (8.159)
u(0,y) =u(A,y) =0, paracada ye€[0,B], (8.160)
u(x,B) =0, paracada xe€[0,A], (8.161)
u(x,0) =f(x), paracada xe€[0,A], (8.162)
ue C([0,A] x [0,B]: R)NnC?*((0,A) x (0,B); R). (8.163)

Observemos que, de (E160), comy =0 e y = B, e (BEI62), com x =0 e x = A, teremos
que a funcgdo f deverd satisfazer as seguintes restrigbes (condigdes de compatibilidade):

f(O) (E:I:E.'Z),:com x:OZ ‘LL(O O)
(),:com y=0 0,
fA) = (A 0)

(ETEm), com y=0

0
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Tentaremos encontrar uma fungdo u = u(x,y) que satisfaga (ETEd), (ETE0), (ETHED)
e (BE1E3), do tipo varidveis separadas (aplicaremos, novamente, o método da separagio de
varidveis), ou seja, tentaremos encontrar uma solugdo u = u(x,y), do tipo:

u(x,y) =P(x) dy), (8.164)

para cada (x,y) € [0,A] x [0, B].
Estaremos procurando solugdes u nao nulas, isto é, de modo que

u#0. (8.165)

Notemos que, supondo que as fungdes | e ¢ sdo duas vezes diferencidveis em (0,A) e
(0, B), respectivamente, entdo, para cada (x,y) € (0,A) x (0,B), teremos:

ou (ex=3) O
a(x,y) = ax[tb(x)dn(y)]
=1V '(x) dly), (8.166)
o%u 0 |[ou
) = 5 | Setey)
(ewmm) 0
= &[tl) (x) d(y)]
=1 "(x) d(y), (8.167)
ou (ETm3) 0
=P(t)d'(y), (8.168)
o%u 0 [ou
) @{@( ,y)}
(ezmm) 0 /
= 3y [W(x) b '(y)]
=1P(x)d"(y), (8.169)

Substituindo (ETE7) e (E169) na EDP (BT=3), para (x,y) € (0,A) x (0, B), teremos que:

B () bly) +W(x) d "(y) =0
ou seja, 1 ”(x) dly) = —(x) " (y) (8.170)

Como (BTER), deveremos ter

b(x), d(y) #0,

para algum (x,y) € [0,A] x [0, B].
Logo, dividindo (BET7d), por
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obteremos:

V) ey)  vx)"(y)
(x) d(y) (%) b(y)

isto é, =— = constante = A,

para cada (x,y) € (0,A) x (0,B), ou seja, teremos as seguintes duas EDO’s:

¢"(x) =—-A¢dp(x), paracada xec (0,A), (8.171)
v "(y) =AP(y), paracada ye (0,B). (8.172)

Além disso, deveremos ter:
o =

u(0,y)
=2 50), (),

W(y) # 0 para algum y € [0, B], implicard: ¢(0) =0, (8.173)
u(A,y)

$(A),b(y),
W(y) # 0 para algum y € [0, B], implicard: ¢(A) =0, (8.174)

0 = u(x, B)

ETmm)

O(

(ETm)

d(x) # 0 para algum x € [0,A], implicard: P(B) =0. (8.175)

Logo, de (ET7), (ET2), (ETA), (BTA), (BT™), as fungdes ¢ : [0,A] = ReP:[0,B] —
R deverdo satisfazer as seguintes condigdes:

¢”"(x) =—-Adp(x), paracada x € (0,A), (8.176)

$(0) =¢(A) =0, (8.177)

¢ € C([0,A]; R)nC*((0,A); R) (8.178)
e

¥ "(y) =A¥(y), paracada ye€(0,B), (8.179)

V(B) =0, (8.180)

P e C([0,B]; R)NC*((0,B); R). (8.181)

Encontrar uma solugdo para o problema (BETI78), (ET74) e (BTZ3) foi tratado anterior-
mente (veja (=ZT), (=232) e (Z3), ou ainda, (Z38), com L = A), para cada n € N, teremos:

nin
A==
b(x) = bn(x) = sen (“W”X) . paracada xe€[0,Al. (8.182)
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Assim, o problema (BTT79), (BEI20) e (BEIET), tornar-se-a:

n?

II)H(U) = AZ

V(B) =0,
¥ € C([0,B]; R)NC*(0,B); R).

Y(y), paracada ye€ (0,B),

Para cada n € N, a solugéo geral da EDO (BT=E3), sera:

Pn(y) =Ce*Y+De AY, paracada ye[0,B].

