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Caṕıtulo 1

Introdução

Estas notas de aula ser~ao utilizadas para o cursos cuja ementa trata de sequencias e s�eries

num�ericas, sequencias e s�eries de fun�c~oes, em particular, s�erie de potências e de Fourier.

Aplicaremos s�eries de Fourier para a resolu�c~ao de alguns problemas relacionados com

algumas Equa�c~oes Diferenciais Parciais, a saber, as Equa�c~oes do Calor, da Onda e de Laplace,

no caso peri�odico.

Ser~ao exibidos todos os conceitos relacionados com o conte�udo acima, bem como proprie-

dades e aplica�c~oes dos mesmos.

As referências (ver (8.5)) ao �nal das notas poder~ao servir como material importante para

o conte�udo aqui desenvolvido.
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Caṕıtulo 2

Sequências Numéricas

2.1 Definições

Come�caremos tratando de:

Definição 2.1.1 Uma sequência de n�umeros reais (ou complexos) (ou, simplesmente,

sequência num�erica) �e uma aplica�c~ao

a : N → R (ou C)
n 7→ a(n)

isto �e, uma lei que associa a cada n�umero natural n um, �unico, n�umero real (ou

complexo) a(n), que indicaremos por an e denotaremos uma sequência num�erica por:

(an)n∈N , (an) , {an}n∈N , {an} .

Para cada n ∈ N �xado, o elemento an ser�a dito termo da sequência num�erica

(an)n∈N.

O conjunto

{an : n ∈ N}

ser�a dito conjunto dos valores da sequência num�erica (an)n∈N .

Exemplo 2.1.1

1. Considere a sequência num�erica (real) (an)n∈N, onde

an
.
=
1

n
, para cada n ∈ N .

Logo o conjunto dos valores da sequência num�erica (an)n∈N ser�a:{
1 ,
1

2
,
1

3
, · · ·

}
.

7
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2. Considere a sequência num�erica (real) (an)n∈N, onde

an
.
= 0 , para cada n ∈ N .

Notemos que o conjunto dos valores da sequência num�erica (an)n∈N ser�a:

{0} .

3. Considere a sequência num�erica (real) (an)n∈N, onde

an
.
= sen

(nπ
2

)
=

{
0 , quando a n for par

(−1)
n+3
2 , quando n for ��mpar

.

Observemos que o conjunto dos valores da sequência num�erica (an)n∈N ser�a:

{1 , 0 ,−1} .

4. Considere a sequência num�erica (real) (an)n∈N, onde

an
.
= n , para cada n ∈ N .

Notemos que o conjunto dos valores da sequência num�erica (an)n∈N ser�a:

{1 , 2 , 3 , 4 , · · · } .

5. Considere a sequência num�erica (real) (an)n∈N, onde

an
.
= (−1)n , para cada n ∈ N .

Notemos que o conjunto dos valores da sequência num�erica (an)n∈N ser�a:

{1 ,−1} .

6. Considere a sequência num�erica (real) (an)n∈N, onde

an
.
=
n+ 1

n
, para cada n ∈ N .

Observemos que o conjunto dos valores da sequência num�erica (an)n∈N ser�a:{
2 ,
3

2
,
4

3
,
5

4
, · · ·

}
.

7. Considere a sequência num�erica (real) (an)n∈N, onde

an
.
=
1+ (−1)n

n
, para cada n ∈ N .

Logo, o conjunto dos valores da sequência num�erica (an)n∈N ser�a:{
0 , 1 , 0 ,

1

2
, 0 ,

1

3
, 0 , · · ·

}
.
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2.2 Operações com sequências numéricas

Como sequências num�ericas s~ao fun�c~oes a valores reais (respectivamente, complexos), cujo

dom��nio �e N, podemos som�a-las, multiplic�a-las por n�umeros reais (ou complexos) de ma-

neira semelhante a quando tratamos de quaisquer fun�c~oes a valores reais (respectivamente,

complexos), isto �e,

Definição 2.2.1 Dadas as sequências num�ericas (an)n∈N, (bn)n∈N e α ∈ R (ou C) de-

�nimos a sequência num�erica soma da sequência num�erica (an)n∈N com a sequência

num�erica (bn)n∈N, denotada por

(an)n∈N + (bn)n∈N ,

como sendo a seguinte sequência num�erica:

(an)n∈N + (bn)n∈N
.
= (an + bn)n∈N , (2.1)

ou seja, a sequência num�erica soma, a saber, (an)n∈N + (bn)n∈N , �e obtida somando-se

os correspondentes termos de cada uma das sequências num�ericas (an)n∈N e (bn)n∈N.

De�nimos a sequência num�erica produto do n�umero real (respectivamente, com-

plexo) α, pela sequência num�erica (an)n∈N, indicada por

α (an)n∈N ,

como sendo a seguinte sequência num�erica:

α (an)n∈N
.
= (αan)n∈N , (2.2)

ou seja, a sequência num�erica produto, isto �e, α (an)n∈N, �e obtida multiplicando-se os

correspondentes termos de cada sequência num�erica (an)n∈N pelo n�umero real (respec-

tivamente, complexo) α.

De�nimos a sequência produto da sequência num�erica (an)n∈N pela sequência num�erica

(bn)n∈N, indicada por

(an)n∈N · (bn)n∈N ,

como sendo a seguinte sequência num�erica:

(an)n∈N · (bn)n∈N
.
= (an bn)n∈N , (2.3)

ou seja, a sequência num�erica produto, isto �e, (an)n∈N·(bn)n∈N, �e obtida multiplicando-se

os correspondentes termos de cada uma das sequências num�ericas (an)n∈N e (bn)n∈N.

Se bn ̸= 0, para todo n ∈ N, de�nimos a sequência num�erica quociente da sequência

num�erica (an)n∈N pela sequência num�erica (bn)n∈N, indicada por

(an)n∈N/(bn)n∈N ou
(an)n∈N
(bn)n∈N

,

como sendo a seguinte sequência num�erica:

(an)n∈N/(bn)n∈N
.
= (an/bn)n∈N , (2.4)
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ou seja, a sequência num�erica quociente, isto �e, (an)n∈N/(bn)n∈N, �e obtida dividindo-se

os correspondentes termos de cada uma das sequências num�ericas (an)n∈N e (bn)n∈N
(observe que bn ̸= 0, para todo n ∈ N).

Com isto temos o seguinte exerc��cio:

Exerćıcio 2.2.1 Se as sequências num�ericas (reais) (an)n∈N e (bn)n∈N s~aos dadas por:

an
.
=
1

n
e bn

.
= (−1)n , para cada n ∈ N (2.5)

e α
.
= 2, encontrar as sequência num�ericas:

(an)n∈N + (bn)n∈N , α (an)n∈N , (an)n∈N · (bn)n∈N e (an)n∈N/(bn)n∈N .

Resolução:

Logo, de (2.1), segue que

(an)n∈N + (bn)n∈N
(2.5) e (2.1)

=

(
1

n
+ (−1)n

)
n∈N

=

(
1+ (−1)n n)

n

)
n∈N

.

De (2.2), temos que:

α (an)n∈N
(2.5) e (2.2)

=

(
2
1

n

)
n∈N

=

(
2

n

)
n∈N

.

De (2.3), segue que

(an)n∈N · (bn)n∈N
(2.5) e (2.3)

=

(
1

n
(−1)n

)
n∈N

=

(
(−1)n

n

)
n∈N

.

Finalmente, de (2.4), temos que:

(an)n∈N/(bn)n∈N
(2.5) e (2.4)

=

 1

n
(−1)n


n∈N

=

(
1

(−1)n n

)
n∈N

.

�



2.2. OPERAC� ~OES COM SEQUÊNCIAS 11

Observação 2.2.1 Como sequências num�ericas s~ao fun�c~oes a valores reais (respectiva-

mente, complexos), cujo dom��nio �e N, podemos representar seus gr�a�cos em N×R (ou

em N× C, respectivamente).

Denotaremos o gr�a�co da sequência num�erica (real ou complexa) (an)n∈N por G
(
(an)n∈N

)
,

e ser�a de�nido por:

G
(
(an)n∈N

) .
= {(n , an) ; n ∈ N} .

Na verdade, isto n~ao ter�a muito interesse no estudo das sequências num�ericas.

A seguir temos alguns exemplos relacionados com esta quest~ao.

Exemplo 2.2.1 Se a sequência num�erica (real) (an)n∈N �e dada por:

an
.
= n , para cada n ∈ N ,

ent~ao seu gr�a�co ser�a dado por:

G
(
(an)n∈N

) .
= {(n ,n) ; n ∈ N} ,

e assim, a representa�c~ao geom�etrica do seu gr�a�co ser�a:

6

-
1 2 3

1

2

3

n

Exemplo 2.2.2 Se a sequência num�erica (real) (bn)n∈N �e dada por:

bn
.
= (−1)n , para cada n ∈ N ,

ent~ao seu gr�a�co ser�a dado por:

G
(
(an)n∈N

) .
= {(n , (−1)n) ; n ∈ N} ,

e assim, a representa�c~ao geom�etrica do seu gr�a�co ser�a:

-

6

n1 2 3 4 5

1

−1

Exemplo 2.2.3 Se a sequência num�erica (real) (cn)n∈N �e dada por

cn
.
=
1

n
, para cada n ∈ N ,
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ent~ao seu gr�a�co ser�a dado por:

G
(
(an)n∈N

) .
=

{(
n ,
1

n

)
; n ∈ N

}
,

e assim, a representa�c~ao geom�etrica do seu gr�a�co ser�a:

6

-

1

1 2 3 n4

1/2

1/4

2.3 Convergência de sequências numéricas

Observação 2.3.1 Empiricamente, observando os exemplos acima temos:

1. No Exemplo (2.2.1), os termos da sequência num�erica (an)n∈N crescem, ilimitada-

mente, quando n cresce, ou ainda, os termos v~ao para "in�nito", quando n cresce

ilimitadamente, ou seja, quando n vai para "in�nito".

2. No Exemplo (2.2.2), os termos da sequência num�erica (bn)n∈N oscilam entre −1 e

1, quando n cresce ilimitadamente, ou seja, quando n vai para "in�nito".

3. No Exemplo (2.2.3), os termos da sequência num�erica (cn)n∈N "aproximam-se" de

zero, quando n cresce ilimitadamente, isto �e, os termos da sequência "tendem" a

zero, quando n vai para in�nito.

A seguir vamos formalizar esta �ultima situa�c~ao de modo mais preciso, ou seja, colocar

de forma correta o conceito de "convergir" (ou "aproximar-se de", ou ainda "tender

a").

Definição 2.3.1 Diremos que uma sequência num�erica (an)n∈N �e convergente (ou con-

verge, ou tende) para l ∈ R (respectivamente, C), quando n vai para in�nito, denotando-

se por:

lim
n→∞an = l , ou an

n→∞−→ l , ou ainda, an → l ,

se, e somente se: dado ε > 0, podemos encontrar No ∈ N, de modo que, para

n ≥ No , deveremos ter |an − l| < ε . (2.6)

Observação 2.3.2

1. A De�ni�c~ao (2.3.1) acima nos diz, formalmente, que podemos �car t~ao pr�oximo de

l, quanto se queira (isto �e, dado ε > 0), desde que o ��ndice da sequência num�erica,

ou seja, n, seja su�cientemente grande (isto �e, tenhamos n ≥ No).
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2. Na linguagem dos intervalos, a De�ni�c~ao (2.3.1) acima, nos diz que dado o inter-

valo

(l− ε , l+ ε)

(ou seja, dado ε > 0), todos os termos da sequência num�erica caem dentro desse

intervalo excetuando-se, eventualmente, os No primeiros termos da sequência

num�erica.

3. Em geral, na De�ni�c~ao (2.3.1) acima, o n�umero natural No depende do n�umero

real positivo ε dado inicialmente.

4. A De�ni�c~ao (2.3.1) acima, �e semelhante �a de�ni�c~ao de limites no in�nito, para

fun�c~oes a valores reais, de uma vari�avel real, estudadas no C�alculo I.

Compare com aquela e veja as semelhan�cas.

O resultado a seguir, garante a unicidade do limite de uma sequência num�erica, caso ele

existe, mais precisamente:

Proposição 2.3.1 (unicidade do limite de uma sequência convergente) Se o limite da

sequência num�erica (an)n∈N existir ele dever�a ser �unico, isto �e, se

lim
n→∞an = l1 e lim

n→∞an = l2 ,

ent~ao

l1 = l2 .

Demonstração:

Mostremos que, para cada ε > 0, teremos

|l1 − l2| < ε ,

o que implica que

l1 = l2 .

Para isto temos que, para cada ε > 0, como

lim
n→∞an = l1 ,

podemos encontar N1 ∈ N, de modo

se n ≥ N1 , deveremos ter: |an − l1| <
ε

2
. (2.7)

De modo an�alogo, como

lim
n→∞an = l2 ,

podemos encontrar N2 ∈ N, de modo que

se n ≥ N2 , deveremos ter: |an − l2| <
ε

2
. (2.8)
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Logo, se

n ≥ No
.
= max{N1 , N2} ,

segue que

|l1 − l2| = |l1 − an + an − l2|

≤ |l1 − an|︸ ︷︷ ︸
=|an−l1|

n≥N1 , logo vale (2.7)
< ε

2

+ |an − l2|︸ ︷︷ ︸
n≥N2 , logo vale (2.8)

< ε
2

<
ε

2
+
ε

2
= ε ,

completando a demonstra�c~ao do resultado.

�
Temos o:

Exemplo 2.3.1 A sequência num�erica (an)n∈N, dada por

an
.
=
1

n
, para cada n ∈ N , (2.9)

�e convergente para zero, isto �e,

lim
n→∞

1

n
= 0 . (2.10)

Resolução:

De fato, observemos que dado ε > 0, se considerarmos No ∈ N, de modo que

No >
1

ε
. (2.11)

Ent~ao, para

n ≥ No , (2.12)

teremos

|an − l|
an=

1
n

e l=0
=

∣∣∣∣ 1n − 0

∣∣∣∣
n>0
=
1

n

n
(2.12)

≥ No≥1
≤ 1

No

(2.11)
< ε ,

mostrando a a�rma�c~ao.

�
Temos temab�em o:

Exemplo 2.3.2 A sequência num�erica (an)n∈N, dada por

an
.
=

2n

n+ 1
, para cada n ∈ N , (2.13)

�e convergente para 2, isto �e,

lim
n→∞

2n

n+ 1
= 2 . (2.14)
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Resolução:

De fato, observemos que dado ε > 0, consioderemos No ∈ N, de modo que

No >
2

ε
, (2.15)

Ent~ao, se

n ≥ No , (2.16)

teremos

|an − l|
an

(2.13)
= 2n

n+1
e l=2

=

∣∣∣∣ 2nn+ 1
− 2

∣∣∣∣
=

∣∣∣∣2n− 2n− 2

n+ 1

∣∣∣∣
=

∣∣∣∣ −2

n+ 1

∣∣∣∣ = 2

n+ 1

n+1≥n
(2.16)

≥ No≥1
≤ 2

No

(2.15)
< ε ,

mostrando que a a�rma�c~ao �e verdadeira.

�
Um outro caso �e dado pelo:

Exemplo 2.3.3 A sequência num�erica (an)n∈N, dada por

an
.
= cos(nπ) , para cada n ∈ N , (2.17)

n~ao �e convergente.

Resolução:

De fato, observemos que

an = cos(nπ)

= (−1)n , para n ∈ N . . (2.18)

Se a sequência fosse convergente para algum l ∈ R, ent~ao dado

ε =
1

2
> 0 ,

deveria existir um No ∈ N, de modo que, para

n ≥ No , dever��amos ter |(−1)n − l| <
1

2
,

isto �e,

l−
1

2
< (−1)n < l+

1

2
,
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o que um absurdo, pois isto implicaria que os termos da sequência num�erica,

−1
(2.18)
= a2 n+1 e 1

(2.18)
= a2 n ,

deveriam pertencer ao intervalo (
l−

1

2
, l+

1

2

)
,

cujo comprimento �e igual a 1 (notemos que se os n�umeros −1 e 1 pertencem a um mesmo

intervalo, este intervalo dever�a ter um comprimento maior ou igual a 2), o que �e um absurdo.

Portanto a sequência num�erica n~ao �e convergente.

�
A seguir temos o seguinte:

Exerćıcio 2.3.1 Consideremos a sequência num�erica (an)n∈N, onde seus termos s~ao da-

dos por

a1
.
= 0.3 , a2

.
= 0.33 , a3

.
= 0.333 , a4

.
= 0.3333 , · · · , an

.
= 0. 33 · · · 3︸ ︷︷ ︸

n−casas

, · · · . (2.19)

Mostre que a sequência num�erica (an)n∈N �e convergente para
1

3
, ou seja,

lim
n→∞an =

1

3︸︷︷︸
.
=l

. (2.20)

Resolução:

De fato, dado ε > 0, consideremos No ∈ N, de modo que

No > log
1

3 ε
− 1 , ou seja, 10No >

1

3 ε
,

ou ainda,
1

3 10No
< ε . (2.21)

Logo, para

n ≥ No , (2.22)

teremos

|an − l|
(2.19) e (2.20)

=

∣∣∣∣∣0. 3 · · · 3︸ ︷︷ ︸
n−casas

−
1

3

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
0.

n−casas︷ ︸︸ ︷
9 · · · 9−1
3

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣−
0.

(n−1)−casas︷ ︸︸ ︷
0 · · · 0 1

3

∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣
−1

10n

3

∣∣∣∣∣∣∣
=

1

3 10n

n
(2.22)

≥ No≥1
<

1

3 10No

(2.21)
< ε ,

como quer��amos mostrar, completando a resolu�c~ao do exerc��cio.

�

Definição 2.3.2 Diremos que uma sequência num�erica (an)n∈N �e limitada, se existir

M > 0, de modo que

|an| ≤M, para todo n ∈ N . (2.23)

Observação 2.3.3 Nos Exemplos (2.3.1), (2.3.2), (2.3.3) e Exerc��cio (2.3.1) acima, todas

sequências num�ericas s~ao limitadas.

Observemos que nem todas elas s~ao sequência num�ericas convergentes (veja o Exem-

plo (2.3.3)).

Como veremos a seguir existe uma rela�c~ao entre sequencias num�ericas convergentes e

sequencias num�ericas limitadas, a saber:

Proposição 2.3.2 Toda sequência num�erica convergente �e limitada, isto �e, se a sequência

num�erica (an)n∈N �e convergente, ent~ao ela ser�a uma sequência num�erica limitada.

Demonstração:

Como a sequência num�erica (an)n∈N �e convergente, segue que existe l ∈ R, de modo que

lim
n→∞an = l ,

ou seja, dado ε > 0, podemos encontrar No ∈ N, de modo que

para n ≥ No , teremos: |an − l| < ε .

Em particular, se tomarmos

ε
.
= 1 ,

poderemos encontrar No ∈ N, de modo que

para n ≥ No , teremos |an − l| < 1 ,

ou seja, para n ≥ No , teremos − 1 < an − l < 1

ou, equivalentemente, l− 1 < an < 1+ l , para n ≥ No ,

ou ainda, − |l|− 1 < an < |l|+ 1 , para n ≥ No ,

isto �e, |an| < |l|+ 1 , para n ≥ No . (2.24)
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De�namos

M
.
= max {|a1| , |a2| , · · · , |aNo−1| , |l|+ 1} . (2.25)

Como isto temos que

|an| ≤M para todo n ∈ N ,

como quer��amos demonstrar.

�

Observação 2.3.4 A rec��proca do resultado acima �e falsa, isto �e, nem toda sequência

num�erica limitada �e convergente, como mostra o Exemplo (2.3.3).

A seguir temos algumas propriedades gerais para convergência de sequências num�ericas.

Teorema 2.3.1 (propriedades b�asicas da convergência de sequências) Sejam (an)n∈N,

(bn)n∈N e (cn)n∈N sequências num�ericas.

1. Se as sequencias num�ericas (an)n∈N e (bn)n∈N s~ao convergentes para a e b, respec-

tivamente, ent~ao a sequência num�erica (an)n∈N+(bn)n∈N �e convergente para a+ b,

isto �e, se existem lim
n→∞an = a e lim

n→∞bn = b, ent~ao existe lim
n→∞(an + bn) e

lim
n→∞(an + bn) = a+ b ,

isto �e,

lim
n→∞(an + bn) = lim

n→∞an + lim
n→∞bn. (2.26)

Vale os an�alogos para as sequências num�ericas

(an)n∈N − (bn)n∈N , (an)n∈N · (bn)n∈N e
(an)n∈N
(bn)n∈N

,

ou seja, as respectivas sequências num�ericas ser~ao convergentes para

a− b , ab e
a

b
,

onde, no �ultimo caso deveremos ter bn , b ̸= 0 para todo n ∈ N, respectivamente,

ou seja:

lim
n→∞(an − bn) = a− b ,

lim
n→∞(an · bn) = ab ,

lim
n→∞

an

bn
=
a

b
,

ou ainda,

lim
n→∞(an − bn) = lim

n→∞an − lim
n→∞bn , (2.27)

lim
n→∞(an · bn) =

(
lim
n→∞an

) (
lim
n→∞bn

)
, (2.28)

lim
n→∞

an

bn
=

lim
n→∞an
lim
n→∞bn

. (2.29)
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2. Se as sequências num�ericas (an)n∈N e (bn)n∈N s~ao convergentes para a e b, respec-

tivamente, e

an ≤ bn , para cada n ∈ N ,

ent~ao

a ≤ b ,

isto �e,

lim
n→∞an ≤ lim

n→∞bn . (2.30)

3. Se a sequência num�erica (an)n∈N �e convergente para zero e a sequência num�erica

(bn)n∈N �e limitada, ent~ao a sequência num�erica (an)n∈N · (bn)n∈N = (an bn)n∈N �e

convergente para zero, isto �e,

lim
n→∞(an · bn) = 0 . (2.31)

4. Suponhamos que as sequências num�ericas (an)n∈N e (bn)n∈N s~ao convergentes para

l e a sequência num�erica (cn)n∈N satisfaz:

an ≤ cn ≤ bn , para cada n ∈ N . (2.32)

Ent~ao a sequência num�erica (cn)n∈N �e convergente para l, isto �e,

lim
n→∞ cn = l . (2.33)

Demonstração:

De 1.:

Comecemos demonstrando (2.26):

Como

lim
n→∞an = a e lim

n→∞bn = b ,

dado ε > 0, podemos encontrar N1, N2 ∈ N, de modo que

se n ≥ N1 temos |an − a| <
ε

2
(2.34)

e

se n ≥ N2 temos |bn − b| <
ε

2
. (2.35)

Logo, tomando-se

No
.
= max{N1 ,N2} , (2.36)

temos para

n ≥ No , (2.37)
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segue que

|(an + bn) − (a+ b)| = |(an − a) + (bn − b)|

≤ |an − a|+ |bn − b|

n
(2.37)

≥ No

(2.36)

≥ N1 e n
(2.37)

≥ No

(2.36)

≥ N2 , logo valem (2.24) e (2.35)]
<

ε

2
+
ε

2
= ε ,

mostrando que lim
n→∞(an + bn) = a+ b ou, equivalentemente,

lim
n→∞(an + bn) = lim

n→∞an + lim
n→∞bn ,

mostrando a validade da identidade (2.26).

A demonstra�c~ao de (2.27) �e an�aloga e ser�a deixada como exerc��cio para para leitor.

Demonstra�c~ao da indentidade (2.28):

Vamos supor que

a ̸= 0

Como as sequências num�ericas (an)n∈N e (bn)n∈N s~ao convergentes, pela Proposi�c~ao (2.3.2),

elas ser~ao sequências num�ericas limitadas, em particular, a sequência (bn)n∈N �e uma sequência

num�erica limtada.

Logo dever�a existir M > 0, tal que

|bn| ≤M, para todo n ∈ N . (2.38)

Dado ε > 0, como as sequências num�ericas (an)n∈N e (bn)n∈N s~ao convergentes, podemos

encontrar N1 , N2 ∈ N, tais que:

se n ≥ N1 , teremos: |an − a| <
ε

2M
, (2.39)

se n ≥ N2 , teremos |bn − b| <
ε

2 |a|︸︷︷︸
>0

. (2.40)

Seja

No
.
= max{N1 ,N2} . (2.41)

Observemos que

se n ≥ No , segue, de (2.41), que n ≥ N1 e n ≥ N2 . (2.42)

logo

|(an bn) − (ab)| = |(an − a)bn + (bn − b)a|

≤ |an − a| |bn|+ |bn − b| |a|

(2.38)
< |an − a|M+ |bn − b| |a|

(2.42) implca que vale (2.39) e (2.40)
<

ε

2M
M+

ε

2 |a|
|a|

=
ε

2
+
ε

2
= ε ,
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mostrando que

lim
n→∞(an bn) = ab

ou, equivalentemente,

lim
n→∞(an bn) = lim

n→∞an lim
n→∞bn ,

isto �e, a validade de (2.28).

Se

b ̸= 0 ,

podemos fazer uma demonstra�c~ao semelhante e esta ser�a deixada como exerc��cio para o leitor.

Se

a = b = 0 ,

ent~ao temos que dado ε > 0, como as sequências num�ericas (an)n∈N e (bn)n∈N s~ao convergen-

tes, podemos encontrar N1 , N2 ∈ N, tais que:

se n ≥ N1 , teremos: |an|
a=0
= |an − 0| <

√
ε , (2.43)

se n ≥ N2 , teremos: |bn|
b=0
= |bn − 0| <

√
ε . (2.44)

Seja

No
.
= max{N1 ,N2} . (2.45)

Observemos que

se n ≥ No , de (2.45), segue que n ≥ N1 e n ≥ N2 . (2.46)

Neste caso teremos:

|(an bn) − ab|
a=b=0
= |an bn|

= |an| |bn|

(2.46), implica na validade de: (2.43) e (2.44)
<

√
ε
√
ε = ε ,

mostrando que

lim
n→∞(an bn) = 0

ou, equivalentemente,

lim
n→∞(an bn) = lim

n→∞an lim
n→∞bn ,

isto �e, a validade de (2.28).

A demonstra�c~ao de (2.29) �e semelhante e ser�a deixada como exerc��cio.

De 2.:

Suponhamos, por absurdo, que

a > b , isto �e, lim
n→∞an > lim

n→∞bn .
Logo,

a− b > 0 ,
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dado

ε
.
=
a− b

2
> 0 , (2.47)

como as sequências num�ericas (an)n∈N e (bn)n∈N s~ao convergentes, podemos encontrarN1 ,N2 ∈
N, de modo que

se n ≥ N1 , teremos |an − a| < ε ,

ou seja, − ε < an − a < ε ,

isto �e, − ε+ a < an < ε+ a ,

que, de (2.47), �e o mesmo que: −
a− b

2
+ a︸ ︷︷ ︸

=a+b
2

< an <
a− b

2
+ a ,

em particular, teremos:
a+ b

2
< an . (2.48)

e

se n ≥ N2 , teremos |bn − b| < ε ,

ou seja, − ε < bn − b < ε ,

isto �e, − ε+ b < bn < ε+ b ,

que, de (2.47), �e o mesmo que: −
a− b

2
+ b < bn <

a− b

2
+ b︸ ︷︷ ︸

=a+b
2

,

em particular, teremos: bn <
a+ b

2
. (2.49)

Logo,

se n ≥ max{N1 , N2} , teremos n ≥ N1 e n ≥ N2 , (2.50)

assim

bn
(2.50) implica na validade de (2.50)

<
a+ b

2

(2.48) implica na validade de (2.50)
< an,

isto �e,

bn < an , se n ≥ max{N1 ,N2},

o que �e um absurdo pois, por hip�otese,

an ≤ bn , para todo n ∈ N ,

isto �e, vale (2.30).

De 3.:

Como a sequência num�erica (bn)n∈N �e uma sequência num�erica limitada, podemos encon-

trar M > 0, tal que

|bn| ≤M, para todo n ∈ N . (2.51)

Por outro lado, como a sequência num�erica (an)n∈N �e uma sequência num�erica convergente

para zero, dado ε > 0, podemos encontrar No ∈ N, tal que

se n ≥ No teremos: |an| = |an − 0| <
ε

M
. (2.52)
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Logo, dado dado ε > 0, se n ≥ No, teremos

|an bn − 0| = |an| |bn|

(2.51) e (2.52)

≤ ε

M
M < ε ,

mostrando que

lim
n→∞(an bn) = 0 ,

ou seja, a validade de (2.31).

De 4.:

Como as sequências (an)n∈N e (bn)n∈N s~ao convergentes para l, dado ε > 0, podemos

encontrar N1 , N2 ∈ N, tais que:

se n ≥ N1 , teremos: |an − l| < ε ,

que implicar�a em: − ε
(∗)
< an − l < ε , (2.53)

se n ≥ N2 , teremos: |bn − l| < ε ,

que implicar�a em − ε < bn − l
(∗∗)
< ε (2.54)

Logo de�nido-se

No = max{N1 ,N2} , (2.55)

para n ≥ No, teremos que n ≥ N1 e n ≥ N2, assim

− ε
(∗) em (2.53)

< an − l
an

(2.32)

≤ cn

≤ cn − l
cn

(2.32)

≤ bn

≤ bn − l
(∗∗) em (2.54)

< ε ,

ou seja, − ε < cn − l < ε ,

ou, equivalentemente, |cn − l| < ε ,

mostrando que

lim
n→∞ cn = l ,

isto �e, a validade de (2.33), completando a demonstra�c~ao do resultado.

�

Observação 2.3.5

1. O item 2. do Teorema (2.3.1) acima, �e conhecido como o Teorema da Compa

ração para sequências num�ericas.

2. Uma sequência num�erica que tem limite zero ser�a dita infinitésimo.

Com isto o item 3. do Teorema (2.3.1) acima, pode ser resumido como: "o produto

de uma sequência num�erica que �e um in�nit�esimo, por uma sequência num�erica

limitada �e uma sequência num�erica que �e um in�nit�esimo".

3. O item 4. do Teorema (2.3.1) acima, �e conhecido como o Teorema do sanduiche

ou do confronto para sequências num�ericas.
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Apliquemos os resultados acima ao:

Exemplo 2.3.4 Mostre que

lim
n→∞

 1

n2
+

1

(n+ 1)2
+ · · ·+ 1

(2n)2︸ ︷︷ ︸
(n+1)−parcelas

 = 0 .

Resolução:

Para isto observemos que

an
.
= 0 ≤

.
=cn︷ ︸︸ ︷

1

n2
+

1

(n+ 1)2
+ · · ·+ 1

(2n)2︸ ︷︷ ︸
(n+1)−parcelas

n+ 1 ≥ n
n+ 2 ≥ n

. . .

2 n ≥ n


≤ 1

n2
+
1

n2
+ · · ·+ 1

n2︸ ︷︷ ︸
(n+1)−parcelas

=
n+ 1

n2

=
1

n
+
1

n2
.
= bn ,

para cada n ∈ N.
Notemos que:

lim
n→∞an an=0= 0 , (2.56)

e do Exemplo (2.3.1) e do item 1. do Teorema (2.3.1), segue qe

lim
n→∞bn = lim

n→∞
(
1

n
+
1

n2

)
(2.26) e (2.28)

= lim
n→∞

1

n
+

(
lim
n→∞

1

n

) (
lim
n→∞

1

n

)
(2.10)
= 0+ 0 · 0 = 0 , (2.57)

ou seja, de (2.56) e (2.57), teremos:

lim
n→∞an = 0︸︷︷︸

.
=l

= lim
n→∞bn .

Logo, do item 4. do Teorema (2.3.1) (isto �e, do Teorema do sanduiche), segue que

lim
n→∞

 1

n2
+

1

(n+ 1)2
+ · · ·+ 1

(2n)2︸ ︷︷ ︸
(n+1)−parcelas

 = lim
n→∞an = lim

n→∞bn
(2.57)
= 0 .
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Observação 2.3.6 Vale observar que no Exemplo (2.3.4) acima, não podemos aplicar

a propriedade de soma de limites, isto �e, limite da soma �e a soma dos limites, pois o

n�umero de parcelas de an aumenta, quando n aumenta.

Observemos que para:

n = 1 (duas parcelas), temos que: a1 =
1

12
+
1

22

n = 2 (três parcelas), temos que: a2 =
1

22
+
1

32
+
1

42

n = 3 (quatro parcelas), temos que: a3 =
1

32
+
1

42
+
1

52
+
1

62

e assim por diante.

Um resultado bastante importante no estudo da convergência de sequências num�ericas �e

o que relaciona limites de sequências num�ericas com limites, no in�nito, de fun�c~oes a valores

reais, de uma vari�avel real (estudado no C�alculo 1) , a saber:

Teorema 2.3.2 Seja f : [1 ,∞) → R uma fun�c~ao e suponhamos que

lim
x→∞ f(x) = l ∈ R . (2.58)

Ent~ao a sequência num�erica (an)n∈N, onde

an
.
= f(n) , para n ∈ N , (2.59)

�e convergente para l, isto �e,

lim
n→∞an = lim

x→∞ f(x) . (2.60)

Demonstração:

Dado ε > 0, como

lim
x→∞ f(x) = l ∈ R ,

dado R > 0, de modo que

se x ≥ R , teremos: |f(x) − l| < ε . (2.61)

Seja No ∈ N, de modo que

No ≥ R . (2.62)

Logo

se n ≥ No

(2.62)

≥ R , teremos, por (2.61), que: | f(n)︸︷︷︸
(2.59)
= an

−l| < ε ,

ou seja,

se n ≥ No , teremos: |an − l| < ε ,

mostrando que a sequência num�erica (an)n∈N �e convergente para l, ou seja, vale (2.60), com-

pletando a demonstra�c~ao.

�
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Observação 2.3.7 Observemos que NÃO podemos aplicar as regras de L'Hôspital para

sequências num�ericas (an)n∈N.

Por�em, podemos utilizar o resultado acima para estudar o limite de fun�c~oes a valores

reais, de uma vari�avel real, no in�nito (utilizando, se poss��vel, a regra de L'Hôspital), e

assim tirar conclus~oes para o limite da sequências num�ericas associada, como veremos

em alguns exemplos a seguir.

Exemplo 2.3.5 Mostre que

lim
n→∞

1− n

n2 + 1
= 0 . (2.63)

Resolução:

Para isto, consideremos a fum�c~ao f : [1 ,∞) → R dada por

f(x)
.
=
1− x

x2 + 1
, para cada x ∈ [1∞) . (2.64)

Notemos que:

lim
x→∞ f(x) = lim

x→∞
1− x

x2 + 1

do tipo: −∞∞ , por L'Hôspital
= lim

x→∞
d

dx
[1− x]

d

dx

[
x2 + 1

]
= lim

x→∞
−1

2 x
Exerc��cio de C�alculo 1

= 0 .

Notemos que

an
.
=
1− n

n2 + 1
(2.64)
= f(n) , para cada n ∈ N .

Logo, do Teorema (2.3.2) acima, segue que a sequência num�erica

(an)nn∈N =

(
1− n

n2 + 1

)
n∈N

�e convegente para l = 0, ou seja,

lim
n→∞

1− n

n2
= lim

n→∞an
= lim

x→∞ f(x)
= 0 ,

ou ainda,

lim
n→∞

1− n

n2 + 1
= 0 ,

como a�rmamos.

�
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Exemplo 2.3.6 Estudemos a convergência da sequência num�erica (an)nn∈N, onde

an
.
=
n

en
, para cada n ∈ N . (2.65)

Resolução:

De�namos a fun�c~ao f : [1 ,∞) → R dada por

f(x)
.
=
x

ex
, para cada x ∈ [1 ,∞). (2.66)

Notemos que:

lim
x→∞ f(x) = lim

x→∞
x

ex

∞∞ , por L'Hôspital
= lim

x→∞
d

dx
x

d

dx
ex

= lim
x→∞

1

ex

Exerc��cio de C�alculo 1
= 0 , (2.67)

onde estamos utilizando o fato que �ultimo limite foi tratado na disciplina C�alculo I.

De (2.65), temos que

an
(2.65)
=

n

en

(2.66)
= f(n) , para cada n ∈ N .

Assim, do Teorema (2.3.2) acima, segue que

lim
n→∞

n

en
= lim

n→∞an
= lim

x→∞ f(x)
(2.67)
= 0 ,

ou seja,

lim
n→∞

n

en
= 0 ,

ou seja, sequência num�erica

(an)nn∈N =
( n
en

)
n∈N

�e convegente para l = 0, completando a resolu�c~ao.

�

Exemplo 2.3.7 A sequência num�erica (an)nn∈N, onde

an
.
=

(
1+

1

n

)n
, para cada n ∈ N , (2.68)

�e convergente para e (ou seja, o n�umero de Euler).
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Resolução:

Consideremos a fun�c~ao f : [1 ,∞) → R dada por

f(x)
.
=

(
1+

1

x

)x
, para cada x ∈ [1 ,∞) . (2.69)

Ent~ao, do 2.o limite fundamental (estudado em C�alculo 1), segue que

lim
x→∞ f(x) = e . (2.70)

Notemos que

an
(2.68)
=

(
1+

1

n

)n
(2.69)
= f(n) , para cada n ∈ N . (2.71)

Assim segue, do Teorema (2.3.2) acima, que

lim
n→∞an

(2.68)
= lim

n→∞
(
1+

1

n

)n
(2.71)
= lim

x→∞ f(x)
(2.70)
= e ,

ou seja,

lim
n→∞

(
1+

1

n

)n
= e ,

ou ainda, a sequência num�erica

(an)nn∈N =

((
1+

1

n

)n)
n∈N

�e convegente para e, como quer��amos mostrar.

�

Exemplo 2.3.8 Seja r ∈ (0 ,∞) �xado. Ent~ao a sequência num�erica (an)n∈ n∈N, onde

an
.
= rn , para cada n ∈ N , (2.72)

�e convergente para 
0 , se r ∈ (0 , 1) ,

1 , se r = 1 ,

n~ao ser�a convergente, se r ∈ (1 ,∞)

.
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Resolução:

Notemos que, se

r = 0 ,

teremos que

an
(2.72)
= rn

r=0
= 0n

= 0 , para cada n ∈ N ,

e assim a a sequência num�erica

(an)n∈ n∈N = (rn)
n∈N

ser�a convergente para 0.

Se

r = 1 ,

teremos que

an
(2.72)
= rn

r=1
= 1n

= 1 , para cada n ∈ N ,

e assim a a sequência num�erica

(an)n∈ n∈N = (rn)
n∈N

ser�a convergente para 1.

Por outro lado, se

r ∈ (0 , 1) ∪ (1 ,∞) ,

temos que

an
(2.72)
= rn

= en ln r , para cada n ∈ N . (2.73)

Portanto, se

r ∈ (0 , 1] , teremos que ln r < 0 ,

e assim a sequência num�erica (an)n∈ n∈N �e convergente para zero, pois

lim
x→∞ ex ln r Exerc��cio de C�alculo 1

= 0 , para cada r ∈ (0 , 1] .

Se

r ∈ (1 ,∞) , teremos ln r > 0 ,

logo a sequência num�erica (an)n∈ n∈N n~ao ser�a convergente pois, neste caso

lim
x→∞ ex ln r Exerc��cios de C�alculo 1

= ∞ , para cada r ∈ (1 ,∞) ,

completando a resolu�c~ao.

�
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Observação 2.3.8

1. Vale observar, uma vez mais, que NÃO podemos aplicar a Regra de L'Hôspital,

diretamente, �as sequências num�ericas.

2. O Teorema (2.3.2) acima não garante que se o limite lim
x→∞ f(x) não existe, ent~ao

o limite lim
n→∞an tamb�em n~ao existir�a, onde

an
.
= f(n) , para cada n ∈ N ,

como mostra o seguinte exemplo:

Consideremos a fun�c~ao f : R → R dada por

f(x) = sen(πx) , para cada x ∈ R . (2.74)

Notemos que o limite

lim
x→∞ f(x)

n~ao existe (Exerc��cio de C�alculo 1) por�em, considerando-se a sequência num�erica

(an)n∈N, onde

an
.
= f(n)

(2.74)
= sen(πn)

= 0 , para n ∈ N ,

teremos

lim
n→∞an = 0 ,

ou seja, a sequência num�erica (an)n∈N ser�a convergente (para 0).

3. Todos os resultados apresentado acima permanecem verdadeiros se substituirmos

a hip�otese

n ∈ N , por n ≥ No ,

para algum No ∈ N �xado.

Por exemplo, no item 2. do Teorema (2.3.1), se trocarmos a hip�otese:

an ≤ bn , para cada n ∈ N , por an ≤ bn , para cada n ≥ No ,

a conclus~ao continuar�a v�alida, isto �e,

lim
n→∞an ≤ lim

n→∞bn .
Observação 2.3.9 Como vimos anteriormente (veja a Proposi�c~ao (2.3.2)) toda sequência

num�erica convergente �e limitada, mas não vale a rec��proca (veja o Exemplo (2.3.3)).

A quest~ao que poder��amos colocar �e a seguinte: al�em de ser limitada, que proprie-

dade(s) uma sequência num�erica poderia ter, para que pud�essemos garantir que ela

ser�a convergente ?

A seguir introduziremos uma nova classe de sequências num�ericas que nos ajudar~ao

a responder essa pergunta.
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2.4 Sequências numéricas monótonas

Definição 2.4.1 Diremos que uma sequência num�erica (an)n∈N �e:

1. crescente se:

an+1 ≥ an , para cada n ∈ N . (2.75)

2. decrescente se:

an+1 ≤ an , para cada n ∈ N . (2.76)

3. estritamente crescente se:

an+1 > an , para cada n ∈ N . (2.77)

4. estritamente decrescente se

an+1 < an , para cada n ∈ N . (2.78)

Se a sequência num�erica (an)n∈N for de um dos tipos acima ela ser�a dita monótona.

Exemplo 2.4.1 A sequência num�erica (an)n∈N, onde

an
.
= n , para cada n ∈ N , (2.79)

�e estritamente crescente (portanto mon�otona)

Resolução:

De fato, pois

an+1
(2.79)
= n+ 1

> n

(2.79)
= an , para cada n ∈ N ,

mostrando que a equência num�erica

(an)n∈N = (n)
n∈N

�e estritamente crescente.

�

Exemplo 2.4.2 A sequência num�erica (an)n∈N, onde por

an
.
=
1

n
, para cada n ∈ N , (2.80)

�e estritamente decrescente (portanto mon�otona).
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Resolução:

De fato, pois

an+1
(2.80)
=

1

n+ 1
n+1>n
<

1

n
(2.80)
= an

para cada n ∈ N, mostrando que a equência num�erica

(an)n∈N =

(
1

n

)
n∈N

�e estritamente decrescente.

�

Exemplo 2.4.3 A sequência num�erica (an)n∈N, onde por

an
.
= cos(nπ) , para cada n ∈ N , (2.81)

não �e mon�otona.

Resolução:

Notemos que

an
(2.81)
= cos(nπ)

= (−1)n , para cada n ∈ N ,

que mostra que nenhuma das condi�c~oes da De�ni�c~ao (2.4.1) ocorrer�a.