443

(8.183)

(8.184)
(8.185)

(8.186)

A verificagdo deste fato serd deixada como exercicio para o leitor (visto na disciplina de

EDO).
Como

o =

V(B)

(=), com y= BCeA I De nrp

. nrm _nm
ouseja, CeAP=—De A °,

ZnnB

ouainda, C=-De"

Substituindo (ETT27) em (BET=d), obteremos:

B

Pn(y)=-D e e WY L De K'Y

— _De A [ B _ o (v-B)]

= -2De “A" senh [%ﬂ (y— B)} , Dparacada y € [0,B],
ou seja, para cada n € N, temos que 1 : [0,B] — R é dada por:
Yn(y) =e 2~ senh [%ﬂ (y— B)} , paracada ye€[0,B].

Logo, de (BET22) e (BT23), segue que

ETE3)

$n(x) bn(y)

2 L gen (BT5) ) {e*8* senn [“T 1y — )]}

—e "R sen <n7ﬂ x) senh [nATc (y— B)}

uﬂ(x,y)

para cada (x,y) € [0,A] x [0, B].

(8.187)

(8.188)

(8.189)
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Consideremos, formalmente, a solugdo do nosso problema, como sendo u: [0, A]x[0,B] —
R, dada por

u(x,y) = Zun(xay)
n=1

=Y ) ealy)
el

( R T=Y ) >

o n7 n7m
=) b e WP <— ) h [— —B } 8.190
2 e & "sen(——x) senh | — (y—B)|, ( )
para cada (x,y) € [0,A] x [0, B].
Notemos que, impondo a condigdo (BEZIEJ), obteremos:

f(x) =2 u(x,0)

(ETED), com y=0 an . (1177( x) senh [nTﬂ (0— B)]

n=1 "~ -

=senh [—% B] - senh[

= 3 bne’n;B —senh m sen —nﬂx
A A

= 3 (—bn)e‘ngB senh —nﬂB sen _nnx )
A A

para cada x € [0,A], ou seja, a extensdo, que indicaremos por F : R — R, impar e 2 A-
periddica da fungdo f a R, deverd possuir uma representacéo em série de Fourier (no caso
uma série em senos).

Portanto, para cada n € N, deveremos ter:

nm B 15d), com L= 2 A
—bn e A senh (%) (F=58), com 152 A J f(x) sen <n7ﬂ x) dx,
0

senh é impar n
= nn B|

ou seja,

nmnB

2e A A nm

bp=———F+——— | f(x)sen (—x) dx. 8.191

" A senh (“52) JO (x) A ( )

Com isto podemos enunciar o seguinte resultado, cuja demonstracdo serd deixada como
exercicio para o leitor:

Teorema 8.3.1 Suponhamos que f € C*([0,A]; R) satisfazendo
f(0) = f(A) =f"(0) =f"(A) =0. (8.192)

Entdo a série de fungdes (BET9O) converge uniformemente em [0,A] x [0,B] para
uma func¢do u € C*([0,A] x [0,B]; R), que € solucdo de (EIRU), (EIED), (EIED), (EIE2)
e (EIE3) onde, para cada n € N, o coeficiente b,, serd dado por (ETHD).

Observacao 8.3.2 Pode-se mostrar que a fung¢do u, dada por (EI90), € a unica solugdo
do problema acima.
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8.3.0.4 O Problema de Dirichlet num Circulo

Para R € (0, 0) fixado, este problema consiste em encontrar aum fungdo u: Q — R, que

satisfazas seguintes condigGes:
0%u 0?

W(X,y)—l—ﬁ(x,y)zo, para cada (x,y) € Q, (8.193)
Ugo = f, (8.194)
ue C(Q;R)NC*Q;R), (8.195)
onde
Q={(xy) eR} ¥ +y* =R}, (8.196)
Q={(xy) e R, x* +y* <R*}, (8.197)
ou seja, o fecho do conjunto Q em R?, e
0Q = {(x,y) € R*; x* +y* < R*} (8.198)

isto é, a fronteria do conjunto Q em RZ.

Notemos que o conjunto Q é o interior da circunferéncia de de centro no ponto (0,0) e
raio R e 0Q € a circunferéncia de centro no ponto (0,0) e raio R.

A figura abaixo nos fornede a representacdo geométrica do grafico dos conjuntos O e 9Q)

vy

00

Vamos tratar, com detalhes, o caso em que
R=1.

O caso geral, isto é, R # 1, pode ser obtido de modo semelhante e serd deixado como
exercicio para o leitor.

Neste caso podemos descrever o circulo Q, dado por (BT91), em coordenadas polares,
utilizando a seguinte mudanga de coordenadas:

x =x(r,0)
=1 cos(0), (8.199)
Yy = U(T,e)

=rsen(0), (8.200)
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para cada (r,0) € [0,1] x [0, 27).
A figura abaixo ilustra o que a transformagdo T: [0, 1] x [0,27) — R?, dada por
T(x,y) = (r cos(0),r sen(0)), (8.201)
para cada (r,0) € [0,1] x [0,27), faz com a regido [0, 1] x [0, 27).

Yy 4 X2+UZS1

Notemos que, neste caso, teremos:

xF +y? THEEE [ o5(0))7 + [r sen(0))?

=17 [cos®(0) + sen’(0)]

:TZ,

ou seja, T =1\/x*+1y>. (8.202)

Notemos também que se x #0 ey =0 e, teremos que
s

0=>. (8.203)

Por outro lado, se y # 0, de (BEZ02), teremos que r > 0 e, além disso,

Y (eTm) e (E2m) T sen(0)
X T cos(0)
_ sen(0)
~ cos(0)
tg(0). (8.204)

Portanto, de (E22), (E203) e (EZ04), segue que

r=/x*+y’. (8.205)

arctg (%) , paray # 0

0=3 . (8.206)

3 paray =0

Definamos a fungdo v: [0, 1] x R — R, dada por

v(r,0) =ulT(x,y)]

&= Wix(r, 0),y(r,0)]

)
E==E 4 cos(0) 1 sen(0)] (8.207)
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para cada (r,0) € [0,1] x R.

Observemos que, como a transformagio T pertence a C*(Q; R?), segue que
ue C(Q;R)NC*HQ; R)
se, e somente se

ve C(0,1]x[0,2m); R)NC*([0,1) x [0,27); R) .

Notemos também que

0x (exm) 0

3 = a[r cos(0)]

= cos(0), (8.208)
% = %[r cos(0)]

=1 [—sen(0)]

= —7 sen(0), (8.209)
Y (ezm) 3[r sen(0)]
or or

= sen(0), (8.210)
Y (ezm) i[r sen(0)]
00 00

=1 cos(0), (8.211)

Para simplificar a notagao nos cdlculo abaixo, denoteremos

x(r,0)=x e y(r,0)=y.

Utilizando-se da Regra da Cadeia, para fungdes reais de duas varidveis reais, segue que:

ov ou 0x Ou Jy
a(ﬂe) = {aa*’@g] (r,0)
(EZm) e (EZm) ou ou
= cos(0) ™ (x,y) + sen(0) oy (x,y) (8.212)
ov ou 0x OJudy
%(ﬂe) = [&%‘F@%} (r,0)

Eo0d) e a a
() e (=) sen(0) a—::(x,y) + 1 cos(0) %(NU) (8.213)
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ou ou
os(0) G Ix(r, ) y[7, 0] + sea@) $x(r,0),y(r,0)]

0% ox o’u dy
—cos(0) | 2> == (0 0
cos(6) [axz ot 3y o ar} (r,0) + sen(0) [

(EZm) o (EZm) o*u %u
= cos(0) {axz (x,y) cos(0) + 3y ox

2 0*u

aay—aux(x,y) ,cos(0) + @(X’ v Y) sen(@)}

2 2
Teor. Schwari ﬁ: 0”1 azu 0?2

ox 0y 2 et
= cos“(0) P (x,y) + 2 sen(0) cos(0)

’u ox  0%u dy

dydx or * oy? or

}(r,e)

(x,y) sen(e)}

+ sen(0) {

u

oy 3 XY

o*u

2

-+ sen (e) W(X,y), (8214)

0%v 0 |ov

Vi 0> | e
() 0 {

ou ou
55 | sen(0) — + T cos(0) —] (r,0)

ox oy

ou Puodx  d*u d
= {remso G - rseto) |5 T4 a0 00

ou 0’u Ox  9%u dy
+ {—r sen(0) e + 1 cos(0) {axay 30 + e %} } (r,0)

(E20d) e (EZTT) {_1. cos(0) a_u(x)y) —rsen(0) {[—T sen(0)]

o%u

W(MU)

0x

2
Hircos(ol] 3 > (x,ul] |

+ {—r sen(0) %(x,y) + 1 cos(0) |:[—T sen(0)] ———

+71 cos(0) %(x,y)}}

J— 2 —_—
T° cos(0) sen(0) ox 0y

Teor. de Schwarz ou ou o u

—71 cos(0) a(x,y) — 1 sen(0) @(x,y) + 12 senz(e) W(x,y)
o%u 02

oy 0x

u

— 2717 sen(0) cos(0) (x,y) + 1 cos*(8) W(x,y) , (8.215)
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para cada (r,0) € [0,1) x R.