�

Exemplo 2.4.4 A sequência num�erica (an)n∈N, onde

an
.
=
1

2n
, para cada n ∈ N , (2.82)

�e estritamente decrescente (portanto mon�otona).

Resolução:

De fato, pois, como

2n+1 > 2n , para cada n ∈ N ,

segue que

an+1
(2.82)
=

1

2n+1

<
1

2n

(2.82)
= an ,
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para cada n ∈ N, mostrando que a sequência num�erica

(an)n∈N =

(
1

2n

)
n∈N

�e estritamente decrescente.

�

Observação 2.4.1

1. Podemos estudar a monotonicidade de uma sequência num�erica (an)n∈N, estudando-

se o comportamento da sequência num�erica dada por:(
an+1

an

)
nn∈N

,

se an ̸= 0, para cada n ∈ N.

Para ilustrar, suponhamos que

an > 0 , para cada n ∈ N .

Com isto teremos que:

an+1

an
≥ 1 , para cada n ∈ N

se, e somente se a sequência num�erica (an)n∈N �e crescente.

2. Podemos obter um resultado an�alogo ao citado acima, trocando-se o sinal

≥ , pelo sinal: >

e a palavra

crescente , pela palavra: estritamente crescente .

3. Notemos tamb�em que, se

an > 0 , para cada n ∈ N ,

temos que
an+1

an
≤ 1 , para cada n ∈ N

se, e somente se a sequência num�erica (an)n∈N �e decrescente.

4. Podemos obter um resultado an�alogo ao citado acima, trocando-se o sinal

≤ , pelo sinal: <

e a palavra

decrescente , pela palavra: estritamente decrescente .
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5. Podemos obter resultado an�alogos aos acima, para o caso que

an < 0 , para cada n ∈ N ,

trocando-se as palavras

crescente , pela palavra: decrescente .

e vice-versa.

Conclusão: supondo que

an > 0 (ou an < 0) , para cada n ∈ N ,

a sequência num�erica (an)n∈N ser�a mon�otona se, e somente se, ou

an+1

an
≥ 1

(
ou

an+1

an
≤ 1
)
, para cada n ∈ N .

6. Podemos, quando poss��vel, estudar a monotonicidade de uma sequência num�erica

(an)n∈N estudando-se a monotonicidade de uma fun�c~ao f : [1 ,∞) → R, onde

an
.
= f(n) , para cada n ∈ N .

Por exemplo, se a fun�c~ao f �e crescente (respectivamente, estritamente crescente,

decrescente, estritamente decrescente), isto �e,

f(x) ≥ f(y) (respectivamente, > , ≤ , <) , para cada x ≥ y ≥ 1 ,

ent~ao a sequência num�erica (an)n∈N,

an
.
= f(n) , para cada n ∈ N

ser�a crescente (respectivamente, estritamente crescente, decrescente, estritamente

decrescente).

7. Lembremos que, quando poss��vel (ou seja, se a fun�c~ao f : [1 ,∞) → R for dife-

renci�avel em [1 ,∞)), poderemos estudar a monotonicidade da fun�c~ao f acima,

estudando o sinal de sua derivada , mais precisamente:

se f ′(x) ≥ 0 , para todo x ∈ [1 ,∞) ,

a fun�c~ao f ser�a crescente em [1 ,∞) ,

se f ′(x) > 0 , para todo x ∈ [1 ,∞) ,

a fun�c~ao f ser�a estritamente crescente em [1 ,∞) ,

se f ′(x) ≤ 0 , para todo x ∈ [1 ,∞) ,

a fun�c~ao f ser�a decrescente em [1 ,∞) ,

se f ′(x) < 0 , para todo x ∈ [1 ,∞) ,

a fun�c~ao f ser�a estritamente decrescente em [1 ,∞) .
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8. Pode ocorrer da fun�c~ao f : [1 ,∞) → R não ser uma fun�c~ao mon�otona, mas a

sequência num�erica (an)n∈N, onde

an
.
= f(n) , para cada n ∈ N

ser mon�otona, como mostra o seguinte exemplo:

Consideremos a fun�c~ao f : [1 ,∞) → R dada por

f(x)
.
= sen(πx) , para cada x ∈ [1 ,∞) .

Ent~ao a fun�c~ao f n~ao �e mon�otona, mas a sequência num�erica (an)n∈N, onde

an
.
= f(n)

= sen(πn)

= 0 , para cada n ∈ N ,

�e uma sequência num�erica mon�otona, pois

an+1 = 0 ≥ 0 = an , para cada n ∈ N .

Apliquemos as ideias acima aos:

Exemplo 2.4.5 A sequência num�erica (an)n∈N, onde

an
.
=

−n

n+ 1
, para cada n ∈ N , (2.83)

�e estritamente decrescente.

Resolução:

De fato, pois

an+1

an

(2.83)
=

−(n+ 1)

(n+ 1) + 1
−n

n+ 1

=
n+ 1

n+ 2

n+ 1

n

=
n2 + 2n+ 1

n2 + 2n

= 1+
1

n2 + 2︸ ︷︷ ︸
>0

> 1 . (2.84)

para cada n ∈ N.
Como

an
(2.83)
< 0 , para n ∈ N ,
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para cada n ∈ N, multiplicando-se (2.84) por an, segue que

an+1 < an , para cada n ∈ N ,

ou seja, a sequência num�erica (an)n∈N �e estritamente decrescente, em particular, ser�a uma

sequência num�erica mon�otona.

�

Exemplo 2.4.6 A sequência num�erica (an)n∈N, onde

an
.
=

2n

3n+ 2
, para cada n ∈ N , (2.85)

�e estritamente crescente.

Resolução:

De fato, pois

an+1

an

(2.85)
=

2 (n+ 1)

3 (n+ 1) + 2
2n

3n+ 2

=
2n+ 2

3n+ 5

3n+ 2

2n

=
6n2 + 10n+ 4

6n2 + 10n

= 1+
4

6n2 + 10n︸ ︷︷ ︸
>0

> 1 , (2.86)

para cada n ∈ N.
Como

an
(2.85)
< 0 , para cada n ∈ N ,

para cada n ∈ N, multiplicando-se (2.86) por an, segue que

an+1 > an , para cada n ∈ N ,

ou seja, a sequência num�erica (an)n∈N �e estritamente crescente, em particular, ser�a sequência

num�erica mon�otona.

�

Exemplo 2.4.7 A sequência num�erica (an)n∈N, onde

an
.
=

ln(n+ 2)

n+ 2
, para cada n ∈ N , (2.87)

�e estritamente decrescente.
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Resolução:

De fato, consideremos a fun�c~ao f : [1 ,∞) → R, dada por

f(x)
.
=

ln(x+ 2)

x+ 2
, para cada x ∈ [1 ,∞) . (2.88)

Notemos que

an
(2.87)
=

ln(n+ 2)

n+ 2
(2.88)
= f(n) , para cada n ∈ N . (2.89)

Por outro lado, notemos que a fun�c~ao f �e diferenci�avel em [1 ,∞) e

f ′(x)
(2.88)
=

d

dx

[
ln(x+ 2)

x+ 2

]
regras de deriva�c~ao

=

1

x+ 2
(x+ 2) − ln(x+ 2) · 1

(x+ 2)2

=
1− ln(x+ 2)

(x+ 2)2
< 0

para x ∈ [1 ,∞).

De fato, pois se

x ∈ [1 ,∞) ,

teremos x+ 2 > e ,

logo, ln(x+ 2) > 1 ,

ou seja, 1− ln(x+ 2) < 0 .

Logo, como

f ′(x) < 0 , para x ∈ [1 ,∞) ,

segue, do item 7. da Observa�c~ao (2.4.1), que a fun�c~ao f ser�a estritamente decrescente e assim,

pelo item 6. da mesma Observa�c~ao, teremos que a sequência num�erica (an)n∈N tamb�em ser�a

estritamente decrescente (pois an
(2.89)
= f(n), para cada n ∈ N).

�

Observação 2.4.2 Sabemos que toda sequência num�erica convergente �e limitada (veja

a Proposi�c~ao (2.3.2)), mas nem toda sequência num�erica limitada �e convergente (veja

o Exemplo (2.3.3)).

A pergunta que podemos formular �e a seguinte: que outra propriedade a sequência

num�erica poder�a ter (al�em de ser limitada), para que possamos garantir que ela seja

converente ?

A resposta ser�a dada no resultado a seguir:

Teorema 2.4.1 Toda sequência num�erica limitada e mon�otona ser�a convergente em R.
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Demonstração:

Faremos a demonstra�c~ao para o caso em que a sequência num�erica (an)N∈N seja crescente.

Os outros casos ser~ao deixados como exerc��cio para o leitor.

Como a sequência num�erica (an)N∈N �e limitada temos que existe M > 0, de modo que

|an| ≤M, para cada n ∈ N.

Logo o conjunto

A
.
= {an ; n ∈ N}

ser�a limitado em R.
Portanto existe

L
.
= sup{an : n ∈ N} ⊆ R .

A�rmamos que

lim
n→∞an = L .

De fato, dado ε > 0, da de�ni�c~ao de supremo, como

L
.
= sup{an : n ∈ N} ∈ R ,

podemos encontrar No ∈ N, de modo que

L− ε < aNo
≤ L . (2.90)

Como a sequência num�erica (an)N∈N �e crescente temos, para n ≥ No, que

L− ε
(2.90)
< aNo

≤ an
L �e limitante superior do conjunto A

≤ L < L+ ε , (2.91)

ou seja, para n ≥ No, teremos

L− ε < an < L+ ε ,

ou ainda

|an − L| < ε , para n ≥ No ,

mostrando que

lim
n→∞an = L = sup{an ; n ∈ N} ,

como quer��amos demonstrar.

�

Observação 2.4.3

1. O Teorema (2.4.1) acima nos diz que se uma sequência (an)n∈N �e mon�otona e

limitada, ent~ao ela ser�a convergente para algum L ∈ R e, al�em disso,

lim
n→∞an = L = sup{an ; n ∈ N} . (2.92)
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2. Se no Teorema (2.4.1) acima, a sequência num�erica (an)N∈N for decrescente (e

limitada), ent~ao, de modo semelhante, pode-se mostrar que

lim
n→∞an = L = inf{an ; n ∈ N} . (2.93)

3. O resultado acima nos d�a uma condi�c~ao su�ciente (mas não necess�aria) para que

uma sequência num�erica limitada, seja convergente em R, a saber, que ela seja

mon�otona.

Deixaremos como exerc��cio para o leitor uma sequência num�erica que seja limi-

tada, n~ao seja mon�otona, mas �e convergente em R.

Apliquemos as ideias acima aos:

Exemplo 2.4.8 Mostre que a sequência num�erica (an)n∈N, onde

an
.
=
2n

n!
, para cada n ∈ N , (2.94)

�e convergente para zero, isto �e,

lim
n→∞

2n

n!
= 0 .

Resolução:

Para garantir a convergência em R, da sequência num�erica (an)n∈N, mostremos que ela �e

uma sequência num�erica limitada e mon�otona.

Logo, pelo Teorema (2.4.1), segue que ela ser�a convergente em R.
Ap�os isto, mostraremos que o valor do seu limite �e zero.

(i) Mostremos que a sequência num�erica (an)n∈N �e decrescente.

De fato, notemos que, para cada n ∈ N, temos:

an+1

an

(2.94)
=

2n+1

(n+ 1)!
2n

n!

=
2n+1 n!

2n (n+ 1)!

= 2
1

n+ 1
n+1≥2
≤ 2

1

2
= 1 . (2.95)

Como

an > 0 , para cada n ∈ N ,

para cada n ∈ N, mutiplicando (2.95) por an, segue que

an+1 ≤ an , para cada n ∈ N , (2.96)
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ou seja, a sequência num�erica �e decrescente (em particular, mon�otona).

(ii) Mostremos que a sequência num�erica (an)n∈N �e limitada.

Do item (i) temos que a sequência num�erica (an)n∈N �e decrescente.

Por outro lado,

an
(2.94)
> 0 , para cada n ∈ N ,

seque que

−2 ≤ 0 < an
(2.96)

≤ a1 = 2 , para cada n ∈ N ,

em particular,

|an| ≤ 2 , para cada n ∈ N .

Portanto a sequência num�erica (an)n∈N �e limitada.

Logo, do Teorema (2.4.1), segue que a sequência num�erica (an)n∈N �e convergente em R,
ou seja, existe L ∈ R tal que

L
.
= lim

n→∞an . (2.97)

Portanto, teremos

L = lim
n→∞an

(2.94)
= lim

n→∞
2n

n!

= lim
n→∞

[
2

n

2n−1

(n− 1)!

]
= lim

n→∞
[
2

n
an−1

]
. (2.98)

Mas

lim
n→∞an−1 = L e lim

n→∞
2

n
= 0 . (2.99)

Logo, de (2.99) e (2.98), segue que

L =

[
lim
n→∞

2

n

] [
lim
n→∞an−1

]
(2.99) e (2.98)

= 0 · L
= 0 ,

ou seja,

L = 0 , ou ainda, lim
n→∞

2n

n!
= 0 ,

mostrando que a sequência num�erica (an)n∈N �e convergente para zero, completando a re-

solu�c~ao.

�
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Exemplo 2.4.9 Mostre que a sequência num�erica (an)n∈N, onde

a1
.
=

√
2 , a2

.
=

√
2
√
2 , · · · , an

.
=
√
2an−1 , para cada n ∈ N , (2.100)

�e convergente para 2, isto �e,

lim
n→∞an = 2 .

Resolução:

Para garantir a convergência em R, da sequência num�erica (an)n∈N, mostremos que ela �e

uma sequência num�erica limitada e mon�otona.

Logo, pelo Teorema (2.4.1), segue que ela ser�a convergente em R.
Ap�os isto, mostraremos que o valor do seu limite �e igual a 2.

(i) Mostremos que a sequência num�erica (an)n∈N �e limitada.

Na verdade, mostraremos que

0 < an ≤ 2 , para cada n ∈ N , (2.101)

que implicar�a, em particular, que

|an| ≤ 2 , para cada n ∈ N ,

ou seja, a sequência num�erica (an)n∈N ser�a limitada.

Para (2.101), utilizaremos indução matemática, isto �e, precisaremos mostrar que:

(a) a propriedade (2.101) �e v�alida para n = 1;

e

(b) se a propriedade (2.101) for v�alida para n = k− 1, ela ser�a v�alida para n = k.

Notemos que a propriedade (2.101) �e v�alida para n = 1, pois

0 < a1
(2.100)
=

√
2 ≤ 2 ,

ou seja, vale (a).

Al�em disso, se a propriedade (2.101) for v�alida para n = k− 1, teremos:

0 < ak−1 ≤ 2 (2.102)

Mas

0 < ak
(2.100)
=

√√√√2 ak−1︸︷︷︸
(2.102)

≤ 2

≤
√
2 · 2 = 2 ,

mostrando a propriedade (2.101) ser�a v�alida para n = k, isto �e, vale (b).

Assim segue, da indu�c~ao matem�atica, que (2.101) �e verdadeira para todo n ∈ N, em
particular, a sequência num�erica (an)n∈N �e limitada.

(ii) Mostremos que a sequência num�erica (an)n∈N �e crescente.
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Para isto observemos que, para cada n ∈ N, teremos:

an+1

an

(2.100)

≤
√
2an

an

=

√
2
√
an

(
√
an)

2

=

√
2

√
an

(2.101)

≥ 1 , (2.103)

Como

an > 0 , para cada n ∈ N ,

para cada n ∈ N, multiplicando-se (2.101) por an, segue que

an+1 ≥ an , para cada n ∈ N ,

ou seja, a sequência num�erica (an)n∈N �e crescente (em particular, mon�otona).

Logo, do Teorema (2.4.1), segue que a sequência num�erica (an)n∈N �e convergente em R.
Seja

L
.
= lim

n→∞an . (2.104)

Ent~ao

L = lim
n→∞an

(2.100)
= lim

n→∞
√
2an−1

propriedades de limite
=

√
2 lim
n→∞an−1

(2.104)
=

√
2 L ,

ou seja, L2 = 2 L .

Com isto poderemos ter as seguintes possibildades:

L = 0 , ou L = 2 .

Notemos que

L = 0 ,

n~ao poder�a ocorrer pois a sequência num�erica (an)n∈N �e crescente e

an ≥ a1 =
√
2 > 0 .

Portanto deveremos ter

L = 2 ,

isto �e,

lim
n→∞an = 2 ,

mostrando que a sequência num�erica (an)n∈N �e convergente para 2, completando a resolu�c~ao.

�
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Observação 2.4.4 Observemos que na sequência num�erica do Exemplo (2.4.9) acima,

temos

a1 = 2
1
2 , a2 = 2

1
2 · 2

1
4 = 2

1
2
+ 1

4 , a3 = 2
1
2 · 2

1
4 · 2

1
8 = 2

1
2
+ 1

4
+ 1

8 , · · · , an = 2
1
2
+ 1

4
+···+ 1

2n ,

par cada n ∈ N.
Como

1

2
+
1

4
+
1

8
+ · · ·

�e uma P.G. (progress~ao geom�etrica) de raz~ao

r
.
=
1

2
,

cujo primeiro termo �e

a1
.
=
1

2
,

sabemos que a soma da mesma ser�a igual a

a1

1− r
=

1

2

1−
1

2

= 1 .

Logo �e natural acharmos que

lim
n→∞an = 21 = 2 .

Exemplo 2.4.10 Mostremos que a sequência num�erica (an)n∈N, onde

a1
.
=

√
2 , a2

.
=

√
2+

√
2 , · · · , an

.
=
√
2+ an−1 , para cada n ∈ N , (2.105)

�e convergente para 2, isto �e,

lim
n→∞an = 2 .

Resolução:

Para garantir a convergência em R, da sequência num�erica (an)n∈N, mostremos que ela �e

uma sequência num�erica limitada e mon�otona.

Logo, pelo Teorema (2.4.1), segue que ela ser�a convergente em R.
Ap�os isto, mostraremos que o valor do seu limite �e igual a 2.

(i) Mostremos que a sequência num�erica (an)n∈N �e crescente, isto �e,

an ≤ an+1 , para cada n ∈ N . (2.106)

Para isso usaremos indu�c~ao matem�atica, ou seja, mostraremos que:

(a) a propriedade �e v�alida para n = 1

e

(b) se a propriedade for v�alida para n = k− 1, ent~ao ela tamb�em ser�a v�alida para n = k.
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Notemos que

a1
(2.105)
=

√
2
2≤2+

√
2 e

√
�e ↑

≤
√
2+

√
2

(2.105)
= a2 ,

portanto: a1 ≤ a2 ,

ou seja, vale a propriedade (2.106) para n = 1, isto vale (a).

Suponhamos que a propriedade for v�alida para n = k− 1, isto �e,

ak−1 ≤ ak . (2.107)

Com isto, teremos:

ak
(2.105)
=

√√√√2+ ak−1︸︷︷︸
(2.107)

≤ ak

√
�e ↑
≤

√
2+ ak

(2.105)
= ak+1 ,

mostrando que a propriedade ser�a v�alida para n = k.

Assim, segue da indu�c~ao matem�atica, que (2.106) vale para todo n�N, ou seja, a sequência

num�erica (an)n∈N �e crescente.

(ii) Mostremos que a sequência num�erica (an)n∈N satisfaz

0 < an ≤ 2 , para cada n ∈ N , (2.108)

em particular, a sequência num�erica (an)n∈N ser�a limitada.

Para isso usaremos, novamente, indu�c~ao matem�atica para mostrar (2.108), ou seja, mos-

tremos que

(a) a propriedade �e v�alida para n = 1.

e

(b) se a propriedade for v�alida para n = k− 1, ent~ao ela ser�a v�alida para n = k.

Notemos que a propriedade �e v�alida para n = 1, pois

0 < a1
(2.105)
=

√
2 ≤ 2 .

Observemos tamb�em que, se a propriedade for v�alida para n = k− 1, isto �e, se

0 < ak−1 ≤ 2 , (2.109)

ent~ao ela ser�a v�alida para n = k.

De fato, pois

ak
(2.105)
=

√
2+ ak−1

(2.109) e
√

�e ↑
≤

√
2+ 2

= 2 ,
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mostrando que a propriedade �e v�alida para n = k, ou seja, vale (b).

Assim, do processo de indu�c~ao matem�atica, segue que vale (2.108), em particular, a

sequência num�erica (an)n∈N �e limitada.

Logo, do Teorema (2.4.1), segue que a sequência num�erica (an)n∈N �e convergente em R.
Seja

L
.
= lim

n→∞an . (2.110)

Ent~ao

L = lim
n→∞an

(2.105)
= lim

n→∞
√
2+ an−1

propriedades de limite
=

√√√√2+ lim
n→∞an−1︸ ︷︷ ︸

(2.110)
= L

=
√
2+ L ,

ou seja, L2 = 2+ L ,

ou seja, temos as seguintes possibilidades:

L = −1 , ou L = 2 .

Observemos que

L = −1

n~ao poder�a ocorrer, pois a sequência num�erica (an)n∈N �e crescente, assim

an ≥ a1 =
√
2 > 0 .

Portanto, deveremos ter

L = 2 ,

ou seja,

lim
n→∞an = 2 ,

mostrando que a sequência num�erica (an)n∈N �e convergente para 2, completando a resolu�c~ao.

�
Alguns tipos de a sequências num�ericas que s~ao divergentes podem ser importantes como

veremos a seguir.

2.5 Sequências numéricas divergentes

Definição 2.5.1 Diremos que uma sequência num�erica (an)n∈N divergente para +∞
(respectivamente, −∞) se dado K > 0, podemos encontrar No ∈ N, de modo que, para

n ≥ No , temos an ≥ K (respectivamente, an ≤ −K). (2.111)

Neste caso escreveremos

lim
n→∞an = ∞ (respectivamente, −∞) .
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Com isto temos os:

Exemplo 2.5.1 A sequência num�erica (an)n∈N, onde

an
.
= n , para cada n ∈ N (2.112)

�e uma sequência num�erica divergente para ∞, isto �e,

lim
n→∞n = ∞ . (2.113)

Resolução:

De fato, dado K > 0, consideremos No ∈ N tal que

No > K .

Logo,

para n ≥ No , (2.114)

teremos an
(2.112)
= n

(2.114)

≥ No ≥ K ,

mostrando, pela De�ni�c~ao (2.5.1), que

lim
n→∞an = ∞ ,

isto �e, (2.113).

�

Exemplo 2.5.2 A sequência num�erica (an)n∈N, onde

an
.
=
1− n3

1+ n2
, para cada n ∈ N (2.115)

�e uma sequência num�erica divergente para −∞, isto �e,

lim
n→∞

1− n3

1+ n2
= −∞ , (2.116)

Resolução:

De fato, dado K > 0, conisderemos No ∈ N, tal que

No > K+ 1 . (2.117)
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Assim,

para n ≥ No (2.118)

teremos an =
1− n3

1+ n2

1≤n2

<
n2 − n3

1+ n2

n2+1≥n2≥1
<

n2 − n3

n2

n2 ̸=0
< 1− n

(2.118)
< 1−No

(2.117)
< −K,

(2.119)

mostrando, pela De�ni�c~ao (2.5.1), que

lim
n→∞an = −∞ ,

isto �e, (2.116).

�
Semelhantemente com o caso de convergência, podemos estudar a divergência de uma

sequência num�erica para ∞ (respectivamente, para −∞), estudando o comportamento de

uma fun�c~ao de uma vari�avel real, a valores reais, que a de�ne.

Mais claramente temos:

Proposição 2.5.1 Suponhamos que a fun�c~ao f : (0 ,∞) (respectivamente, (−∞ , 0)) → R
�e tal que

lim
x→∞ f(x) = ∞ (respectivamente, −∞) , (2.120)

Ent~ao a sequência num�erica (an)n∈N, onde

an
.
= f(n) , para cada n ∈ N (2.121)

�e uma sequência num�erica divergente para ∞ (respectivamente, para −∞), isto �e,

lim
n→∞an = ∞ (respectivamente, −∞) . (2.122)

Demonstração:

Ser�a deixada como exerc��cio para o leitor.

�
Apliquemos as ideias acima aos:

Exemplo 2.5.3 A sequência num�erica (an)n∈N, onde

an
.
=
1− n3

1+ n2
, para cada n ∈ N (2.123)
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uma sequência num�erica divergente para −∞, isto �e,

lim
n→∞

1− n3

1+ n2
= −∞ . (2.124)

Resolução:

Notemos que este Exemplo �e igual ao Exemplo (2.5.2).

Observemos que se de�nirmos a fun�c~ao f : (0 ,∞) → R, dada por

f(x)
.
=
1− x3

1+ x2
, para cada x ∈ (0 ,∞) , (2.125)

teremos que

lim
x→∞ f(x) = lim

x→∞
1− x3

1+ x2

tipo: −∞∞ , aplicamos L'Hôspital
= lim

x→∞
d

dx

[
1− x3

]
d

dx

[
1+ x2

]
= lim

x→∞
−3 x2

2 x

x̸=0
= lim

x→∞
−3 x2

2
Exerc��cio de C�alculo 1

= −∞ . (2.126)

Como, para cada n ∈ N, temos

an
(2.123)
=

1− n3

1+ n2

(2.125)
= f(n) ,

pela Proposi�c~ao (2.5.1) acima, segue que

lim
n→∞an = lim

x→∞ f(x)
(2.126)
= −∞ ,

completando a demonstra�c~ao da identidade (2.124).

�

Exemplo 2.5.4 A sequência num�erica (an)n∈N, onde

an
.
=
3n

n3
, para cada n ∈ N (2.127)

�e uma sequência num�erica divergente para ∞, isto �e,

lim
n→∞

3n

n3
= ∞ . (2.128)
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Resolução:

De fato, consideremos a fun�c~ao f : (0 ,∞) → R, dada por

f(x)
.
=
3x

x3
, para cada x ∈ (0 ,∞) . (2.129)

Notemos que

lim
x→∞ f(x)

(2.129)
= lim

x→∞
3x

x3

tipo ∞∞ aplicando L'Hôspital
= lim

x→∞
d

dx
[3x]

d

dx

[
x3
]

= lim
x→∞

3x ln(3)

3 x2

tipo ∞∞ aplicando L'Hôspital
= lim

x→∞
d

dx
[3x ln(3)]

d

dx

[
3 x2
]

= lim
x→∞

3x (ln 3)2

6 x

tipo ∞∞ aplicando L'Hôspital
= lim

x→∞
d

dx
[3x (ln 3)2]

d

dx
[6 x]

= lim
x→∞

3x (ln 3)3

6
Exerc��cio de C�alculo 1

= ∞ . (∗)

Como

an
(2.127)
= =

3n

n3

(2.129)
= f(n) ,

pela Proposi�c~ao (2.5.1) acima, segue que

lim
n→∞an = lim

x→∞ f(x)
(∗)
= ∞ ,

completando a demonstra�c~ao da identidade (2.128).

�

Observação 2.5.1

1. Se a sequência num�erica (an)n∈N �e crescente (respectivamente, decrescente) e n~ao

�e limitada, ent~ao ela ser�a divergente para ∞ (respectivamante, −∞), isto �e,

lim
n→∞an = ∞ (respectivamente, −∞) .
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2. Outra classe de a sequências num�ericas que n~ao ser~ao alvo de nosso estudo

�e a classe formada pelas sequências num�ericas que s~ao oscilatórias, ou seja,

sequências num�ericas que n~ao s~ao sequências num�ericas convergentes, nem di-

vergentes para ∞ ou −∞.

Por exemplo, a sequência num�erica (an)n∈N, onde

an
.
= (−1)n , para cada n ∈ N ,

n~ao convergente, nem divergente para ∞ ou −∞, ou seja, �e uma sequência num�erica

oscilat�oria.

Temos um teorema da compara�c~ao para sequência num�erica divergentes para ∞ (respec-

tivamente, −∞), a saber:

Teorema 2.5.1 Suponhamos que as a sequências num�ericas (an)n∈N, (bn)n∈N satisfazem:

an ≤ bn , para cada n ∈ N . (2.130)

Ent~ao:

1. Se

lim
n→∞an = ∞ , deveremos ter lim

n→∞bn = ∞ . (2.131)

2.

lim
n→∞bn = −∞ , deveremos ter lim

n→∞an = −∞ . (2.132)

Demonstração:

De 1.:

Como

lim
n→∞an = ∞ ,

ent~ao dado K > 0, podemos encontrar No ∈ N, tal que para

n ≥ No teremos an ≥ K . (2.133)

Assim, se n ≥ No, segue que

bn
(2.130)

≥ an
(2.133)

≥ K ,

mostrando que

lim
n→∞bn = ∞ ,

completando a demonstra�c~ao do item 1. .

De modo an�alogo mostra-se o item 2. .

Os detalhes da demonstra�c~ao do mesmo ser~ao deixados como exerc��cio para o leitor.

�
Apliquemos isto ao (compare com o Exemplo (2.3.4)):
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Exemplo 2.5.5 Mostre que a sequência num�erica (bn)n∈N, onde

bn
.
=

1√
n
+

1√
n+ 1

+ · · ·+ 1√
2n︸ ︷︷ ︸

(n+1)−parcelas

, para cada n ∈ N (2.134)

�e uma sequência num�erica �e divergente para ∞, isto �e,

lim
n→∞

 1√
n
+

1√
n+ 1

+ · · ·+ 1√
2n︸ ︷︷ ︸

(n+1)−parcelas

 = ∞ . (2.135)

Resolução:

Para isto, observemos que, para cada n ∈ N teremos:

bn =
1√
n
+

1√
n+ 1

+ · · ·+ 1√
2n︸ ︷︷ ︸

(n+1)−parcelas

1 ≤ n ≤ 2n
1 ≤ n+ 1 ≤ 2n

...

1 ≤ 2n− 1 ≤ 2n


≥ 1√

2n
+

1√
2n

+ · · ·+ 1√
2n︸ ︷︷ ︸

(n+1)−parcelas

=
n+ 1√
2n

=

√
n√
2
+

1√
2n

.
= an ,

isto �e,

an ≤ bn , para cada n ∈ N . (2.136)

Mas

lim
n→∞an = lim

n→∞
√
n√
2
+

1√
2n

Exerc��cio
= ∞ .

Logo, pelo item 1. do Teorema (2.5.1) acima, segue que

lim
n→∞

 1√
n
+

1√
n+ 1

+ · · ·+ 1√
2n︸ ︷︷ ︸

(n+1)−parcelas

 (2.134)
= lim

n→∞bn = ∞ ,

mostrando (2.135).

�
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2.6 Subsequências de uma sequência numérica

Definição 2.6.1 Seja (an)n∈N uma sequência num�erica e A
.
= {n1, n2, · · · } subconjunto

in�nito dos n�umeros naturais, satisfazendo

n1 < n2 < n3 < · · · .

Como isto podemos construir a sequência num�erica (ani
)i∈N (isto �e, consideramos a

restri�c~ao a|A : A ⊆ N → R).
Tal sequência num�erica ser�a denominada subsequência da sequência num�erica (an)n∈N.

Observação 2.6.1 Um outro modo de de�nir subsequência de uma sequência num�erica

(an)n∈N seria a seguinte:

Considere uma fun�c~ao f : N → N que seja estritamente crescente.

A sequência num�erica
(
af(n)

)
n∈N

ser�a dita subsequência da sequência num�erica (an)n∈N.

Temos os:

Exemplo 2.6.1 Consideremos a sequência num�erica (an)n∈N, onde

an = sen
(
n
π

2

)
, para cada n ∈ N . (2.137)

Se considerarmos somente os ��ndices ��mpares, isto �e

ni
.
= 2 i+ 1 , para cada i ∈ N ,

obteremos a subsequência (a2 i+1)i∈N, da sequência num�erica (an)n∈N, onde

a2 i+1
(2.137)
= sen

[
(2 i+ 1)

π

2

]
= (−1)i , para cada i ∈ N ,

ou seja, a subsequência (a2 i+1)i∈N, da sequência num�erica (an)n∈N, ser�a a sequência:

−1 , 1 ,−1 , 1 , · · ·

Se considerarmos somente os ��ndices pares, isto �e,

ni
.
= 2 i , para cada i ∈ N ,

obteremos a subsequência (a2 i)i∈N, da sequência num�erica (an)n∈N, onde

a2 n
(2.137)
= sen(2 i π)

= 0 , para cada i ∈ N ,

ou seja, a subsequência (a2 i)i∈N, da sequência num�erica (an)n∈N, ser�a a sequência:

0 , 0 , 0 , · · · .
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�

Exemplo 2.6.2 Consideremos a sequência num�erica (an)n∈N, onde

an = n , para cada n ∈ N . (2.138)

Ent~ao se considerarmos somente os ��ndices ��mpares, isto �e,

ni
.
= 2 i+ 1 , para cada i ∈ N ,

obteremos a subsequência (a2 i+1)i∈N, da sequência num�erica (an)n∈N, onde

a2 i+1
(2.138)
= 2 i+ 1 , para cada n ∈ N ,

ou seja, a subsequência (a2 i+1)i∈N, da sequência num�erica (an)n∈N, ser�a a sequência

1 , 3 , 5 , 7 , · · ·

Se considerarmos somente os ��ndices pares, isto �e,

ni
.
= 2 i , para cada i ∈ N ,

obteremos a subsequência (a2 i)i∈N, da sequência num�erica (an)n∈N , onde

a2 i
(2.138)
= 2 i , para cada n ∈ N ,

ou seja, a subsequência (a2 i+1)i∈N, da sequência num�erica (an)n∈N, ser�a a sequência

2 , 4 , 6 , · · ·

�
Um resultado importante no estudo da convergência de sequências num�ericas, utilizandos-

e subsequências da mesma, �e dado pelo:

Teorema 2.6.1

1. Se a sequência num�erica (an)n∈N �e convergente para a, ent~ao toda subsequência

da mesma, ser�a convergente para a.

Em particular, se a sequência num�erica (an)n∈N �e convergente para a, ent~ao para

cada ko ∈ N, a subsequência (an+ko)n∈N, da sequência num�erica (an)n∈N, ser�a con-

vergente para a.

2. Se toda subsequência da sequência num�erica (an)n∈N �e convergente para a, ent~ao

a sequência num�erica (an)n∈N ser�a convergente para a.

3. Toda sequência num�erica (an)n∈N, possui uma subsequência mon�otona.

4. Toda sequência num�erica (an)n∈N limitada, possui uma subsequência que �e con-

vergente.
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Demonstração:

De 1. :

Se

lim
n→∞an = a ,

ent~ao dado ε > 0, podemos encontrar No ∈ N, tal que se

n ≥ No , temos que |an − a| < ε . (2.139)

Logo, para ni ≥ No temos que

|ani
− a|

(2.139)
< ε ,

mostrando que

lim
i→∞ani

= a ,

como quer��amos demonstrar.

Observemos que para cada ko ∈ N �xado, tem que a sequência (an+ko)n∈N ser�a uma

subsequência da sequência num�erica (an)n∈N.

Como a sequência (an)n∈N �e convergente para a segue, do que acabamos de mostrar, que

a subsequência (an+ko)n∈N ser�a convergente para a, completando a demonstra�c~ao do item 1.

.

De 2. :

Observemos que para cada ko ∈ N �xado, a sequência (an+ko)n∈N ser�a subsequência da

sequência num�erica (an)n∈N.

Logo, por hip�otese, ser�a convergente para a, ou seja, dado ε > 0, podemos encontrar

N1 ∈ N, tal que se
n ≥ N1 , temos que |an+ko − a| < ε ,

que �e equivalente a escrever

|an − a| < ε , para cada n ≥ No
.
= N1 + ko ,

mostrando que a sequência num�erica (an)n∈N �e convergente para a, completando a demons-

tra�c~ao do item 2. .

De 3. :

Consideremos os seguintes subconjuntos:

A .
= {p ∈ N ; podemos encontrar n > p , de modo que an ≥ ap} ,

B .
= {q ∈ N ; podemos encontrar n > q , de modo que an ≤ aq} , (∗)

Notemos que

N = A ∪ B .

Logo, se o conjunto A for �nito, teremos que o conjunto B ser�a in�nito, ou seja, existir�a

uma subsequência da sequência (an)n∈N que �e decrescente.
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De fato, como o conjunto B �e in�nito e contido em N, temos que;

B = {qi ; i ∈ N} ,

onde

pi < pi+1 , para cada i ∈ N .

Da de�ni�c~ao de B (isto �e, de (*)), segue que

aqi+1
≤ aqi , para cada i ∈ N ,

ou ainda, a subsequência (aqi)i∈N, da sequência (an)n∈N, ser�a decrescente.

Por outro lado, se o conjunto B for �nito, teremos que o conjunto A ser�a in�nito, ou seja,

existir�a uma subsequência da sequência (an)n∈N que �e crescente.

A veri�ca�c~ao deste fato, ser�a deixada como exerc��cio para o leitor.

De 4. :

Notemos que toda subsequência de uma sequência num�erica limitada (an)n∈N ser�a limi-

tada.

Por outro lado, do item 3. acima, a sequência num�erica (an)n∈N possui uma subsequência

mon�otona, que indicaremos por (ani
)i∈N.

Assim, a subsequência (ani
)i∈N ser�a mon�otona e limitada.

Portanto, do Teorema (2.4.1), segue que a subsequência (ani
)i∈N ser�a convergente, com-

pletando a demonstra�c~ao do item 4. e do resultado.

�

2.7 Sequências numéricas de Cauchy

A seguir introduziremos uma nova classe de sequencias num�ericas, a saber:

Definição 2.7.1 Diremos que uma sequência num�erica (an)n∈N ser�a dita uma sequência

numérica de Cauchy, se dado ε > 0, podemos encontrar No ∈ N, de modo

para n ,m ≥ No , deveremos ter |an − am| < ε . (2.140)

Observação 2.7.1 Uma sequência num�erica (an)n∈N �e uma sequência num�erica de Cau-

chy se a diferen�ca, em m�odulo, entre dois termos da mesma for arbitrariamente pe-

quena, para ��ndices su�cientemente grandes.

Temos os:

Exemplo 2.7.1 A sequência num�erica (an)n∈N, onde

an
.
=
1

n
, para cada n ∈ N (2.141)

�e uma sequência num�erica de Cauchy.
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Resolução:

De fato pois, dado ε > 0, considerarmos No ∈ N, tal que

No >
2

ε
, ou seja,

2

No

< ε . (2.142)

Logo, para n ,m ≥ No, segue
1

n
,
1

m
<

1

No

, (2.143)

e assim, teremos:

|an − am|
(2.141)
=

∣∣∣∣ 1n −
1

m

∣∣∣∣
<
1

n
+
1

m
(2.143)
<

1

No

+
1

No

=
2

No

(2.142)
< ε , (2.144)

ou seja, a sequência num�erica (an)n∈N �e sequência num�erica de Cauchy.

�
Observemos que a sequência num�erica do Exemplo (2.7.1) acima �e convergente em R.
Isto �e, no caso acima, a sequência num�erica (an)n∈N �e convergente em R e �e uma sequência

num�erica de Cauchy.

Isto ocorre em geral, como mostra o:

Teorema 2.7.1 Toda sequência num�erica convergente �e uma sequência num�erica de

Cauchy.

Demonstração:

De fato, se a sequência num�erica (an)n∈N �e convergente para a, ent~ao dado ε > 0, podemos

encontrar No ∈ N, de modo que

para n ≥ No , teremos |an − a| <
ε

2
. (2.145)

Logo, para n ,m ≥ No, segue que

|an − am| = |an − a+ a− am|

= |(an − a) + (a− am)|

desigualdade triangular

≤ |an − a|+ |a− am|︸ ︷︷ ︸
=|am−a|

(2.145)

≤ ε

2
+
ε

2
= ε ,

mostrando que a sequência num�erica (an)n∈N �e uma sequência num�erica de Cauchy, comple-

tando a demonstra�c~ao.

�
A seguir trataremos do seguinte importante exemplo:
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Exemplo 2.7.2 Consideremos a sequência num�erica (Sn)n∈N, onde

S1
.
= 1

S2
.
= 1+

1

2

S3
.
= 1+

1

2
+
1

3

· · ·

Sn
.
= 1+

1

2
+
1

3
+ · · ·+ 1

n
, para cada n ∈ N . (2.146)

Mostre que a sequência num�erica (Sn)n∈N , �e divergente para +∞, ou seja,

lim
n→∞Sn = +∞ .

Resolução:

Mostraremos que a sequência num�erica (Sn)n∈N não �e uma sequência num�erica de Cauchy.

De fato, para k ∈ N, temos que

|S2 k − Sk|
(2.146)
=

∣∣∣∣(1+ 1

2
+
1

3
+ · · ·+ 1

k
+

1

k+ 1
+ · · ·+ 1

2 k

)
−

(
1+

1

2
+
1

3
+ · · ·+ 1

k

)∣∣∣∣
=

1

k+ 1
+ · · ·+ 1

2 k︸ ︷︷ ︸
k−parcelas

k+ 1 ≤ 2 k
k+ 2 ≤ 2 k
...

2 k− 1 ≤ 2 k
≥ 1

2 k
+ · · ·+ 1

2 k︸ ︷︷ ︸
k−parcelas

= k
1

2 k

=
1

2
,

ou seja,

|S2 k − Sk| ≥
1

2
, para cada k ∈ N .

Logo dado, por exemplo,

ε
.
=
1

3
> 0 , (2.147)

segue que não podemos encontrar No ∈ N, de modo para n ,m ≥ No, tenhamos

|Sn − Sm| < ε =
1

3
.
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De fato, pois para cada No ∈ N, se tomarmos m ≥ No, ent~ao para

n
.
= 2m ≥ No

(com isto teremos que n ,m ≥ No) segue que

|Sn − Sm| = |S2m − Sm|

≥ 1

2

>
1

3
(2.147)
= ε ,

ou seja, (Sn)n∈N não �e uma sequência num�erica de Cauchy.

Logo, do Teorema (2.7.1), segue que num�erica (Sn)n∈N n~ao poder�a ser convergente em R.
Para �nalizar, observemos que a sequência num�erica (Sn)n∈N acima �e estritamente cres-

cente, pois, para cada n ∈ N, teremos:

Sn+1
(2.146)
= 1+

1

2
+
1

3
+ · · ·+ 1

n︸ ︷︷ ︸
(2.146)

= sn

+
1

n+ 1

= Sn +
1

n+ 1︸ ︷︷ ︸
>0

> Sn .

Como a sequência num�erica (Sn)n∈N �e estritamente crescente e n~ao �e convergente em R,
ela n~ao poder�a ser limitada (pois se fosse, seria mon�otona e limitada, portanto, do Teorema

(2.4.1), deveria ser convergente em R).
Portanto deveremos ter

lim
n→∞Sn = +∞ ,

completando a resolu�c~ao.

�

Observação 2.7.2

1. O Exemplo (2.7.2) acima, ser�a muito importante ao longo do pr�oximo cap��tulo,

que tratar�a das s�eries num�ericas.

2. Com isto surge a pergunta: "vale a rec��proca do Teorema (2.7.1) acima? ".

A resposta ser�a positiva, se considerarmos a sequência num�erica tomando valores

sobre o todo o conjunto dos n�umeros reais, ou seja, em R.