Logo a fungdo u = u(x,y) serd solugdo da equagdo de Laplace (ET93) em Q (o interior
da circunferéncia unitdria, centrada na origem de R?) se, e somente se, a fungio v = v(r,0)
satisfaz

%(r,e) + % Pir,0)+ :_z %“»9) T st %L("’”)
+ 2 sen(0) cos(0) %(x,y) + sen?(0) %)(X,U)
+ % {cos(e) %(x,y} + sen(0) Z—LL(X&J)
+ % [_T cos(0) ga)_:(xﬂj) — 1 sen(0) %(X’y) 1 sen’(9) %(X’y)
—212 sen(6) cos(6) a?:lgx(x,y) + 12 cos?(0) %(X,U)
- %(x,yw%(mg) =o,

para cada (r,0) € [0,1) x R.
Além disso a condigdo (ETT94)) tornar-se-a:

(2m)

v(1,0) ulx(1,80),y(1,6)]

(ETm) ¢ (E2m)

ulcos(0), sen(0)]

=2 flcos(0), sen(0)], (8.216)

para cada 0 € R.
Logo definido-se a fungdo g : R — R, dada por

g(0) = flcos(0), sen(0)], paracada 0 €R, (8.217)
logo a condigdo (BE=Z1H) pode ser reescrita como
v(1,0) =¢g(0), paracada 0 €R. (8.218)
Observemos que, para cada r € [0, 1) fixado, a funcdo
0 — v(r,0)

é 2 m-periddica em R.
De fato, pois

(EZma

vir,04+2m) = ) u(r cos(0 +27m),r sen(0 + 27)]
=ulr cos(0),r sen(0)]

=0
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para cada (r,0) € [0,1) xR
Portanto a funcido v = v(r, 0) devera satisfazer as seguintes condigdes:

, 0% ov 0%
T ﬁ( ,9)—|—ra(r,6) 892( ,0) =0, paracada (r,0)e[0,1) xR (8.219)
v(r,0+2m) =v(r,0), paracada (r,0)€[0,1) xR, (8.220)
v(1,0) =g(0), paracada 0 €[0,27n), (8.221)
ve Cl0,1] xR;R)NC*[0,1) xR; R). (8.222)
Tentaremos solugdo nao triviais, isto é,
v(r,0) #0, paracada (r,0)€[0,1)xR. (8.223)

Aplicaremos o método da separacdo de varidveis para obter uma candidata a solugao envol-
vendo, inicialmente, as condigdes (E219), (E2220) e (E222), ou seja, tentaremos encontrar uma
solugdo do tipo

v(r,0) = d(r)P(0), paracada (r,0)c[0,1] xR. (8.224)
De (BE223) segue que para algum (r,0) € [0,1) x R tag que
H(r) $(6) 0. (8.225)

Supondo que as fungdes 1 e ¢ sdo duas vezes diferencidveis em [0, 1) e R, respectivamente,
entdo, para cada (r,0) € [0,1) x R, teremos:

Ve, 0) 2 i) plo)
— /(1) $(0), (8.226)
0%v o [ov
e = [0
=2 1) gl0)
.
— (1) $(0), (8.227)
ov (Ezm) 0
.0 = 2 0 ()]
— b1 $(8), (5.228)
0% 0 |0v
202 =75g [ae(r e)}
(ezm) 0 /
30 [b(r) ¢ (6]
—p(r) b "(0), (8.229)

Sustituindo (B=22H), (B2Z7) e (E229) em (B=219), obteremos:

[ (1) G(8)] 41 [ (1) $(O)] + [W(r) b "(6)] =0
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Devidindo a identidade acima por

(ezz)
b(r),$(0) # 0,

bteremos
) "(r) $(8) + 7 (1) d(6) + () d "(6) 0
WY(r) (6)
ou seja () 4 () = —d) "0 = constante = A
’ Y(r) $(0) ’
isto é,
¢"(0) +APp(0) =0, paracada 0 eR, (8.230)
d(0+2m) =¢(0), paracada 0 €R, (8.231)
¢ € C*(R; R) (8.232)
e
P (r)+rP/(r) —AP(r) =0, paracada r€[0,1), (8.233)
P e C([0,1]; R)NC3[0,1); R). (8.234)

Observagao 8.3.3 Notemos que, se a funcdo ¢ € 2m-periddica e diferencidvel em R,
entdo, da regra da cadeia, seque que a fun¢do ¢’ também serd 2m-periddica.
Dewzaremos a verificacdo deste fato como exercicio para o leitor.

Observemos que se a fungdo ¢ = ¢(0) for uma solugdo, eventualmente complexa, de
(BZ22M), deveremos ter:

27

27
AJ rcb(e)rzde:AJ $(0) $(0) dO

0 0
>0

27
:J A (6)] $(0) de

0
(E=m) o (£ J o e

[—¢ "(0)] $(0) do
0

u=dd(0), logo: du = ¢ ’'(0)
dv=2¢"(0), logo: v=29¢'(0)

t=2m 2T
+J $'(0) §7(0) dt

27
—~ [0’ 2T - ¢ 0] + | ¢ PO

27

de (E2T) ¢, ¢ ’is.o 2 -periédoca J

0
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27

=J b/ (0) do .

0

>0

Da identidade acima segue que A € R, ou melhor,
A>0

Observemos que se A = 0 entdo, da identidade (E=XZ3), deveriamos ter

27
0 :J b (0) do.

0

Como a fungéo ¢ ' é continua em R (veja (EZZZ2)) segue, de (EZZ1), que

Ib/(8)F =0, paracada B €R,
ouseja, ¢'(0)=0, paracada 0€R,

implicando que a fungdo ¢ devera ser constante em R, ou seja,
®(0) =c, paracada 0 €R.
Se A > 0, entdo a solugdo geral da EDO (BEZ220) serd dada por

$(0) = A, cos <\/X9> + B, sen (\/XE)) ,

para cada 0 € R.

(8.235)

(8.236)

(8.237)

(8.238)

(8.239)

A verificagdo deste fato serd deixada como exercicio para o leitos (visto na disciplina de

EDO).
Mas, de (BE=23T), devemos ter

A, cos <\/X9> + B, sen (\/X9> (Z9) ®(0)

=D b0+ 2m)

(z=9)

=" A, cos [\/X(6+27t)] + B, sen [\/X(6+27r)]
= A, cos [\/X(9+27T)] + B, sen [\/X(G%—ZT[)}

= Ay [cos (VA8) cos (VA27) — sen (VAB) sen (VA27)]

+ B, | sen (\/XE)) cos (\/XZTt) + cos (ﬁe) sen (\/XZNH

[
= [Ay cos (VA27) + By sen (VA27) | cos (VAe)

+ [B;\ cos (\/XZTE) — A, sen (\/XZW)] sen <\/X9) ,

para cada 0 € R.

(8.240)
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Fazendo:

0 =0, em (EZZD),

obteremos: A, = A, cos (\/XZT[) + B, sen (\/XZT[) (8.241)
T
0=——, em
ik ( )s
obteremos: B, = B, cos <\/X2 71) — A, sen (\/XZN) . (8.242)

Multiplicando a identidade (EZZZT) por A, e a identidade (E223J) por B, e somando-se os
resultados, obteremos:

A + By = A2 cos (\/XZW) + A, B, sen (\/XZTE) + B2 cos (\/XZT[) — B, A, sen (\/XZT[) ,

em particular, devermos ter: cos (\/X 2 7'() =1,

logo, \/X27'r:2k71, para cada k€ N,

ou seja, VA = k, paracada ke N,
ou ainda, A=Kk?, paracada k€N, (8.243)

Logo, para cada k € N, a identidade (EZZ39), tornar-se-4:

¢(0) = A, cos (\/X@) + B, sen (\/7\9)

(EZm)
= A, cos (@9) + B, sen (\/EG)

7=
Vie ke Ay cos(k0) + By sen(k9),

Para cada k € N, definamos a fungdo ¢y : R — R, dada por
G (0) = Ay cos(kB) + By sen(k0), (8.244)

para cada 0 € R.
Notemos que k = 0 daria origem a fungao ¢, constante, que ja foi tratada no caso A =0