Para mostrar isso precisaremos de alguns resultados que ser~ao exibidos a seguir.
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Proposição 2.7.1 Toda sequência num�erica de Cauchy �e uma sequência num�erica li-

mitada.

Demonstração:

De fato, se a sequência num�erica (an)n∈N �e sequência num�erica de Cauchy, ent~ao dado

ε
.
= 1 ,

podemos encontrar No ∈ N, de modo que

para n ,m ≥ No , teremos |an − am| < ε = 1 ,

em particular, |an − aNo
| < 1 , para cada n ≥ No . (2.148)

Logo, para n ≥ No, teremos:

|an|− |aNo
|
desigualdade triangular

≤ |an − aNo
|
(2.148)
< 1 ,

ou seja, |an| ≤ |aNo
|+ 1 . (2.149)

Consideremos

M
.
= max{|a1| , |a2| , · · · , |aNo−1| , |aNo

|+ 1} . (2.150)

Ent~ao, para cada n ∈ N de (2.149) e (2.150), segue que

|an| ≤M,

mostrando que a sequência num�erica (an)n∈N �e limitada, completando a demonstra�c~ao.

�

Observação 2.7.3 A rec��proca do resultado acima não �e verdadeira, isto �e, nem toda

sequência num�erica limitada �e uma sequência num�erica de Cauchy, como mostra o

seguinte exemplo:

Consideremos a sequência num�erica (an)n∈N, onde

an
.
= (−1)n , para cada n ∈ N . (2.151)

A sequência num�erica (an)n∈N �e uma sequência num�erica limitada mas não �e uma

sequência num�erica de Cauchy.

De fato, se considerarmos, por exemplo,

ε
.
=
1

2
> 0 , (2.152)

segue que, para n ∈ N, teremos

|an − an+1|
(2.151)
= |(−1)n − (−1)n+1|

= |(−1)n [1− (−1)]|

= |(−1)n| |1+ 1|

= 2

>
1

2

(2.152)
= ε ,

mostrando que a sequência num�erica (an)n∈N não �e uma sequência num�erica de Cauchy.
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Temos tamb�em o:

Proposição 2.7.2 Se a sequência num�erica (an)n∈N �e uma sequência de Cauchy e pos-

sui uma subsequência convergente para a, ent~ao a sequência num�erica (an)n∈N ser�a

convergente para a.

Demonstração:

De fato, suponhamos que (an)n∈N �e uma sequência num�erica de Cauchy, de modo que

uma subsequência num�erica da mesma, que indicaremos por (ani
)i∈N, seja convergente para

a.

Como sequência num�erica (ani
)i∈N (que �e uma subsequência num�erica da sequência num�erica

(an)n∈N), �e convergente para a, dado ε > 0, podemos encontrar N1 ∈ N, de modo que

para ni ≥ N1 , teremos |ani
− a| <

ε

2
. (2.153)

Como a sequência num�erica (an)n∈N �e uma sequência num�erica de Cauchy, podemos en-

contrar N2 ∈ N, de modo

para n ,m ≥ N2 teremos |an − am| <
ε

2
. (2.154)

Seja

No
.
= max{N1 ,N2} . (2.155)

Portanto, para

n ≥ No , ou seja, n ≥ N1 e n ≥ N2 ,

teremos

|an − a| = |an − aNo
+ aNo

− a|

= |(an − aNo
) + (aNo

− a)|

desigualdade triangular

≤ |an − aNo
|+ |aNo

− a|

(2.154) e (2.153)
<

ε

2
+
ε

2
= ε ,

mostrando que a sequência num�erica �e convergente para a, completando a demonstra�c~ao.

�
Com isto podemos enunciar e demonstrar o:

Teorema 2.7.2 (crit�erio de Cauchy para convergência de sequências num�ericas)

Um sequência num�erica �e convergente em R se, e somente se, ela �e uma sequência

num�erica de Cauchy.

Demonstração:

Seja (an)n∈N uma sequência num�erica em R.
O Teorema (2.7.1) a�rma que se a sequência num�erica (an)n∈N for convergente, ela dever�a

ser uma sequência num�erica de Cauchy.
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Por outro lado, se a sequência num�erica (an)n∈N �e uma sequência num�erica de Cauchy

ent~ao, da Proposi�c~ao (2.7.1), segue que ela ser�a uma sequência num�erica limitada.

Mas, do item 3. do Teorema (2.6.1), temos que toda sequência num�erica (an)n∈N possui

uma subsequência que �e mon�otona, que indicaremos por (ani
)i∈N.

Como a sequência num�erica (an)n∈N �e limitada, seque que a subsequência num�erica

mon�otona (ani
)i∈N tamb�em ser�a limitada e assim, do Teorema (2.7.1), segue que a sub-

sequência num�erica (ani
)i∈N dever�a ser convergente em R.

Portanto a sequência num�erica (an)n∈N possui uma subsequência convergente em R.
Logo, da Proposi�c~ao (2.7.2) acima, segue que a sequência num�erica (an)n∈N ser�a conver-

gente em R, completando a demonstra�c~ao do resultado.

�

Observação 2.7.4 O Teorema (2.7.2) acima, n~ao nos diz para que valor a sequência

num�erica de Cauchy converge em R.

Apliquemos as ideias acima ao:

Exemplo 2.7.3 Seja (an)n∈N uma sequência num�erica que tem a seguinte propriedade:

|an+1 − an| ≤
1

2n
, para cada n ∈ N . (2.156)

A�rmamos que (an)n∈N �e convergente em R.

Resolução:

De fato, se considerarmos n ,m ∈ N, com n ≤ m, ou seja,

m = n+ k , para algum k ∈ N ,

segue que

|an − am| = |an − an+k|

= |an − an+1 + an+1 − an+2 + an+2 + · · ·− an+k|
= |(an − an+1) + (an+1 − an+2) + (an+2 + · · ·− an+k)|
desigualdade triangular

≤ |an − an+1|+ |an+1 − an+2|+ |an+2 − an+3|+ · · ·+ |an+k−1 − an+k|

(2.156)

≤ 1

2n
+

1

2n+1
+

1

2n+2
+ · · ·+ 1

2n+k−1

=
1

2n

1+ 1

2
+
1

24
+ · · ·+ 1

2k−1︸ ︷︷ ︸
k−parcelas


(2.157)

≤ 1

2n−1

pois,

1+
1

2
+
1

24
+ · · ·+ 1

2k−1
≤ 2 , para cada n ∈ N . (2.157)
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Portanto

|an − am| ≤
1

2n−1
, para m ≥ n . (2.158)

Logo, dado ε > 0, considerando-se

No > 1+ log2
1

ε
, (2.159)

para

m ≥ n ≥ No , (2.160)

segue que

|an − am|
(2.158)

≤ 1

2n−1

(2.160)

≤ 1

2No−1

(2.159)

≤ ε ,

mostrando que a sequência num�erica �e uma sequência num�erica de Cauchy em R.
Logo, do Teorema (2.7.2), segue que a sequência num�erica (an)n∈N ser�a convergente em

R, completando a resolu�c~ao.

�
Uma generaliza�c~ao do exemplo acima �e dado pelo:

Exerćıcio 2.7.1 Seja (an)n∈N uma sequência num�erica que tem a seguinte propriedade:

|an+1 − an| ≤ rn , para cada n ∈ N , (2.161)

onde r ∈ [0 , 1) est�a �xado.

A�rmamos que a sequência num�erica (an)n∈N �e convergente em R.

Resolução:

De modo an�alogo a resolu�c~ao do Exemplo (2.7.3) podemos mostrar que a sequência

num�erica acima �e uma sequência num�erica de Cauchy em R logo, pelo Teorema (2.7.2),

dever�a ser convergente em R.
Para mostrarmos que a sequência num�erica acima �e uma sequência num�erica de Cauchy

precisaremos mostrar que

|an − am| ≤
rn

1− r
, para m ≥ n .

Deixaremos os detalhes da veri�c�c~ao deste fato como exerc��cio para o leitor.

�
Com isto podemos resolver o:
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Exemplo 2.7.4 Mostre que a sequência num�erica (an)n∈N, onde

a1
.
= 1 ,

a2
.
= 1+

1

3
,

· · ·

an = 1+
1

3
+
1

9
+ · · ·+ 1

3n−1
(2.162)

�e uma sequência num�erica convergente em R.

Resolução:

Notemos que, para cada n ∈ N, teremos

|an+1 − an|
(2.162)
=

∣∣∣∣(1+ 1

3
+
1

9
+ · · ·+ 1

3n−1
+
1

3n

)
−

(
1+

1

3
+
1

9
+ · · ·+ 1

3n−1

)∣∣∣∣
=
1

3n

= rn , onde r
.
=
1

3
.

Logo, do Exemplo (2.7.1) acima, segue que a sequência num�erica (an)n∈N �e convergente

em R.
�

2.8 Exerćıcios
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Caṕıtulo 3

Séries Numéricas

3.1 Definições

A seguir trataremos de uma classe especial de sequências num�ericas, denominadas s�eries

num�ericas, a saber:

Definição 3.1.1 Dada a sequência num�erica (an)n∈N, podemos considerar uma outra

sequência num�erica, que indicaremos por (Sn)n∈N, cujos termos s~ao de�nidos da se-

guinte forma:

S1
.
= a1 ,

S2
.
= a1 + a2 ,

S3
.
= a1 + a2 + a3 ,

...

Sn
.
= a1 + a2 + · · ·+ an =

n∑
i=1

ai , (3.1)

para cada n ∈ N, que ser�a denominada de série numérica, de�nida pela sequência

num�erica (an)n∈N ou, simplesmente, série dos an.

Para cada n ∈ N, o n�umero real (ou complexo) an ser�a denominado termo da série

numérica (ou n-ésimo termo da) (Sn)n∈N.

Para cada n ∈ N, o termo Sn da sequência (Sn)n∈N (ou seja, da s�erie num�erica) ser�a

denominado n-ésima soma parcial, ou soma parcial de ordem n, ou reduzida de or-

dem n da s�erie num�erica (Sn)n∈N .

Denotaremos a s�erie num�erica acima por

∞∑
n=1

an , ou
∑

an , ou ainda
∞∑
1

an . (3.2)

Observação 3.1.1 Observemos que (3.2) denotam a sequência num�erica (Sn)n∈N onde,

cada termo desta sequência num�erica �e dada por (3.1).

65
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A sequência num�erica (Sn)n∈N (ou seja, a s�erie num�erica
∞∑
n=1

an) tamb�em poder�a ser

chamada de sequência numérica das somas parciais da série numérica
∞∑
n=1

an.

Exemplo 3.1.1 Consideremos a sequência num�erica (an)n∈N, onde

an
.
= (−1)n , para cada n ∈ N . (3.3)

Com isto temos que s�erie num�erica, associada a esta sequência num�erica (an)n∈N,

que denotaremos por (Sn)n∈N, ter�a os seguintes termos:

S1
.
= a1
(3.3)
= (−1)1

= −1 ,

S2
.
= a1 + a2
(3.3)
= (−1)1 + (−1)2

= −1+ 1 = 0 ,

S3
.
= a1 + a2 + a3
(3.3)
= (−1)1 + (−1)2 + (−1)3

= −1+ 1− 1 = −1 ,

...

Sn
.
= a1 + a2 + · · ·+ an

=

n∑
i=1

ai

=

n∑
i=1

(−1)i

Exerc��cio
=

−1+ (−1)n

2
, (3.4)

para cada n ∈ N.

�

Observação 3.1.2 Observemos que a sequência num�erica (Sn)n∈N (ou seja, a s�erie num�erica∞∑
n=1

an) �e divergente.

De fato, pois a subsequência, da sequência num�erica (Sn)n∈N, cujos ��ndices s~ao pares,

converge para 0, pois

S2 n
(3.4)
= 0 , para cada n ∈ N
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e a subsequência, da sequência num�erica (Sn)n∈N, cujos ��ndices s~ao ��mpares, converge

para −1, pois

S2 n+1
(3.4)
= −1 , para cada n ∈ N .

Portanto, pelo item 1. do Teorema (2.6.1), segue que a sequência num�erica (Sn)n∈N
�e divergente.

Exemplo 3.1.2 Considereremos a sequência (an)n∈N, onde

an
.
=
1

n
, para cada n ∈ N . (3.5)

A s�erie num�erica
∞∑
n=1

an, associada a esta sequência num�erica (an)n∈N, que denota-

remos por (Sn)n∈N, ter�a os seguintes termos:

S1
.
= a1

(3.5)
=
1

1

= 1 ,

S2
.
= a1 + a2

(3.5)
=
1

1
+
1

2

= 1+
1

2
,

S3
.
= a1 + a2 + a3

(3.5)
=
1

1
+
1

2
+
1

3

= 1+
1

2
+
1

3
,

S4
.
= a1 + a2 + a3 + a4

(3.5)
=
1

1
+
1

2
+
1

3
+
1

4

= 1+
1

2
+
1

3
+
1

4
,

...

Sn
.
= a1 + a2 + · · ·+ an
(3.5)
=
1

1
+
1

2
+ · · ·+ 1

n

= 1+
1

2
+ · · ·+ 1

n
, (3.6)

para cada n ∈ N.

�
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Observação 3.1.3 Vimos, no Exemplo (2.7.2), que a sequência num�erica (Sn)n∈N �e di-

vergente para +∞, isto �e

lim
n→∞Sn = +∞ . (3.7)

Exemplo 3.1.3 Consideremos a sequência num�erica (an)n∈N, onde

a1
.
= 1 ,

a2
.
= −1 ,

a3
.
=
1

2
,

a4
.
= −

1

2
,

a5
.
=
1

3
,

...

a2 n−1
.
=
1

n
, (3.8)

a2 n
.
= −

1

n
, (3.9)

· · ·

A s�erie num�erica
∞∑
n=1

an, associada a esta sequência num�erica (an)n∈N, que indica-

remos por (Sn)n∈N, ter�a os seguinte termos:

S1
.
= a1

n=1 em (3.8)
=

1

1

= 1 ,

S2
.
= a1 + a2

n=1 em (3.8) e (3.9)
=

1

1
−
1

1

= 0 ,

S3
.
= a1 + a2 + a3

n=1 em (3.8),(3.9) e n=2 em (3.8)
=

1

1
−
1

1
+
1

2

=
1

2
,

S4
.
= a1 + a2 + a3 + a4

n=1 em (3.8),(3.9) e n=2 em (3.8),(3.9)
=

1

1
−
1

1
+
1

2
−
1

2

= 0 ,

...

Sn
.
= a1 + a2 + · · ·+ an
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=

n∑
i=1

ai

=

0 , para n �e par
2

n+ 1
, para n �e ��mpar

, (3.10)

para cada n ∈ N.

�

Observação 3.1.4 Observemos que a sequência num�erica (Sn)n∈N �e convergente para

zero, isto �e

lim
n→∞Sn = 0 . (3.11)

Exemplo 3.1.4 Consideremos a sequência num�erica (an)n∈N onde

an = c , para cada n ∈ N , (3.12)

(a sequência num�erica constante) onde c ∈ R �e �xado.

A s�erie num�erica
∞∑
n=1

an, associada a esta sequência num�erica (an)n∈N, que denota-

remos por (Sn)n∈N, ter�a os seguinte termos:

S1
.
= a1
(3.12)
= c ,

S2
.
= a1 + a2
(3.12)
= c+ c

= 2 c,

S3
.
= a1 + a2 + a3
(3.12)
= c+ c+ c

= 3 c,

...

Sn
.
= a1 + a2 + · · ·+ an
(3.12)
= c+ c+ · · ·+ c︸ ︷︷ ︸

n−parcelas

= nc , (3.13)

para cada n ∈ N.

�
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Observação 3.1.5 Logo, de (3.13), segue que a sequência num�erica (Sn)n∈N �e conver-

gente (para zero) se, e somente se, c = 0.

Na verdade

a sequência num�erica (Sn)n∈N ser�a:


divergente para +∞ , para c > 0 ,

divergente para −∞ , para c < 0 ,

convergente para 0 , para c = 0 .

(3.14)

A veri�ca�c~ao destes fatos ser~ao deixados como exerc��cio para o leitor.

3.2 Operações com séries numéricas

Podemos operar com s�eries num�ericas usando as opera�c~oes de sequências num�ericas introdu-

zidas na De�ni�c~ao (2.2.1), ou ainda:

Definição 3.2.1 Dadas as s�eries num�ericas
∞∑
n=1

an e
∞∑
n=1

bn e α ∈ R (ou C), podemos

de�nir:

i. a soma das séries numéricas
∞∑
n=1

an e
∞∑
n=1

bn, indicada por

∞∑
n=1

an +

∞∑
n=1

bn ,

como sendo a s�erie num�erica:

∞∑
n=1

an +

∞∑
n=1

bn
.
=

∞∑
n=1

(an + bn) . (3.15)

ii. a diferença das séries numéricas
∞∑
n=1

an e
∞∑
n=1

bn, indicada por

∞∑
n=1

an −

∞∑
n=1

bn ,

como sendo a s�erie num�erica:

∞∑
n=1

an −

∞∑
n=1

bn
.
=

∞∑
n=1

(an − bn) . (3.16)

iii. a multiplicação da série numérica
∞∑
n=1

an pelo um número real (ou complexo) α,

indicada por

α

∞∑
n=1

an ,
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como sendo a s�erie num�erica:

α

∞∑
n=1

an
.
=

∞∑
n=1

(αan) . (3.17)

iiv. o produto das séries numéricas
∞∑
n=1

an e
∞∑
n=1

bn, ser�a indicada por

∞∑
n=1

an ·
∞∑
n=1

bn ,

�e a s�erie num�erica
∞∑
n=1

cn, onde

cn
.
=

n∑
k=1

ak bn−k

= a1 bn−1 + a2 bn−2 + · · ·+ an−2 b2 + an−1 b1 , (3.18)

para cada n ∈ N.

Observação 3.2.1

1. No caso das s�eries num�ericas serem do tipo

∞∑
n=0

an e
∞∑
n=0

bn ,

a s�erie produto ∞∑
n=0

an ·
∞∑
n=0

bn ,

�e a s�erie num�erica
∞∑
n=0

cn, onde

cn
.
=

n∑
k=0

akbn−k

= ao bn + a1 bn−1 + a2 bn−2 + · · ·+ an−2 b2 + an−1 b1 + an bo , (3.19)

para cada n ∈ N ∪ {0}.

2. O quociente das s�eries num�ericas
∞∑
n=1

an e
∞∑
n=1

bn, que ser�a indicado por

∞∑
n=1

an

∞∑
n=1

bn

ou
∞∑
n=1

an /

∞∑
n=1

bn ,
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pode tamb�em ser de�nido, por�em isto �e um pouco mais delicado e ser�a deixado

para outra ocasi~ao.

Os interessados em ver como �e de�nida a s�erie quociente pode ver o item 9.

(p�agina 73) das Referências (8.5).

Com isto temos o:

Exerćıcio 3.2.1 Considerando as seguintes s�eries num�ericas:

∞∑
n=1

1

n
e

∞∑
n=1

1

n2
, (3.20)

ent~ao podemos considerar as seguintes s�eries num�ericas:

∞∑
n=1

an +

∞∑
n=1

bn
(3.20) e (3.15)

=

∞∑
n=1

(
1

n
+
1

n2

)
=

∞∑
n=1

(
n+ 1

n2

)
,

10

∞∑
n=1

an
(3.20) e (3.17)

=

∞∑
n=1

10

n

∞∑
n=1

an −

∞∑
n=1

bn
(3.20) e (3.16)

=

∞∑
n=1

(
1

n
−
1

n2

)
=

∞∑
n=1

n− 1

n2
.

�

3.3 Convergência de séries numéricas

Como vimos nos Exemplo (3.1.1), (3.1.2), (3.1.3) e (3.1.4) da se�c~ao (3.1), algumas das

sequências num�ericas das somas parciais consideradas (ou sejam, das s�eries num�ericas consi-

deradas) s~ao convergentes, outras n~ao.

Baseado nisto, introduziremos a:

Definição 3.3.1 Diremos que a s�erie num�erica
∞∑
n=1

an �e convergente, se a sequência

num�erica das somas parciais, isto �e, a sequência num�erica (Sn)n∈N (que �e a pr�opria

s�erie num�erica), for convergente.

Nesta situa�c~ao, se a sequência num�erica das somas parciais (Sn)n∈N converge para

S ∈ R, isto �e, se

lim
n→∞Sn = S ,

diremos que o n�umero real (ou complexo) S �e a soma da serie numérica
∞∑
n=1

an.
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Neste caso escreveremos ∞∑
n=1

an
.
= S . (3.21)

Se a s�erie num�erica
∞∑
n=1

an, n~ao for convergente, diremos que ela �e divergente.

Observação 3.3.1

1. Observemos que se s�erie num�erica
∞∑
n=1

an �e convergente, com soma S, ent~ao

∞∑
n=1

an = S

(3.21)
= lim

n→∞Sn
(3.1)
= lim

n→∞
(

n∑
i=1

ai

)
,

ou seja,
∞∑
n=1

an = lim
n→∞

n∑
i=1

ai . (3.22)

2. Vale observar que s��mbolo
∞∑
n=1

an denota duas coisas diferentes.

Masi precisamente: por um lado, denota a s�erie num�erica, isto �e, a sequência

num�erica das somas parciais (Sn)n∈N e, por outro lado, sua soma S, ou seja, o

limite da sequência num�erica (Sn)n∈N, se ele existir.

3. A s�erie num�erica
∞∑
n=1

an ser�a convergente em R, como soma igual a S ∈ R se, e

somente se, a sequência das somas parciais (Sn)n∈N for convergente para S, em

R que, pela De�ni�c~ao (2.3.1), �e equivalente a dizer que, dado ε > 0, podemos

encontrar No ∈ N, de modo que,

para n ≥ No , deveremos ter |Sn − S| < ε . (3.23)

Consideremos alguns exemplos:

Exemplo 3.3.1 A s�erie num�erica ∞∑
n=1

(−1)n (3.24)

�e divergente.
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Resolução:

De fato pois, como vimos no Exemplo (3.1.1) da se�c~ao (3.1), a sequência num�erica das

somas parciais (Sn)n∈N �e divergente.

Portanto, pela De�ni�c~ao (3.3.1), temos que a s�erie num�erica
∞∑
n=1

(−1)n �e divergente.

�

Exemplo 3.3.2 A s�erie num�erica
∞∑
n=1

an, onde

a2 n+1
.
=
1

n
e a2 n

.
= −

1

n
, para cada n ∈ N ,

�e convergente para zero.

Em particular, a soma da s�erie num�erica
∞∑
n=1

an �e igual a zero, ou seja,

∞∑
n=1

an = 0 .

Resolução:

De fato pois, como vimos no Exemplo (3.1.3) da se�c~ao (3.1), a sequência num�erica das

somas parciais (Sn)n∈N �e convergente para zero.

Portanto, pela De�ni�c~ao (3.3.1), temos que a s�erie num�erica
∞∑
n=1

an �e convergente, com

soma igual a zero, ou seja, ∞∑
n=1

an = 0 .

�

Exemplo 3.3.3 A s�erie num�erica
∞∑
n=1

an, onde

an
.
= c , para cada n ∈ N ,

ser�a divergente, se c ̸= 0, e ser�a convergente para zero, se c = 0.

Resolução:

De fato pois, como vimos no Exemplo (3.1.4) da se�c~ao (3.1), a sequência num�erica das

somas parciais (Sn)n∈N ser�a divergente se c ̸= 0, e ser�a convergente para zero, se c = 0.

Portanto, pela De�ni�c~ao (3.3.1), temos que a s�erie num�erica
∞∑
n=1

an �e convergente, com

soma igual a zero, se c = 0, ou seja, ∞∑
n=1

0 = 0

e ser�a a s�erie num�erica
∞∑
n=1

an �e divergente, se c ̸= 0.

�



3.3. CONVERGÊNCIA DE S�ERIES NUM�ERICAS 75

Exemplo 3.3.4 Mostre a s�erie num�erica

∞∑
n=1

1

n (n+ 1)
(3.25)

�e convergente, com soma igual a 1, ou seja,

∞∑
n=1

1

n (n+ 1)
= 1 . (3.26)

Resolução:

Para cada n ∈ N, de�namos

an
.
=

1

n (n+ 1)
, (3.27)

assim ∞∑
n=1

an =

∞∑
n=1

1

n (n+ 1)
.

Observemos que, para cada n ∈ N, teremos:

Sn =

n∑
i=1

ai

= a1 + a2 + a3 + a4 + · · ·+ an
(3.27)
=

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·+ 1

n (n+ 1)

=

(
1−

1

2

)
+

(
1

2
−
1

3

)
+

(
1

3
−
1

4

)
+ · · ·+

(
1

n− 1
+
1

n

)
+

(
1

n
−

1

n+ 1

)
= 1−

1

n+ 1
. (3.28)

Logo,

lim
n→∞Sn

(3.28)
= lim

n→∞
(
1−

1

n+ 1

)
se�c~ao (2.3)

= 1 ,

ou seja, pela De�ni�c~ao (3.3.1), a s�erie num�erica
∞∑
n=1

1

n (n+ 1)
�e convergente, com soma igual

a 1, isto �e, ∞∑
n=1

1

n (n+ 1)
= 1 ,

ou seja, (3.27) �e verdadeira.

�



76 CAP�ITULO 3. S�ERIES NUM�ERICAS

Exemplo 3.3.5 A s�erie num�erica ∞∑
n=1

cn (3.29)

�e convergente, se c ∈ [0 , 1), e divergente para +∞, se c ∈ [1 ,∞).

Al�em disso, no caso convergente, isto �e, se

c ∈ [0 , 1)

a s�erie num�erica
∞∑
n=1

cn, ter�a soma igual a
c

1− c
, isto �e,

∞∑
n=1

cn =
c

1− c
. (3.30)

Resolução:

Para cada n ∈ N, de�namos

an
.
= cn , (3.31)

assim ∞∑
n=1

an =

∞∑
n=1

cn .

Observemos primeiramente que, para cada r ∈ [0 ,∞) e k ∈ N, teremos

1+ r+ r2 · · ·+ rk = 1− rk+1

1− r
. (3.32)

Para mostrar isto, basta notarmos que

(1− r)
(
1+ r+ r2 · · ·+ rk

)
= 1− rk+1 .

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor.

Assim, temos que

S1
.
= a1
(3.31)
= c ,

S2
.
= a1 + a2
(3.31)
= c+ c2 ,

S3
.
= a1 + a2 + a3
(3.31)
= c+ c3 + c3 ,

...

Sn
.
= a1 + a2 + · · ·+ an ,
(3.31)
= c+ c2 + · · ·+ cn ,

= c
(
1+ c+ · · ·+ cn−1

)
(3.32)
= = c

1− cn

1− c
, (3.33)
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para cada n ∈ N.
Logo, se c ∈ [0 , 1), segue que

lim
n→∞ cn = lim

n→∞ en ln c
ln(c)<0
= 0 .

Assim

lim
n→∞Sn

(3.33)
= lim

n→∞
(
c
1− cn

1− c

)
= lim

n→∞
(
c

1

1− c
− c

cn

1− c

)
=

c

1− c
.

Logo, pela De�ni�c~ao (3.3.1), temos que a s�erie num�erica
∞∑
n=1

cn �e convergente, se c ∈ [0 , 1)

e sua soma ser�a igual a
c

1− c
, isto �e

∞∑
n=1

cn = lim
n→∞Sn

=
c

1− c
.

Por outro lado, se c = 1, a s�erie num�erica
∞∑
n=1

cn ser�a divergente (veja o Exemplo (3.3.3)).

Para �nalizar, notemos que para c ∈ (1 ,∞), segue que

lim
n→∞ cn = lim

n→∞ en ln c
ln(c)>0
= ∞ ,

assim

lim
n→∞Sn = lim

n→∞
(
c
1− cn

1− c

)
= lim

n→∞
(
c

1

1− c
− c

cn

1− c

)
c>1>0
= ∞ ,

portanto, para cada c ∈ (1 ,∞), pela De�ni�c~ao (3.3.1), temos que a serie num�erica
∞∑
n=1

cn ser�a

divergente, para +∞, completando a demonstra�c~ao da a�rma�c~ao.

�
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Observação 3.3.2 Como vimos anteriormente no Exemplo (2.7.2), a s�erie num�erica∞∑
n=1

1

n
�e divergente.

A seguir exibiremos uma outra maneira de mostrar isto.

Exemplo 3.3.6 A s�erie num�erica ∞∑
n=1

1

n
(3.34)

�e divergente.

Resolução:

Para cada n ∈ N, de�namos

an
.
=
1

n
, (3.35)

assim ∞∑
n=1

an =

∞∑
n=1

1

n
.

Mostraremos que sequência das somas parciais da s�erie num�erica
∞∑
n=1

1

n
n~ao �e limitada

logo, pela Proposi�c~ao (2.3.2), segue que ela n~ao poder�a ser convergente, ou seja, a s�erie

num�erica
∞∑
n=1

1

n
�e divergente.

Para tanto, observemos que,

S1
.
= a1

(3.35)
= 1

= (2+ 0)
1

2
,

isto �e, S20 ≥ (2+ 0)
1

2
,

S2
.
= a1 + a2

(3.35)
= 1+

1

2

= (2+ 1)
1

2
,

isto �e, S21 ≥ (2+ 1)
1

2
,

S4
.
= a1 + a2 + a3 + a4

(3.35)
= 1+

1

2
+
1

3
+
1

4

= 1+
13

12
> (2+ 2)

1

2
,

isto �e, S22 ≥ (2+ 2)
1

2
.
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Pode-se mostrar, por indu�c~ao, que :

S2n
.
= a1 + a2 + · · ·+ a2n

≥ (2+ n)
1

2
.

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio exerc��cio para o leitor.

Logo a subsequência (S2n)n∈N n~ao ser�a limitada.

De fato, como

lim
n→∞(2+ n)

1

2
= ∞ ,

da desigualdade acima e do item 1. do Teorema (2.5.1), segue que

lim
n→∞S2n = ∞ .

Como consequência temos que a sequência num�erica (Sn)n∈N n~ao poder�a ser limitada, e

assim, pela Proposi�c~ao (2.3.2), teremos que a s�erie num�erica
∞∑
n=1

1

n
ser�a divergente, comple-

tando a resolu�c~ao.

�

Observação 3.3.3

1. A s�erie num�erica (3.34) ser�a denominada serie harmônica.

Segue do Exemplo (2.7.2) ou do Exemplo (3.3.6), que a s�erie harmônica �e uma

s�erie num�erica divergente.

2. A s�erie num�erica
∞∑
n=1

cn ser�a denominada serie geométrica de raz~ao c ∈ R.

Do Exemplo (3.3.5) acima, sabemos que a s�erie geom�etrica de raz~ao c �e uma s�erie

num�erica convergente, se c ∈ [0 , 1), cuja soma ser�a igual a
c

1− c
, isto �e,

∞∑
n=1

cn =
c

1− c

e divergente, para +∞, se c ∈ [1 ,∞).

Valem as propriedades b�asicas de convergência para a convergência de s�eries num�ericas,

a saber:

Proposição 3.3.1 Sejam
∞∑
n=1

an e
∞∑
n=1

bn duas s�eries num�ericas convergentes, cujas so-

mas s~ao a e b, respectivamente e α ∈ R.
Ent~ao as s�eries num�ericas

∞∑
n=1

an ±
∞∑
n=1

bn e α

∞∑
n=1

an
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ser~ao convergentes, com somas a± b e αa, respectivamente, isto �e,

∞∑
n=1

(an ± bn) =
∞∑
n=1

an ±
∞∑
n=1

bn , (3.36)

∞∑
n=1

(αan) = α

∞∑
n=1

an . (3.37)

Demonstração:

Como as s�eries num�ericas
∞∑
n=1

an e
∞∑
n=1

bn s~ao convergentes, com somas a e b, respectiva-

mente, ent~ao, considerando-se as sequências num�ericas (Sn)n∈N e (Rn)n∈N , onde

Sn
.
=

n∑
i=1

ai e Rn =

n∑
i=1

bi , para cada n ∈ N (3.38)

temos, pela De�ni�c~ao (3.3.1), que que

lim
n→∞Sn = a e lim

n→∞Rn = b . (3.39)

De�nindo-se a sequência num�erica (Tn)n∈N onde, para cada n ∈ N, temos

Tn
.
= (a1 + · · ·+ an) + (b1 + · · ·+ bn)

=

n∑
i=1

ai +

n∑
i=1

bi

soma �nita
=

n∑
i=1

(ai + bi) , (3.40)

segue que

lim
n→∞ Tn

(3.40)
= lim

n→∞
[

n∑
i=1

(ai + bi)

]

= lim
n→∞


n∑
i=1

ai︸ ︷︷ ︸
(3.38)
= Sn

+

n∑
i=1

bi︸ ︷︷ ︸
(3.38)
= Rn


= lim

n→∞Sn + lim
n→∞Rn

(3.39)
= a+ b .

Notemos que a sequência num�erica (Tn)n∈N �e a s�erie num�erica
∞∑
n=1

an+

∞∑
n=1

bn, ou seja, da

De�ni�c~ao (3.3.1), acabamos de mostrar que a serie num�erica
∞∑
n=1

an +

∞∑
n=1

bn �e convergente,

com soma a+ b.
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De modo an�alogo, pode-se mostrar o caso correspondente para a s�erie num�erica
∞∑
n=1

an −

∞∑
n=1

bn.

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor.

Para a outra situa�c~ao, como

lim
n→∞Sn = a , (3.41)

ent~ao de�nido-se a sequência num�erica (Un)n∈N onde, para cada n ∈ N, temos

Un
.
=

n∑
i=1

(αai) , (3.42)

segue que

lim
n→∞Un

(3.42)
= lim

n→∞
n∑
i=1

(αai)

= lim
n→∞

α
n∑
i=1

ai︸ ︷︷ ︸
=Sn


= lim

n→∞ (αSn)

= α lim
n→∞Sn

(3.42)
= αa .

Notemos que a sequência num�erica (Un)n∈N �e a s�erie α
∞∑
n=1

an, ou seja, da De�ni�c~ao (3.3.1),

acabamos de mostrar que a serie num�erica α
∞∑
n=1

an �e convergente, com soma igual a αa,

completando a demonstra�c~ao do resultado.

�
Apliquemos as ideias acima aos:

Exemplo 3.3.7 Expressar o n�umero real

0, 333 · · ·

na forma de um n�umero racional, isto �e, na forma

p

q
, onde p , q ∈ Z ,

com q ̸= 0.
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Resolução:

Para isto observemos que de�nido-se a sequência num�erica (an)n∈N, onde

a1
.
= 0, 3

= 3 · 10−1 , (3.43)

a2
.
= 0, 03

= 3 · 10−2 , (3.44)

a3
.
= 0, 003

= 3 · 10−3 , (3.45)

...

an
.
= 0,00 · · · 3︸ ︷︷ ︸

n−posi�c~oes

= 3 · 10−n , para cada n ∈ N , (3.46)

temos que a s�erie num�erica
∞∑
n=1

an associada �a sequência num�erica (an)n∈N, ou seja, a sequência

num�erica (Sn)n∈N, ter�a seus termos dados por:

S1 = a1
(3.43)
= 3 · 10−1 ,

S2 = a1 + a2 (3.47)

(3.43) e (3.44)
= 3 · 10−1 + 3 · 10−2

= 3

(
1

10
+

1

102

)
,

S3 = a1 + a2 + a3 (3.48)

(3.43),(3.44) e (3.45)
= 3 · 10−1 + 3 · 10−2 + 3 · 10−3

= 3

(
1

10
+

1

102
+

1

103

)
,

...

Sn = a1 + a2 + · · ·+ an
(3.46)
= 3 · 10−1 + 3 · 10−2 + 3 · 10−3 + · · ·+ 3 · 10−n

= 3

n∑
i=1

(
1

10

)i
, para cada n ∈ N . (3.49)

Notemos que a s�erie num�erica
∞∑
n=1

an �e convergente para 0, 333 · · · .
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Mas ∞∑
n=1

an
(3.46)
=

∞∑
n=1

3 · 10−n

Prop. (3.3.1)
= 3

∞∑
n=1

1

10n

Exemplo (3.3.5) com c
.
= 1

10
< 1

= 3

 1

10

1−
1

10


=
3

9
=
1

3
,

que mostra como surge a f�ormula aprendida no col�egio, que diz que para transformar um

n�umero que �e uma d��zima peri�odica para forma de um quociente entre n�umeros inteiros,

basta colocar no numerador o per��odo e no denominador tantos 9 quantos forem o n�umero

de d��gitos do per��odo.

No caso acima o per��odo �e 3, logo tem apenas um d��gito assim, na forma de fra�c~ao, teremos

0, 333 · · · = 3

9
=
1

3
.

�
Deixaremos para o leitor o:

Exerćıcio 3.3.1 Expressar o n�umero real

0, 272727 · · ·

na forma de um n�umero racional, isto �e, na forma
p

q
, onde p , q ∈ Z ,

com q ̸= 0.

Resolução:

Para isto observemos que de�nindo-se a sequência num�erica (an)n∈N, onde

a1
.
= 0, 27

= 27 · 10−2 , (3.50)

a2
.
= 0, 0027

= 27.10−4 , (3.51)

a3 = 0, 000027

= 27 · 10−6 , (3.52)

...

an
.
= 0,00 · · · 27︸ ︷︷ ︸

(2n−2)−posi�c~oes

= 27 · 10−2n , para cada n ∈ N, (3.53)
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temos que a s�erie num�erica
∞∑
n=1

an associada �a sequência num�erica (an)n∈N, ou seja, a sequência

num�erica (Sn)n∈N, ter�a como termos:

S1 = a1
(3.50)
= 27 · 10−2 ,

S2 = a1 + a2
(3.50) e (3.51)

= 27 · 10−2 + 27 · 10−4

= 27

(
1

102
+

1

104

)
,

S3 = a1 + a2 + a3
(3.50),(3.51) e (3.52)

= 27 · 10−2 + 27 · 10−4 + 27 · 10−6

= 27

(
1

102
+

1

104
+

1

106

)
,

...

Sn = a1 + a2 + · · ·+ an
(3.53)
= 27 · 10−2 + 27 · 10−4 + 27 · 10−6 + · · ·+ 27 · 10−2 n

= 27

n∑
i=1

(
1

10

)2 i
, para cada n ∈ N . (3.54)

Observemos que a s�erie num�erica
∞∑
n=1

an �e convergente para 0, 272727 · · · .

Mas ∞∑
n=1

an
(3.53)
=

∞∑
n=1

27 · 10−2 n

Prop. (3.3.1)
= 27

∞∑
n=1

1

102 n

Exemplo (3.3.5), com c
.
= 1

102= 27

1

102

1−
1

102

=
27

99
=
3

11
,

que tamb�em pode ser reobtida pelo processo aprendido no 2.o grau.

�
A seguir daremos outros dois exemplos importantes de s�eries num�ericas convergentes.

Exemplo 3.3.8 A s�erie num�erica ∞∑
n=1

1

n2
. (3.55)
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�e convergente.

Resolução:

De�namos a sequência num�erica (an)n∈N, cujos termos s~ao dados por

an
.
=
1

n2
, (3.56)

para cada n ∈ N.
Notemos que sequência num�erica das somas parciais (Sn)n∈N, associada �a s�erie num�erica∞∑

n=1

an, �e uma sequência num�erica limitada.

De fato, pois

Sn ≥ 0 , para cada n ∈ N

e temos que:

|Sn| = Sn

= a1 + a2 + · · ·+ an
(3.56)
=

1

12
+

1

2 · 2
+

1

3 · 3
+ · · ·+ 1

n · n

2 ≥ 1
3 ≥ 2
...

n ≥ n− 1
≤ 1+

1

1 · 2
+

1

2 · 3
+ · · ·+ 1

(n− 1) · n

= 1+

(
1−

1

2

)
+

(
1

2
−
1

3

)
+ · · ·+

(
1

n− 1
−
1

n

)
soma telesc�opica

= 1+

(
1−

1

n

)
= 2−

1

n

≤ 2 ,

para cada n ∈ N, ou seja,

|Sn| ≤ 2 , para cada n ∈ N .

Como

an
(3.56)
=

1

n2
> 0 , para cada n ∈ N ,

temos que

Sn+1
de�ni�c~ao
= Sn + an+1︸︷︷︸

>0

> Sn

para todo n ∈ N.
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Logo a sequência num�erica das somas parciais (Sn)n∈N (ou seja, a s�erie num�erica
∞∑
n=1

an)

�e estritamente crescente, em particular, ser�a um sequência num�erica mon�otona.

Como ela tamb�em �e uma sequência num�erica limitada, segue, do Teorema (2.4.1), que ela

ser�a convergente em R, ou seja, da De�ni�c~ao (3.3.1), a s�erie num�erica
∞∑
n=1

1

n2
�e convergente

em R.
�

Observação 3.3.4 Curiosidades:

1. Pode-se mostrar que a s�erie num�erica
∞∑
n=1

1

n2
tem soma igual a

π2

6
, ou seja,

∞∑
n=1

1

n2
=
π2

6
,

como veremos mais adiante (chamado de problema de Basel).

Na verdade Leonard Euler mostrou em 1735, essa rela�c~ao.

2. A s�erie num�erica acima �e um caso particular (tomando-se s = 2) da função zeta de

Riemann, a saber, a fun�c~ao

ζ : A .
= {s = x+ i y ; x > 1} ⊆ C → C ,

dada por

ζ(s)
.
=

∞∑
n=1

1

ns
,

para cada s ∈ A.

Exemplo 3.3.9 A s�erie num�erica ∞∑
n=0

1

n!
(3.57)

�e convergente.

Resolução:

De�namos a sequência num�erica (an)n∈N, cujos termos s~ao dados por

an
.
=
1

n!
, (3.58)

para cada n ∈ N ∪ {0}.

Observemos que a sequência num�erica das somas parciais (Sn)n∈N∪{0} �e limitada pois, como

Sn ≥ 0 , para cada n ∈ N ∪ {0} ,
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temos que:

|Sn| = Sn = a1 + a2 + a3 + · · ·an
(3.58)
=

1

0!
+
1

1!
+
1

2!
+
1

3!
+
1

4!
+ · · ·+ 1

n!

= 1+ 1+
1

2
+

1

2 · 3
+

1

2 · 3 · 4
+ · · ·+ 1

2 · 3 · · ·n︸ ︷︷ ︸
(n−1)−fatores



3 ≥ 2
4 ≥ 2
...

n ≥ 2
≤ 1+ 1+

1

2
+

1

2 · 2
+

1

2 · 2 · 2
+ · · ·+ 1

2 · 2 · · · 2︸ ︷︷ ︸
(n−1)−fatores

(3.59)

≤ 1+ 1+
1

22
++

1

23
+
1

23
+ · · ·+ 1

2n−1︸ ︷︷ ︸
soma dos n primeiros termos de uma PG, de raz~ao igual a 1

2

= 1+
1−

1

2n

1

2︸ ︷︷ ︸
≤2

≤ 3, para cada n ∈ N ∪ {0} ,

ou seja,

|Sn| ≤ 3 para todo n ∈ N ∪ {0} .

Como

an
(3.58)
=

1

n!
> 0 , para cada n ∈ N ∪ {0} ,

temos que

Sn+1 = Sn + an+1︸︷︷︸
>0

> Sn , para cada n ∈ N ∪ {0} ,

assim a sequência num�erica das somas parciais (Sn)n∈N∪{0} �e estritamente crescente, em par-

ticular, ser�a uma sequência num�erica mon�otona.

Como ela tamb�em �e limitada, segue, do Teorema (2.4.1), que ela ser�a convergente em R,

ou seja, da De�ni�c~ao (3.3.1), a s�erie num�erica
∞∑
n=0

1

n!
�e convergente em R.

�

Observação 3.3.5 Pode-se mostrar que a soma da s�erie num�erica
∞∑
n=0

1

n!
�e igual a e,

ou seja, ∞∑
n=0

1

n!
= e ,
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como veremos mais adiante.

A seguir daremos alguns resultados de convergência para s�eries num�ericas.

3.4 Resultados de Convergência de Séries Numéricas

Come�caremos com dois resultados simples que podem ser �uteis no estudo de convergência de

s�eries num�ericas, a saber:

Proposição 3.4.1 Suponhamos que as s�eries num�ericas
∞∑
n=1

an e
∞∑
n=1

bn s~ao tais que

b2 n = an e b2 n−1 = 0 , para cada n ∈ N . (3.60)

Ent~ao a s�erie num�erica
∞∑
n=1

an converge se, e somente se, a s�erie num�erica
∞∑
n=1

bn

converge.

Neste caso a soma das s�eries num�ericas coincidem, isto �e,

∞∑
n=1

an =

∞∑
n=1

bn . (3.61)

Demonstração:

Para cada n ∈ N, de�nido-se

Sn
.
=

∞∑
n=1

an e Tn
.
=

∞∑
n=1

bn (3.62)

segue que

Tn =


Sn

2
, se n �e par

Sn+1
2
, se n �e ��mpar

, para cada n ∈ N ,

logo, da De�ni�c~ao (3.3.1), a s�erie num�erica
∞∑
n=1

an ser�a convergente se, e somente se, a s�eria

num�erica
∞∑
n=1

bn for convergente e, neste caso, as somas das respectivas s�eries num�ericas ser~ao

iguais, completando a demonstra�c~ao do resultado.

�

Observação 3.4.1 Podemos generalizar este resultado considerando a sequência num�erica

(bn)n∈N, constitu��da dos termos da sequência num�erica (an)n∈N, introduzindo-se zeros

�a mesma em posi�c~oes aleat�orias.

No caso da Proposi�c~ao (3.4.1) acima, a sequência num�erica (bn)n∈N �e obtida da a

sequência num�erica (an)n∈N, intercalando-se zeros entre os temos da sequência (an)n∈N,

a saber, a sequência num�erica (bn)n∈N ser�a:

0 , a1 , 0 , a2 , 0 , a3 , 0 , · · · .
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Outro resultado �e dado pela:

Proposição 3.4.2 Consideremos a s�erie num�erica
∞∑
n=1

an e p ∈ N �xado.

Ent~ao, a s�erie num�erica
∞∑
n=1

an converge, com soma a, se, e somente se, a s�erie

num�erica
∞∑
n=p

an converge, com soma b = a− a1 − a2 − · · ·− ap−1, ou seja,

se
∞∑
n=1

an = a , ent~ao
∞∑
n=p

an = a− a1 − a2 − · · ·− ap−1 . (3.63)

Demonstração:

Denotemos a sequência num�erica das somas parciais da s�erie num�erica
∞∑
n=1

an por (Sn)n∈N

e a sequência num�erica das somas parciais da s�erie num�erica
∞∑
n=p

an por (Tn)n∈N.

Logo deveremos ter:

Tn = Sn+p, n ∈ N . (3.64)

Logo

lim
n→∞Sn = a

se, e somente se,

lim
n→∞ Tn = a− a1 + a2 − · · ·− ap

isto �e, da De�ni�c~ao (3.3.1), a s�erie num�erica
∞∑
n=1

an converge, com soma a, se, e somente se,

a s�erie num�erica
∞∑
n=p

an converge, com soma b = a − a1 − a2 − · · · − ap−1, completando a

demonstra�c~ao do resultado.

�

Observação 3.4.2 A Proposi�c~ao (3.4.2) acima nos diz que podemos desprezar um número

finito de termos de uma s�erie num�erica que isso n~ao alterar�a o estudo da convergência

da mesma.

Poder�a alterar o valor da sua soma da s�erie num�erica obtida.

Podemos aplicar este resultado ao:

Exerćıcio 3.4.1 Mostre que a s�erie num�erica

∞∑
n=1

1

(n+ 5) (n+ 6)
(3.65)

�e convergente.

Encontre o valor de sua soma.
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Resolução:

De fato, do Exemplo (3.3.4), sabemos que a s�erie num�erica
∞∑
m=1

1

m (m+ 1)
�e convergente

com soma igual a a
.
= 1.

Logo, pela Proposi�c~ao (3.4.2) acima, a s�erie num�erica

∞∑
m=6

1

m (m+ 1)

tamb�em ser�a convergente com soma igual a:

a− (a1 + a2 + a3 + a4 + a5) = 1−

(
1

1 · 2
+

1

2 · 3
+

1

3 · 4
+

1

3 · 4
+

1

4 · 5
+

1

5 · 6

)
Exerc��cio

=
1

6
.

Para �nalizar, notemos que:

∞∑
n=1

1

(n+ 5) (n+ 6)

m=n+5
=

∞∑
m=6

1

m (m+ 1)
,

logo a s�erie num�erica
∞∑
n=1

1

(n+ 5) (n+ 6)
�e convergente e sua soma ser�a igual a

1

6
, ou seja, a

s�erie num�erica ∞∑
n=1

1

(n+ 5) (n+ 6)
=
1

6
.

�
O primeiro resultado geral importante para convergência de series num�ericas �e dado pelo:

Teorema 3.4.1 (crit�erio de Cauchy para convergência de s�eries num�ericas).

A s�erie num�erica
∞∑
n=1

an converge em R se, e somente se, dado ε > 0 existe No ∈ N

de modo que, para n ≥ No e p ∈ N qualquer, temos

|an+1 + an+2 + · · ·+ an+p| < ε . (3.66)

Demonstração:

Lembremos que, da De�ni�c~ao (3.3.1), a s�erie num�erica
∞∑
n=1

an converge em R se, e somente

se, a sequência num�erica das somas parciais (Sn)n∈N for convergente em R.
Por outro lado, uma sequência num�erica �e convergente em R se, e somente se, ela for uma

sequência num�erica de Cauchy em R, isto �e, dado ε > 0 existe No ∈ N, tal que

se n ,m ≥ No , deveremos ter |Sm − Sn| < ε . (3.67)
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Observemos que se

m > n , ent~ao m = n+ p , para algum p ∈ N ,

assim

Sm − Sn =

m∑
i=1

ai −

n∑
i=1

ai

=

n+p∑
i=n+1

ai

= an+1 + an+2 + · · ·+ an+p . (3.68)

Logo, da De�ni�c~ao (3.3.1), a s�erie num�erica
∞∑
n=1

an converge em R se, e somente se, ela

for uma sequência num�erica de Cauchy, isto �e, dado ε > 0, podemos encontrar No ∈ N, tal
que, para n ≥ No e p ∈ N qualquer, temos

|an+1 + an+2 + · · ·+ an+p|
(3.68)
= |Sm − Sn|

(3.67)
= ε ,

como quer��amos mostrar.

�

Observação 3.4.3 Nos Exemplos (3.3.4), (3.3.5), (3.3.8), (3.3.9) da se�c~ao (3.3), exibimos

s�eries num�erica que s~ao convergentes.

Observemos que, em todos estes Exemplos, as sequências num�ericas que as de�nem,

convergem para zero (veri�que!),isto �e,

lim
n→∞an = 0 .

Isto �e um fato geral, como a�rma o:

Teorema 3.4.2 (crit�erio da divergência para s�eries num�ericas)

Suponhamos que a s�erie num�erica
∞∑
n=1

an �e convergente.

Ent~ao deveremos ter

lim
n→∞an = 0 . (3.69)

Demonstração:

Se a s�erie num�erica
∞∑
n=1

an �e convergente com soma igual a S ent~ao, da De�ni�c~ao (3.3.1),

temos que

lim
n→∞Sn = S ,

onde, para cada n ∈ N, temos que

Sn = a1 + a2 + a3 + · · ·+ an . (3.70)
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Logo, da De�ni�c~ao (3.3.1), dado ε > 0, podemos encontrar No ∈ N, tal que se n ≥ No,

deveremos ter

|Sn−1 − S| <
ε

2
. (3.71)

Logo, para n > No (ou seja n− 1 ≥ No), segue que:

|an − 0|
(3.70)
= |Sn − Sn−1|

= |Sn − S+ S− Sn−1|

desigualdade triabgular

≤ |Sn − S|+ |S− Sn−1|

(3.71)
<

ε

2
+
ε

2
= ε ,

mostrando, pela De�ni�c~ao (2.3.1), que

lim
n→∞an = 0 ,

�nalizando a demonstra�c~ao.

�

Observação 3.4.4

1. Não vale a rec��proca do Teorema (3.5.2) acima, isto �e, existe uma (na verdade

existem v�arias) sequência num�erica (an)n∈N que �e convergente para zero, e cuja

s�erie num�erica associada a ela, isto �e,
∞∑
n=1

an, não �e convergente.

Por exemplo, a s�erie harmônica,

∞∑
n=1

an =

∞∑
n=1

1

n

�e um s�erie num�erica divergente (veja o Exemplo (3.3.6)) e

lim
n→∞an = lim

n→∞
1

n
= 0 .

2. Na verdade o Teorema (3.5.2) acima nos d�a uma condi�c~ao necessária (mas não su-

ficiente) para que uma s�erie num�erica seja convergente, a saber, que os termos

da s�erie num�erica sejam convergentes para zero.

Podemos usar Teorema (3.5.2) como um critério de divergência, dai o nome, ou

seja, se

lim
n→∞an ̸= 0 ,

ent~ao a s�erie num�erica
∞∑
n=1

an ser�a divergente (pois se fosse convergente, pelo

Teorema (3.5.2), dever��amos ter lim
n→∞an = 0).
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Apliquemos o Teorema (3.5.2) ao:

Exemplo 3.4.1 Mostre que a s�erie num�erica

∞∑
n=1

(
1+

1

n2

)
(3.72)

�e divergente.

Resolução:

Para cada n ∈ N, de�namos

an
.
= 1+

1

n2
. (3.73)

Como

lim
n→∞an

(3.73)
= lim

n→∞ 1+
1

n2
= 1 ̸= 0 ,

do crit�erio da divergência (isto �e, do Teorema (3.5.2)), segue que a s�erie num�erica

∞∑
n=1

(
1+

1

n2

)
=

∞∑
n=1

an

ser�a divergente.

�

3.5 Critérios de Convergência para Séries Numéricas com

Termos Não-negativos

Observação 3.5.1 Nos Exemplos (3.3.8) e (3.3.9) mostramos que as series num�ericas

∞∑
n=1

1

n2
e

∞∑
n=1

1

n!
,

cujos termos s~ao n~ao-negativos (pois an ≥ 0, para todo n ∈ N) s~ao convergentes,

utilizando-se do fato que as respectivas sequências num�ericas das somas parciais (Sn)n∈N
(ou seja, as pr�oprias s�eries num�ericas) eram limitadas.

Isto ocorre em geral, para s�eries num�ericas cujos termos são não-negativos, a sa-

ber:

Teorema 3.5.1 Seja (an)n∈N sequência num�erica cujos termos s~ao n~ao-negativos, isto

�e,

an ≥ 0 , para cada n ∈ N . (3.74)

A s�erie num�erica
∞∑
n=1

an �e convergente em R se, e somente se, a sequência num�erica

das somas parciais �e limitada, isto �e, a sequência num�erica (Sn)n∈N �e uma sequência

num�erica limitada, onde, para cada n ∈ N, temos que

Sn
.
= a1 + a2 + · · ·+ an .
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Demonstração:

Suponhamos que a s�erie num�erica
∞∑
n=1

an �e convergente em R, ou seja, da De�ni�c~ao (3.3.1),

a sequência num�erica (Sn)n∈N �e convergente em R.
Logo, da Proposi�c~ao (2.3.2), segue que a sequência num�erica (Sn)n∈N �e limitada.

Por outro lado, se sequência num�erica (Sn)n∈N �e limitada, como

an ≥ 0 , para cada n ∈ N ,

temos que a sequência num�erica (Sn)n∈N ser�a crescente, pois

Sn+1 = Sn + an+1︸︷︷︸
≥0

≥ Sn , para cada n ∈ N .

Assim (Sn)n∈N �e mon�otona e limitada, , do Teorema (2.4.1), ela ser�a convergente, ou seja,

a s�erie num�erica
∞∑
n=1

an ser�a convergente em R, completando a demonstra�c~ao do resultado.

�
Apliquemos o resultado acima aos:

Exemplo 3.5.1 Veri�que se as s�eries num�ericas abaixo s~ao convergentes ou divergen-

tes.

1.
∞∑
n=1

1

n2
(3.75)

2.
∞∑
n=1

1

n!
(3.76)

3.
∞∑
n=1

1

n (n+ 1)
(3.77)

4.
1√
n

(3.78)

Resolução:

1.:

No Exemplo (3.3.8) foi mostrado que a s�erie num�erica
∞∑
n=1

1

n2
�e convergente em R, utili-

zando o Teorema (2.4.1).

2.:

No Exemplo (3.3.9) foi mostrado que a s�erie num�erica
∞∑
n=1

1

n!
�e convergente em R, utili-

zando o Teorema (2.4.1).

3.:

A s�erie num�erica
∞∑
n=1

1

n (n+ 1)
�e convergente em R.
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De fato, para cada n ∈ N, de�namos

an =
1

n (n+ 1)
≥ 0 . (3.79)

Logo a sequência num�erica (Sn)n∈N �e mon�otona (na verdade �e estritamente crescente).

Vimos no Exemplo (3.3.4) (veja (3.28)) que

Sn = 1−
1

n+ 1
≤ 1 , para cada n ∈ N ,

logo a sequência num�erica (Sn)n∈N �e limitada.

Logo, do Teorema (3.5.1) acima, segue que s�erie num�erica
∞∑
n=1

1

n (n+ 1)
�e convergente em

R.
4.:

A s�erie num�erica
∞∑
n=1

1√
n
�e divergente.

De fato, para cada n ∈ N, de�namos

an
.
=

1√
n

≥ 0 , para cada n ∈ N . (3.80)

Logo a sequência num�erica (Sn)n∈N �e mon�otona (na verdade estritamente crescente).

Mas,

Sn = a1 + a2 + a3 + · · ·+ an
(3.80)
= 1+

1√
2
+ · · ·+ 1√

n− 1
+

1√
n

1 ≤
√
n

√
2 ≤

√
n

...
√
n− 1 ≤

√
n

≥ 1√
n
+

1√
n
+ · · ·+ 1√

n︸ ︷︷ ︸
n−parcelas

=
n√
n

=
√
n ,

ou seja,

Sn ≥
√
n , para cada n ∈ N . (3.81)

Portanto a a sequência num�erica (Sn)n∈N n~ao �e limitada, pois

lim
n→∞

√
n = ∞ e temos (3.81) .

Logo, do Teorema (3.5.1) acima, a s�erie num�erica
∞∑
n=1

1√
n

ser�a divergente (para +∞).
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�
Outro crit�erio importante para o estudo da convergência de series num�ericas cujos termos

são não-negativos �e o:

Teorema 3.5.2 (crit�erio da compara�c~ao para s�eries num�ericas)

Sejam
∞∑
n=1

an e
∞∑
n=1

bn duas s�eries num�ericas de tal modo que seus termos satisfazem

a seguinte condi�c~ao:

0 ≤ an ≤ bn , para cada n ∈ N . (3.82)

1. Se a s�erie num�erica
∞∑
n=1

bn �e convergente, ent~ao a s�erie num�erica
∞∑
n=1

an ser�a

convergente.

Al�em disso,

0 ≤
∞∑
n=1

an ≤
∞∑
n=1

bn . (3.83)

2. Se a s�erie num�erica
∞∑
n=1

an �e divergente, ent~ao a s�erie num�erica
∞∑
n=1

bn ser�a diver-

gente.

Demonstração:

Para cada n ∈ N, de�namos

Sn
.
= a1 + a2 + · · ·+ an e Tn

.
= b1 + b2 + · · ·+ bn (3.84)

as somas parciais de ordem n, das series num�ericas
∞∑
n=1

an e
∞∑
n=1

bn, respectivamente.

Como temos (3.82) segue, de (3.84), que

0 ≤ Sn ≤ Tn , para cada n ∈ N . (3.85)

De 1.:

Se a s�erie num�erica
∞∑
n=1

bn �e convergente, ent~ao a sequência num�erica (Tn)n∈N ser�a conver-

gente em R.
Logo, da Proposi�c~ao (2.3.2), a sequência num�erica (Tn)n∈N limitada, ou seja existeM ≥ 0,

tal que

|Tn| ≤M, para cada n ∈ N , (3.86)

Logo, de (3.86) e (3.85), segue que a sequência num�erica (Sn)n∈N ser�a limitada.

Mas, como an ≥ 0, para cada n ∈ N, temos que a sequência num�erica (Sn)n∈N ser�a

mon�otona (na verdade crescente).
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Portanto, do Teorema (2.4.1), segue que a sequência num�erica (Sn)n∈N ser�a convergente

em R, ou seja, da De�ni�c~ao (3.3.1), temos que a s�erie num�erica
∞∑
n=1

an ser�a convergente em

R.
Al�em disso, seque do item 2. do Teorema (2.3.1) (ou seja, do crit�erio da compara�cao para

sequências num�ericas), que

0 ≤ lim
n→∞Sn ≤ lim

n→∞ Tn ,
isto �e, ∞∑

n=1

an ≤
∞∑
n=1

bn ,

completando a demonstra�c~ao do item 1. .

De 2.:

Se a s�erie num�erica
∞∑
n=1

an �e divergente ent~ao, da Proposi�c~ao (2.3.2), a sequência num�erica

(Sn)n∈N n~ao ser�a limitada.

De fato, como ela �e mon�otona crescente, se fosse limitada, do Teorema (2.4.1), ela teria

que ser convergente em R, o que seria um absurado.

Assim, como an ≥ 0 para todo n ∈ N, segue que

lim
n→∞Sn = ∞ .

Logo, de (3.85) e do item 1. do Teorema (2.5.1), segue que

lim
n→∞ Tn = ∞ ,

isto �e, a sequência num�erica (Tn)n∈N tamb�em n~ao ser�a limitada.

Portanto n~ao poder�a ser convergente em R, ou seja, da De�ni�c~ao (3.3.1), a s�erie num�erica∞∑
n=1

bn ser�a divergente, completando a demonstra�c~ao do item 2. e do resultado.

�
Apliquemos as ideias acima ao:

Exemplo 3.5.2 Estudar a convergência de cada uma das s�eries num�ericas a seguir:

1.
∞∑
n=1

1

3n + 1
(3.87)

2.
∞∑
n=3

1

ln(n)
(3.88)

Resolução:

1.:

A s�erie num�erica
∞∑
n=1

1

3n + 1
�e convergente .
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Para cada n ∈ N, de�namos

an
.
=

1

3n + 1
(3.89)

e

bn
.
=
1

3n
. (3.90)

Notemos que, para cada n ∈ N, temos:

0 ≤ an
(3.89)
=

1

3n + 1
3n+1>3n

≤ 1

3n

(3.89)
= bn .

Observemos que a s�erie num�erica

∞∑
n=1

bn
(3.90)
=

∞∑
n=1

1

3n

�e convergente em R, pois trata-se de uma s�erie geom�etrica de raz~ao c
.
=
1

3
< 1 , que, pelo

Exemplo (3.3.5), com c
.
=
1

3
, �e convergente em R.

Ent~ao do item 1. do crit�erio da compara�c~ao para s�eries num�ericas (isto �e, do item 1. do

Teorema (3.5.2)) segue que a s�erie num�erica

∞∑
n=1

an =

∞∑
n=1

1

3n + 1

ser�a convergente em R.
2.:

A s�erie num�erica
∞∑
n=3

1

ln(n)
�e divergente.

Antes de mais nada vale salientar que, para cada n ≥ 3, temos que

0 ≤ ln(n) ≤ n . (3.91)

De fato, se considerarmos a fun�c~ao f : [e ,∞) → R dada por

f(x)
.
=

ln(x)

x
, para cada x ∈ [e ,∞) , (3.92)

segue que a fun�c~ao f �e diferenci�avel em [e ,∞) e, al�em disso,

f ′(x)
(3.92)
=

1− ln(x)

x2
≤ 0 , para cada x ∈ [e ,∞),

ou seja, a fun�c~ao f �e decrescente em [e ,∞).
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Como

f(e) =
1

e
< 1 ,

segue que f(x) < 1 , para cada x ∈ [e ,∞) ,

ou seja, f(x) =
ln(x)

x
< 1 , para cada x ∈ [e ,∞) ,

ou ainda, ln(x) < x , para cada x ∈ [e ,∞) ,

em particular, vale a a�rma�c~ao (3.91) .

Logo se, para cada n ≥ 3, de�nirmos

bn
.
=

1

ln(n)
(3.93)

e

an
.
=
1

n
, (3.94)

segue

0 ≤ an
(3.93)
=

1

n
(3.91)
=

1

ln(n)
(3.94)
= bn , para cada n ∈ N . (3.95)

Mas a s�erie num�erica ∞∑
n=1

an =

∞∑
n=1

1

n

�e divergente (�e a s�erie harmônica, veja o Exemplo (3.3.6)).

Ent~ao, do item 2. do crit�erio da compara�c~ao para s�eries num�ericas (isto �e, do item 2. do

Teorema (3.5.2)), segue que a s�erie num�erica

∞∑
n=1

bn =

∞∑
n=1

1

ln(n)

ser�a divergente, completando a resolu�c~ao.

�
Antes de exibirmos outro exemplo, vale fazer a seguinte observa�c~ao:

Observação 3.5.2 O Teorema (3.5.2) acima permanece v�alido se trocarmos a hip�otese

" 0 ≤ an ≤ bn , para cada n ∈ N "

por

" 0 ≤ an ≤ bn , para cada n ≥ No " ,

ou seja, temos o:
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Corolário 3.5.1 (crit�erio da compara�c~ao para s�eries num�ericas estendido)

Sejam
∞∑
n=1

an e
∞∑
n=1

bn duas s�eries num�ericas de tal modo que seus termos satisfazerm

a seguinte condi�c~ao:

0 ≤ an ≤ bn , para cada n ≥ No .

1. Se a s�erie num�erica
∞∑
n=1

bn �e convergente, ent~ao a s�erie num�erica
∞∑
n=1

an ser�a

convergente.

2. Se a s�erie num�erica
∞∑
n=1

an �e divergente, ent~ao a s�erie num�erica
∞∑
n=1

bn ser�a diver-

gente.

Demonstração:

A demonstra�c~ao �e semelhante a do crit�erio da compara�c~ao para s�eries num�ericas (isto �e

do Teorema (3.5.2)) e ser�a deixada como exerc��cio para o leitor.

�
Podemos aplicar esse resultado a seguinte s�erie num�erica:

Exemplo 3.5.3 Estudar a s�erie num�erica

∞∑
n=1

n+ 1

nn
(3.96)

Resolução:

Para cada n ∈ N, de�namos:

an
.
=
n+ 1

nn
e bn

.
=
1

n2
. (3.97)

A�rmamos que:

0 ≤ an ≤ bn , para cada n ≥ 4 . (3.98)

Mostrar a desigualdade (3.98) acima, �e equivalente a mostrar

n2(n+ 1) ≤ nn , para cada n ≥ 4 . (3.99)

Na verdade mostraremos a seguinte desigualdade:

n2 (n+ 1) ≤ n4 , para cada n ≥ 4 (3.100)

e notando que

n4 ≤ nn , para cada n ≥ 4

teremos a a�rma�c~ao (3.99).

Notemos que (3.100) �e equivalente �a:

n2 − n− 1 ≥ 0 , para cada n ≥ 4 . (3.101)
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Por outro lado, observemos que que

x2 − x− 1 = 0 se, e somente se, x =
1±

√
5

2
< 4 .

Como

x2 − x− 1

�e um trinômio do 2.o grau, cujo coe�ciente do termo de 2.o grau �e maior que zero (no caso �e

igual a 1), segue que (veja a �gura abaixo)

x2 − x− 1 ≥ 0 , para cada x ≥ 4 .

6

-

y = x2 − x − 1

++

−−
4

6

1+
√

5
2

Em particular valer�a (3.101), ou ainda, (3.99).

Notemos que a s�erie num�erica ∞∑
n=4

bn =

∞∑
n=4

1

n2

�e convergente, pois do Exemplo (3.3.8) a s�erie num�erica
∞∑
n=1

1

n2
�e convergente e assim, da

Propsi�c~ao (3.4.2), a s�erie num�erica acima ser�a convergente.

Portanto, de (3.98) e do item 1. do crit�erio da compara�c~ao para s�eries num�ericas estendido

(isto �e, do item 1. do Corol�ario (3.5.1)) segue que a s�erie num�erica

∞∑
n=1

n+ 1

nn

ser�a convergente, completando a resolu�c~ao.

�
Outro crit�erio importante para o estudar da convergência de s�eries num�ericas cujos termos

s~ao n~ao-negativos, �e dado pelo:

Teorema 3.5.3 (crit�erio da compara�c~ao para s�eries num�ericas, por limites)

Sejam
∞∑
n=1

an e
∞∑
n=1

bn duas s�eries num�ericas, cujos termos satisfazem:

0 ≤ an e 0 < bn , para cada n ∈ N . (3.102)

Consideremos

c
.
= lim

n→∞
an

bn
. (3.103)
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1. Se

c ∈ (0 ,∞) , (3.104)

ent~ao a s�erie num�erica
∞∑
n=1

an ser�a convergente se, e somente se, a s�erie num�erica

∞∑
n=1

bn for convergente.

2. Se

c = 0 (3.105)

e a s�erie num�erica
∞∑
n=1

bn for convergente, ent~ao a s�erie num�erica
∞∑
n=1

an ser�a

convergente.

3. Se

c = ∞ (3.106)

e a s�erie num�erica
∞∑
n=1

bn for divergente, ent~ao a s�erie num�erica
∞∑
n=1

an ser�a di-

vergente.

Demonstração:

De 1.:

Suponhamos que

c = lim
n→∞

an

bn
∈ (0 ,∞) . (3.107)

Logo, dado

ε
.
=
c

2
> 0 ,

podemos encontrar No ∈ N, tal que

se n ≥ No teremos

∣∣∣∣anbn − c

∣∣∣∣ < ε = c

2
,

ou seja, −
c

2
<
an

bn
− c <

c

2
,

ou ainda,
c

2
<
an

bn
<
3c

2
. (3.108)

Como

bn > 0 , para cada n ∈ N , (3.109)

segue, de (3.108), que

0
(3.109)

≤ c

2
bn

(I)
< an

(II)
<
3c

2
bn , para cada n ≥ No . (3.110)

Suponhamos que a s�erie num�erica
∞∑
n=1

an seja convergente.
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Ent~ao de (I) em (3.110) e do item 1. do crit�erio da compara�c~ao para s�eries num�ericas

estendido (isto �e, do item 1. do Corol�ario (3.5.1)), segue que a s�erie num�erica
∞∑
n=1

(c
2
bn

)
ser�a convergente.

Como c > 0, isto implicar�a que a s�erie num�erica
∞∑
n=1

bn ser�a convergente.

Por outro lado, se a s�erie num�erica
∞∑
n=1

bn �e convergente, ent~ao a s�erie num�erica
∞∑
n=1

(
3 c

2
bn

)
ser�a convergente.

Logo de (II) em (3.110) do item 1. do crit�erio da compara�c~ao para s�eries num�ericas

estendido (isto �e, do item 1. do Corol�ario (3.5.1)) segue que a s�erie num�erica
∞∑
n=1

an ser�a

convergente, completando a demonstra�c~ao do item 1 .

De 2.:

Suponhamos que

c = lim
n→∞

an

bn
= 0 . (3.111)

Logo, dado

ε
.
= 1 ,

podemos encpontrar No ∈ N tal que

se n ≥ No , teremos

∣∣∣∣anbn − c

∣∣∣∣ < ε = 1 ,
ou seja, − 1 <

an

bn
< 1 ,

e como bn > 0, para n ∈ N teremos, 0 ≤ an < bn , para cada n ≥ No. (3.112)

Como a s�erie num�erica
∞∑
n=1

bn �e convergente, do item 1. do crit�erio da compara�c~ao para

s�eries num�ericas estendido (isto �e, do item 1. do Corol�ario (3.5.1)), segue que a s�erie
∞∑
n=1

an

ser�a convergente, completando a demonstra�c~ao do item 2. .

De 3.:

Suponhamos que

c = lim
n→∞

an

bn
= ∞ . (3.113)

Logo, dado

K
.
= 1 ,

podemos encontrr No ∈ N tal que

se n ≥ No teremos
an

bn
> K = 1 ,

ou seja, an > bn ≥ 0 , para cada n ≥ No . (3.114)
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Como a s�erie num�erica
∞∑
n=1

bn �e divergente ent~ao, do item 2. do crit�erio da compara�c~ao

para s�eries num�ericas estendido (isto �e, do item 2. do Corol�ario (3.5.1)), segue que a s�erie

num�erica
∞∑
n=1

an ser�a divergente, completando a demonstra�c~ao do item 3 .

�
Apliquemos as ideias acima ao:

Exemplo 3.5.4 Estudar a convergência das s�eries num�ericas abaixo:

1.
∞∑
n=1

3n+ 5

n 2n
(3.115)

2.
∞∑
n=1

sen

(
1

n

)
(3.116)

3.
∞∑
n=1

n3

n!
(3.117)

Resolução:

1.:

A s�erie
∞∑
n=1

3n+ 5

n 2n
�e convergente.

Observemos que, para cada n ∈ N, de�nido-se

an
.
=
3n+ 5

n 2n
(3.118)

que s~ao n~ao-negativos e

bn
.
=
1

2n
, (3.119)

teremos que

lim
n→∞

an

bn

(3.118) e (3.119)
= lim

n→∞
3n+ 5

n 2n

1

2n

= lim
n→∞

3n+ 5

n
Exerc��cio

= 3 ∈ (0 ,∞) .

Notemos que a s�erie num�erica

∞∑
n=1

bn
(3.119)
=

∞∑
n=1

1

2n
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�e convergente, pois �e uma s�erie geom�etrica de raz~ao c
.
=
1

2
< 1 (veja o Exemplo (3.3.5),

com c
.
=
1

3
).

Logo, do item 1. do crit�erio da compara�c~ao para s�eries num�ericas, por limites (ou seja,

do item 1. do Teorema (3.5.3)), segue que a s�erie num�erica

∞∑
n=1

an =

∞∑
n=1

3n+ 5

n 2n

tamb�em ser�a convergente.

2.:

A s�erie num�erica
∞∑
n=1

sen

(
1

n

)
�e divergente.

De fato, para cada n ∈ N, consideremos

an
.
= sen

(
1

n

)
e bn

.
=
1

n
, (3.120)

que s~ao ambos n~ao-negativos.

Observemos que

lim
n→∞

an

bn

(3.120)
= lim

n→∞
sen

(
1

n

)
1

n
1o. limite fundamental

= 1 ∈ (0 ,∞) .

Como a s�erie num�erica ∞∑
n=1

bn =

∞∑
n=1

1

n

�e divergente (�e a s�erie harmônica, veja o Exemplo (3.3.6)) segue, do item 1. do crit�erio

da compara�c~ao para s�eries num�ericas, por limites (ou seja, do item 1. do Teorema

(3.5.3)), que a s�erie num�erica

∞∑
n=1

an
(3.120)
=

∞∑
n=1

sen

(
1

n

)
�e divergente.

3.:

A s�erie num�erica
∞∑
n=1

n3

n!
�e convergente.
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Notemos que se tentarmos aplicar, diretamente, o item 1. do crit�erio da compara�c~ao

para s�eries num�ericas, por limites item i. (ou seja, do item 1. do Teorema (3.5.3)) n~ao

dar�a certo.

Observemos que se, para cada n ∈ N, considerarmos

an
.
=
n3

n!
e bn

.
=
1

n!
, (3.121)

que s~ao n~ao-negativos, ent~ao

lim
n→∞

an

bn

(3.121)
= lim

n→∞
n3

n!
1

n!

= lim
n→∞n3

= ∞ .

Logo não podemos aplicar nenhum dos itens do crit�erio da compara�c~ao para s�eries

num�ericas, por limites (ou seja, qualquer um dos itens do Teorema (3.5.3)), nesta

situa�c~ao.

Para resolver esse problema, agiremos da seguinte forma:

Notemos que

∞∑
n=4

n3

n!

m
.
=n−3
=

∞∑
m=1

(m+ 3)3

(m+ 3)!

=

∞∑
n=1

(n+ 3)3

(n+ 3)!
. (3.122)

Se, para cada n ∈ N, de�nirmos

an
.
=

(n+ 3)3

(n+ 3)!
e bn =

1

n!
, (3.123)

que s~ao n~ao-negativos, ent~ao teremos

lim
n→∞

an

bn

(3.124)
= lim

n→∞
(n+ 3)3

(n+ 3)!
1

n!

= lim
n→∞

(n+ 3)3

(n+ 3) (n+ 2) (n+ 1)
Exerc��cio

= 1 ∈ (0 ,∞) .

Como a s�erie num�erica ∞∑
n=1

bn =

∞∑
n=1

1

n!
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�e convergente (veja o Exemplo (3.3.9)) segue, do item 1. do crit�erio da compara�c~ao

para s�eries num�ericas, por limites (ou seja, do item 1. do Teorema (3.5.3)), que a s�erie

num�erica ∞∑
n=1

an =

∞∑
n=1

(n+ 3)3

(n+ 3)!

tamb�em ser�a convergente, completando a resolu�c~ao.

Portanto, da Proposi�c~ao (3.4.2), segue que a s�erie num�erica

∞∑
n=1

n3

n!

tamb�em ser�a convergente, completando a resulu�c~ao.

�
Outro crit�erio muito �util �e dado pelo:

Teorema 3.5.4 (crit�erio da raz~ao para s�eries num�ericas)

Consideremos a s�erie num�erica
∞∑
n=1

an, onde

0 < an , para cada n ∈ N . (3.124)

1. Se existir

r ∈ (0 , 1) , tal que
an+1

an
≤ r , para cada n ∈ N , (3.125)

ent~ao a s�erie num�erica
∞∑
n=1

an ser�a convergente.

2. Se existir

r ∈ [1 ,∞) , tal que
an+1

an
≥ r , para cada n ∈ N , (3.126)

ent~ao a s�erie num�erica
∞∑
n=1

an ser�a divergente.

Demonstração:

De 1.:

Suponhamos que exista

r ∈ (0 , 1) ,

tal que
an+1

an
≤ r , para cada n ∈ N .

Logo deveremos ter

an+1 ≤ r an , para cada n ∈ N . (3.127)
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A�rmamos que isto implicar�a que

an+1 ≤ rn a1 , para cada n ∈ N . (3.128)

A prova de (3.128) ser�a por indu�c~ao sobre n.

Para isto, notemos que:

(i) Vale para n = 1, segue de (3.127) que

a2 ≤ r a1 ,

ou seja, vale (3.128) par n = 1.

(ii) Suponhamos que (3.128) vale para n = k ≥ 2, isto �e, que

ak+1 ≤ rk a1 (3.129)

e mostremos que isto implicar�a que (3.128) valer�a para k = n+ 1.

Para isto, observemos que,

ak+2
(3.127)

≤ r ak+1

hip�otese de indu�c~ao, isot �e, (3.129)

≤ r
(
rk a1

)
= rk+1 a1 ,

ou seja, (3.128) valer�a para k = n+ 1, �nalizando a prova por indu�c~ao.

Para cada n ∈ N, de�namos

bn
.
= rn a1 . (3.130)

Notemos que a serie num�erica

∞∑
n=1

bn
(3.130)
=

∞∑
n=1

rn a1

= a1

∞∑
n=1

rn

�e uma s�erie num�erica convergente, pois �e um m�ultiplo de uma s�erie geom�etrica de raz~ao

r ∈ (0 , 1), logo ser�a convergente (veja o o Exemplo (3.3.5), com c
.
= r ∈ (0 , 1)).

De (3.129) e (3.130), segue que

0 ≤ an ≤ bn , para cada n ∈ N .

Logo, do item 1. do crit�erio da compara�c~ao para s�eries num�ericas (ou seja, do item 1. do

Teorema (3.5.2)) segue que a serie num�erica
∞∑
n=1

an ser�a convergente.

De 2. :

Se existir r ∈ [1 ,∞) tal que

an+1

an
≥ r , para cada n ∈ N
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ent~ao

an+1 ≥ r an , para cada n ∈ N . (3.131)

De modo semelhante �a demosntra�c~ao do item 1., pode-se mostrar que

an+1 ≥ rn a1 , para cada n ∈ N .

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor.

Para cada n ∈ N, de�nido-se
bn

.
= rn a1 , (3.132)

temos que a serie num�erica

∞∑
n=1

bn
(3.131)
=

∞∑
n=1

rn a1

= a1

∞∑
n=1

rn

�e divergente, pois �e um m�ultiplo, n~ao nulo, da s�erie geom�etrica de raz~ao r ∈ [1 ,∞) (veja o

Exemplo (3.3.5), com c
.
= r ∈ [1 ,∞)), logo ser�a divergente.

De (3.131) e (3.132), segue que

0 ≤ bn ≤ an , para cada n ∈ N . (3.133)

Logo, do item 2. do crit�erio da compara�c~ao para s�eries num�ericas (ou seja, do item

2. do Teorema (3.5.2)), segue que a serie num�erica
∞∑
n=1

an ser�a divergente, completando a

demonstra�c~ao do resultado.

�

Observação 3.5.3 O Teorema (3.5.4) acima, permanece v�alido se trocarmos a hip�otese

′′ an+1

an
≤ r , para cada n ∈ N ′′

por
′′ an+1

an
≤ r , para cada n ≥ No

′′

no item i., ou a hip�otese

′′ an+1

an
≥ r , para cada n ∈ N ′′

por
′′ an+1

an
≥ r , para cada n ≥ No

′′

no item ii., mais precisamente:
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Corolário 3.5.2 (crit�erio da raz~ao para s�eries num�ericas estendido)

Consideremos No ∈ N e a s�erie num�erica
∞∑
n=1

an, de modo que

0 < an , para cada n ≥ No . (3.134)

1. Se existir

r ∈ (0 , 1) , tal que
an+1

an
≤ r , para cada n ≥ No , (3.135)

ent~ao a s�erie num�erica
∞∑
n=1

an �e convergente.

2. Se existir

r ∈ [1 ,∞) , tal que
an+1

an
≥ r , para cada n ≥ No , (3.136)

ent~ao a s�erie num�erica
∞∑
n=1

an �e divergente.

Demonstração:

A demonstra�c~ao �e semelhante a do crit�erio da raz~ao e ser�a deixada como exerc��cio para o

leitor.

�
Como consequência do crit�erio da raz~ao temos o:

Teorema 3.5.5 (crit�erio da raz~ao par s�eries num�ericas, por limites)

Consideremos a s�erie num�erica
∞∑
n=1

an, onde

0 < an , para cada n ∈ N (3.137)

e

l
.
= lim

n→∞
an+1

an
. (3.138)

1. Se

l ∈ [0 , 1) , (3.139)

ent~ao a s�erie num�erica
∞∑
n=1

an �e convergente.

2. Se

l ∈ (1 ,∞) (3.140)

ent~ao a s�erie num�erica
∞∑
n=1

an �e divergente.
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3. Se

l = 1 ,

nada podemos a�rmar.

Demonstração:

De 1 .:

Como , por hip�otese,

l
.
= lim

n→∞
an+1

an
< 1 , (3.141)

dado

ε
.
=
1− l

2
> 0 , (3.142)

podemos encontrar No ∈ N, tal que, para n ≥ No, teremos:∣∣∣∣an+1an
− l

∣∣∣∣ < ε (2.139)
=

1− l

2
,

ou, equivalentemente, −
1− l

2
<
an+1

an
− l

(I)
<
1− l

2
,

implicando que: 0
an≥0
≤ an+1

an

por (I)
<

1− l

2
+ l

=
1

2
+
l

2
=
1+ l

2

.
= r

l
(2.139)
< 1
< 1 . (3.143)

Logo, do item 1. do crit�erio da raz~ao para s�eries num�ericas estendido (isto �e, do item

1. do Corol�ario (3.5.2)), segue que a serie num�erica
∞∑
n=1

an �e convergente, completando a

demonstra�c~ao do item 1. .

De 2. :

Como, por hip�otese,

l
.
= lim

n→∞
an+1

an
> 1 , (3.144)

dado

ε
.
=
l− 1

2
> 0 , (3.145)

podemos encontrar No ∈ N tal que, se n ≥ No, segue que∣∣∣∣an+1an
− l

∣∣∣∣ < ε (3.145)
=

l− 1

2
,

ou, equivalentemente, −
l− 1

2︸ ︷︷ ︸
1−l
2

(II)
<
an+1

an
− l <

l− 1

2
,

implicando que:
an+1

an

por (II)
> l+

1− l

2

=
l

2
+
1

2

.
= r

l
(3.144)
> 1
> 1 . (3.146)
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Logo, do item 2. do crit�erio da raz~ao para s�eries num�ericas estendido (isto �e, do item

2. do Corol�ario (3.5.2)), segue que a serie num�erica
∞∑
n=1

an �e divergente, completando a

demonstra�c~ao do item 2. .

De iii.:

Exibiremos dois exemplos onde

l = lim
n→∞

an+1

an
= 1

e no primeiro exemplo a s�erie num�erica converge e no segundo exemplo a serie num�erica

diverge.

Sabemos que a s�erie num�erica
∞∑
n=1

1

n2︸︷︷︸
.
=an

�e convergente (veja o Exemplo (3.3.8)).

Notemos que

l1 = lim
n→∞

an+1

an

= lim
n→∞

1

(n+ 1)2

1

n2

= lim
n→∞

(
n+ 1

n

)2
Exerc��cio

= 1 .

Por outro lado, a s�erie num�erica
∞∑
n=1

1

n︸︷︷︸
.
=bn

�e divergente (veja o Exemplo (3.3.6)).

Observemos que, neste caso:

l2 = lim
n→∞

bn+1

bn

= lim
n→∞

1

n+ 1
1

n

= lim
n→∞

n+ 1

n
Exerc��cio

= 1 .

Esses dois exemplos mostram que se

l1 = l2 = 1 ,

nada podemos a�rmar, ou seja, a s�erie num�erica poder�a ser convergente ou divergente, com-

pletando a veri�ca�c~ao do item 3. e do resultado.