(veja (EZZ3).
Por outro lado, para cada k € N, temos que

A=k,
assim o problema (EZZZ3), tornar-se-a:
Y’ (r)+rP’(r) =K P(r) =0, paracada re0,1), (8.245)

que é a equacgao de Euler de 2.“ ordem.
Neste caso, procuraremos solugdes da forma

P(r) =r*, paracada relCR. (8.246)
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Para cada k € N, substituindo a expresséo (E=2Z8) na equagdo de Euler (E2223), obteremos:

0=""[a(x—1)1* ] +7 [ar™ '] —K*1*
= [a(ax—1)+ =K} v
=[] o

40

ou seja, o —k*=0,
ou ainda, (x—k),(x+k)=0,
isto é, o ==*£k. (8.247)

Portanto, para cada k € N, de (BZ2Z17), a solugdo da geral da equagdo de Euler (E2Z3)
serd dada por :

Py(r) = Ce ™™+ Dyr*, paracada relCR. (8.248)

Para cada k € N, como estamos procurando uma fungéo 1\ que deva satisfazer (E233), ela
deverd, em particular, ser uma fungéo continua em [0, 1], ou ainda , ser uma fungdo continua
em v =0.

Portanto, de (E2Z3), deveremos ter

Dy =0. (8.249)

Logo, para cada k € N, a solugdo da equagdo de Euler (E2223), que nos interessard, serd
dada por:

Pi(r) = Cy 7, paracada re(0,1]. (8.250)

Assim, para cada k € {0} UN, de (EZ2Z4), (EZZ50) e (E2224), segue que

(223

vie(r,0) =7 Wi (1) b (6)
(B2 e (250 k1A cos(k0) + By sen(k0)] (8.251)

para cada (r,0) € [0,1] x R.
Logo tentaremos uma solugdo (formalmente) de (E=219), (E=220), (E=221), (E=222) da forma:

V(T)e) = ivk(r>e)
k=0

SN hulr) dil0)

k=0

=) Zrk [Ay cos(k©0) + By sen(k0)] , (8.252)
k=0

para cada (r,0) € [0,1] x R, ou ainda, na forma complexa, serd dada por:

v(r,0) = Z CyetkOrl (8.253)
k=—0c0
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para cada (r,0) € [0,1] x R onde

C, = %)
Cy Ax —Zin )
Cy Ax ~;in )
Lembremos que
cos(kB) = etkd +eike e sen(k@) — k0 _ o—iko

2

Impodo a condigéo inicial, isto é, (EZ2Z1), obteremos:

21

()

9(6) v(1,6)

o0
(E253), com r=1 ike
= E Cke ;
k=0
para 0 € R.
Logo, para cada k € Z, o coeficiente Cy deverd ser o k-éismo coeficiente de Fourier
associado a funcdo g, na forma complexa, ou seja,

~ , com L= 1 T »
Ck =3 (k) (—T=m) © L=m ﬁ‘[ g(t) e ikt dt. (8254:)
—TT

Utilizando (B=254) podemos obter, formalmente, uma candidata a solugdo para (EZ13),
(E222m), (E2210) e (B2232), a saber:

o0

E 1k9 T.H<|

k=0
T &< [(™ , ,
=5 Z U e ikt dt} etkO i (8.255)
k= —Tt

para cada (r,0) € [0,1] xR

Pode-se mostrar que a série de fungdes (EZZ5H) converge uniformemente em [0, 1] X R, que
pode ser derivada parcialmente, termo a termo, duas vezes em relagdo a r e em relagdo a 0,
em [0,1) x R e portanto ird satisfazer ao problema (EZ219), (E=220), (E=XZT) e (E=222).

A demostragdo desse fato serd deixada como exercicio para o leitor.

Com isto podemos obter a fungao

LL(X,U) ZV(T‘,G)

(veja (BEZ07)) uma solugdo do problema (BT93), (E194) e (BETU3), em

Q={(x,y) eR;x*+y* <1}

e assim provar o:
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Teorema 8.3.2 Sejam Q C R?, como acima, e f € C(0Q; R).
Se a fungdo v:[0,1] x R — R é dada por (EZEH), entdo a funcdo u: Q — R dada
por:

b

. |v(r,0), ondex=rcos(0) ey=rsen(0), para (r,0) €[0,1) xR
U.(X,y):

f(x,y), parax?+y’=1
(8.256)
para cada (x,y) € Q, é uma solucdo do problema (ETI3), (E1W)e (E1UH).

Observacao 8.3.4 Pode-se mostrar que a solu¢do (BEZ220) ¢é unica.
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