�
Apliquemos as ideias acima aos:
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Exemplo 3.5.5 Analise a convergência da s�erie num�erica:

∞∑
n=1

xo
n

n!
, para cada xo ∈ [0,∞) �xado . (3.147)

Resolução:

Para cada xo ∈ [0 ,∞) �xado e cada n ∈ N, de�namos

an
.
=
xo
n

n!
. (3.148)

Logo

lim
n→∞

an+1

an

(3.148)
= lim

n→∞
xo
n+1

(n+ 1)!
xo
n

n!

= lim
n→∞

xo

n+ 1
Exerc��cio

= 0
.
= l < 1 .

Ent~ao, do item 1. crit�erio da raz~ao para s�eries num�ericas, por limites (ou seja, do item 1.

do Teorema (3.5.5)), segue que a s�erie num�erica
∞∑
n=1

xo
n

n!
�e convergente, para cada xo ∈ [0 ,∞)

�xado.

�

Exemplo 3.5.6 Analise a convergência da s�erie num�erica abaixo:

∞∑
n=1

1

n 2n
(3.149)

Resolução:

Para cada n ∈ N, de�namos

an
.
=

1

n 2n
. (3.150)

Logo

lim
n→∞

an+1

an

(3.150)
= lim

n→∞
1

(n+ 1) 2n+1

1

n 2n

= lim
n→∞

n

2 (n+ 1)

Exerc��cio
=

1

2

.
= l < 1.

Ent~ao, do item 1. crit�erio da raz~ao para s�eries num�ericas, por limites (ou seja, do item 1.

do Teorema (3.5.5)), segue que a s�erie num�erica
∞∑
n=1

1

n 2n
�e convergente.

�
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Exemplo 3.5.7 Analise a convergência da s�erie num�erica abaixo:

∞∑
n=1

nn

n!
. (3.151)

Resolução:

Para cada n ∈ N, de�namos

an
.
=
nn

n!
. (3.152)

Logo

lim
n→∞

an+1

an

(3.152)
= lim

n→∞
(n+ 1)n+1

(n+ 1)!
nn

n!

= lim
n→∞

(
n+ 1

n

)n
= lim

n→∞
(
1+

1

n

)n
Exerc��cio

= e
.
= l > 1 .

Ent~ao, do item 2. crit�erio da raz~ao para s�eries num�ericas, por limites (ou seja, do item 2.

do Teorema (3.5.5)), segue que a s�erie num�erica
∞∑
n=1

nn

n!
�e divergente.

�

Exemplo 3.5.8 Analise a convergência da s�erie num�erica abaixo:

∞∑
n=1

1

2n+ 1
. (3.153)

Resolução:

Para cada n ∈ N, de�namos

an
.
=

1

2n+ 1
. (3.154)

Notemos que

lim
n→∞

an+1

an

(3.154)
= lim

n→∞
1

2 (n+ 1) + 1
1

2n+ 1

= lim
n→∞

2n+ 1

2n+ 3
Exerc��cio

= 1 ,

n~ao podemos aplicar o crit�erio da raz~ao por limites (veja o item 3. do Teorema (3.5.5)).
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Por�em, se de�nirmos, para cada n ∈ N,

bn
.
=
1

n
(3.155)

ent~ao

lim
n→∞

an

bn

(3.154) e (3.155)
= lim

n→∞
1

2n+ 1
1

n

= lim
n→∞

n

2 (n+ 1)

Exerc��cio
=

1

2
> 0 .

Como a s�erie num�erica ∞∑
n=1

bn =

∞∑
n=1

1

n

�e divergente (�e a s�erie harmônica, veja o Exemplo (3.3.6)) segue, do item 1. do teste da

compara�c~ao para s�eries num�ericas, por limites (ou seja, do item 1. do Teorema (3.5.3)), que

a s�erie num�erica ∞∑
n=1

an =

∞∑
n=1

1

2n+ 1

ser�a divergente.

�
Um outro crit�erio importante para o estudo da convergência de s�eries num�ericas �e dado

pelo:

Teorema 3.5.6 (crit�erio da raiz para s�eries num�ericas) Consideremos a s�erie num�erica∞∑
n=1

an, onde

0 ≤ an , para cada n ∈ N . (3.156)

1. Se existir

r ∈ [0 , 1) (3.157)

de modo que

(an)
1
n︸ ︷︷ ︸

= n
√
an

≤ r , para cada n ∈ N , (3.158)

ent~ao a s�erie num�erica
∞∑
n=1

an ser�a convergente.

2. Se existir

r ∈ [1 ,∞) (3.159)

de modo que

(an)
1
n ≥ r , para cada n ∈ N , (3.160)
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ent~ao a s�erie num�erica
∞∑
n=1

an ser�a divergente.

Demonstração:

De 1. :

Por hip�otese, temos que

(an)
1
n ≤ r , para cada n ∈ N ,

onde

0 ≤ r < 1 ,

ou seja,

0 ≤ an ≤ rn , para cada n ∈ N .

Observemos que a s�erie num�erica
∞∑
n=1

rn �e convergente, pois �e uma s�erie geom�erica de

raz~ao r ∈ [0 , 1) (veja Exemplo (3.3.5), com c
.
= r ∈ [0 , 1)).

Logo, do item 1. do crit�erio da compara�c~ao para s�eries num�ericas (ou seja, do item 1. do

Teorema (3.5.2)), segue que a serie
∞∑
n=1

an ser�a convergente, completando a demonstra�c~ao do

item 1. .

De 2. :

Por hip�otese, temos que

(an)
1
n ≥ r , para cada n ∈ N ,

onde r ∈ (1 ,∞), ou seja,

an ≥ rn , para cada ∈ N .

Observemos que a s�erie num�erica
∞∑
n=1

rn �e divergente r ∈ [1 ,∞) (veja Exemplo (3.3.5),

com c
.
= r ∈ [1 ,∞)).

Logo, do item 2. do crit�erio da compara�c~ao para s�eries num�ericas (ou seja, do item 2. do

Teorema (3.5.2)), segue que a serie
∞∑
n=1

an ser�a divergente, completando a demonstra�c~ao do

item 2. e do resultado.

�

Observação 3.5.4 O Teorema (3.5.6) acima, permanece v�alido se trocarmos a hip�otese

′′ (an)
1
n ≤ r , para cada n ∈ N com r ∈ [0 , 1) ′′

por
′′ (an)

1
n ≤ r , para cada n ≥ No , com r ∈ [0 , 1) ′′

no item i., ou a hip�otese

′′ (an)
1
n ≥ r , para cada n ∈ N , com r ∈ [1 ,∞) ′′
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por
′′ (an)

1
n ≥ r , para cada n ≥ No , com r ∈ [1 ,∞) ′′

no item ii., ou seja:

Corolário 3.5.3 (crit�erio da raiz para s�eries num�ericas, estendido)

Consideremos No ∈ N e a s�erie num�erica
∞∑
n=1

an, onde

0 ≤ an , para cada n ≥ No . (3.161)

1. Se existir

r ∈ [0 , 1) (3.162)

de modo que

(an)
1
n ≤ r , para cada n ≥ No , (3.163)

ent~ao a s�erie num�erica
∞∑
n=1

an ser�a convergente.

2. Se existir

r ∈ [1 ,∞) (3.164)

de modo que

(an)
1
n ≥ r , para cada n ≥ No , (3.165)

ent~ao a s�erie num�erica
∞∑
n=1

an ser�a divergente.

Demonstração:

A demonstra�c~ao �e semelhante a do crit�erio da raiz (ou seja, do Teorema (3.5.6)) e ser�a

deixada como exerc��cio para o leitor.

�
Como consequência temos o:

Teorema 3.5.7 (crit�erio da raiz para s�eries num�ericas, por limites) Consideremos a

s�erie num�erica
∞∑
n=1

an, onde

0 ≤ an , para cada n ∈ N (3.166)

e de�namos

l
.
= lim

n→∞(an)
1
n . (3.167)

1. Se

l ∈ [0 , 1) , (3.168)

ent~ao a s�erie num�erica
∞∑
n=1

an ser�a convergente.
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2. Se

l ∈ (1 ,∞) , (3.169)

ent~ao a s�erie num�erica
∞∑
n=1

an ser�a divergente.

3. Se

l = 1 , (3.170)

nada podemos a�rmar.

Demonstração:

De 1. :

Por hip�otese, temos que

l
.
= lim

n→∞(an)
1
n < 1 . (3.171)

Logo, dado

ε
.
=
1− l

2
> 0 , (3.172)

podemos encontrar No ∈ N, tal que se n ≥ No, teremos∣∣∣(an) 1
n − l

∣∣∣ < ε (3.172)
=

1− l

2
,

isto �e, −
1− l

2
< (an)

1
n − l <

1− l

2
,

ou, equivalentemente, l−
1− l

2
< (an)

1
n

(I)
< l+

1− l

2
.

Em particular,

0 ≤ (an)
1
n

por (I)
< l+

1− l

2

=
l

2
+
1

2

.
= r

l
(3.171)
< 1
< 1 ,

para cada n ≥ No.

Logo, do item 1. do crit�erio da raiz para s�eries num�ericass, estendido (ou seja, do item

1. do Corol�ario (3.5.3)), segue que a s�erie num�erica
∞∑
n=1

an ser�a convergente, completando a

demonstra�c~ao do item 1. .

De 2. :

Por hip�otese temos que

l
.
= lim

n→∞(an)
1
n > 1 . (3.173)

Logo, dado

ε =
l− 1

2
> 0 , (3.174)
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podemos encontrar No ∈ N, tal que se n ≥ No, teremos:

∣∣∣(an) 1
n − l

∣∣∣ < ε (3.174)
=

l− 1

2
,

isto �e, −
l− 1

2
< (an)

1
n − l <

l− 1

2
,

ou, equivalentemente, l−
l− 1

2

(II)
< (an)

1
n < l+

l− 1

2

Em particular,

(an)
1
n

por (II)
> l−

l− 1

2

=
l

2
+
1

2

.
= r

l
(3.173)
> 1
> 1 ,

para cada n ≥ No.

Logo, do item 2. do crit�erio da raiz para s�eries num�ericass, estendido (ou seja, do item

2. do Corol�ario (3.5.3)), segue que a s�erie num�erica
∞∑
n=1

an ser�a divergente, completando a

demonstra�c~ao do item 2. .

De iii.:

Notemos que se

lim
n→∞(an)

1
n = 1 ,

nada podemos a�rmar com rela�c~ao a convergência da s�erie num�erica
∞∑
n=1

an, como veremos

nos dois exemplos a seguir:

Observemos que

lim
n→∞n

1
n = lim

n→∞ e
1
n
lnn

= lim
n→∞ e

lnn
n

= lim
n→∞ exp

[
lnn

n

]
. (3.175)
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Mas

lim
n→∞

lnn

n
= lim

x→∞
ln x

x

∞∞ : L'Hospital
= lim

x→∞
1

x
1
= 0 ,

logo: lim
n→∞n

1
n = lim

n→∞ exp

[
lnn

n

]
expencial �e cont��nua em 0

= exp

[
lim
n→∞

(
lnn

n

)]
(3.176)
= e0

= 1 , (3.176)

ou seja,

lim
n→∞n

1
n

(3.175) e (3.176)
= 1 . (3.177)

Sabemos que a s�erie num�erica
∞∑
n=1

1

n︸︷︷︸
.
=an

�e divergente (�e a s�erie harmônica, veja o Exemplo

(3.3.6)).

Notemos que, neste caso,

l1
.
= lim
n→∞(an)

1
n

= lim
n→∞

(
1

n

) 1
n

= lim
n→∞

(
1

n
1
n

)
(3.178)

=
1

lim
n→∞n

1
n

(3.177)
= 1 .

Por outro lado, sabemos que a s�erie num�erica
∞∑
n=1

1

n2︸︷︷︸
.
=bn

�e convergente (veja o Exemplo

(3.3.8)).

Neste caso, teremos:

l2
.
= lim

n→∞(bn)
1
n

= lim
n→∞

(
1

n2

) 1
n

=

 1

lim
n→∞n

1
n

2

(3.177)
= 1 ,
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Esses dois exemplos mostram que se

l1 = l2 = 1 ,

nada podemos a�rmar, ou seja, a s�erie num�erica poder�a ser convergente ou divergente, com-

pletando a veri�ca�c~ao do item 3. e do resultado.

�
Apliquemos as ideias acima aos:

Exemplo 3.5.9 Analizar a convergência da s�erie num�erica:

∞∑
n=1

1

nn
. (3.179)

Resolução:

Para cada n ∈ N, de�namos

an
.
=
1

nn
. (3.180)

Notemos que

an
(3.180)

≥ 0 , para cada n ∈ N

e l
.
= lim

n→∞(an)
1
n

(3.180)
= lim

n→∞
(
1

nn

) 1
n

= lim
n→∞

1

n
= 0 < 1 .

Logo, do crit�erio da raiz no limite item i. (ou seja, do Teorema (3.5.7) item i.), segue que

a serie num�erica ∞∑
n=1

an =

∞∑
n=1

1

nn

�e convergente.

�
Apliquemos as ideias acima aos:

Exemplo 3.5.10 Analizar a convergência da s�erie num�erica:

∞∑
n=1

1

n 2n
. (3.181)

Resolução:

Para cada n ∈ N, de�namos

an
.
=

1

n 2n
. (3.182)
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an
(3.182)

≥ 0 , para cada n ∈ N

e l
.
= lim

n→∞(an)
1
n

(3.182)
= lim

n→∞
(
1

n 2n

)1/n
= lim

n→∞
1

2n
1
n

(3.177)
=

1

2
< 1 .

Logo, do item 1. do crit�erio da raiz para s�eries num�ericas, no limite (ou seja, do item 1.

do Teorema (3.5.7)), segue que a s�erie num�erica

∞∑
n=1

an =

∞∑
n=1

1

n 2n

ser�a convergente.

�
O �ultimo crit�erio para convergência de s�eries num�erica, cujos os termos s~ao não-negativos,

que exibiremos �e o:

Teorema 3.5.8 (crit�erio da integral ou de Cauchy para s�eries num�ericas)

Suponhamos que a fun�c~ao f : [0 ,∞) → R �e n~ao-negativa (isto �e f(x) ≥ 0 para

x ∈ [0 ,∞)), decrescente, cont��nua em [0 ,∞) e que a sequência num�erica (an)n∈N seja

dada por

an
.
= f(n) , para cada n ∈ N . (3.183)

Ent~ao a s�erie num�erica
∞∑
n=1

an ser�a convergente se, e somente se, a integral impr�opria

de 1.a esp�ecie

∫∞
1

f(t)dt for convergente converge.

Demonstração:

Notemos que como a fun�c~ao f �e cont��nua em [0 ,∞) segue que ela ser�a Riemann integr�avel

no intervalor [k , k+ 1], para cada k ∈ N.

Suponhamos que a s�erie num�erica
∞∑
n=1

an �e convergente.

Observemos que, (veja a �gura abaixo), para cada k ∈ N, teremos:

ak
(3.183)
= f(k) , �e a �area do retângulo que tem base [k , k+ 1] e altura f(k) . (3.184)
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6

-

a1 = f(1)

a2 = f(2)

a3 = f(3)

1 2 3 4 5 6 7

U

f

Por outro lado, como a fun�c~ao f �e decrescente em [0 ,∞), para cada k ∈ N, temos que

0 ≤ f(x)
f �e decrescente

≤ f(k)

(3.183)
= ak para cada x ∈ [k , k+ 1] . (3.185)

Logo, para cada k ∈ N, das propriedades da integral de Riemann, de (3.185), segue que∫ k+1
k

f(x)dx
(3.185)

≤ f(k)[(k+ 1) − k︸ ︷︷ ︸
=1

]

= f(k)

(3.184)
= ak . (3.186)

Portanto, para cada k ∈ N, segue que

0
0≤f(x)
≤

∫k
1

f(x)dx

k≤k+1 e 0≤f(x)
≤

∫k+1
1

f(x)dx

[1 ,k+1]=[1 ,2]∪[2 ,3]∪···[k ,k+1]
=

∫ 2
1

f(x)dx+

∫ 3
2

f(x)dx+ · · ·+
∫k
k−1

f(x)dx+

∫ k+1
k

f(x)dx

(3.186)

≤ a1 + a2 + · · ·+ ak−1 + ak ,

ou seja,

0 ≤
∫k
1

f(x)dx

≤
k∑
j=1

aj

= Sk (= soma parcial de ordem k da s�erie
∞∑
n=1

an). (3.187)
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Portanto, como a s�erie num�erica
∞∑
n=1

an �e convergente, segue que a sequência num�erica

(Sn)n∈N ser�a convergente.

Logo, de (3.187), segue que a integral impr�opria de 1.a esp�ecie

∫∞
1

f(x) dx ser�a convergente.

Suponhamos que a integral impr�opria de 1.a esp�ecie

∫∞
1

f(x) dx seja convergente.

Observemos que (veja a �gura abaixo), para cada k ∈ N, temos que

ak = �area do retângulo de base [k− 1, k] e altura f(k) . (3.188)

6

-

a1 = f(1)

a2 = f(2)

a3 = f(3)

1 2 3 4 5 6 7

Como a fun�c~ao f �e decrescente em [0 ,∞), para cada k ∈ N, temos que

f(x)
f �e decrescente

≥ f(k)

(3.183)
= ak para cada x ∈ [k− 1 , k] . (3.189)

Logo, para cada k ∈ N, das propriedades da integral de Riemann, de (3.189), segue que∫k
k−1

f(x)dx
(3.189)

≥ f(k)[(k− (k− 1)︸ ︷︷ ︸
=1

]

= f(k)

(3.183)
= ak . (3.190)

Portanto, para cada k ∈ {2 , 3 , · · · }, teremos:∫k
1

f(x)dx
[1 ,k]=[1 ,2]∪[2 ,3]∪···[k−1 ,k]

=

∫ 2
1

f(x)dx+

∫ 3
2

f(x)dx+ · · ·+
∫k
k−1

f(x)dx

(3.190)

≥ a2 + a3 + · · ·+ ak , (3.191)

ou ainda, para cada k ∈ {2 , 3 , · · · }, segue que

a1 +

∫k
1

f(x)dx
(3.191)

≥
k∑
j=1

aj
.
= Sk , (3.192)
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ou seja, a soma parcial, de ordem k, da s�erie num�erica
∞∑
n=1

an .

Assim, se a integral impr�opria de 1.a esp�ecie

∫∞
1

f(x) dx �e convergente, de (3.192), segue

que a sequência num�erica das somas parciais (Sn)n∈N, associada a a s�erie num�erica
∞∑
n=1

an,

ser�a limitada, mais precisamente,

0
0≤an
≤ Sk

(3.192)

≤ a1 +

∫k
1

f(x)dx

0≤f(x)
≤ a1 +

∫∞
1

f(x)dx <∞ .

Mas como

an ≥ 0 , para cada n ∈ N ,

temos que a sequencia num�erica (Sn)n∈N ser�a mon�otona (crescente).

Portanto a sequência num�erica (Sn)n∈N �e mon�otona e limitada em R.

Do Teorema (3.5.1), segue que ela ser�a convergente em R, isto �e, a s�erie num�erica
∞∑
n=1

an

�e convergente em R, completando a demonstra�c~ao.

�

Observação 3.5.5 O Teorema (3.5.8) acima permanece v�alido se trocarmos o intervalo

[0 ,∞), pelo intervalo [a ,∞], com a ≥ 1 �xado, ou seja vale o:

Corolário 3.5.4 (crit�erio da integral ou de Cauchy para s�eries num�ericas, estendido)

Sejam a ≥ 1 e No ∈ N, tal que No ≥ a.
Suponhamos que a fun�c~ao f : [a ,∞) → R �e n~ao-negativa (isto �e f(x) ≥ 0 para

x ∈ [a ,∞)) decrescente, cont��nua em [a ,∞) e que a sequência num�erica (an)n∈N seja

dada por

an
.
= f(n) , para cada n ≥ No . (3.193)

Ent~ao a s�erie num�erica
∞∑
n=1

an ser�a convergente se, somente se, a integral impr�opria

de 1.a esp�ecie

∫∞
a

f(t)dt for converge.

Demonstração:

A demonstra�c~ao �e semelhante a do Teorema (3.5.8) acima e ser�a deixada como exerc��cio

para o leitor.

�
Apliquemos as ideias acima aos:
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Exemplo 3.5.11 Analizar a convergência da s�erie num�erica

∞∑
n=1

1

n
(3.194)

Resolução:

Para cada n ∈ N, de�namos

an
.
=
1

n
. (3.195)

Consideremos a fun�c~ao f : [1 ,∞) → R dada por

f(x)
.
=
1

x
, para cada x ∈ [1 ,∞) . (3.196)

Notemos que

� a fun�c~ao f, dada por (3.196), �e cont��nua em [1 ,∞);

� a fun�c~ao f, dada por (3.196), �e n~ao-negativa em [1 ,∞), pois

f(x)
(3.196)
=

1

x
> 0 , para cada x ∈ [1 ,∞) ;

� a fun�c~ao f, dada por (3.196), �e decrescente em [1 ,∞), pois se x , y ∈ [1 ,∞) satisfazendo

x ≤ y ,

ent~ao: f(x)
(3.196)
=

1

x
1≤x≤y
≤ 1

y
(3.196)
= f(y) .

� para cada n ∈ N, temos

f(n)
(3.196)
=

1

n
(3.195)
= an . (3.197)

Observemos que a integral impr�opria de 1.a esp�ecie:∫∞
1

f(x)dx
(3.196)
=

∫∞
1

1

x
dx

= lim
b→∞

[∫b
1

1

x
dx

]
Teor. Fund. C�alculo

= lim
b→∞

[
ln(x)

∣∣∣∣x=b
x=1

]
= lim

b→∞[ln(b) − ln(1)︸ ︷︷ ︸
=0

]

Exerc��cio C�alculo 1
= ∞ ,
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isto �e, a integral impr�opria de 1.a esp�ecie

∫∞
1

f(x)dx �e divergente.

Assim, do crit�erio da integral para s�eries num�ericas (ou seja, do Teorema (3.5.8)), segue

que a s�erie ∞∑
n=1

an =

∞∑
n=1

1

n

�e divergente (caso contr�ario a integral impr�opria deveria ser convergente, o que seria um

absurdo).

�

Exemplo 3.5.12 Analizar a convergência da s�erie num�erica

∞∑
n=1

1

np
, para cada p ∈ R �xado . (3.198)

Resolução:

Para p ∈ R �xado e para cada n ∈ N, de�namos

an
.
=
1

np
. (3.199)

Consideremos a fun�c~ao f : [1 ,∞) → R dada por

f(x)
.
=
1

xp
, para cada x ∈ [1 ,∞) . (3.200)

Notemos que, se

p = 0 ,

a s�erie num�erica dada por (3.198), ser�a a s�erie num�erica

∞∑
n=1

1

que �e divergente, pois

lim
n→∞an an=1= lim

n→∞ 1
= 1 ̸= 0 ,

e assim do crit�erio da divergência pars s�eries num�ericas (isto �e, do Teorema (3.4.2)) segue a

a�rma�c~ao.

Se

p < 0 ,

a s�erie num�erica ∞∑
n=1

an =

∞∑
n=1

1

np

=

∞∑
n=1

n−p (3.201)
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ser�a divergente, pois −p > 0, logo

lim
n→∞n−p = ∞ ̸= 0

e assim, novamente, do crit�erio da divergência (isto �e, do Teorema (3.4.2)) segue a a�rma�c~ao.

Se

p = 1 ,

a s�erie num�erica ∞∑
n=1

an =

∞∑
n=1

1

n

tamb�em ser�a divergente (�e a s�erie s�erie harmônica, mostramos no item 1., que �e divergente).

Consideremos o caso em que

p ∈ (0 ,∞) \ {1} .

Notemos que:

� a fun�c~ao f, dada por (3.200), �e cont��nua em [1 ,∞);

� a fun�c~ao f, dada por (3.200), �e n~ao-negativa em [1 ,∞), pois

f(x)
(3.200)
=

1

xp
> 0 , para cada x ∈ [1 ,∞) ;

� a fun�c~ao f, dada por (3.200), �e decrescente em [1 ,∞), pois se x , y ∈ [1∞) satisfazendo

x ≤ y ,

ent~ao f(x)
(3.200)
=

1

xp

1≤x≤y
≤ 1

yp

(3.200)
= f(y) ;

� para cada n ∈ N, temos

f(n)
(3.200)
=

1

np

(3.199)
= an . (3.202)
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Observemos que a integral impr�opria de 1.a esp�ecie∫∞
1

f(x)dx
(3.200)
=

∫∞
1

1

xp
dx

= lim
b→∞

[∫b
1

1

xp
dx

]
Teor. Fund. C�alculo

= lim
b→∞

[
1

(1− p) xp−1
]

∣∣∣∣x=b
x=1

]
=

1

1− p
lim
b→∞[b1−p − 1]

=

{
converge (para 1

p−1
), se p ∈ (1 ,∞)

diverge (para +∞), se p ∈ (0 , 1)
.

Logo, do crit�erio da integral (ou seja, do Teorema (3.5.8)), segue que a s�erie num�erica

∞∑
n=1

1

np
ser�a:

{
convergente, se p ∈ (1 ,∞)

diverge (para +∞), se p ∈ (0 , 1)
.

Juntando todos os casos tratados teremos:

∞∑
n=1

1

np
ser�a:

{
convergente, se p ∈ (1 ,∞)

diverge (para +∞), se p ∈ (−∞ , 1]
. (3.203)

�

Observação 3.5.6 Para cada p ∈ R, a s�erie num�erica

∞∑
n=1

1

np
, (3.204)

ser�a denominada p-série.

Logo, o Exemplo (3.5.12) acima, nos diz que uma p-s�erie �e convergente se, e somente

se,

p ∈ (1 ,∞) . (3.205)

Exemplo 3.5.13 Analizar a convergência da s�erie num�erica

∞∑
n=3

1

n lnp(n)
, para cada p ∈ [0 ,∞) �xado . (3.206)

Resolução:

Para p ∈ [0 ,∞) �xado e para cada n ∈ {3 , 4 , 5 , · · · }, de�namos

an
.
=

1

n lnp(n)
. (3.207)
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Consideremos a fun�c~ao f : [e ,∞) → R dada por

f(x)
.
=

1

x lnp(x)
, para cada x ∈ [e ,∞) . (3.208)

Notemos que, se

p = 0 ,

teremos a s�erie num�erica
∞∑
n=3

1

n
que �e, essencialmente a s�erie harmônica (desprezando-se os

dois primeiros termos da mesma), portanto ser�a divergente.

Se

p = 1 ,

teremos temos, por (3.207) e (3.208), que

an
.
=

1

n ln(n)
, para cada n ∈ {3 , 4 , 5 , · · · } . (3.209)

f(x)
.
=

1

x ln(x)
, para cada x ≥ e . (3.210)

Notemos que:

� a fun�c~ao f, dada por (3.210), �e cont��nua em [e ,∞);

� a fun�c~ao f, dada por (3.210), �e n~ao-negativa em [e ,∞), pois

f(x)
(3.210)
=

1

x ln(x)
> 0 , para cada x ∈ [e ,∞) ;

� a fun�c~ao f, dada por (3.210), �e decrescente em [e ,∞), pois se x , y ∈ [e∞) satisfazendo

x ≤ y ,

ent~ao: f(x)
(3.210)
=

1

x ln(x)
e≤x≤y
≤ 1

y ln(y)
(3.210)
= f(y) ;

� para cada n ∈ N, temos

f(n)
(3.210)
=

1

n ln(n)
(3.209)
= an . (3.211)
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Observemos que a integral impr�opria de 1.a esp�ecie∫∞
e

f(x)dx
(3.210)
=

∫∞
e

1

x ln(x)
dx

= lim
b→∞

[∫b
e

1

x ln(x)
dx

]
.

Mas:

∫b
e

1

x ln(x)
dx =


u = ln(x) ⇒ du =

1

x
dx

x = e⇒ u = 1

x = b⇒ u = ln(b)


=

∫ ln(b)
1

1

u
du

Teor. Fund. C�alculo
= ln(u)

∣∣∣∣u=ln(b)
u=1

= ln [ln(b)] .

Logo,

∫∞
e

f(x)dx = lim
b→∞

∫b
e

1

x ln(x)
dx

= lim
b→∞ ln [ln(b)]

Exerc��cio de C�alculo 1
= ∞ .

Portanto a integral impr�opria

∫∞
e

1

x ln(x)
dx �e divergente.

Logo, pelo crit�erio da integral para s�eries num�ericas (ou seja, do Teorema (3.5.8)), segue

que a s�erie num�erica
∞∑
n=3

1

n ln(n)
ser�a divergente.

Consideremos agora o caso em que

p ∈ (0 ,∞) \ {1} .

Notemos que:

� a fun�c~ao f, dada por (3.208), �e cont��nua em [e ,∞);

� a fun�c~ao f, dada por (3.208), �e n~ao-negativa em [e ,∞), pois

f(x)
(3.208)
=

1

x lnp(x)
> 0 , para cada x ∈ [e ,∞) ;

� a fun�c~ao f, dada por (3.208), �e decrescente em [e ,∞), pois se x , y ∈ [e∞) satisfazendo

x ≤ y ,

ent~ao: f(x)
(3.208)
=

1

x lnp(x)
e≤x≤y
≤ 1

y lnp(y)
(3.208)
= f(y) ;
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� para cada n ∈ N, temos

f(n)
(3.208)
=

1

n lnp(n)

(3.207)
= an . (3.212)

Observemos que a integral impr�opria de 1.a esp�ecie:∫∞
e

f(x)dx =

∫∞
e

1

x lnp(x)
dx

= lim
b→∞

[∫b
e

1

x lnp(x)
dx

]
. (3.213)

Mas,

∫b
1

1

x lnp(x)
dx =


u = ln x⇒ du =

1

x
dx

x = e⇒ u = 1

x = b⇒ u = ln(b)


=

∫ ln(b)
1

1

up
du

Teor. Fund. C�alculo
=

1

(1− p)up−1

∣∣∣∣u=ln(b)
u=1

=
1

(1− p)

[
(ln(b))1−p − 1

]
. (3.214)

Assim ∫∞
e

f(x)dx
(3.213)
= lim

b→∞
∫b
e

1

x lnp(x)
dx

(3.214)
= lim

n→∞
1

(1− p)

[
(ln(b))1−p − 1

]
Exerc��cio

=

{
converge (para 1

p−1
), se p ∈ (1 ,∞)

diverge (para ∞), se p ∈ (0 , 1)

Logo, do crit�erio da integral (ou seja, do Teorema (3.5.8)), segue que, a s�erie num�erica

∞∑
n=1

1

n lnp(n)
ser�a:

{
convergente, se p ∈ (1 ,∞)

diverge (para +∞), se p ∈ (0 , 1)
.

Logo, juntando todos o casos tratados do crit�erio da integral (ou seja, do Teorema (3.5.8)),

segue que, a s�erie num�erica

∞∑
n=1

1

n lnp(n)
ser�a:

{
convergente, se p ∈ (1 ,∞)

diverge (para +∞), se p ∈ (−∞ , 1]
. (3.215)

�

3.6 Convergência de Séries Alternadas

Observação 3.6.1
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1. Observemos que os crit�erios estabelecidos na se�c~ao 3.5 anterior, s�o podem ser

aplicados para s�eries num�ericas que tenham somente um número finito de termos

negativos, ou seja, s�o aplicam-se para s�eries num�ericas

∞∑
n=1

an ,

onde

an ≥ 0 , para cada n ≥ No .

2. Se a s�erie num�erica possui somente um número finito de termos positivos, po-

demos aplicar os crit�erios desevolvidos na se�c~ao 3.5 anterior, trocando-se o sinal

dos termos da s�erie num�erica dada inicialmente, ou seja, em vez de estudarmos

a convergência da s�erie num�erica

∞∑
n=1

an ,

onde

an < 0 , para cada n ≥ No ,

poderemos estudar a convergência da s�erie num�erica

∞∑
n=1

(−an) ,

e, neste caso, teremos

−an > 0 , para cada n ≥ No .

Deste modo, a s�erie num�erica obtida, �car�a com somente um número finito de

termos negativos e assim poderemos tentar aplicar os resultados da se�c~ao 3.5 a

esta nova s�erie num�erica.

3. Baseado nestas observa�c~oes, falta um resultado que trate de series num�ericas que

tenham infinitos termos positivos e negativos, o que chamaremos de:

Definição 3.6.1 Diremos que uma s�erie num�erica �e um série numérica alternada se

ela puder ser colocada na seguinte forma:

∞∑
n=1

(−1)n+1an (3.216)

onde

an ≥ 0 , para cada n ∈ N . (3.217)

Temos os:
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Exemplo 3.6.1 As s�eries num�ericas abaixo s~ao s�eries num�ericas alternadas:

1.
∞∑
n=1

(−1)n

Neste caso,

an
.
= 1 , para cada n ∈ N . (3.218)

2.
∞∑
n=1

(−1)n+1
1

n

Neste caso,

an
.
=
1

n
, para cada n ∈ N . (3.219)

3.
∞∑
n=1

(−1)n+1
1

2n− 1

Neste caso,

an
.
=

1

2n− 1
, para cada n ∈ N . (3.220)

�
Com isto temos o seguinte crit�erio para o estudo da convergência de s�eries num�ericas

alternadas:

Teorema 3.6.1 (crit�erio da s�erie num�erica alternada ou de Leibnitz)

Suponhamos que (an)n∈N �e uma sequência num�erica que satisfaz:

i. an ≥ 0 , para cada n ∈ N ; (3.221)

ii. (an)n∈N �e uma sequência num�erica decrescente; (3.222)

iii. lim
n→∞an = 0 . (3.223)

Ent~ao a s�erie num�erica
∞∑
n=1

(−1)n+1an ser�a convergente.

Al�em disso, se a soma da s�erie num�erica
∞∑
n=1

(−1)n+1an for denotada por S, ent~ao

|S− Sn| ≤ an+1 , para cada n ∈ N . (3.224)

Demonstração:

Denotemos por (Sn)n∈N a sequência num�erica das somas parciais da s�erie num�erica
∞∑
n=1

an,

ou seja,

Sn
.
=

n∑
k=1

(−1)k+1 ak︸ ︷︷ ︸
.
=Ak

, para cada n ∈ N . (3.225)

A�rmamos que:
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S2 n ≤ S2 n+2 , para cada n ∈ N . (3.226)

De fato pois, para cada n ∈ N, temos:

S2 n+2
(3.225)
= S2 n +A2 n+1 +A2 n+2

= S2 n +

=1︷ ︸︸ ︷
(−1)2 n+2 a2 n+1 +

=−1︷ ︸︸ ︷
(−1)2 n+3 a2 n+2

= S2 n + a2 n+1 − a2 n+2︸ ︷︷ ︸
a2n+1

(3.222)
≥ a2n+2
≥ 0

≥S2 n .

Temos tamb�em:

S2 n+1 ≤ S2 n−1 , para cada n ∈ N . (3.227)

De fato pois, para cada n ∈ N, termos:

S2 n+1
(3.225)
= S2 n−1 +A2 n +A2 n+1

= S2 n−1 +

=−1︷ ︸︸ ︷
(−1)2 n+1 a2 n +

=1︷ ︸︸ ︷
(−1)2 n+2 a2 n+1

= S2 n−1 +−a2 n + a2 n+1︸ ︷︷ ︸
a2n

(3.222)
≥ a2n+1
≤ 0

≤S2 n−1 .

Al�em disso, temos:

0 ≤ S2 n ≤ a1 , para cada n ∈ N . (3.228)

De fato pois, para cada n ∈ N, termos:

0 ≤ S2n
(3.225)
=

=1︷ ︸︸ ︷
(−1)1+1 a1 +

=−1︷ ︸︸ ︷
(−1)2+1 a2 + · · ·+

=1︷ ︸︸ ︷
(−1)(2 n−1) +1 a2 n−1 +

=−1︷ ︸︸ ︷
(−1)(2 n) +1 a2n

= a1 − a2 + a3 + · · ·− a2 n−2 + a2 n−1 − a2 n
= a1 + (−a2 + a3)︸ ︷︷ ︸

a3

(3.222)
≤ a2
≤ 0

+ · · ·+ (−a2n−2 + a2n−1)︸ ︷︷ ︸
a2n−1

(3.222)
≤ a2n−2
≤ 0

+(−a2n)︸ ︷︷ ︸
≤0

≤ a1 .

Logo, de (3.226) e (3.228), segue que a sequência num�erica (S2 n)n∈N �e mon�otona (decres-

cente) e limitada em R.
Logo, do Teorema (2.4.1), a sequência num�erica (S2 n)n∈N ser�a convergente em R.
Seja

S
.
= lim

n→∞S2 n . (3.229)
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Observemos que, para cada n ∈ N, temos:

S2n+1
(3.225)
= S2 n +A2 n+1

= S2 n +

=1︷ ︸︸ ︷
(−1)(2 n+1)+1 a2 n+1

= S2 n + a2 n+1 . (3.230)

Como, de (3.223), temos que

lim
n→∞an = 0 , (3.231)

segue que

lim
n→∞S2 n+1

(3.230)
= lim

n→∞ (S2 n + a2 n+1)

= lim
n→∞S2 n + lim

n→∞a2 n+1
(3.229) e (3.231)

= S+ 0 = S .

Ou seja, a sequência num�erica (S2 n+1)n∈N tamb�em ser�a convergente para S.

Com isto podemos mostrar que a sequência num�erica (Sn)n∈N ser�a convergente para S.

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor.

Portanto a s�erie num�erica
∞∑
n=1

(−1)n+1an �e convergente e sua soma ser�a igual a S.

Notemos que, de (3.226), seque que a sequência num�erica (S2 n)n∈N �e crescente e como

lim
n→∞Sn = S ,

segue que

S2 n ≤ S , para cada n ∈ N . (3.232)

Por outro lado, de (3.227), temos que a sequência num�erica (S2 n+1)n∈N �e decrescente e

como

lim
n→∞Sn = S ,

deveremos ter

S ≤ S2 n+1 , para cada n ∈ N . (3.233)

Como isto, para cada n ∈ N, teremos

S2 n
(3.232)

≤ S
(3.233)

≤ S2 n+1 . (3.234)
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Portanto, para cada n ∈ N, segue que

0
(3.232)

≤ S− S2 n
(3.233)

≤ S2 n+1 − S2 n

= A2 n+1

=

=1︷ ︸︸ ︷
(−1)(2 n+1)+1 a2 n+1

= a2 n+1 ,

isto �e, |S− S2 n|
(3.232)
= S− S2 n

≤ a2 n+1 . (3.235)

Por outro lado, para cada n ∈ N, temos:

0
(3.233)

≤ S2 n+1 − S

(3.232)

≤ S2 n+1 − S2 n+2

= −A2 n+2

= −[

=−1︷ ︸︸ ︷
(−1)(2 n+2)+1 a2 n+2]

= a2 n+2 ,

isto �e, |S− S2 n+1|
(3.233)

≤ S2 n+1 − S

≤ a2 n+2 . (3.236)

Portanto, de (3.236) e (3.236), segue que

|S− Sn| ≤ an+1 , para cada n ∈ N

completando a demonstra�c~ao do resultado.

�
Apliquemos as ideias acima aos:

Exemplo 3.6.2 Veri�que se a s�erie num�erica abaixo convege ou diverge, justi�cando

sua resposta. ∞∑
n=1

(−1)n+1

n
(3.237)

Resolução:

Notemos que s�erie num�erica (3.237) �e uma s�erie alternada, onde

an
.
=
1

n
, para cada n ∈ N . (3.238)

Observemos que a sequência num�erica (an)n∈N:
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� n~ao negativa, pois

an
(3.238)
=

1

n
> 0 , para cada n ∈ N ;

� �e decrescente, pois se n ,m ∈ N satisfazem n ≤ m, segue que

am
(3.238)
=

1

m

n≤m
≤ 1

n
= an ;

� al�em disso, temos:

lim
n→∞an = lim

n→∞
1

n
= 0 .

Logo pelo crit�erio da s�erie alternada (ou seja, do Teorema (3.6.1)) segue que a serie

num�erica
∞∑
n=1

(−1)n+1

n
�e convergente.

�

Observação 3.6.2 A s�erie num�erica (3.237) acima ser�a denominada série harmônica

alternada.

Veremos, mais adiante, que esta s�erie alternada tem soma igual a ln(2), ou seja,

∞∑
n=1

(−1)n+1

n
= ln(2) . (3.239)

Podemos tamb�em aplicar o crit�erio de Leibnitz (isto �e, o Teorema (3.6.1)), ao:

Exemplo 3.6.3 Veri�que se a s�erie num�erica abaixo convege ou diverge, justi�cando

sua resposta. ∞∑
n=1

(−1)n+1

2n− 1
(3.240)

Resolução:

Notemos que s�erie num�erica (3.240) �e uma s�erie alternada, onde

an
.
=

1

2n− 1
, para cada n ∈ N . (3.241)

Observemos que a sequência num�erica (an)n∈N �e:

� n~ao negativa, pois

an
(3.241)
=

1

2n− 1
> 0 , para cada n ∈ N ;

� �e decrescente, pois se n ,m ∈ N satisfazem n ≤ m, segue que

am
(3.241)
=

1

2m− 1

n≤m
≤ 1

2n− 1
= an ;
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� al�em dissom, temos:

lim
n→∞an = lim

n→∞
1

2n− 1
= 0 .

Logo, pelo crit�erio da s�erie alternada (ou seja, do Teorema (3.6.1)), segue que a serie

num�erica
∞∑
n=1

(−1)n+1

2n− 1
�e convergente.

�

Observação 3.6.3 Veremos, mais adiante, que a soma desta s�erie num�erica ser�a igual
π

4
, ou seja, ∞∑

n=1

(−1)n+1

2n− 1
=
π

4
. (3.242)

Observação 3.6.4

1. O Teorema (3.6.1) pode ser aplicado a s�erie num�erica

∞∑
n=1

(−1)n an , (3.243)

mais precisamente: se a sequência num�erica (an)n∈N �e n~ao negativa, decrescente

e tem limite zero, ent~ao a s�erie num�erica
∞∑
n=1

(−1)nan ser�a convergente.

Para ver isto basta observar que s�erie num�erica

∞∑
n=1

(−1)n an = (−1)

∞∑
n=1

(−1)n+1 an .

2. A condi�c~ao
′′ (an)n∈N decrescente ′′

necess�aria para obtermos a conclus~ao no Teorema (3.6.1), como mostra o seguinte

exemplo:

Considere a s�erie num�erica

∞∑
n=1

(−1)n+1an = 1−
1

2
+
1

2
−
1

22
+
1

3
−
1

23
+
1

4
−
1

24
+ · · ·

Observemos que ela �e uma s�erie num�erica divergente.

De fato, pois a s�erie num�erica

∞∑
n=1

a2 n+1 =

∞∑
n=1

1

2n+ 1
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�e divergente (veri�que!) e a s�erie num�erica

∞∑
n=1

a2 n =

∞∑
n=1

1

2n

�e convergente (s�erie geom�etrica de raz~ao 0 ≤ c .= 1

2
< 1) e temos:

∞∑
n=1

(−1)n+1an =

∞∑
n=1

a2 n+1 −

∞∑
n=1

a2 n ,

logo ela ser�a divergente.

Observemos que

an ≥ 0 , para cada n ∈ N e lim
n→∞an = 0 ,

mas a sequência (an)n∈N não �e decrescente (veri�que!).

Podemos aplicar as ideias desenvolvidas nesta se�c~ao, ou seja, o crit�erio de Leibnitz (ou

seja, do Teorema (3.6.1)) ao:

Exemplo 3.6.4 Mostremos que a s�erie num�erica

∞∑
n=3

(−1)n+1
ln(n)

n
(3.244)

�e convergente.

Resolução:

Notemos que a s�erie num�erica (3.244) �e um s�erie alternada, onde

an
.
=

ln(n)

n
, para cada n ≥ 3 . (3.245)

Notemos que:

(i) A sequência num�erica (an)n∈N �e n~ao negativa, pois

an
(3.245)
=

lnn

n
≥ 0 , para cada n ≥ 3 ( > 1) ;

(ii) A sequência num�erica (an)n∈N �e decrescente.

De fato, pois considerando-se a fun�c~ao f : [e ,∞) → R dada por

f(x)
.
=

ln(x)

x
, para cada x ∈ [e ,∞) , (3.246)

segue que a fun�c~ao f �e diferenci�avel em [e ,∞) e, al�em disso, das regras de deriva�c~ao,

teremos

f ′(x)
(3.246)
=

1− ln(x)

x2
≤ 0 , para cada x ∈ [e ,∞) .
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Logo a fun�c~ao f �e decrescente em [e ,∞) e como

f(n)
(3.246)
=

ln(n)

n
(3.245)
= an ,

segue que a sequência num�erica (an)n∈N tamb�em ser�a decrescente;

(iii) al�em disso, temos:

lim
n→∞an

(3.245)
= lim

n→∞
ln(n)

n
Obs. (2.4.1) item 2.

= lim
n→∞

ln(x)

x

∞∞ : L'Hospital
= lim

n→∞
 1x
1


= 0 ,

logo, lim
n→∞an = 0 .

Logo segue, do crit�erio da s�erie alternada (ou seja, do Teorema (3.6.1)), que a serie

num�erica
∞∑
n=3

(−1)n+1
ln(n)

n
�e convergente.

�
Como exerc��cio deixaremos o:

Exerćıcio 3.6.1 Mostre que a s�erie num�erica

∞∑
n=1

(−1)n+1
1

n2
(3.247)

�e convergente e determine sua soma, com erro menor ou igual 0, 02, em valor absoluto.

Resolução:

Notemos que a s�erie num�erica (3.247) �e um s�erie alternada, onde

an
.
=
1

n2
, para cada n ∈ N . (3.248)

Deixaremos, como exerc��cio parfa o leitor, mostrar que a s�erie numerica (3.247) �e conver-

gente (use o crit�erio da s�eria alternada, ou seja, o Teorema (3.6.1)).

Denotemos por S a soma da s�erie
∞∑
n=1

(−1)n+1
1

n2
, ou seja,

S
.
=

∞∑
n=1

(−1)n+1
1

n2
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e por Sn a soma parcial de ordem n da s�erie
∞∑
n=1

(−1)n+1
1

n2
, ou seja, para cada n ≥ 3, temos

que

Sn
.
=

n∑
k=1

(−1)k+1 ak

(3.248)
=

n∑
k=1

(−1)k+1
1

k2
. (3.249)

Do crit�erio da s�erie alternada (ou seja, de (3.224) do Teorema (3.6.1)) segue que

|Sn − S| ≤ an+1 , para cada n ∈ N .

Como lim
n→∞an = 0, podemos escolher No ∈ N, de mdo que

aNo+1 =
1

No
2

≤ 0, 02

= 2
1

100

=
1

50
.

Notemos que, se No
.
= 9 teremos

a9+1 = a10

(3.248)
=

1

102

=
1

1000

<
1

50
.

Portanto, de (3.224), segue que

|S9 − S| ≤ a10
< 0, 02 ,

assim

S9
(3.249)
= a1 − a2 + a3 + · · ·− a9

(3.248)
= 1−

1

4
+
1

9
− · · ·+ 1

81

�e uma aproxima�c~ao de S, com erro menor que 0, 02 .

�
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3.7 Reagrupamento de Séries Numéricas

Definição 3.7.1 Dada uma s�erie num�erica
∞∑
n=1

an, diremos que a serie num�erica
∞∑
n=1

bn

�e um reagrupamento da serie numérica
∞∑
n=1

an , se os termos da 2.a s�erie num�erica

forem os termos da 1.a s�erie num�erica, tomados em outra ordem, isto �e, para cada

n ∈ N, temos

bn = ain , (3.250)

para algum in ∈ N e para cada m ∈ N, temos

am = bjm , (3.251)

para algum jm ∈ N.

Para ilustrar, temos o:

Exemplo 3.7.1 A s�erie num�erica

1+
1

3
−
1

2
+
1

5
+
1

7
−
1

4
−
1

6
+ · · ·

�e um reagrupamento da da s�erie harmômica alternada, isto �e, da s�erie num�erica:
∞∑
n=1

(−1)n+1
1

n
. (3.252)

Neste caso, temos que:

b1 = a1 , b2 = a3 , b3 = a5 , · · · .

Para reagrupamento de s�eries num�ericas, cujos termos s~ao n~ao-negativos, temos o seguinte

resultado:

Teorema 3.7.1 Suponhamos que a s�erie num�erica
∞∑
n=1

an seja convergente e

an ≥ 0 , para cada n ∈ N . (3.253)

Ent~ao qualquer reagrupamento, que denotaremos por
∞∑
n=1

bn, da s�erie num�erica

∞∑
n=1

an ser�a convergente.

Al�em disso, se a soma da s�erie num�erica
∞∑
n=1

an �e igual a S, ent~ao a soma do

reagrupamento
∞∑
n=1

bn tamb�em ser�a igual a S, isto �e,

se
∞∑
n=1

an = S , ent~ao
∞∑
n=1

bn = S . (3.254)
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Demonstração:

Sejam (Sn)n∈N e (Tn)n∈N as sequências num�ericas das somas parciais das s�eries
∞∑
n=1

an e

∞∑
n=1

bn, respectivamente, isto �e, para cada n ∈ N, temos:

Sn
.
=

n∑
i=1

ai , (3.255)

Tn
.
=

n∑
k=1

bk . (3.256)

Como a s�erie num�erica
∞∑
n=1

bn �e um reagrupamento da s�erie num�erica
∞∑
n=1

an, segue que,

para cada k ∈ N, existem i1 , i2 · · · ∈ N, de modo que

bk = aik ,

ou seja, Tn
(3.256)
=

n∑
i=k

bk

=

n∑
i=k

aik

= ai1 + ai2 + · · ·+ ain . (3.257)

Como a s�erie num�erica
∞∑
n=1

an �e convergente, segue que sequência num�erica (Sn)n∈N �e

convergente.

Logo, da Proposi�c~ao (2.3.2), segue que a sequência num�erica (Sn)n∈N ser�a limitada, isto

�e, podemos encontrar M ≥ 0, tal que

0 ≤ Sn
(3.255)
=

n∑
i=1

ai

an≥0
= |Sn| ≤M, para cada n ∈ N . (3.258)

Como

an
(3.253)

≥ 0 , para cada n ∈ N ,

segue que a sequência num�erica (Sn)n∈N ser�a crescente.

Notemos que, para cada n ∈ N, temos:

Tn
(3.256)
= b1 + b2 + · · ·+ bn

(3.257)
= ai1 + ai2 + · · ·+ ain

k
.
=max{i1,i2,··· ,in} e aj≥0

≤ a1 + a2 + · · ·+ ak
(3.255)
= Si

(3.258)

≤ M, (3.259)
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ou seja, a sequência num�erica (Tn)n∈N �e limitada.

Observemos que ela tamb�em �e crescente

bn
existe in∈N= ain

(3.253)

≥ 0 , para cada n ∈ N .

Logo, do Teorema (2.4.1), segue que a sequência num�erica (Tn)n∈N ser�a convergente em

R, ou seja, a s�erie
∞∑
n=1

bn �e convergente em R.

Denotemos por T a soma da s�erie num�erica
∞∑
n=1

bn.

Observemos que, para cada n ∈ N, de (3.259), temos que

Tn ≤ Sk
(Sn)n∈N �e crescente

≤ S ,

para

k
.
= max{i1 , i2 , · · · , in} ,

que implicar�a em

T ≤ S . (3.260)

De modo an�alogo, considerando-se a s�erie num�erica
∞∑
n=1

an como um reagrupamento da

s�erie num�erica
∞∑
n=1

bn, segue que

0 ≤ S ≤ T , (3.261)

e assim, (3.260) e (3.261), implicar~ao que

T = S ,

ou seja, a soma das s�eries num�ericas
∞∑
n=1

an e
∞∑
n=1

bn s~ao iguais, completando a demonstra�c~ao

do resultado.

�

Observação 3.7.1 A condi�c~ao

′′ an ≥ 0 , para cada n ∈ N ′′

no Teorema (3.7.1) �e necessária para a validade do resultado, como mostra o exemplo

a seguir:

Considere a s�erie harmônica alternada

∞∑
n=1

(−1)n+1
1

n
= 1−

1

2
+
1

3
−
1

4
+
1

5
−
1

6
+
1

7
−
1

8
+ · · · , (3.262)
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que �e convergente, com soma igual a S > 0 (que mostraremos, mais adiante, que

S = ln(2)), ou seja,

S =

∞∑
n=1

(−1)n+1
1

n

= 1−
1

2
+
1

3
−
1

4
+
1

5
−
1

6
+
1

7
−
1

8
+ · · · . (3.263)

Logo

1

2
S =

1

2

∞∑
n=1

(−1)n+1
1

2n

=
1

2
−
1

4
+
1

6
−
1

8
+ · · ·

= 0+
1

2
+ 0−

1

4
+ 0+

1

6
− 0+

1

8
+ · · · . (3.264)

Somando-se as s�eries num�ericas (3.263) e (3.264), obteremos:

3

2
S = 1+

1

3
−
1

2
+
1

5
+
1

7
−
1

4
· · · ,

que �e um reagrupamento da s�erie harmônica alternada (3.262), e cuja soma (que �e
3

2
S) �e uma valor diferente de S, ou seja, um reagrupamento de uma s�erie num�erica∞∑

n=1

(−1)n+1
1

n
, que converge, mas que o valor de sua soma �e diferente !

Ao �nal deste cap��tulo apresentaremos um resultado que mostrar�a que para s�eries

num�ericas do "tipo alternada", podemos ter reagrupamentos convergindo para qualquer

n�umero real, ou at�e mesmo divergindo para +∞ ou −∞ (veja o Teorema (3.9.1)).

3.8 Séries Absolutamente Convergentes

Come�caremos pela

Definição 3.8.1 Diremos que a s�erie num�erica
∞∑
n=1

an �e absolutamente convergente se

a s�erie num�erica ∞∑
n=1

|an| (3.265)

for convergente.

Para ilustrar, consideremos o:

Exemplo 3.8.1 Para cada c ∈ (−1 , 1) �xado, mostre que s�erie num�erica

∞∑
n=1

cn (3.266)

�e absolutamente convergente:
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Resolução:

A s�erie num�erica (3.266) �e uma s�erie geom�etrica de ra�c~ao c.

Notemos que, para cada n ∈ N, temos:

|cn| = |c|n . (3.267)

Como |c| ∈ [0 , 1), temos que a s�erie num�erica

∞∑
n=1

|cn|
(3.267)
=

∞∑
n=1

|c|n

ser�a convergente (veja o Exemplo (3.3.5)).

Portanto, da De�ni�c~ao (3.8.1), segue que a s�erie num�erica (3.266) �e absolutamente con-

vergente.

�
Temos tamb�em o:

Exemplo 3.8.2 Veri�que se a s�erie num�erica

∞∑
n=1

(−1)n+1
1

n
(3.268)

�e absolutamente convergente:

Resolução:

Notemos que a s�erie num�erica (3.268) �e a s�erie harmônica alternada.

Observemos que, para cada n ∈ N, temos:∣∣∣∣(−1)n+1 1n
∣∣∣∣ = 1

n
.

Como a s�erie num�erica ∞∑
n=1

1

n

�e divergente (�e a s�erie harmônica, veja o Exemplo (3.34)), segue, da De�ni�c~ao (3.8.1), que a

s�erie num�erica (3.268) n~ao �e absolutamente convergente, ou ainda, a s�erie harmônica alternada

n~ao �e absolutamente convergente.

�
Para s�eries num�ericas absolutamente convergentes, temos o :

Teorema 3.8.1 Se a s�erie num�erica
∞∑
n=1

an �e absolutamente convergente, ent~ao a s�erie

num�erica
∞∑
n=1

an �e convergente, isto �e, se a s�erie num�erica

∞∑
n=1

|an|
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�e convergente, ent~ao a s�erie num�erica

∞∑
n=1

an

tamb�em ser�a convergente.

Demonstração:

Observemos que, para cada n ∈ N, segue que

− |an| ≤ an ≤ |an| ,

logo 0 ≤ an + |an| ≤ 2 |an| . (3.269)

Como a s�erie num�erica
∞∑
n=1

|an| �e convergente, segue que a s�erie num�erica
∞∑
n=1

(2 |an|)

tamb�em ser�a convergente.

Logo, do item 1. do crit�erio da compara�c~ao para s�eries num�ericas (ou seja, do item 1. do

Teorema (3.5.2)), segue que s�erie num�erica
∞∑
n=1

(an + |an|) ser�a convergente.

Mas

an = (an + |an|) − |an| , para cada n ∈ N ,

Como as s�eries num�ericas
∞∑
n=1

(an+ |an|) e
∞∑
n=1

|an| s~ao convergentes, das propriedade b�asica

de subtra�c~ao de s�eries num�ericas (veja a Proposi�c~ao (3.3.1)), segue que a s�erie num�erica
∞∑
n=1

an

tamb�em ser�a (pois �e diferen�ca de duas convergentes), completando a demonstra�c~ao.

�

Observação 3.8.1 A rec��proca do Teorema (3.8.1) acima �e falsa, isto �e, existem s�eries

num�ericas que s~ao convergentes mas não s~ao absolutamente convergentes.

Para ver isto, notemos que a s�erie num�erica

∞∑
n=1

(−1)n+1
1

n

�e convergente (pois �e a s�erie harmônica alternada, veja o Exemplo (3.6.2)) mas n~ao �e

absolutamente convergente.

De fato, pois ∞∑
n=1

|(−1)n+1
1

n
| =

∞∑
n=1

1

n

que �e a s�erie harmônica que sabemos ser divergente (veja o Exemplo (3.34)).

Apliquemos as ideias acima aos:
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Exemplo 3.8.3 Estudar a convergência da s�erie num�erica∞∑
n=1

(−1)n+1
1

n2
. (3.270)

Resolução:

Notemos que, ∞∑
n=1

∣∣∣∣(−1)n+1 1n2
∣∣∣∣ = ∞∑

n=1

1

n2

e est�a s�erie num�erica �a direita �e convergente (�e uma p-s�erie, com p > 1, veja o Exemplo

(3.5.12), ou ainda, (3.203)).

Ent~ao, da De�ni�c~ao (3.8.1), segue que a s�erie num�erica (3.270) �e absolutamente conver-

gente.

Logo, do Teorema (3.8.1), segue que a s�erie num�erica
∞∑
n=1

(−1)n+1
1

n2
tamb�em ser�a conver-

gente.

�
Temos tamb�em o:

Exemplo 3.8.4 Estudar a convergência da s�erie num�erica∞∑
n=1

sen(n)

n!
(3.271)

Resolução:

Para cada n ∈ N, de�namos

an
.
=

sen(n)

n!
. (3.272)

Notemos que, para cada n ∈ N, teremos:

0 ≤ |an|

(3.272)
=

∣∣∣∣ sen(n)n!

∣∣∣∣
≤ 1

n!
. (3.273)

Mas as s�erie num�erica
∞∑
n=1

1

n!
�e convergente (veja o Exemplo (3.5.5), ou ainda, (3.147),

com x = 1).

Logo do item 1. do crit�erio da compara�c~ao para s�eries num�ericas (ou seja, do item 1.

do Teorema (3.5.2)) segue que a s�erie num�erica
∞∑
n=1

∣∣∣∣ sen(n)n!

∣∣∣∣ ser�a convergente, ou seja, da

De�ni�c~ao (3.8.1), temos que a s�erie num�erica
∞∑
n=1

sen(n)

n!
�e absolutamente convergente.

Al�em disso, do Teorema (3.8.1), segue que a s�erie num�erica
∞∑
n=1

sen(n)

n!
�e convergente.

�
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3.9 Séries Condicionalmente Convergentes

Definição 3.9.1 Diremos que a s�erie num�erica
∞∑
n=1

an �e condicionalmente convergente

se a s�erie num�erica
∞∑
n=1

an for convergente, mas n~ao for absolutamente convergente, isto

�e, se a s�erie num�erica
∞∑
n=1

an �e uma s�erie num�erica convergente, mas a s�erie num�erica

∞∑
n=1

|an| �e uma s�erie num�erica divergente.

Para ilustrar temos o:

Exemplo 3.9.1 Mostre que a s�erie num�erica

∞∑
n=1

(−1)n+1
1

n
, (3.274)

�e condicionalmente convergente.

Resolução:

A s�erie num�erica (3.274) �e a s�erie harmônica alternada que �e uma s�erie num�erica condi-

cionalmente convergente, pois ela converge, mas n~ao converge absolutamente, isto �e, a s�erie

num�erica ∞∑
n=1

(−1)n+1
1

n

�e convergente (veja o Exemplo (3.6.2)), mas a s�erie num�erica

∞∑
n=1

∣∣∣∣(−1)n+1 1n
∣∣∣∣ = ∞∑

n=1

1

n

�e divergente (veja o Exemplo (3.34)).

�
Temos tamb�em o:

Exemplo 3.9.2 A s�erie num�erica

∞∑
n=1

(−1)n+1
1

n2
, (3.275)

�e condicionalmente convergente ?

Resolução:

A s�erie num�erica (3.275) não �e uma s�erie num�erica condicionalmente convergente, pois

ela converge absolutamente (veja o Exemplo (3.8.3)).

�
Para �nalizar exibiremos um resultado sobre reagrupamento de s�eries num�ericas condicio-

nalmente convergentes, a saber:
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Teorema 3.9.1 Suponhamos que s�erie num�erica
∞∑
n=1

an �e condicionalmente convergente.

Ent~ao dado

−∞ < L <∞ , (3.276)

podemos encontrar um reagrupamento da s�erie num�erica
∞∑
n=1

an, que �e convergente e

cuja soma �e igual a L .

Al�em disso, se

L = ∞ ou L = −∞ , respectivamente

podemos encontrar reagrupamento da s�erie num�erica
∞∑
n=1

an que diverge para L = +∞,

ou L = −∞, respectivamente.

Demonstração:

Daremos, a seguir, uma ideia da demonstra�c~ao para o caso em que

0 < L <∞ .

Os outros casos s~ao semelhantes e suas demonstra�c~oes ser~ao deixadas como exerc��cio para

o leitor.

Como ela �e condicionalmente convergente temos que
∞∑
n=1

an converge e
∞∑
n=1

|an| diverge.

Consideremos

A
.
= {n ∈ N ; an ≥ 0} = {n1 , n2 , n3 , · · · }

e

B
.
= {n ∈ N ; an < 0} = {m1 ,m2 ,m3 , · · · } ,

onde

ni < nj e mi < mj , se i < j .

A�rmamos que A e B s~ao in�nitos.

De fato, se um dos dois fosse �nito, por exemplo o conjunto B fosse �nito, ter��amos

somente um n�umero �nito de termos negativos (ou, positivos, se o conjunto A fosse �nito),

o que contraria a hip�otese da s�erie num�erica
∞∑
n=1

an ser uma s�erie alternada.

Logo podemos produzir um reagrupamento,
∞∑
n=1

bm, da serie num�erica
∞∑
n=1

an, da seguinte

forma:

b1
.
= an1

,

b2 =

{
an2

, se b1 < L

am1
, se b1 ≥ L

,
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b3 =

{
an3

, se b1 + b2 < L

am2
, se b1 + b2 ≥ L

,

b4 =

{
an4

, se b1 + b2 + b3 < L

am3
, se b1 + b2 + b3 ≥ L

,

e assim por diante.

Como

lim
n→∞an = 0 ,

pois a s�erie num�erica
∞∑
n=1

an �e convergente (crit�erio da divergência, ou seja, o Teorema (3.4.2))

podemos mostrar que que a sequência num�erica das somas parciais da s�erie num�erica
∞∑
n=1

bm

ser�a convergente para L.

Deixaremos os detalhes como exerc��cio para o leitor.

A �gura abaixo ilustra a situa�c~ao descrita acima:

-

L
6 6 6 6 6 66

? - j��?	-?

�

3.10 Exerćıcios



Caṕıtulo 4

Sequência de Funções

O objetivo deste cap��tulo �e introduzir alguns conceitos de convergência de sequências de

fun�c~oes, suas propriedades e aplica�c~oes.

4.1 Definições

Observação 4.1.1 Seja A um subconjunto de R, n~ao vazio.

Denotaremos por F(A ; R) o conjunto formado por todas as fun�c~oes f : A→ R, isto
�e,

F(A ; R) .= {f ; f : A→ R �e uma fun�c~ao} . (4.1)

Comecemos pela

Definição 4.1.1 A aplica�c~ao que, a cada natural n, �zermos corresponder uma fun�c~ao

fn : A→ R, isto �e,
N → F(A ; R)
n 7→ fn

,

ser�a dita sequência de funções de�nidas no conjunto A.

Para cada n ∈ N, a fun�c~ao fn : A→ R ser�a dita termo da sequência de funções ou

ainda n-ésimo termos da sequência de funções .

Notação 4.1.1 A sequência de fun�c~oes acima ser�a indicada por:

(fn)n∈N , {fn}n∈N (fn) ou {fn} . (4.2)

Consideremos os

Exemplo 4.1.1 Seja A
.
= [0,∞) e consideremos a sequência de fun�c~oes (fn)n∈N, onde,

apra cada n ∈ N, temos que a fun�c~ao fn : A→ R �e dada por

fn(x)
.
=
x

n
, para cada x ∈ R . (4.3)

Os gr�a�cos dos quatro primeiros termos da sequência de fun�c~oes (fn)n∈N, est~ao

representados, geometricamente, na �gura abaixo.
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xo

y

x

f4(x) = x
4

f3(x) = x
3

f2(x) = x
2

f1(x) = x

-

6

Exemplo 4.1.2 Seja A
.
= R e consideremos a sequência de fun�c~oes (fn)n∈N, onde, para

cada n ∈ N, a fun�c~ao fn : R → R �e dada por

fn(x)
.
= xn , para cada x ∈ R . (4.4)

Os gr�a�cos dos três primeiros termos da sequência de fun�c~oes (fn)n∈N, est~ao repre-

sentados, geometricamente, na �gura abaixo.

1

1

y

x

f3(x) = x3

f2(x) = x2

f1(x) = x

-

6

4.2 Convergência Pontual de Sequências de Funções

Observação 4.2.1 Dada uma sequência de fun�c~oes (fn)n∈N onde, para cada n ∈ N,
temos que a fun�c~ao fn : A → R, �xando-se xo ∈ A obtemos uma sequência num�erica

(fn(xo))n∈N que pode ou n~ao ser uma sequência num�erica convergente.

Baseado nisto temos a seguinte de�ni�c~ao:
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Definição 4.2.1 Dada a sequência de fun�c~oes (fn)n∈N como acima e xo ∈ A.
Diremos que a sequência de fun�c~oes (fn)n∈N converge em xo, se a sequência num�erica

(fn(xo))n∈N for convergente, isto �e, se existe

lim
n→∞ fn(xo) .

Se para cada x ∈ A, a sequência num�erica (fn(x))n∈N for convergente para f(x),

onde f : A → R �e uma fun�c~ao, ent~ao diremos que a sequência de fun�c~oes (fn)n∈N
converge pontualmente (ou ponto a ponto) para a fun�c~ao f, no conjunto A , isto �e,

se

f(x) = lim
n→∞ fn(x) , para cada x ∈ A . (4.5)

Neste caso escreveremos

fn
p→ f , em A ou lim

n→∞ fn = f , pontualmente no conjunto A. (4.6)

Observação 4.2.2

1. Observemos que a fun�c~ao f : A → R est�a univocamente determinada, isto �e, �e de

fato uma fun�c~ao.

2. Da De�ni�c~ao de convergência de sequências num�erica (isto �e, da De�ni�c~ao (2.3.1))

temos:

fn
p→ f , em A

se, e somente se, dado ε > 0, para cada x ∈ A, existe No ∈ N, como

No = No(ε , x) , (4.7)

de modo que para

n ≥ No , teremos |fn(x) − f(x)| < ε . (4.8)

3. Este tipo de convergência de sequência de fun�c~oes �e chamada de convergência pon-

tual ou convergência ponto a ponto.

Para ilustrar temos os:

Exemplo 4.2.1 Estudar a convergência pontual das sequintes sequências de fun�c~oes

(fn)n∈N:

1. A
.
= R , para cada n ∈ N, temos fn : R → R , dada por

fn(x)
.
=
x

n
, para cada x ∈ R. (4.9)

2. A
.
= [0 , 1] , para cada n ∈ N, temos fn : [0 , 1] → R , dada por

fn(x)
.
= xn , para cada x ∈ [0 , 1] . (4.10)

3. A
.
= R , para cada n ∈ N, temos fn : R → R , dada por

fn(x)
.
=
x2 + nx

n
=
x2

n
+ x , para cada x ∈ R . (4.11)

4. A
.
= R , para cada n ∈ N, temos fn : R → R , dada por

fn(x)
.
=

sen(nx+ n)

n
, para cada x ∈ R . (4.12)
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Resolução:

1.

Notemos que, para cada xo ∈ R �xado, temos que

lim
n→∞ fn(xo)

(4.9)
= lim

n→∞
xo

n
= 0 .

Logo, de�nido-se a fun�c~ao f : R → R, dada por

f(x)
.
= 0 , para cada x ∈ R , (4.13)

segue que

fn
p→ f , em A = R (4.14)

isto �e, a sequência (fn)n∈N converge pontualmente para f, no conjunto A.

A �gura abaixo ilustra a situa�c~ao descrita acima:

f(x) = 0

f1(x) = x

-

6

f2(x) = x
2

f3(x) = x
3

f4(x) = x
4

x

y

xo

2.

Notemos que, para cada xo ∈ R �xado, temos que

(i). Se xo = 1, temos que:

lim
n→∞ fn(1)

(4.10)
= lim

n→∞ 1n = 1 .

(ii). Se xo ∈ [0 , 1), temos que

lim
n→∞ fn(xo)

(4.10)
= lim

n→∞ xon
xo∈[0 ,1)
= 0 .

Logo, de�nido-se a fun�c~ao f : [0 , 1] → R, dada por

f(x)
.
=

{
0 , para x ∈ [0 , 1)

1 , para x = 1
, (4.15)
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segue, dos itens (i). e (ii). acima, que

fn
p→ f em A = [0, 1] (4.16)

isto �e, a sequência de fun�c~oes (fn)n∈N converge pontualmente para a fun�c~ao f, no con-

junto em A.

A �gura abaixo ilustra a situa�c~ao acima:

xo

f1(x) = x

f2(x) = x2

f3(x) = x3

y

x1

1

-

6

3.

Notemos que, para cada xo ∈ R �xado, temos que

lim
n→∞ fn(xo)

(4.11)
= lim

n→∞
xo
2

n
+ xo = xo .

Logo, de�nindo-se a fun�c~ao f : R → R, dada por

f(x)
.
= x , para cada x ∈ R , (4.17)

segue que

fn
p→ f , em A = R (4.18)

a sequência de fun�c~oes (fn)n∈N, converge pontualmente para a fun�c~ao f, no conjunto em

A

A �gura abaixo ilustra a situa�c~ao acima:

xo

f2(x) = x2+2 x
2

f1(x) = x2 + x

f(x) = x

y

x
-

6
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4.

Notemos que, para cada xo ∈ R �xado, temos que

lim
n→∞ fn(xo)

(4.12)
= lim

n→∞
sen(nxo + n)

n
| sen(nxo+n)|≤1 e limn→∞ 1

n
=0

= 0 .

Logo, de�nido-se a fun�c~ao f : R → R dada por

f(x)
.
= 0 , para cada x ∈ R , (4.19)

segue que

fn
p→ f , em A = R (4.20)

a sequência de fun�c~oes (fn)n∈N, converge pontualmente para a fun�c~ao f, no conjunto em

A.

A �gura abaixo ilustra a situa�c~ao acima:

xo x

f3(x) = 1
3
sen(3x + 3)

f2(x) = 1
2
sen(2x + 2)

f1(x) = sen(x + 1)

f(x) = 0 -

�

Observação 4.2.3 Na De�ni�c~ao da convergência pontual (isto �e, na De�ni�c~ao (4.2.1)),

podemos observar que, dado ε > 0 e xo ∈ A, o n�umero natural No a ser encontrar

depende, em geral, de

ε e do ponto xo . (4.21)

Ser�a que n~ao podemos eliminar a dependência do No em rela�c~ao ao ponto xo ?

A resposta em geral �e não, como mostra o Exemplo (4.3.1) abaixo.

4.3 Convergência Uniforme de Sequências de Funções

Quando pudermos encontrar um n�umero natural No que independente do ponto xo na De-

�ni�c~ao (4.2.1), teremos a:
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Definição 4.3.1 Diremos que uma sequência de fun�c~oes (fn)n∈N, de�nidas em A ⊆ R
(isto �e, fn : A→ R) converge uniformente, no conjunto A para uma fun�c~ao f : A→ R,
se dado ε > 0, podemos encontrar

No = No(ε) ∈ N , (4.22)

de modo

se n ≥ No , teremos |fn(x) − f(x)| < ε , para todo x ∈ A . (4.23)

Neste caso escreveremos

fn
u→ f , em A . (4.24)

Observação 4.3.1

1. Notemos que escrever

|fn(x) − f(x)| < ε , para todo x ∈ A

�e equivalente a escrever

−ε < fn(x) − f(x) < ε , para todo x ∈ A

ou ainda,

f(x) − ε < fn(x) < f(x) + ε , para todo x ∈ A .

Assim, a sequência de fun�c~oes (fn)n∈N satisfaz a condi�c~ao (4.23) se, e somente se,

seu gr�a�co est�a contido no " tubinho", de raio ε, em torno do gr�a�co da fun�c~ao f

A �gura abaixo ilustra a situa�c~ao acima.

ε

ϵ

fn

f

y

x

6

?
6

?

-

6

Logo, do ponto de vista acima,

fn → f , uniformemente no conjunto A
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se dado ε > 0, podemos encontrar um No = No(ε) ∈ N, de modo que, para todo

n ≥ No, a representa�c~ao geom�etrica do gr�a�co das fun�c~oes fn, estar~ao contidas

no "tubinho"de raio ε em torno da representa�c~ao geom�etrica do gr�a�co da fun�c~ao

f, de�nido acima.

2. Segue imediatamente da De�ni�c~oes (4.2.1) e (4.3.1), que a convergência uniforme

de uma sequência de fun�c~oes em um conjunto, implicar�a na convergência pon-

tual dessa sequência de fun�c~oes no mesmo conjunto, isto �e, se uma sequência

de fun�c~oes (fn)n∈N converge uniformemente em A, para uma fun�c~ao f, ent~ao a

sequência de fun�c~oes (fn)n∈N converge pontualmente para a fun�c~ao f, no conjunto

A, ou ainda,

se fn
u→ f em A , ent~ao fn

p→ f em A . (4.25)

A rec��proca �e falsa, isto �e, existem sequências de fun�c~oes (fn)n∈N que conver-

gem pontualmente para uma fun�c~ao f, em um conjunto A, mas a convergência

sequências de fun�c~oes (fn)n∈N não ser�a uniforme, como mostram os Exemplos

(4.3.1), (4.3.3) e (4.3.1), que exibiremos a seguir.

Exemplo 4.3.1 Mostre que a sequência de fun�c~oes (fn)n∈N, onde para cada n ∈ N, temos

qua a fun�c~ao fn : R → R �e dada por

fn(x)
.
=
x

n
, para cada x ∈ R , (4.26)

converge pontualmente para a fun�c~ao f : R → R, dada por

f(x)
.
= 0 , para cada x ∈ R , (4.27)

mas NÃO converge uniformemente em R.

Resolução:

Notemos que, do Exemplo (4.2.1) item 1. (veja (4.9)) temos que

fn
p→ f , em R .

isto �e, a sequência de fun�c~oes (fn)n∈N converge pontualmente para a fun�c~ao f em R.
A convergência da sequência de fun�c~oes (fn)n∈N NÃO �e uniforme em R.
De fato, suponhamos, por absurdo, que a

fn
u→ f , em R .

Ent~ao, dado

ε = 1 ,

deveria existir um No = No(ε) ∈ N, de que se

n ≥ No , dever��amos ter

∣∣∣∣∣∣∣∣fn(x)︸ ︷︷ ︸
(4.27)
= x

n

−0

∣∣∣∣∣∣∣∣ < 1 , para todo x ∈ R .
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Em particular, dever��amos ter∣∣∣∣ xNo

∣∣∣∣ < 1 , para todo x ∈ R ,

ou, equivalentemente

|x| < No, para todo x ∈ R ,

o que �e um absurdo, pois escolhendo x ∈ R, tal que

x ≥ No ,

a desigualdade acima ser�a falsa !

Portanto não existe No ∈ N, de modo que

|fn(x) − f(x)| < ε = 1, para todo x ∈ R .

Logo a sequência (fn)n∈N converge pontualmente para a fun�c~ao f, em R, mas não converge

uniforme para a fun�c~ao f, em R
A �gura abaixo ilustra a situa�c~ao acima.

x

ε

ε
xoε

6
?

?
6

fn(x) = x
n

f2(x) = x
2

f1(x) = x
y

-

6

�

Observação 4.3.2 Observe que se no Exemplo (4.3.1) acima, considerarmos

A
.
= [a , b] ,

ent~ao a convergência da sequência (fn)n∈N ser�a uniforme em A = [a , b], como mostra

o exemplo a seguir, no caso de

a
.
= 0 e b

.
= 10 .

Exemplo 4.3.2 Consideremos a sequência de fun�c~oes (fn)n∈N, onde A
.
= [0 , 10] e para

cada n ∈ N, a fun�c~ao fn : A→ R �e dada por

fn(x)
.
=
x

n
, para cada x ∈ [0 , 10] . (4.28)
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Mostre que a sequência de fun�c~oes (fn)n∈N converge uniformemente para a fun�c~ao

f : [0 , 10] → R, dada por

f(x)
.
= 0 , para cada x ∈ [0 , 10] . (4.29)

Resolução:

Observe que, como vimos no Exemplo (4.3.1)

fn
p→ f , em A = [0 , 10] .

Analisemos se a convergência �e uniforme.

Notemos que, dado ε > 0, se consideraros No ∈ N de modo que

No >
10

ε
, (4.30)

ent~ao, para

n ≥ No (4.31)

teremos:

|fn(x) − f(x)|
(4.28) e (4.29)

=
∣∣∣ x
n
− 0
∣∣∣

≤ 10

n
(4.31)

≤ 10

No

(4.30)

≤ ε ,

para todo x ∈ A, mostrando que

fn
u→ f , em A = [0 , 10]

isto �e, a sequência de fun�c~oes (fn)n∈N converge uniformemente para a fun�c~ao f, no conjunto

A.

A �gura abaixo ilustra a situa�cao acima.

x

ε

ε
10

6
?

?
6

fn(x) = x
n3

f3(x) = x
3

f2(x) = x
2

f1(x) = x

y

-

6

�
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Observação 4.3.3 No Exemplo (4.3.2) acima, poder��amos desenvolver o mesmo ra-

cioc��nio, considerando o intervalo A = [a , b].

Deixaremos a resolu�c~oes deste caso como exerc��cio para o leitor.

Exemplo 4.3.3 Consideremos a sequência (fn)n∈N, onde para cada n ∈ N, a fun�c~ao

fn : A→ R �e dada por

fn(x)
.
= xn , para cada x ∈ R (4.32)

Mostre que a sequência de fun�c~oes (fn)n∈N converge pontualmente para a fun�c~ao f,

no conjunto A
.
= [0 , 1], onde a fun�c~ao f : [0 , 1] → R, dada por

f(x)
.
=

{
0 , para x ∈ [0 , 1)

1 , para x = 1
. (4.33)

mas a convergência da sequência de fun�c~oes (fn)n∈N NÃO converge uniformente para

a fun�c~ao f, no conjunto A
.
= [0 , 1].

Resolução:

Como vimos no Exemplo (4.2.1) item 2. (veja (4.10)), que

fn
p→ f , em A = [0 , 1] ,

por�em a convergência NÃO ser�a uniforme em [0 , 1].

De fato, suponhamos, por absurdo, que a convergência seja uniforme em A = [0 , 1], isto

�e,

fn
u→ f , em A = [0 , 1] .

Consideremos

ε =
1

3
. (4.34)

Ent~ao, deveria existir No ∈ N, de modo que se

n ≥ No , dever��amos ter |fn(x) − f(x)| < ε =
1

3
, para todo x ∈ A = [0 , 1] . (4.35)

Observemos que para cada n ∈ N, podemos encontrar xo ∈ [0 , 1), de modo que

xo ∈ ( ε
1
n︸︷︷︸

(4.34)
= 1

3
1
n

, 1) , (4.36)

pois
1

3
1
n

< 1 .

Assim, para

xo ∈
(
1

3
1
n

, 1

)
, (4.37)
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teremos

|fn(xo) − f(xo)|
(4.32)
= |xo

n − 0|

xo>0= xo
n

(4.37)
>

(
1

3n

)n
=
1

3

(4.34)
= ε .

Portanto, a convergência da sequência de fun�c~oes (fn)n∈N não poder�a ser uniforme, no

conjunto em A = [0 , 1].

A �gura abaixo ilustra a situa�c~ao descrita acima.

�
fn(x) = xn

xoε1/n

?

6
ε

?
6

ε
-

6
1

1 x

y

Mais adiante veremos novamente, usando outro procedimento, que esta convergência da

sequência de fun�c~oes (fn)n∈N, do Exemplo (4.3.3) acima, n~ao poder�a ser uniforme em [0 , 1].

�
Deixaremos como exerc��cio para o leitor o:

Exerćıcio 4.3.1 Consideremos a sequência de fun�c~oes (fn)n∈N e, para cada n ∈ N, a
fun�c~ao fn : R → R �e dada por

fn(x)
.
=
x2 + nx

n
, para cada x ∈ R . (4.38)

e f : R → R de�nida por

f(x)
.
= x, x ∈ R.

No Exemplo (4.2.1) item 3. (veja (4.11)) vimos que

fn
p→ f , em R ,

onde fun�c~ao f : R → R �e dada por

f(x)
.
= x , para cada x ∈ R . (4.39)

Mostre que a convergência sequência de fun�c~oes (fn)n∈N não �e uniformemente em

R.

Resolução:

A demonstra�c~ao deste fato ser�a deixada como exerc��cio para o leitor.

A �gura abaixo ilustra a situa�c~ao descrita acima.
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xo

f1(x) = x2 + x
fn(x) = x2+nx

n

f(x) = x

y

x

?

?

6
6

ε

ε

-

6

�Temos tamb�em o:

Exerćıcio 4.3.2 Consideremos a sequência de fun�c~oes (fn)n∈N onde, para cada n ∈ N,
a fun�c~ao fn : R → R �e dada por

fn(x)
.
=
1

n
sen(nx+ n) , para cada x ∈ R . (4.40)

Mostre que

fn
u→ f , em A

.
= R , (4.41)

isto �e, a sequência de fun�c~oes (fn)n∈N converge uniformemente para a fun�c~ao f, no

conjunto A
.
= R , onde a fun�c~ao f : R → R �e de�nida por

f(x)
.
= 0 , para cada x ∈ R . (4.42)

Resolução:

Deixaremos como exerc��cio para o leitor a veri�ca�c~ao do fato acima.

Sugestão: para cada n ∈ N, temos:∣∣∣∣ 1n sen(nx+ n)

∣∣∣∣ ≤ 1

n
, para cada x ∈ R .

A �gura abaixo ilustra a situa�c~ao descrita acima.

x

fn(x) =
sen(nx+n)

n

f2(x) =
sen(2x+2)

2

f1(x) = sen(x + 1)

6

?
6

?

ε

ε

-f(x) = 0
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�
Temos tamb�em o:

Exerćıcio 4.3.3 Consideremos a sequência de fun�c~oes (fn)n∈N onde, para cada n ∈ N,
a fun�c~ao fn : [0 ,∞) → R �e dada pela representa�c~ao geom�etrica do seu gr�a�co, como na

�gura abaixo e a fun�c~ao f : [0 ,∞) → R �e de�nida por

f(x)
.
=

{
0 , para x ∈ (0 ,∞)

1 , para x = 0
, para cada x ∈ [0 ,∞) . (4.43)

Mostre que

fn
p→ f , em A

.
= [0 ,∞) , (4.44)

mas a convergência não �e uniforme em A = [0 ,∞), ou seja, a sequência de fun�c~oes

(fn)n∈N converge pontualmente para a fun�c~ao f, em A = [0 ,∞), mas não �e uniforme-

mente em A = [0 ,∞).

Resolução:

Deixaremos a veri�ca�c~ao deste fato a cargo do leitor.

A �gura abaixo ilustra a situa�c~ao descrita acima.

1

xo

f

x

y

ε

ε

?

6
?

6

f3

f2

f1

6

-
11

2
1
3

�
Podemos tratar do:

Exerćıcio 4.3.4 Consideremos a sequência de fun�c~oes (fn)n∈N onde, para cada n ∈ N,
a fun�c~ao fn : R → R �e dada por:

fn(x)
.
=

 1−
1

n
|x| , para x ∈ (−n ,n)

0 , para x ∈ (−∞ , n] ∪ [n ,∞)
, para cada x ∈ R (4.45)

e a fun�c~ao f : R → R dada por

f(x)
.
= 1 , para cada x ∈ R . (4.46)
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Mostre que

fn
p→ f , em A

.
= R , (4.47)

mas a convergência não �e uniforme em A = R, ou seja, a sequência de fun�c~oes (fn)n∈N
converge pontualmente para a fun�c~ao f, em A = R, mas não �e uniformemente em

A = R.

Resolução:

Deixaremos como exerc��cio para o leitor a veri�ca�c~ao deste fato.

A �gura abaixo ilustra a situa�c~ao descrita acima.

−n −2 −1

1

n21

fnf2f1

y

x

ε

6
?
6
?

ε

xo

f

6

-

�
Para �nalizar temos o:

Exemplo 4.3.4 Consideremos a sequência de fun�c~oes (fn)n∈N onde, para cada n ∈ N, a
fun�c~ao fn : (0 , 1] → R �e dada por

fn(x)
.
=

1

nx
, para cada x ∈ (0 , 1] (4.48)

e a fun�c~ao f : (0 , 1] → R �e de�nida por

f(x)
.
= 0 , para cada x ∈ A . (4.49)

Mostre que

fn
p→ f , em A

.
= [0 , 1) , (4.50)

mas a convergência não �e uniforme em A = [0 , 1), ou seja, a sequência de fun�c~oes

(fn)n∈N converge pontualmente para a fun�c~ao f, em A = [0 , 1), mas não �e uniformemente

em A = [0 , 1).

Resolução:

Deixaremos como exerc��cio para o leitor a veri�ca�c~ao da convergência pontual, ou seja,

(4.50).

Suponhamos, por absurdo, que a convergência da sequência de fun�c~oes (fn)n∈N fosse uni-

forme em A = [0 , 1).

Deste dado, dado

ε
.
=
1

2
> 0 , (4.51)
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dever��amos poder encontrar No ∈ N, de modo que

se n ≥ No ,

dever��amos ter: |fn(x) − f(x)| < ε
(4.51)
=

1

2
, para todo x ∈ A = (0 , 1] ,

isto �e (de (4.48) e (4.49)),

∣∣∣∣ 1nx − 0

∣∣∣∣ < 1

2
, para todo x ∈ A = (0 , 1] ,

em particular, vale para n = No:

∣∣∣∣ 1

No x

∣∣∣∣ < 1

2
, para todo x ∈ A = (0 , 1] ,

como x > 0 e No ∈ N, �e o mesmo que: 0 <
1

x
<
No

2
, para todo x ∈ A = (0 , 1] , (4.52)

o que �e um absurdo, pois

lim
x→0+

1

x
= ∞ .

Logo n~ao existe tal No ∈ N, isto �e, a convergência da sequência de fun�c~oes (fn)n∈N n~ao

pode ser uniforme em A = (0 , 1].

A �gura abaixo ilustra a situa�c~ao descrita acima.

1

f

xo

6
?
6

?
ε

ε

x

fn

f2

f1

y

-

6

�

4.4 Sequências de Funções de Cauchy

Em analogia com sequências num�ericas temos a no�c~ao de sequências de Cauchy para sequências

de fun�c~oes, a saber:

Definição 4.4.1 Diremos que uma sequência de fun�c~oes (fn)n∈N �e uma sequência de

Cauhy em A ⊆ R, se dado ε > 0, podemos encontrar

No = No(ε) ∈ N , (4.53)

de modo que

se n ,m ≥ No , teremos |fn(x) − fm(x)| < ε , para todo x ∈ A . (4.54)
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Temos o:

Exemplo 4.4.1 Consideremos a sequência de fun�c~oes (fn)n∈N onde, para cada n ∈ N, a
fun�c~ao fn : R → R �e dada por

fn(x) =
sen(nx)

n
, para cada x ∈ R . (4.55)

Mostre que a sequência de fun�c~oes (fn)n∈N �e uma sequência de fun�c~oes de Cauchy,

em R.

Resolução:

Notemos que, dado ε > 0, se considerarmos No ∈ N, de modo que

No >
ε

2
(4.56)

para

n ,m ≥ No , (4.57)

segue que

|fn(x) − fm(x)|
(4.55)
=

∣∣∣∣ sen(nx)n
−

sen(mx)

m

∣∣∣∣
≤

∣∣∣∣ sen(nx)n

∣∣∣∣︸ ︷︷ ︸
=

| sen(nx)|
n

| sen(nx)|≤1

≤ 1
n

+

∣∣∣∣ sen(mx)m

∣∣∣∣︸ ︷︷ ︸
=

| sen(mx)|
m

| sen(mx)|≤1

≤ 1
m

≤ 1

n
+
1

m
(4.57)

≤ 1

No

+
1

No

(4.56)
<

ε

2
+
ε

2
= ε ,

mostrando, pela De�ni�c~ao (4.4.1), que a sequência de fun�c~oes (fn)n∈N �e uma sequência de

fun�c~oes de Cauchy em R.
�

Um resultado importante que relaciona a no�c~ao de convergência uniforme de uma sequência

de fun�c~oes, em um conjunto, com a no�c~ao de sequência de fun�c~oes ser uma sequência de

fun�c~oes Caunhy, no mesmo conjunto, �e dado pelo seguinte:

Teorema 4.4.1 (Crit�erio de Cauchy para a convergência uniforme de uma sequência

de fun�c~oes) Seja (fn)n∈N uma sequência de fun�c~oes onde, para cada n ∈ N, temos que

fn : A ⊆ R → R.
A sequência de fun�c~oes (fn)n∈N converge uniformemente no conjunto A se, e somente

se, a sequência de fun�c~oes (fn)n∈N for uma sequência de Cauchy no conjunto A.
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Demonstração:

Suponhamos que

fn
u→ f , em A .

Ent~ao, dado ε > 0, podemos encontrar No = No(ε) ∈ N, de modo

se n ≥ No , teremos |fn(x) − f(x)| <
ε

2
para todo x ∈ A . (4.58)

Logo para

n ,m ≥ No , (4.59)

segue que

|fn(x) − fm(x)| = |[fn(x) − f(x)] + [f(x) − fm(x)]|

desigualdade triangular

≤ |fn(x) − f(x)|+ |f(x) − fm(x)|

(4.59) e (4.58)
<

ε

2
+
ε

2
= ε ,

(4.60)

para todo x ∈ A, mostrando que a sequência de fun�c~oes (fn)n∈N �e uma sequência de Cauchy

no conjunto A.

Por outro lado, se sequência de fun�c~oes (fn)n∈N �e uma sequência de Cauchy no conjunto

A, ent~ao para cada x ∈ A, a sequência num�erica (fn(x))n∈N ser�a uma sequência num�erica de

Cauchy em R.
Logo, do Teorema (2.7.2), a sequência num�erica (fn(x))n∈N ser�a convergente em R, isto �e,

para cada x ∈ A, fn(x) → f(x), ou seja,

fn
p→ f , em A . (4.61)

Precisamos mostrar que a convergência acima (que �e pontual) �e uniforme no conjunto A.

Como a sequência de fun�c~oes (fn(x))n∈N �e uma sequencia de Cauchy no conjunto A, dado

ε > 0, podemos encontra No = No(ε) ∈ N, de modo que

se n ,m ≥ No , teremos |fn(x) − fm(x)| < ε para todo x ∈ A . (4.62)

Passando-se o limite em (4.62), quando m→ ∞, obteremos

|fn(x) − f(x)| < ε para todo x ∈ A,

ou seja,

fn
u→ f , em A ,

completando a demonstra�c~ao do resultado.

�
Apliquemos as ideias acima ao:
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Exemplo 4.4.2 Mostre que a sequência de fun�c~oes (fn)n∈N do Exemplo (4.4.1), converge

uniformemente para a fun�c~ao f, onde a fun�c~ao f : R → R �e dada por

f(x) = 0 , para cada x ∈ R . (4.63)

Resolução:

Notemos que, para cada x ∈ R temos que

lim
n→∞ fn(x)

(4.55)
= lim

n→∞
sen(nx)

n
|sen(nx)|≤1 e limn→∞ 1

n
=0

= 0

ou seja, a sequência de fun�c~oes (fn)n∈N converge pontualmente para f em R.
Como vimos no Exemplo (4.4.1), a sequência de fun�c~oes (fn)n∈N �e uma sequência de

fun�c~oes de Cauchy, em R.
Logo, do Teorema (4.4.1) segue que (fn)n∈N converge uniformemente para f em R.

�

4.5 Propriedades da Convergência Uniforme de Sequências

de Funções

A seguir daremos algumas aplica�c~oes importantes da convergência uniforme de sequências de

fun�c~oes.

Come�caremos observando que, no Exemplo (4.4.2) acima (e o Exemplo (4.4.1)), temos

que

fn
u→ f , em A ,

as fun�c~oes fn s~ao cont��nuas em R (veja (4.55)) e a fun�c~ao f, tamb�em �e cont��nua em R (veja

(4.63)).

Isto ocorre em geral, como a�rma o resultado a seguir:

Teorema 4.5.1 Suponhamos que (fn)n∈N seja uma sequência de fun�c~oes onde, para cada

n ∈ N, temos que a fun�c~ao fn : A ⊆ R → R �e uma fun�c~ao cont��nua no conjunto A e que

a sequência de fun�c~oes (fn)n∈N converge uniformemente para f, no conjunto A.

Ent~ao a fun�c~ao f ser�a cont��nua no conjunto A.

Isto �e, para cada xo ∈ A, temos

lim
x→xo f(x) = f(xo) (4.64)

ou ainda:

lim
x→xo

[
lim
n→∞ fn(x)

]
= lim

n→∞
[
lim
x→xo fn(x)

]
, para cada xo ∈ A . (4.65)



172 CAP�ITULO 4. SEQUÊNCIA DE FUNC� ~OES

Demonstração:

Precisamos mostrar que a fun�c~ao f �e cont��nua para cada xo ∈ A.
Faremos a demonstra�c~ao quando

xo ∈
◦
A .

Para o caso do ponto xo pertencer �a fronteira do conjunto A, fazemos algumas adapta�c~oes

do processo abaixo para mostrar a conclus~ao.

Deixaremos os detalhes deste caso como exerc��cio para o leitor.

Dado ε > 0, do fato que

fn
u→ f , em A ,

segue que podemos encontrar

No = No(ε) ∈ N,

de modo que

se n ≥ No , (4.66)

teremos |fn(y) − f(y)| <
ε

3
para todo y ∈ A ,

em particular, |fNo
(y) − f(y)| <

ε

3
para todo y ∈ A . (4.67)

Como, por hip�otese, a fun�c~ao fNo
�e cont��nua em xo, podemos encontrar δ > 0, tal que

se |x− xo| < δ , segue que |fNo
(x) − fNo

(xo)| <
ε

3
. (4.68)

Assim, se

|x− xo| < δ , (4.69)

teremos:

|f(x) − f(xo)| = |f(x) − fNo
(x) + fNo

(x) − fNo
(xo) + fNo

(xo) − f(xo)|

des. triagular

≤ |f(x) − fNo
(x)|︸ ︷︷ ︸

(4.66) e (4.67)
< ε

3

+ |fNo
(x) − fNo

(xo)|︸ ︷︷ ︸
(4.69) e (4.68)

< ε
3

+ |fNo
(xo) − f(xo)|︸ ︷︷ ︸

(4.66) e (4.67)
< ε

3

<
ε

3
+
ε

3
+
ε

3
= ε.

Portanto,

lim
x→xo f(x) = f(xo),

isto �e, a fun�c~ao f �e cont��nua em xo ∈ A.
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A identidade (4.64) pode ser obtida da seguinte maneira: se xo ∈ A, teremos:

lim
x→xo

[
lim
n→∞ fn(x)

]
fn

u→f
= lim

x→xo f(x)

f �e cont��nua em xo
= f(xo)

fn
u→f
= lim

n→∞ fn(xo)
fn �e cont��nua em xo

= lim
n→∞

[
lim
x→xo fn(x)

]
,

obtendo a identidade (4.64) e completando a demonstra�c~ao do resultado.

�
Uma outra aplica�c~ao importante da convergência uniforme de sequência de fun�c~oes �e dado

pelo:

Teorema 4.5.2 Consideremos a sequência de fun�c~oes (fn)n∈N onde, para cada n ∈ N a

fun�c~ao fn : [a , b] ⊆ R seja cont��nua em [a , b] e que que a sequência de fun�c~oes (fn)n∈N
converge uniformemente para f, no conjunto [a , b].

Ent~ao ∫b
a

f(x)dx = lim
n→∞

∫b
a

fn(x)dx , (4.70)

ou seja, ∫b
a

[
lim
n→∞ fn(x)

]
dx = lim

n→∞
[∫b
a

fn(x)dx

]
. (4.71)

Demonstração:

Como sequência de fun�c~oes (fn)n∈N converge uniformemente para f, no conjunto [a , b] e,

para cada n ∈ N, a fun�c~ao fn �e cont��nuas em [a , b] segue, do Teorema (4.5.1) acima, que a

fun�c~ao f ser�a cont��nua em [a , b].

Logo, por um resultado do C�alculo 1, segue que a fun�c~ao f ser�a integr�avel em [a , b].

Como

fn
u→ f , em [a , b] ,

dado ε > 0, podemos encontrarNo = No(ε) ∈ N, de modo que

se n ≥ No , teremos |fn(x) − f(x)| <
ε

b− a
, para todo x ∈ [a , b] . (4.72)

Logo, para

n ≥ No , (4.73)
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teremos: ∣∣∣∣∫b
a

fn(x)dx−

∫b
a

f(x)dx

∣∣∣∣ = ∣∣∣∣∫b
a

(fn(x) − f(x))dx

∣∣∣∣
propriedades da integral de Riemann

≤
∫b
a

|fn(x) − f(x)|dx

(4.73) e (4.72)

≤
∫b
a

ε

b− a
dx

=
ε

b− a
(b− a) = ε ,

isto �e, a sequência num�erica

(∫b
a

fn(x)dx

)
n∈N

converge para

∫b
a

f(x)dx, ou seja,

lim
n→∞

[∫b
a

fn(x)dx

]
=

∫b
a

f(x)dx ,

isto �e, vale (4.70).

A identidade (4.71) pode ser obtida da seguinte maneira:∫b
a

[
lim
n→∞ fn(x)

]
dx

fn
u→f
=

∫b
a

f(x)dx

(4.70)
= lim

n→∞
[∫b
a

fn(x)dx

]
,

obtendo a identidade (4.71) e completando a demonstra�c~ao do resultado.

�

Observação 4.5.1

1. O Teorema (4.5.2) acima nos d�a condições suficientes, para podermos trocar um

limite em n, com uma integral de�nida (que �e o que diz a identidade (4.71)).

2. Podemos provar um resultado an�alogo ao acima substituindo-se a hip�otese de

continuidade dos termos da sequência de fun�c~oes, por integrabilidade e limita�c~ao

uniforme das mesmas.

3. A conclus~ao do resultado pode não ser verdadeira se retirarmos a hip�otese da

convergência ser uniforme da sequência de fun�c~oes, como mostra o exemplo a

seguir:

Consideremos a sequência de fun�c~oes (fn)n∈N, onde para cada n ∈ N, a fun�c~ao

fn : [0 , 1] → R �e dada por sua representa�c~ao geom�etrica, como na �gura abaixo.

-

6

f1

1

1

1

2

-

62

1
1
2

f2

-

63

1

f3

1
3
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Observemos que

fn
p→ f , em [0 , 1] ,

onde a fun�c~ao f : [0 , 1] → R �e dada por

f(x)
.
= 0 , para cada x ∈ [0, 1] , (4.74)

mas não converge uniformemente para a fun�c~ao f, no conjunto [0 , 1].

De fato, pois ∫ 1
0

f(x)dx = 0 , (4.75)

mas, para cada n ∈ N, temos que∫ 1
0

fn(x)dx =
1

2
, (4.76)

pois a �area da regi~ao delimitada pelo gr�a�co das fun�c~oes, n~ao-negativa, fn ser�a

igual a
1

2
(veja as �guras acima).

Portanto

lim
n→∞

∫ 1
0

fn(x)dx
(4.76)
=

1

2
̸= 0 (4.75)

=

∫ 1
0

f(x)dx ,

mostrando, pelo Teorema (4.5.2), que a sequência de fun�c~oes (fn)N∈N n~ao poder�a

convergir uniformente para a fun�c~ao f, no conjunto [0 , 1].

Observação 4.5.2

Tendo em vista os Teoremas (4.5.1) e (4.5.2) exibidos acima, podemos pensar se algo

semelhante poder�a ocorrer para a diferencia�c~ao de sequências de fun�c~oes.

Isto �e: se uma uma sequência de fun�c~oes (fn)n∈N converge uniformemente para

f : (a , b) → R, em (a , b) onde, para cada n ∈ N, a fun�c~ao fn : (a , b) → R �e diferenci�avel

em xo ∈ (a , b) implcar�a que a fun�c~ao f �e diferenci�avel em xo e valer�a a identidade

f ′ = lim
n→∞ fn′ ?

Infelizmente isto não �e verdade em geral, como mostram os exemplos abaixo.

Exemplo 4.5.1 Consideremos a sequência de fun�c~oes (fn)n∈N, cujas representa�c~oes geo-

m�etricas dos gr�a�cos dos seus termos s~ao dadas pelos seus gr�a�cos abaixo, de�nidas

em R e a fun�c~ao f : R → R dada por

f(x)
.
= |x| , para cada x ∈ R .
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y

x

f

ε

ε 6

?
6

?

fn

f3

f2

f1

-

6

Mostre que

fn
u→ f , em R ,

par cada n ∈ N, a fun�c~ao fn �e diferenci�aveis em x = 0, mas a fun�c~ao f não �e dife-

renci�avel em x = 0.

Resolução:

Deixaremos como exerc��cio para o leitor veri�car que

fn
u→ f , em R .

Notemos que, para cada n ∈ N, temos que a fun�c~ao fn �e diferenci�avel em x = 0 (a

representa�c~ao geom�etrica do gr�a�co de fn n~ao tem "bicos"), mas a fun�c~ao f não �e diferenci�avel

em x = 0 (visto no C�alculo 1).

�

Exemplo 4.5.2 Consideremos a sequência de fun�c~oes (fn)n∈N onde, para cada n ∈ N, a
fun�c~ao fn : R → R �e dada por

fn(x)
.
=
1

n
sen
(
n2 x

)
, para cada x ∈ R (4.77)

e a fun�c~ao f : R → R de�nida por

f(x)
.
= 0 , para cada x ∈ R . (4.78)

Mostre que

fn
u→ f , em R ,

par cada n ∈ N, a fun�c~ao fn �e diferenci�aveis em R, a fun�c~ao f �e diferenci�avel em R
mas não vale a identidade

f ′(x) = lim
n→∞ fn′(x) , para cada x ∈ R .
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Resolução:

Deixaremos como exerc��cio para o leitor veri�car que

fn
u→ f , em R .

Notemos tamb�em que a fun�c~ao f �e diferenci�avel em R e

f ′(x) = 0 , para cada x ∈ R . (4.79)

Por outro lado, para cada n ∈ N e x ∈ R temos

fn
′(x)

(4.77)
= n cos(n2 x)

e assim, o limite

lim
n→∞ fn′(x) = lim

n→∞n cos(n2 x)
nem sempre existir�a, por exemplo, ele n~ao existe se x = 0 .

A �gura abaixo ilustra a situa�c~ao descrita acima.

fn

y

ε

ε

?

6
?

6

f2

f1

x
-f

6

�
Para resolver este problema temos o:

Teorema 4.5.3 Suponhamos que (fn)n∈N seja uma sequência de fun�c~oes continuamente

diferenci�aveis em [a , b] tal que, para algum xo ∈ [a, b], a sequência num�erica (fn(xo))n∈N
converge.

Se a sequência de fun�c~oes (fn
′) converge uniformemente para alguma fun�c~ao g,

em [a, b], ent~ao a sequência de fun�c~oes (fn) ser�a uniformemente convegente para uma

fun�c~ao f, em [a , b], onde a fun�c~ao f : [a , b] → R ser�a continuamente diferenci�avel em

[a , b] e

f ′(x) = g(x) , para cada x ∈ [a , b] , (4.80)

isto �e: [
lim
n→∞ fn

]
′(x) = lim

n→∞ [fn
′(x)] , para cada x ∈ [a , b] . (4.81)
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Demonstração:

Como

fn
′ u→ g , em [a, b]

e, para cada n ∈ N, a fun�c~ao fn �e cont��nua em [a , b] segue, do Teorema (4.5.1), temos que a

fun�c~ao g ser�a cont��nua em [a , b].

Como a sequência num�erica (fn(xo)) converge para algum n�umero real, que denotaremos

por c ∈ R ent~ao, dado ε > 0, podemos encontrar N1 ∈ N, de modo que

se n ≥ N1 , teremos |fn(xo) − c| <
ε

2
. (4.82)

De�namos a fun�c~ao f : [a, b] → R, dada por

f(x)
.
= c+

∫ x
xo

g(t)dt , para cada x ∈ [a , b]. (4.83)

Como a fun�c~ao g �e cont��nua em [a , b], segue (do C�alculo 1) que ela ser�a uma fun�c~ao

integr�avel em [a , b], ou ainda, para cada x ∈ [a , b], temos que existe a integral de�nida∫ x
xo

g(t), ou seja, a fun�c~ao f est�a bem de�nida.

Do Teorema Fundamental do C�alculo (visto no C�alculo 1), segue que a fun�c~ao f ser�a

continuamente diferenci�avel em [a , b] e, al�em disso,

f ′(x) = g(x) , para cada x ∈ [a, b], (4.84)

pois a fun�c~ao g �e cont��nua em [a , b].

Mostremos que

fn → f , uniformemente em [a , b] .

Para isto, notemos que , por hip�otese,

fn
′ → g , uniformemente em [a , b] ,

logo, dado ε > 0, podemos encontrar

N2 = N2(ε) ∈ N ,

de modo que

se n ≥ N2 , segue que |fn
′(x) − g(x)| <

ε

2 (b− a)
, para todo x ∈ [a , b] . (4.85)

Logo, se

n ≥ max(N1 ,N2) , (4.86)
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segue que:

|fn(x) − f(x)|
(4.83)
=

∣∣∣∣fn(x) − [c+ ∫ x
xo

g(t)dt

]∣∣∣∣
Teor. Fund. do C�alculo

=

∣∣∣∣[fn(xo) + ∫ x
xo

fn
′(t)dt

]
− c−

∫ x
xo

g(t)dt

∣∣∣∣
=

∣∣∣∣[fn(xo) − c] + [∫ x
xo

fn
′(t)dt−

∫ x
xo

g(t)dt

]∣∣∣∣
desigualdade triangular

≤ |fn(xo) − c|+ |

∫ x
xo

fn
′(t)dt−

∫ x
xo

g(t)dt|

≤ |fn(xo) − c|+

∫b
a

|fn
′(t) − g(t)|dt

n≥N ,N2 logo, valer�a (4.82) e (4.85)
<

ε

2
+

ε

2 (b− a)
(b− a) = ε ,

mostrando que

fn → f , uniformemente em [a , b]

completando a demonstara�c~ao.

�

Observação 4.5.3 Podemos provar um resultado an�alogo ao Teorema (4.5.3), trocando-

se a hip�otese da sequência de fun�c~oes (fn)n∈N ser continuamente diferenci�avel em [a , b],

para ser diferenci�aveis em [a , b] e de modo que as derivadas sejam integr�aveis em [a , b].

Deixaremos a elabora�c~ao desta situa�c~ao como exerc��cio para o leitor.

Para �nalizar o cap��tulo temos o:

Exemplo 4.5.3 Consideremos a sequência de fun�c~oes (fn)n∈N onde, para cada n ∈ N, a
fun�c~ao fn : [0 , 2 π] → R �e dada por

fn(x)
.
=

sen(nx)

n2
, para cada x ∈ [0 , 2π] . (4.87)

Mostre que

fn→f , uniformemente em [0 , 2 π] , (4.88)

onde a fun�c~ao f : [0 , 2 π] → R �e continuamente diferenci�avel em [0 , 2 π] e

f(x) = 0 , para cada x ∈ [0 , 2 π] .

Resolução:

Observemos que, para cada n ∈ N, a fun�c~ao fn �e continuamente diferenci�avel em [0 , 2 π]

(na verdade ela pertence a C∞([0 , 2 π] ; R)).
Al�em disso, para cada n ∈ N,, temos que

fn
′(x)

(4.87)
=

cos(nx)

n
, para cada x ∈ [0, 2 π] . (4.89)
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Se de�nirmos a fun�c~ao g : [0 , 2 π] → R por

g(x)
.
= 0 , para cada x ∈ [0 , 2 π] , (4.90)

utilizando o crit�erio de Cauchy par sequências de fun�c~oes (isto �e, o Teorema (4.4.1) ), podemos

mostrar que

fn
′ u→ g , em [0 , 2 π] .

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor.

Como

fn(0)
(4.87)
=

sen(n0)

n2
= 0 , para cada n ∈ N ,

temos que a sequência num�erica (fn(0))n∈N ser�a convergente (para zero).

Logo o Teorema (4.5.3) acima, segue que

fn
u→ f , em [0 , 2 π] ,

e, al�em disso segue que

f ′(x) = g(x) = 0 , para cada x ∈ [0 , 2 π] ,

assim a fun�c~ao f ser�a constante em [0 , 2 π].

Mas

f(0) = lim
n→∞ fn(0)

(4.87)
= 0 ,

portanto f(x) = 0, para todo x ∈ [0 , 2 π], completando a resolu�c~ao.

�

4.6 Exerćıcios



Caṕıtulo 5

Séries de Funções

5.1 Séries de Funções

Come�caremos introduzindo a:

Definição 5.1.1 Dada uma sequência de fun�c~oes (fn)n∈N onde, para cada n ∈ N, temos

que a fun�c~ao fn : A ⊆ R → R, podemos construir uma outra sequência de fun�c~oes,

(Sn)n∈N onde, para cada n ∈ N, a fun�c~ao Sn : A ⊆ R → R ser�a dada por

Sn(x)
.
= f1(x) + · · ·+ fn(x)

=

n∑
k=1

fk(x) , para cada x ∈ A . (5.1)

Tal sequência de fun�c~oes �e denominada série de funções associada à sequência de

funções (fn)n∈N e indicada por
∞∑
n=1

fn ou, por simplicade,
∑
n

fn.

Observação 5.1.1

1. Observemos que a s�erie de fun�c~oes
∞∑
n=1

fn pode ser olhada como uma soma in�nita

de fun�c~oes, isto �e,

∞∑
n=1

fn(x) = f1(x) + f2(x) + f3(x) + · · · , para cada x ∈ A .

2. A sequência de fun�c~oes (Sn)n∈N (que �e a serie de fun�c~oes) tamb�em ser�a denomin-

dada de sequência (de funções) das somas parciais associada �a s�erie
∞∑
n=1

fn.

Cada termo dessa sequência de fun�c~oes (ou da s�erie de fun�c~oes) a saber, Sn, ser�a

dito soma parcial de ordem n da série de funções
∞∑
n=1

fn.

Para cada n ∈ N, a fun�c~ao fn ser�a dita termo da serie de funções
∞∑
n=1

fn .

181
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Consideremos os seguintes exemplos:

Exemplo 5.1.1 Seja a sequência de fun�c~oes (fn)n∈N, onde para cada n ∈ N a fun�c~ao

fn : R → R �e dada por

fn(x)
.
= xn , para cada x ∈ (−1 , 1) . (5.2)

Encontre a s�erie de fun�c~oes
∞∑
n=1

fn.

Resolução:

Notemos que s�erie de fun�c~oes, isto �e, a sequência de fun�c~oes (Sn)n∈N, ter�a como termos,

as seguintes fun�c~oes:

S1(x)
(5.1)
= f1(x)

(5.2)
= x ,

S2(x)
(5.1)
= f1(x) + f2(x)

(5.2)
= x+ x2 ,

S3(x)
(5.1)
= f1(x) + f2(x) + f3(x)

(5.2)
= x+ x2 + x3 ,

...

Sn(x)
(5.2)
= f1(x) + f2(x) + f3(x) + · · ·+ fn(x)
(5.2)
= x+ x2 + x3 + · · ·+ xn ,
... ,

para cada x ∈ (−1 , 1), ou seja,

∞∑
n=1

fn(x) =

∞∑
n=1

xn

= x+ x2 + x3 + · · · , para cada x ∈ (−1 , 1) . (5.3)

�

Exemplo 5.1.2 Seja a sequência de fun�c~oes (fn)n∈N onde, para cada n ∈ N, a fun�c~ao

fn : R → R �e dada por

fn(x)
.
=
x

n
, para cada x ∈ R . (5.4)

Encontre a s�erie de fun�c~oes
∞∑
n=1

fn.
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Resolução:

Notemos que s�erie de fun�c~oes, isto �e, a sequência de fun�c~oes (Sn)n∈N, ter�a como termos,

as seguintes fun�c~oes:

S1(x)
(5.1)
= f1(x)

(5.4)
= x ,

S2(x)
(5.1)
= f1(x) + f2(x)

(5.4)
= x+

x

2
,

S3(x)
(5.1)
= f1(x) + f2(x) + f3(x)

(5.4)
= x+

x

2
+
x

3
,

...,

Sn(x)
(5.1)
= f1(x) + f2(x) + f3(x) + · · ·+ fn(x)
(5.4)
= x+

x

2
+
x

3
+ · · ·+ x

n
,

... ,

para cada x ∈ R, ou seja,

∞∑
n=1

fn(x) =

∞∑
n=1

x

n

= x+
x

2
+
x

3
+ · · ·

= x

∞∑
n=1

1

n
, para cada x ∈ R . (5.5)

�

Exemplo 5.1.3 Seja a sequência de fun�c~oes (fn)n∈N onde, para cada n ∈ N ∪ {0}, a

fun�c~ao fn : R → R �e dada por

fn(x)
.
=
xn

n!
, para cada x ∈ R . (5.6)

Encontre a s�erie de fun�c~oes
∞∑
n=0

fn.

Resolução:
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Ent~ao a s�erie de fun�c~oes (Sn)n∈N ter�a como termos:

So(x)
(5.1)
= fo(x)

(5.6)
= = 1 ,

S1(x)
(5.1)
= fo(x) + f1(x)

(5.6)
= 1+ x ,

S2(x)
(5.1)
= fo(x) + f1(x) + f2(x)

(5.6)
= 1+ x+

x2

2!
,

S3(x)
(5.1)
= fo(x) + f1(x) + f2(x) + f3(x)

(5.6)
= x+

x2

2!
+
x3

3!
,

...,

Sn(x)
(5.1)
= fo(x) + f1(x) + f2(x) + f3(x) + · · ·+ fn(x)
(5.6)
= = 1+ x+

x2

2!
+
x3

3!
+ · · ·+ xn

n!
,

... ,

para cada x ∈ R, ou seja,

∞∑
n=0

fn(x) = 1+ x+
x2

2!
+
x3

3!
+ · · ·

=

∞∑
n=0

xn

n!
, para cada x ∈ R . (5.7)

�

Observação 5.1.2 Para cada xo ∈ A a s�erie (Sn(xo)) ser�a uma s�erie num�erica.

Logo podemos veri�car se esta s�erie num�erica �e convergente ou n~ao, como veremos

na pr�oxima se�c~ao.

5.2 Convergência Pontual de Séries de Funções

Lembremos que podemos estudar a convergência de uma sequências de fun�c~oes de, pelo

menos, dois modos diferentes, a saber:

convergência pontual e/ou convergência uniforme.

Como uma s�erie de fun�c~oes �e uma sequência de fun�c~oes "especial" , podemos estudar

sua convergência tamb�em desses dois sentidos.

Mais especi�camente, temos:
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Definição 5.2.1 Considere a sequência de fun�c~oes (fn)n∈N onde, para cada n ∈ N a

fun�c~ao fn : A ⊆ R → R.

Diremos que a s�erie de fun�c~oes
∞∑
n=1

fn converge pontualmente para a função f, em

A, se a sequência de fun�c~oes (Sn)n∈N converge pontualmente para f no conjunto A, isto

�e, se para cada x ∈ A a s�erie num�erica
∞∑
n=1

fn(x) converge para f(x), em R.

Neste caso diremos que

f(x)
.
=

∞∑
n=1

fn(x) , para cada x ∈ A (5.8)

�e a soma da serie de funções
∞∑
n=1

fn e denotaremos

∞∑
n=1

fn
.
= f , em A . (5.9)

Observação 5.2.1 Como no caso de s�eries num�ericas, o s��mbolo

∞∑
n=1

fn ,

denotar�a duas coisas diferentes, a saber: a s�erie de fun�c~oes (Sn)n∈N, isto �e, a sequência

das somas parciais associada �a mesma e a fun�c~ao que �e a sua soma, ou seja, o limite

da sequência das somas parciais, caso exista.

Consideremos os seguitnes exemplos:

Exemplo 5.2.1 Seja a sequência de fun�c~oes (fn)n∈{0}∪N onde, para cada n ∈ {0} ∪ N, a
fun�c~ao fn : [0 , 1) → R �e dada por

fn(x)
.
= xn , para cada x ∈ [0 , 1) . (5.10)

Mostre que a s�erie de fun�c~oes
∞∑
n=0

fn converge pontualmente para a fun�c~ao f : [0 , 1) →
R dada por

f(x)
.
=

1

1− x
, para cada x ∈ [0 , 1) . (5.11)

Resolução:

Notemos que, para cada xo ∈ [0 , 1) �xado, a s�erie num�erica

∞∑
n=0

xo
n

�e uma s�erie geom�etrica de raz~ao xo ∈ [0 , 1), portanto convergente (veja o Exemplo (3.3.5)).
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Al�em disso, sabemos que, neste caso (veja o Exemplo (3.3.5))

∞∑
n=0

xo
n =

1

1− xo
, para cada xo ∈ [0, 1),

ou seja, a soma da s�erie de fun�c~oes
∞∑
n=0

fn ser�a a fun�c~ao

f(x) =
1

1− x
, para cada x ∈ [0 , 1) .

Portanto ∞∑
n=0

xn = f(x) =
1

1− x
, para cada x ∈ [0 , 1) ,

onde a convergência da s�eries de fun�c~oes acima ser�a pontual em [0 , 1).

�

Observação 5.2.2 A s�erie de fun�c~oes do Exemplo (5.2.1) acima não �e pontualmente

convergente em x = 1.

De fato, pois a s�erie geom�etrica n~ao �e convergente, se a raz~ao for igual a 1 (veja o

Exemplo (3.3.5)).

Exemplo 5.2.2 Seja a sequência de fun�c~oes (fn)n∈N onde, para cada n ∈ {0} ∪ N, a

fun�c~ao fn : R → R �e dada por

fn(x)
.
=
x

n
, para cada x ∈ R . (5.12)

Mostre que a s�erie de fun�c~oes
∞∑
n=0

fn n~ao converge pontualmente em R \ {0}.

Resolução:

Notemos que, se xo ̸= 0, temos que a s�erie num�erica

∞∑
n=1

xo

n

n~ao ser�a convergente pois: ∞∑
n=1

xo

n
= xo

∞∑
n=1

1

n

e sabemos que a s�erie num�erica
∞∑
n=1

1

n
�e divergente (s�erie harmônica, veja o Exemplo (3.3.6)).

Logo a s�erie de fun�c~oes
∞∑
n=1

x

n
s�o converge em x = 0.

�
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Exemplo 5.2.3 Consideremos a sequência de fun�c~oes (fn)n∈N onde, para cada n ∈ {0}∪
N, a fun�c~ao fn : R → R �e dada por

fn(x)
.
=
xn

n!
, para cada x ∈ R . (5.13)

Mostre que a s�erie de fun�c~oes
∞∑
n=0

fn �e convergente pontualmente em R.

Resolução:

De fato, se xo ∈ [0 ,∞) ent~ao de�nindo-se

an
.
=
xo
n

n!
, para cada n ∈ {0} ∪ N , (5.14)

teremos que

lim
n→∞

an+1

an

(5.14)
= lim

n→∞
xo
n+1

(n+ 1)!
xo
n

n!

= lim
n→∞

xo

n+ 1
= 0 < 1.

Logo, do crit�erio da raz~ao, por limites, para s�eries num�ericas cujos termos s~ao n~ao-

negativos (veja o item 1. do Teorema (3.5.5)), segue que a s�erie num�erica

∞∑
n=0

xo
n

n!

ser�a convergente, para cada xo ∈ [0 ,∞).

Se xo ∈ R, a s�erie num�erica ∞∑
n=0

xo
n

n!

ser�a absolutamente convergente.

De fato, pois ∣∣∣∣xonn!
∣∣∣∣ = |xo|

n

n!
, para cada n ∈ {0} ∪ N . (5.15)

Como |xo| ∈ [0 ,∞), segue, da 1.a parte, que a s�erie num�erica

∞∑
n=0

|xo|
n

n!

ser�a convergente.

Mas se uma s�erie num�erica �e absolutamente convergente ela ser�a convergente (crit�erio da

convergência absoluta de s�eries num�ericas, veja o Teorema (3.8.1)).

Portanto a s�erie de fun�c~oes ∞∑
n=0

xn

n!

converge pontualmente em R.
�
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Observação 5.2.3 Veremos mais adiante que a soma dessa s�erie de fun�c~oes ser�a a

fun�c~ao ex, isto �e,

ex =

∞∑
n=0

xn

n!
, para cada x ∈ R , (5.16)

em particular, fazendo x = 1, obteremos

e =

∞∑
n=0

1

n!
. (5.17)

5.3 Convergência Uniforme de Séries de Funções

Definição 5.3.1 Diremos que a s�erie de fun�c~oes
∞∑
n=1

fn converge uniformemente para

a fun�c~ao f, no conjunto A, se a sequência de fun�c~oes (Sn)n∈N converge uniformemente

para a fun�c~ao f, em A.

Observação 5.3.1 Logo, das De�ni�c~oes (5.3.1) e (4.3.1), a s�erie de fun�c~oes
∞∑
n=1

fn con-

verge uniformemente para fun�c~ao a f, no conjunto A se, e somente se, dado ε > 0,

podemos encontrar No ∈ N, de modo que

se n ≥ No , deveremos ter |Sn(x) − f(x)| < ε , para todo x ∈ A , (5.18)

onde, para cada n ∈ N, a fun�c~ao Sn : A→ R, �e a soma parcial de ordem n associada �a

s�erie de fun�c~oes
∞∑
n=1

fn (veja a (5.1))

Antes de exibirmos mais alguns exemplos de convergência de s�eries de fun�c~oes e daremos

alguns resultados que ser~ao �uteis em v�arias situa�c~oes.

O primeiro deles �e consequência imediata dos resultados vistos sobre convergência uni-

forme de sequências de fun�c~oes, a saber:

Corolário 5.3.1 Suponhamos que a s�erie de fun�c~oes
∞∑
n=1

fn, onde para cada n ∈ N,

temos que fn : [a , b] → R, seja uniformemente convergente para a fun�c~ao f : [a , b] → R,

em [a , b], isto �e, f =
∞∑
n=1

fn onde a convergência da s�eries de fun�c~oes �e uniforme em

[a , b] .

1. Se, para cada n ∈ N, a fun�c~ao fn for cont��nua em [a , b], ent~ao a fun�c~ao f ser�a

cont��nua em [a , b], isto �e,

lim
x→xo f(x) = f(xo) , (5.19)

ou ainda,

lim
x→xo

[ ∞∑
n=1

fn(x)

]
=

∞∑
n=1

[
lim
x→xo fn(x)

]
. (5.20)
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2. Se, para cada n ∈ N, a fun�c~ao fn for cont��nuas em [a , b], ent~ao∫b
a

f(t)dt =

∞∑
n=1

∫b
a

fn(t)dt (5.21)

isto �e, ∫b
a

[ ∞∑
n=1

fn(t)

]
dt =

∞∑
n=1

[∫b
a

fn(t)dt

]
, (5.22)

ou ainda, a s�erie de fun�c~oes
∞∑
n=1

fn(x), pode ser integrada termo a termo em [ab].

3. Se, para cada n ∈ N, a fun�c~ao fn �e continuamente diferenci�aveis em [a , b], para

algum xo ∈ [a, b], a s�erie num�erica
∞∑
n=1

fn(xo) converge em R, a s�erie de fun�c~oes

∞∑
n=1

fn
′ converge uniformemente para uma fun�c~ao g : [a , b] → R, em [a , b], ent~ao

a s�erie de fun�c~oes
∞∑
n=1

fn converge uniformemente para uma fun�c~ao f : [a , b] → R,

em [a , b], onde a fun�c~ao f ser�a continuamente diferenci�avel em [a , b] e

f ′(x) = g(x) , para cada x ∈ [a , b] , (5.23)

isto �e,

f ′(x) =

∞∑
n=1

fn
′(x) (5.24)

ou ainda,

d

dx

[ ∞∑
n=1

fn(x)

]
=

∞∑
n=1

[
d fn

dx
(x)

]
, para cada x ∈ [a , b] , (5.25)

ou seja, a s�erie de fun�c~oes
∞∑
n=1

fn(x), pode ser derivada termo a termo, e [a , b].

Demonstração:

De 1.:

Como, para cada n ∈ N, a fun�c~ao fn �e cont��nua em [a , b], temos que, para cada n ∈ N, a
fun�c~ao Sn : [a, b] → R dada por

Sn(x)
.
= f1(x) + · · ·+ fn(x)

=

n∑
k=1

fk(x) , para cada x ∈ [a , b] ,

tamb�em ser�a uma fun�c~ao cont��nua em [a , b] (pois �e uma soma �nita de fun�c~oes cont��nuas).



190 CAP�ITULO 5. S�ERIES DE FUNC� ~OES

Mas, por hip�otese,, a sequência de fun�c~oes (Sn)n∈N converge uniformemente para a fun�c~ao

f em [a , b].

Logo, do Teorema (4.5.1), segue que a fun�c~ao f ser�a cont��nua em [a , b].

De 2.:

Da De�ni�c~ao (5.3.1), dizer que a s�erie de fun�c~oes
∞∑
n=1

fn converge uniformemente para

a fun�c~ao f, em [a , b], �e o mesmo que dizer que a sequência de fun�c~oes (Sn)n∈N converge

uniformemente para a fun�c~ao f, em [a , b].

Ent~ao segue, do Teorema (4.5.2), que

∫b
a

f(t)dt =

∫b
a

∞∑
n=1

fn(t)dt

=

∫b
a

lim
k→∞Sk(t)dt

=

∫b
a

lim
k→∞

k∑
n=1

fn(t)dt

Teor (4.5.2)
= lim

k→∞
∫b
a

k∑
n=1

fn(t)dt

= lim
k→∞

k∑
n=1

∫b
a

fn(t)dt

=

∞∑
n=1

∫b
a

fn(t)dt ,

mostrando a validade da identidade (5.22).

De 3.:

Lembremos que, da De�ni�c~ao (5.2.1), dizer que a s�erie de fun�c~oes
∞∑
n=1

fn converge em

xo ∈ [a , b], �e o mesmo que dizer que a sequência num�erica (Sn(xo))n∈N converge em R.

Al�em disso, por hip�otese, temos que a s�erie de fun�c~oes
∞∑
n=1

fn
′ converge uniformemente

para a fun�c~ao g, em [a , b], ou seja, (da De�ni�c~ao (5.3.1)) temos que a sequência de fun�c~oes

(S′n)n∈N converge uniformemente para a fun�c~ao g, em [aa, , b], pois

Sn
′(x) =

dSn

dx
(x)

(5.1)
=

d

dx

[
n∑
k=1

fk(x)

]
soma �nita

=

n∑
k=1

fk
′(x) , para cada x ∈ [a , b] .
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Logo, do Teorema (4.5.3), segue que a sequência de fun�c~oes (Sn)n∈N converge uniforme-

mente para uma fun�c~ao f, em [a , b] e, al�em disso,

f ′(x) = g(x) , para cada x ∈ [a , b] ,

isto �e, ( ∞∑
n=1

fn

)′

(x) =

∞∑
n=1

fn
′(x) , para cada x ∈ [a , b] ,

completando a demonstra�cao do resultado.

�

Observação 5.3.2

1. O Corol�ario (5.3.1) acima, trata de algumas consequências da convergência uni-

forme de s�eries de fun�c~oes.

Sem a presen�ca da convergência uniforme as conclus~oes do resultado podem não

ocorrer.

2. No item 2. do Corol�ario (5.3.1) acima, basta que as fun�c~oes fn e f sejam in-

tegr�aveis e uniformemente limitadas em [a , b] .

No item 3. basta que as fun�c~oes fn sejam diferenci�aveis em [a, b].

3. As conclus~oes do Corol�ario (5.3.1) permanecem v�alidas para fun�c~oes de v�arias

vari�aveis reais, a valores reias (ou complexos).

Deixaremos a elabora�c~ao e demonstra�c~ao deste como exerc��cio para o leitor.

Um resultado extremamente importante, que nos d�a condi�c~oes su�cientes para assegurar

a convergência uniforme de s�eries de fun�c~oes, �e o:

Teorema 5.3.1 (critério de Weierstrass ou Teste M. de Weierstrass) Seja (fn)n∈N
uma sequência de fun�c~oes onde, para cada n ∈ N, fn : A ⊆ R → R.

Suponhamos que exista uma sequência num�erica (Mn)n∈N, tal que, para cada n ∈ N,
temos que

|fn(x)| ≤Mn , para cada x ∈ A . (5.26)

Se a s�erie num�erica
∞∑
n=1

Mn for convergente em R, ent~ao a s�erie de fun�c~oes
∞∑
n=1

fn

converge uniformemente e absolutamente para uma fun�c~ao f : A→ R, em A.

Demonstração:

Como a s�erie num�erica
∞∑
n=1

Mn converge em R, segue de (5.26) e do crit�erio da compara�c~ao

para s�eries num�ericas cujos termos s~ao n~ao-negativos (veja o item i. do Teorema (3.5.2)), que

para cada x ∈ A, a s�erie num�erica ∞∑
n=1

|fn(x)|
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converge em R.

Logo, a s�erie de fun�c~oes
∞∑
n=1

fn ser�a absolutamente convergente para uma fun�c~ao f : A→ R,

no conjunto A, isto �e,

f(x) =

∞∑
n=1

fn(x) , para cada x ∈ A . (5.27)

Para cada N ∈ N, de�namos a fun�c~ao SN : A→ R, dada por

SN(x)
.
=

N∑
n=1

fn(x) , para cada x ∈ A , (5.28)

ou seja, a soma parcial de ordem N da s�erie de fun�c~oes
∞∑
n=1

fn.

Notemos que, para cada x ∈ A, temos:

|f(x) − SN(x)|
(5.27) e (5.28)

=

∣∣∣∣∣
∞∑
n=1

fn(x) −

N∑
n=1

fn(x)

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

n=N+1

fn(x)

∣∣∣∣∣
"des. triagular"

≤
∞∑

n=N+1

|fn(x)|

(5.26)

≤
∞∑

n=N+1

Mn . (5.29)

Como a s�erie num�erica
∞∑
n=1

Mn converge, denotando-se sua soma por M, do item 3. da

Observa�c~ao (3.3.1), teremos que, dado ε > 0, podemos encontrarNo ∈ N, de modo seN ≥ No,

teremos ∣∣∣∣∣M−

N∑
n=1

Mn

∣∣∣∣∣ < ε . (5.30)

Notemos que ∣∣∣∣∣M−

N∑
n=1

Mn

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
n=1

Mn −

N∑
n=1

Mn

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

n=N+1

Mn

∣∣∣∣∣
Mn≥0
=

∞∑
n=N+1

Mn , (5.31)

logo, de (5.30) e (5.31), segue que ∞∑
n=N+1

Mn < ε . (5.32)



5.3. CONVERGÊNCIA UNIFORME DE S�ERIES DE FUNC� ~OES 193

Assim, se n ≥ No, segue que

|f(x) − SN(x)|
(5.29)

≤
∞∑

n=N+1

Mn

(5.32)
< ε ,

para todo x ∈ A, que, pela Observa�c~ao (5.3.1), �e o mesmo que dizer que a s�erie de fun�c~oes∞∑
n=1

fn converge uniformemente para a fun�c~ao f, no conjunto A, completando a demonstra�c~ao

do resultado.

�

Observação 5.3.3 Vale um resulado an�alogo ao acima para fun�c~oes de v�arias vari�aveis

reais, a valores reais (ou complexos).

Deixaremos a elabora�c~ao e sua respectiva demonstra�c~ao como exerc��cio para o leitor.

A seguir aplicaremos os resultados acima, para estudar a convergência pontual e uniforme

de algumas s�eries de fun�c~oes.

Exemplo 5.3.1 Consideremos a s�erie de fun�c~oes
∞∑
n=0

fn onde, para cada n ∈ {0} ∪ N, a

fun�c~ao fn : [−1 , 1] → R �e dada por

fn(x)
.
=
xn

2n
, para cada x ∈ R . (5.33)

Mostre que a s�erie de fun�c~oes
∞∑
n=0

fn converge uniformemente, em [−1 , 1], para a

fun�c~ao f : [−1 , 1] → R dada por

f(x)
.
=

2

2− x
, para cada x ∈ [−1 , 1] . (5.34)

Resolução:

Observemos que, para cada x ∈ [−1 , 1] e n ∈ {0} ∪ N, temos que

|fn(x)|
(5.33)
=

∣∣∣∣xn2n
∣∣∣∣

=
|xn|

2n

=
|x|
n

2n

x∈[−1 ,1] isto �e, |x|≤1
≤ 1

2n
.
=Mn . (5.35)

Notemos que a s�erie num�erica

∞∑
n=0

1

2n
, converge em R . (5.36)
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pois �e uma s�erie geom�etrica de raz~ao
1

2
∈ [0 , 1) (veja o Exemplo (3.3.5)).

Ent~ao , de (5.35), (5.36) e do crit�erio deWeierstrass (isto �e, do Teorema (5.3.1), considerando-

se Mn
.
=
1

2n
, para cada n ∈ {0} ∪ N), segue que a s�erie de fun�c~oes

∞∑
n=0

fn converge uniforme-

mente e absolutamente, em [−1 , 1], para uma fun�c~ao f : [−1 , 1] → R.
Notemos que, neste caso, podemos obter a fun�c~ao f : [−1 , 1] → R explicitamente.

Para isto, observemos que, para cada x ∈ [−1 , 1], teremos:

∞∑
n=0

fn(x)
(5.33)
=

∞∑
n=0

xn

2n

=

∞∑
n=0

(x
2

)n
s�erie geom�etrica de raz~ao x

2
∈ [0 , 1) - veja Exemplo (3.3.5)
=

1

1−
x

2

=
2

2− x
,

isto �e, a soma da s�erie de fun�c~oes
∞∑
n=0

fn ser�a a fun�c~ao f : [−1 , 1] → R, dada por:

f(x) =
2

2− x
, para cada x ∈ [−1 , 1] .

�

Observação 5.3.4

1. Notemos que, no Exemplo (5.3.1) acima, mesmo que não conhecessemos a fun�c~ao

soma da s�erie
∞∑
n=0

fn, poder��amos concluir que ela ser�a uma fun�c~ao cont��nua em

[−1 , 1].

Para ver isto, basta notarmos que, para cada n ∈ {0} ∪ N, a fun�c~ao fn �e cont��nua

em [−1 , 1] (veja (5.33)) e a convergência da s�erie de fun�c~oes
∞∑
n=0

fn �e uniforme em

[−1 , 1].

Logo segue, do item 1. do Corol�ario (5.3.1), que a fun�c~ao f
.
=

∞∑
n=0

fn ser�a cont��nua

em [−1 , 1].

2. Na verdade, no Exemplo (5.3.1) acima, mostraremos que a s�erie de fun�c~oes
∞∑
n=0

fn

converge para f, pontualmente em x ∈ (−2 , 2), e a convergência ser�a uniforme em

qualquer intervalo

[a , b] ⊆ (−2 , 2) ,
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como veremos mais adiante.

Exemplo 5.3.2 Seja a > 0 �xado e consideremos a s�erie de fun�c~oes
∞∑
n=0

fn onde, para

cada n ∈ {0} ∪ N, a fun�c~ao fn : [−a , a] → R �e dada por

fn(x)
.
=
xn

n!
, para cada x ∈ [−a , a] . (5.37)

Mostre que a s�erie de fun�c~oes
∞∑
n=0

fn converge uniformemente, em [−a , a], para uma

fun�c~ao f : [−a , a] → R.

Resolução:

Observemos que, para cada x ∈ [−a , a] e n ∈ {0} ∪ N, temos que

|fn(x)|
(5.37)
=

∣∣∣∣xnn!
∣∣∣∣

=
|xn|

n!

=
|x|n

n!
x∈[−a ,a] , ou seja, |x|≤a)

≤ an

n!
. (5.38)

Do Exemplo (5.2.3) (com x = a), segue que a s�erie num�erica

∞∑
n=0

an

n!
, converge em R . (5.39)

Ent~ao , de (5.38), (5.39) e do crit�erio de Weierstrass (isto �e, do Teorema (5.3.1), considerando-

se Mn
.
=
an

n!
, para cada n ∈ {0} ∪ N), segue que a s�erie de fun�c~oes

∞∑
n=0

fn converge uniforme-

mente e absolutamente, em [−a , a], para uma fun�c~ao f : [−a , a] → R.
�

Observação 5.3.5

1. Notemos que, no Exemplo (5.3.2) acima, para cada n ∈ {0} ∪ N, a fun�c~ao fn �e

cont��nua em [−a , a] (veja (5.37)) e a convergência da s�erie de fun�c~oes
∞∑
n=0

fn �e

uniforme em [−a , a].

Logo, do item 1. do Corol�ario (5.3.1), segue que a fun�c~ao f
.
=

∞∑
n=0

fn ser�a cont��nua

em [−a , a].
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2. Mostraremos que, no Exemplo (5.3.2) acima, a s�erie de fun�c~oes
∞∑
n=0

fn converge,

pontualmente em R, para a fun�c~ao f : R → R, dada por

f(x)
.
= ex , para cada x ∈ R

e, al�em disso,m a convergência ser�a uniforme em qualquer intervalo

[a , b] ⊆ R ,

como veremos mais adiante.

Exemplo 5.3.3 Consideremos a s�erie de fun�c~oes
∞∑
n=1

fn onde, para cada n ∈ N, a fun�c~ao

fn : R → R �e dada por

fn(x)
.
=

sen(nx)

3n
, para cada x ∈ R . (5.40)

Mostre que a s�erie de fun�c~oes
∞∑
n=1

fn converge uniformemente, em R, para uma

fun�c~ao f : R → R que �e cont��nua em R .

Resolução:

Observemos que, para cada x ∈ R e n ∈ N, temos que

|fn(x)|
(5.40)
=

∣∣∣∣ sen(nx)3n

∣∣∣∣
=

| sen(nx)|

3n

| sen(nx)|≤1 , para x∈R
≤ 1

3n
. (5.41)

Notemos que a s�erie num�erica

∞∑
n=1

1

3n
, converge em R . (5.42)

pois �e uma s�erie geom�etrica de raz~ao
1

3
∈ [0 , 1) (veja o Exemplo (3.3.5)).

Ent~ao , de (5.41), (5.42) e do crit�erio deWeierstrass (isto �e, do Teorema (5.3.1), considerando-

se Mn
.
=
1

3n
, para cada n ∈ N), segue que a s�erie de fun�c~oes

∞∑
n=0

fn converge uniformemente

e absolutamente, em R, para uma fun�c~ao f : R → R.
Notemos que, para cada n ∈ N, a fun�c~ao fn �e cont��nua em R (veja (5.40)) e a convergência

da s�erie de fun�c~oes
∞∑
n=1

fn �e uniforme em R.

Logo, do item 1. do Corol�ario (5.3.1), segue que a fun�c~ao f ser�a cont��nua em R.
�
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Exemplo 5.3.4 Consideremos a s�erie de fun�c~oes
∞∑
n=1

fn onde, para cada n ∈ N, a fun�c~ao

fn : R → R �e dada por

fn(x)
.
=

sen(nx)

n3
, para cada x ∈ R . (5.43)

Mostrar que a s�erie de fun�c~oes
∞∑
n=1

fn pode ser derivada, termo a termo, em R.

Encontre uma express~ao para f ′(x), para cada x ∈ R, onde

f(x)
.
=

∞∑
n=1

fn(x) , para x ∈ R . (5.44)

Resolução:

Notemos que a s�erie num�erica
∞∑
n=1

fn(0) converge para 0, pois

fn(0)
(5.43)
=

sen(n0)

n3
= 0 , para cada n ∈ N .

Observemos que, para cada n ∈ N, a fun�c~ao fn �e continuamente diferenci�aveis em R (veja

(5.43)) e, al�em disso, para cada x ∈ R, temos:

fn
′(x)

(5.43)
=

d

dx

[
sen(nx)

n3

]
regra da cadeia

=
cos(nx)n

n3

=
cos(nx)

n2
. (5.45)

Por outro lado, para cada x ∈ R e n ∈ N, temos que

|fn
′(x)|

(5.45)
=

∣∣∣∣−cos(nx)

n2

∣∣∣∣
=

| cos(nx)|

n2

(| cos(nx)|≤1 , para x∈R
≤ ≤ 1

n2
. (5.46)

Observemos que a s�erie num�erica

∞∑
n=1

1

n2
converge em R , (5.47)

pois �e uma p-s�erie, com p
.
= 2 ∈ (1∞) (veja (3.203)).

Ent~ao , de (5.46), (5.47) e do crit�erio de Weierstrass (isto �e, do Teorema (5.3.1), considerando-

se Mn
.
=
1

n2
, para cada n ∈ N), segue que a s�erie de fun�c~oes

∞∑
n=0

fn
′ converge uniformemente,

em R, para uma fun�c~ao g : R → R.
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Portanto, do item 3. do Corol�ario (5.3.1), segue que a s�erie de fun�c~oes
∞∑
n=1

fn converge

uniformemente para uma fun�c~ao f : R → R, que �e continuamente diferenci�avel em R, em
particular,

f(x)
.
=

∞∑
n=1

fn , para cada x ∈ R (5.48)

e satisfaz

f ′ = g .

Isto �e, a s�erie de fun�c~oes
∞∑
n=1

fn pode ser derivada termo a termo, em R, ou seja, para cada

x ∈ R, teremos:

f ′(x)
(5.48)
=

d

dx

( ∞∑
n=1

cos(nx)

n3

)
(5.25)
=

∞∑
n=1

d

dx

[
cos(nx)

n3

]
= −

∞∑
n=1

sen(nx)

n2
.

�

Exemplo 5.3.5 Calcule, se existir ∫ 1
0

∞∑
n=1

sen(nx)

n2
dx . (5.49)

Resolução:

Para cada n ∈ N, de�namos a fun�c~ao fn : [0 , 1] → R, dada por

fn(x)
.
=

sen(nx)

n2
, para cada x ∈ [0 , 1] . (5.50)

A�rmamos que a s�erie de fun�c~oes
∞∑
n=1

fn �e uniformente convergente em [0 , 1].

De fato, pois para cada n ∈ N e x ∈ [0 , 1], temos:

|fn(x)|
(5.50)
=

∣∣∣∣ sen(nx)n2

∣∣∣∣
=

| sen(nx)|

n2

| sen(nx)|≤1 , para x∈[0 ,1]
≤ 1

n2
(5.51)
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Notemos que, a serie num�erica

∞∑
n=1

1

n2
converge , (5.52)

pois �e uma p-s�erie, com p
.
= 2 ∈ (1∞) (veja (3.203)).

Ent~ao , de (5.51), (5.52) e do crit�erio de Weierstrass (isto �e, do Teorema (5.3.1), considerando-

se Mn
.
=
1

n2
, para cada n ∈ N), segue que a s�erie de fun�c~oes

∞∑
n=0

fn converge uniformemente,

em [0 , 1], para uma fun�c~ao f : [0 , 1] → R, em particular, teremos

f(x)
.
=

∞∑
n=1

fn , para cada x ∈ [0 , 1] . (5.53)

Como, para cada n ∈ N, a fun�c~ao fn �e cont��nua em [0 , 1] (veja (5.50)) segue do item 2.

do Corol�ario (5.3.1), segue que a s�erie de fun�c~oes
∞∑
n=1

fn pode ser integrada, termo a termo,

em [0 , 1], ou seja,∫ 1
0

f(x)dx
(5.53)
=

∫ 1
0

∞∑
n=1

fn(x)dx

(5.22)
=

∞∑
n=1

∫ 1
0

fn(x)dx

(5.50)
=

∞∑
n=1

∫ 1
0

[
sen(nx)

n2
dx

]
Teorema Fund. do C�alculo para cada n ∈ N

=

∞∑
n=1

[
− cos(nx)

n3

∣∣∣∣x=1
x=0

]

=

∞∑
n=1

1− cos(n)

n3
,

ou seja, ∫ 1
0

∞∑
n=1

sen(nx)

n2
dx =

∞∑
n=1

1− cos(n)

n3
.

�

Exemplo 5.3.6 Encontre, se existir, a fun�c~ao g : (−1 , 1) → R dada por

g(x)
.
=

∫ x
0

∞∑
n=1

(−1)n t2 ndt , para cada x ∈ (−1 , 1) . (5.54)

Resolução:

Para cada n ∈ N, consideremos a fun�c~ao fn : (−1 , 1) → R, dada por

fn(x)
.
= (−1)n x2 n , para cada x ∈ (−1 , 1) . (5.55)
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Pode-se mostrar (utilizando-se o teste M. de Weierstrass (isto �e, do Teorema (5.3.1)) que a

s�erie de fun�c~oes
∞∑
n=1

fn converge uniformemente para uma fun�c~ao f : [−a , a] → R, em [−a , a]

para todo a ∈ [0 , 1) �xado, em particular, teremos

f(x)
.
=

∞∑
n=1

fn(x) , para cada x ∈ [−a , a] , (5.56)

para cada a ∈ [0 , 1) �xado.

Deixaremos a veri�ca�c~ao deste fato como exerc��cio para o leitor.

Logo, deste fato e do item 2. do Corol�ario (5.3.1), segue que a s�erie de fun�c~oes
∞∑
n=1

fn

pode ser integrada, termo a termo, em qualquer intervalo contido no intervalo [−a , a], ou

seja, para cada x ∈ (−1 , 1), temos que∫ x
0

f(t)dt
(5.56)
=

∫ x
0

∞∑
n=1

fn(t)dt

(5.22)
=

∞∑
n=1

∫ x
0

fn(t)dt

(5.55)
=

∞∑
n=1

[∫ x
0

(−1)n t2 n dt

]
Teorema Fund. do C�alculo para cada n ∈ N

=

∞∑
n=1

[
(−1)n

t2 n+1

2n+ 1

∣∣∣∣t=x
t=0

]

=

∞∑
n=1

(−1)n
x2 n+1

2n+ 1
,

ou ainda, para cada x ∈ (−1 , 1), teremos:∫ x
0

∞∑
n=1

(−1)n t2 n dt =

∞∑
n=1

(−1)n
x2 n+1

2n+ 1
. (5.57)

�

Observação 5.3.6

1. Observemos que, para cada t ∈ (−1 , 1), temos que:

∞∑
n=1

(−1)n t2 n =

∞∑
n=1

(
−t2
)n

s�erie geom. de raz~ao c
.
= −t2 ∈ [0 , 1) - veja (3.30)
=

−t2

1+ t2
. (5.58)
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Portanto, para cada t ∈ (−1 , 1),

∞∑
n=0

(−1)n t2 n = 1+

∞∑
n=1

(
−t2
)n

(3.62)
=

−t2

1+ t2
+ 1

=

(
1+ t2

)
− t2

1+ t2
+ 1

=
1

1+ t2
. (5.59)

Logo, para cada x ∈ (−1 , 1) temos que

∫ x
0

∞∑
n=0

(−1)n t2 ndt
(5.59)
=

∫ x
0

1

1+ t2
dt

visto no C�alculo 1
= arctg(x) , (5.60)

isto �e, para cada x ∈ (−1 , 1), teremos

arctg(x)
(5.60)
=

∫ x
0

∞∑
n=0

(−1)n t2 n dt

(5.57)
=

∞∑
n=0

(−1)n
x2 n+1

2n+ 1
,

ou ainda,

f(x)
.
= arctg(x) =

∞∑
n=1

(−1)n
x2 n+1

2n+ 1
, para cada x ∈ (−1 , 1) . (5.61)

2. Observemos que a fun�c~ao f de�nida (5.61) acima, �e uma fun�c~ao ��mpar, ou seja,

f(−x) = −f(x) , para cada x ∈ (−1 , 1)

e a s�erie de fun�c~oes em (5.61), cuja soma �e a fun�c~ao f, s�o possui potências ı́mpares

de x.

Como veremos, no pr�oximo cap��tulo, isso ocorre em geral, isto �e, se uma fun�c~ao

for ��mpar (respectivamente, par) e possuir uma representa�c~ao em s�erie de fun�c~oes

do tipo acima (que ser�a denominada s�erie de potências de x), ent~ao a s�erie de

fun�c~oes (isto �e, de potências de x) s�o possuir�a potências ��mpares (respectivamente,

pares), ou seja, os coe�cientes das potências pares (respectivamente, ��mpares)

ser~ao iguais a zero.
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3. Notemos tamb�em que se pudermos fazer x = 1 em (5.61), obteremos:

π

4
= arctg(1)

(5.61)
=

∞∑
n=1

(−1)n
12 n+1

2n+ 1

= 1−
1

3
+
1

4
−
1

5
+ · · ·

=

∞∑
n=1

(−1)n

2n− 1
,

como hav��amos a�rmado anteriormente (veja a Observa�c~ao (3.6.3), ou ainda,

(3.242)).

Exemplo 5.3.7 Mostre que

ex =

∞∑
n=0

xn

n!
, para cada x ∈ R . (5.62)

Resolução:

Para cada n ∈ {0} ∪ N de�namos a fun�c~ao fn : R → R, dada por

fn(x) =
xn

n!
, para cada x ∈ R . (5.63)

Com isto, para cada n ∈ N, a fun�c~ao fn ser�a continuamente diferenci�avel em R.
Al�em disso, para cada x ∈ R e n ∈ {0} ∪ N, teremos

d fn

dx
(x)

(5.63)
=

d

dx

[
xn

n!

]
C�alculo 1

=
xn−1

(n− 1)!
. (5.64)

Fixando-se a ∈ [0 ,∞), para cada x ∈ [−a , a] e n ∈ N, temos que

|fn
′(x)|

(5.64)
=

∣∣∣∣ xn−1

(n− 1)!

∣∣∣∣
=

∣∣xn−1∣∣
(n− 1)!

=
|x|n−1

(n− 1)!
x∈[−a ,a] , isto �e, |x|≤a

≤ an−1

(n− 1)!
(5.65)

Notemos que (veja o Exemplo (5.3.2), com n = n− 1) a s�erie num�erica

∞∑
n=1

an−1

(n− 1)!
, converge em R . (5.66)
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Portanto, de (5.65), (5.66) e do teste M. de Weierstrass (isto �e, do Teorema (5.3.1)), segue

que a s�erie de fun�c~oes ∞∑
n=1

fn
′

�e uniformemente convergente em [−a , a], para cada a ∈ [0 ,∞).

Como a s�erie num�erica ∞∑
n=0

fn(0)
(5.63)
= 1+

∞∑
n=1

0n

n!

converge (com soma igual a 1) segue, do item 3. do Corol�ario (5.3.1), que a s�erie de fun�c~oes∞∑
n=0

fn converge uniformente, em [−a , a], para uma fun�c~ao f : [−a , a] → R, ou seja

f(x)
.
=

∞∑
n=0

fn(x) , para cada x ∈ [−a , a] . (5.67)

e poder�a ser derivada, termo a termo, em [−a , a], para cada a ∈ [0 ,∞), isto �e, para x ∈
[−a , a], temos que

f ′(x)
(5.67)
=

d

dx

[ ∞∑
n=0

fn(x)

]
(5.25)
=

∞∑
n=1

d fn

dx
(x)

=

∞∑
n=1

d

dx

[
xn

n!

]
=

∞∑
n=1

xn−1

(n− 1)!

m
.
=n−1
=

∞∑
m=0

xm

m!

(5.63)
=

∞∑
m=0

fm(x)

(5.67)
= f(x) , (5.68)

ou seja, a fun�c~ao f, dada por

f(x)
.
=

∞∑
m=0

xm

m!
, para cada x ∈ [−a , a] , (5.69)

deve satisfazer a seguinte equa�c~ao diferencial ordin�aria:

f ′(x) = f(x) , para x ∈ [−a , a] , (5.70)

para cada a ∈ [0 ,∞).
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Do C�alculo I, sabemos que uma fun�c~ao que satisfaz (5.70), dever�a ser a fun�c~ao

f(x)
.
= c ex , para cada x ∈ R , (5.71)

para algum c ∈ R.
Notemos que

c
(5.71) com x=0

= f(0)

(5.70) com x=0
= 1+

∞∑
n=1

0n

n!
= 1 ,

logo, deveremos ter c = 1 ,

portanto, de (5.71), teremos: f(x) = ex , para cada x ∈ R

ou seja:

ex =

∞∑
n=0

xn

n!
, para cada x ∈ R ,

como quer��amos mostrar.

�

Observação 5.3.7 Em particular, fazendo x = 1 em (5.62), obtemos

e =

∞∑
n=0

1

n!

como hav��amos a�rmado anteriormente (veja a Observa�c~ao (5.2.3) , ou ainda, (5.17)).

T�opicos adicionais, bem como outros exemplos e resultados podem ser encontrados na biblio-

gra�a mencionada no �m destas notas.

5.4 Exerćıcios

Até aqui para a 1.a Prova



Caṕıtulo 6

Séries de Potências

Neste cap��tulo estudaremos uma classe especial de s�eries de fun�c~oes, denominadas séries

de potências.

As perguntas que ser~ao respondidas aqui estar~ao relacionadas com os seguintes t�opicos:

1. Quando podemos aproximar uma fun�c~ao "bem comportada"(por exemplo de classe C∞)
por um polinômio em algum intervalo [a , b]?

2. Como obter esse polinômio (seus coe�cientes)?

Como veremos, a no�c~ao de "estar pr�oximo de" estar�a intimamente ligada a no�c~ao de

convergência de sequência (mais expeci�camente, s�eries) de fun�c~oes, tratada no cap��tulo

anterior.

Come�caremos com a introdu�c~ao do objeto principal do estudo desse cap��tulo, a saber:

6.1 Definições

Definição 6.1.1 Um s�erie de fun�c~oes do tipo

∞∑
n=0

an x
n = ao + a1 x+ a2 x

2 + · · · (6.1)

onde

an ∈ R , para cada n ∈ {0 , 1 , 2 , · · · } ,

ser�a denominada série de potências de x (ou centrada em x = 0) .

Mas geralmente, uma s�erie do tipo

∞∑
n=0

an (x− c)
n = ao + a1 (x− c) + a2 (x− c)

2 + · · · (6.2)

onde

an ∈ R , para cada n ∈ {0 , 1 , 2 , · · · } ,

ser�a denominada série de potênciasde (x− c) (ou centrada em x = c) .

205
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Os n�umeros reais

an ∈ R , para cada n ∈ {0 , 1 , 2 , · · · } ,

ser~ao ditos coeficientes da série de potência.

Observação 6.1.1 Uma s�erie de potências centrada em x = 0, respectivamente em x =

c, �e um caso particular de s�erie de fun�c~oes.

De fato, basta considerar a sequência de fun�c~oes (fn)n∈N onde, para cada n ∈ {0}∪N,
a fun�c~ao fn : (a , b) → R �e dadas por

fn(x)
.
= an x

n , para cada x ∈ (a , b) , (6.3)

respectivamente

fn(x)
.
= an (x− c)

n , para cada x ∈ (a , b) . (6.4)

A seguir exibiremos alguns exemplos de s�eries de potências:

Exemplo 6.1.1 A s�erie de fun�c~oes

∞∑
n=0

xn

n!
, para cada x ∈ R (6.5)

�e uma s�erie de potências de x (ou centrada em x = 0).

Resolução:

De fato, a s�erie de fun�c~oes (6.5) pode ser colocada na forma (6.1), bastando, para cada

n ∈ {0} ∪ N, de�nirmos o n-�esimo coe�ciente da mesma, ou seja,

an
.
=
1

n!
(6.6)

e assim

∞∑
n=0

xn

n!
=

∞∑
n=0

1

n!
xn

(6.6)
=

∞∑
n=0

an x
n , para cada x ∈ R .

�

Exemplo 6.1.2 A s�erie de fun�c~oes

∞∑
n=0

(x− 1)2 n

n+ 1
, para cada x ∈ R (6.7)

�e uma s�erie de potências de (x− 1) (ou centrada em x = 1).
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Resolução:

De fato, a s�erie de fun�c~oes (6.7) pode ser colocada na forma (6.1), bastando, para cada

n ∈ {0} ∪ N, de�nirmos o n-�esimo coe�ciente da mesma, ou seja,

a2 n+1
.
= 0 e a2 n

.
=

1

n+ 1
. (6.8)

e assim

∞∑
n=0

(x− 1)2 n

(n+ 1)
=

∞∑
n=0

1

(n+ 1)
(x− 1)2 n

(6.8)
=

∞∑
n=0

an (x− 1)
n , para cada x ∈ R .

�

Exemplo 6.1.3 A s�erie de fun�c~oes

∞∑
n=0

sen(nx)

n+ 1
, para cada x ∈ R (6.9)

não �e uma s�erie de potências.

Resolução:

A s�erie de fun�c~oes (6.9) n~ao pode ser colocada na forma (6.1) ou (6.2).

Logo n~ao ser�a uma s�erie de potências.

�

6.2 Convergência Pontual de Séries de Potências

A seguir passaremos a estudar a convergência das s�eries de potências.

Observação 6.2.1 Observemos que uma s�erie de potências de x, isto �e,

∞∑
n=0

an x
n ,

sempre converge (com soma igual a ao) quando x = 0.

De fato, pois

∞∑
n=0

an · 0n = ao + a1 · 0+ a2 · 02 + · · ·

= ao .

De modo an�alogo, uma s�erie de potências de (x− c), isto �e,

∞∑
n=0

an (x− c)
n ,
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sempre converge (com soma igual a ao) quando x = c.

De fato, pois

∞∑
n=0

an (c− c)
n = ao + a1 (c− c) + a2 (c− c)

2 + · · ·

= ao .

Come�caremos estudando as s�eries de potências de x (isto �e, centradas em x = 0), ou seja,

a s�erie de fun�c~oes (6.1).

Mais tarde trataremos do caso das s�eries de potências de (x − c) (isto �e centradas em

x = c), ou seja, a s�erie de fun�c~oes (6.2).

Um primeiro resultado importante �e o:

Teorema 6.2.1 Sejam

xo , x1 ̸= 0 (6.10)

e consideremos a s�eries de potências

∞∑
n=0

an x
n . (6.11)

1. Se a s�erie num�erica ∞∑
n=0

an xo
n (6.12)

for convergente, ent~ao a s�erie de potências (6.11) ser�a absolutamente convergente

para

x ∈ (−|xo| , |xo|) , isto �e, para |x| < |xo| . (6.13)

2. Se a s�erie num�erica
∞∑
n=0

an x1
n for divergente, ent~ao a s�erie de potências

∞∑
n=0

an x
n

ser�a divergente para

(−∞ , |x1|) ∪ (|x1| ,∞) , isto �e, para |x| > |x1| . (6.14)

Demonstração:

De 1.:

Sabemos que a s�erie num�erica
∞∑
n=0

an xo
n �e convergente e xo ̸= 0.

Logo, do crit�erio da divergência (veja o Teorema (3.4.2)) segue que

lim
n→∞an xon = 0 .

Assim a sequência num�erica (an xo
n)n∈N ser�a limitada, ou seja existe M ∈ R, tal que

|an xo
n| ≤M, para todo n ∈ {0} ∪ N . (6.15)
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Notemos que �xado

x ∈ (−|xo| , |xo|) (6.16)

ent~ao, para cada n ∈ {0} ∪ N, teremos:

|an x
n|
xo ̸=0
= |an xo

n|

∣∣∣∣ xnxon
∣∣∣∣

≤M
∣∣∣∣ xxo
∣∣∣∣n

=Mrn , (6.17)

onde

r
.
=

∣∣∣∣ xxo
∣∣∣∣ < 1 , (6.18)

pois

x ∈ (−|xo| , |xo|) ,

logo |x| < |xo| ,

implicando que:
|x|

|xo|︸︷︷︸
=| x

xo
|

< 1 .

Como r ∈ [0 , 1), segue que a s�erie num�erica

∞∑
n=0

Mrn =M

∞∑
n=0

rn converge em R ,

pois �e uma s�erie geom�etrica de raz~ao r ∈ [0 , 1) (veja o Exemplo (3.3.5)).

Logo, do crit�erio da compara�c~ao para s�eries num�erica cujos termos s~ao n~ao-negativos

(isto �e, o item 1. do Teorema (3.5.2)) segue que para cada x ∈ (−|xo| , |xo|), a s�erie num�erica∞∑
n=0

|an x
n| ser�a convergente.

Portanto a s�erie de potências
∞∑
n=0

an x
n ser�a absolutamente convergente para cada

x ∈ (−|xo| , |xo|) ,

como quer��amos demonstrar.

De 2.:

Sabemos que a s�erie num�erica ∞∑
n=0

an x1
n

�e divergente.

Suponhamos, por absurdo, que exista

x2 ∈ (−∞ , |x1|) ∪ (|x1| ,∞)



210 CAP�ITULO 6. S�ERIES DE POTÊNCIAS

de modo que s�erie num�erica ∞∑
n=0

an x2
n

seja convergente.

Ent~ao do item 1. provado acima, segue que a s�erie

∞∑
n=0

an x
n

ser�a convergente em (−|x2| , |x2|), o que �e um absurdo, pois como x2 ∈ (−∞ , |x1|) ∪ (|x1| ,∞)

segue que

x1(−|x2| , |x2|) ,

isto �e a s�erie num�erica
∞∑
n=0

an x1
n seria convergente, o que contraira a hip�otese que a s�erie

num�erica
∞∑
n=0

an x1
n �e divergente.

Portanto a s�erie de potências
∞∑
n=0

an x
n ser�a divergente em

(−∞ , |x1|) ∪ (|x1| ,∞) ,

completando a demonstra�c~ao do resultado.

�

Observação 6.2.2

1. Para o caso que

xo > 0 ,

a �gura abaixo ilustra a situa�c~ao do item 1. do Teorema (6.2.1):

-
0 xo−xo

�

a s�erie de potências converge em x = xo

︸ ︷︷ ︸
o item 1. do Teorema (6.2.1) implicar�a que ela convergir�a para x ∈ (−xo , xo)

2. Para o caso que

x1 > 0 ,

a �gura abaixo ilustra a situa�c~ao do item 2. do Teorema (6.2.1):
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-
0

a s�erie de potências diverge em x = x1

x1

�

−x1︸ ︷︷ ︸ ︸ ︷︷ ︸
o item 2. do Teorema (6.2.1) implicar�a que ela ser�a divergente para x ∈ (−∞ ,−x1) ∪ (x1 ,∞)

I >

3. O item 1. do Teorema (6.2.1) acima, nos diz que se uma s�erie de potências

converge num ponto (diferente de zero) ent~ao ela convergir�a, pontualmente, em

todo ponto do intervalo sim�etrico em rela�c~ao a origem, aberto e de amplitutide

igual ao valor absoluto do ponto onde ela converge.

Isso �e uma propriedade intr��nseca das s�eries de potências.

4. S�eries de fun�c~oes em geral não vale a propriedade acima, como por exemplo, a

s�erie de fun�c~oes (que não �e uma s�erie de potências)

∞∑
n=1

sen(nx)

s�o converge nos pontos

x = kπ , para cada k ∈ Z .

Aplique as ideias acima aos:

Exemplo 6.2.1 Aplique o Teorema (6.2.1) acima, para estudar a convergência da s�erie

de potências ∞∑
n=0

1

n!
xn (6.19)

no intervalo (−1 , 1).

Resolução:

Notemos que a s�erie de potências (6.19) �e convergente em

xo = 1 . (6.20)

De fato, pois a s�erie num�erica

∞∑
n=0

1

n!
xo
n (6.20)

=

∞∑
n=0

1

n!

�e convergente (veja o Exemplo (6.1.1) com x = 1).

Logo, do item 1. do Teorema (6.2.1) acima, segue que a s�erie de potências (6.19) ser�a

absolutamente convergente para

x ∈ (−|xo| , |xo|)
(6.20)
= (−1 , 1) .

A �gura abaixo ilustra a situa�c~ao acima:
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-
0 1−1

�

a s�erie de pontências converge em x = 1

︸ ︷︷ ︸
pelo item 1. do Teorema (6.2.1), convergir�a para x ∈ (−1 , 1)

�

Exemplo 6.2.2 Aplique o Teorema (6.2.1) acima, para estudar a convergência da s�erie

de potências ∞∑
n=0

(−1)n x2 n (6.21)

no intervalo (−a , a), para cada a ∈ [0 , 1).

Resolução:

Notemos que para cada

a ∈ [0 , 1) , (6.22)

a s�erie de potências
∞∑
n=0

(−1)n x2 n �e convergente em xo = a.

De fato pois, ∞∑
n=0

(−1)n xo
2n =

∞∑
n=0

[
(−1) xo

2
]n
. (6.23)

para cada n ∈ {0} ∪ N, temos que:

∣∣(−1) xo2∣∣ = xo2 = a2︸︷︷︸
.
=r

(6.22)
< 1 .

Mas s�erie num�erica
∞∑
n=0

rn �e convergente, pois �e uma s�erie geom�etrica de raz~ao (veja o

Exemplo (3.3.5))

r = a2
(6.22)
∈ [0 , 1) .

Logo, do Teorema da compara�c~ao para s�eries num�ericas cujos termos s~ao n~ao-negativos

(isto �e, do item i. do Teorema (3.5.2)) segue que a s�erie num�erica
∞∑
n=0

(−1)nx2 no ser�a conver-

gente.

Logo, do item 1. do Teorema (6.2.1) acima, segue que a s�erie de potências
∞∑
n=0

(−1)n x2 n

ser�a absolutamente convergente para cada

x ∈ (−|xo| , |xo|) = (−a , a) , para todo a ∈ [0 , 1), ou seja, para x ∈ (−1 , 1).

A �gura abaixo ilustra a situa�c~ao acima.
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-
0 1−1︸ ︷︷ ︸

pelo item 1. do Teorema (6.2.1), ser�a convegente para |x| < 1

Por outro lado, a s�erie de potências
∞∑
n=0

(−1)n x2 n �e divergente em x1 = 1.

De fato, pois a s�erie num�erica
∞∑
n=0

(−1)n �e divergente, pelo crit�erio da divergência (veja o

Teorema (3.4.2)).

Logo, o item 2. do Teorema (6.2.1), implicar�a que a s�erie de potências (6.21) ser�a diver-

gente em

(−∞ ,−|x1|) ∪ (|x1| ,∞) = (−∞ ,−1) ∪ (1 ,∞) , isto �e, para |x| > 1 .

A �gura abaixo ilustra a situa�c~ao acima.

-
0

a s�erie de potências diverge em x = 1

1

�

−1︸ ︷︷ ︸ ︸ ︷︷ ︸
pelo item 2. do Teorema (6.2.1), ser�a divergente para |x| > 1

I >

Para �nalizar, notemos que a s�erie de potências (6.21) �e divergente em x1 = −1.

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor.

Com isto, do ponto de vista da convergência/divergência, para a s�erie de potências∞∑
n=0

(−1)nx2n, teremos a seguinte situa�c~ao, ilustrada na �gura abaixo:

-
0

︷ ︸︸ ︷a s�erie de potências (6.10) converge, para |x| < 1

a s�erie de potências (6.10) diverge, para |x| ≥ 1

1︸ ︷︷ ︸ ︸ ︷︷ ︸−1

I >

�
Em geral temos a seguinte situa�c~ao:

Teorema 6.2.2 Dada a s�erie de potências

∞∑
n=0

an x
n (6.24)

uma, e somente uma, das situa�c~oes abaixo ocorre:
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1. a s�erie de potências (6.24) s�o converge em x = 0;

2. a s�erie de potências (6.24) converge absolutamente em R;

3. existe R > 0, de modo que a s�erie de potências (6.24) �e absolutamente

convergente em (−R , R) e divergente em (−∞ ,−R) ∪ (R ,∞) , (6.25)

ou ainda,

convergente para |x| < R e divergente para |x| > R . (6.26)

Demonstração:

Notemos que se o item 1. ocorrer, os itens 2. e 3. n~ao ocorrer~ao.

Vamos supor que o item 1. n~ao ocorre, ou seja existe xo ̸= 0 tal que a s�erie num�erica

∞∑
n=0

an xo
n

seja convergente.

Logo do item 1. do Teorema (6.2.1), segue que a s�erie de potências
∞∑
n=0

an x
n ser�a conver-

gir�a absolutamente para

|x| < |xo|
.
= ro .

Denotemos por S, o subconjunto dos n�umeros reais, formado por todos os r > 0 que têm

a propriedade acima, isto �e, a s�erie de potências
∞∑
n=0

an x
n converge absolutamente em

|x| < r .

Observemos que o conjunto S �e n~ao vazio, pois

ro ∈ S .

Se o conjunto S n~ao for limitado ent~ao o item 3. ocorrer�a, ou seja a s�erie de potências

(6.24) ser�a convergente em R.
Se o conjunto S for um subconjunto limitado de R, a�rmamos que o item 2. ocorrer�a.

De fato, so conjunto S for um subconjunto limitado de R, como ele �e n~ao vazio, ent~ao

existe

R
.
= supS ∈ (0 ,∞) .

A�rmamos que R ∈ (0 ,∞) satisfaz o item 3. .

De fato, seja

r ∈ S , tal que r ∈ (0 , R)

e

xo ∈ R , tal que |xo| < r .
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Como

r ∈ S e |xo| < r ,

temos que a s�erie num�erica
∞∑
n=0

an xo
n ser�a convergente.

Logo, do item 1. do Teorema (6.2.1), segue que a s�erie de potências
∞∑
n=0

an x
n ser�a abso-

lutamente convergente para |x| < r.

Como consequência teremos que a s�erie de potências
∞∑
n=0

an x
n ser�a absolutamente con-

vergente para |x| < R.

A�rmamos que se

x1 ∈ (−∞ , R) ∪ (R ,∞) ou seja, |x1| > R ,

a s�erie num�erica
∞∑
n=0

an x1
n ser�a divergente.

De fato, suponhamos, por absurdo, que a s�erie num�erica
∞∑
n=0

an x1
n seja convergente.

Ent~ao, pelo item 1. do Teorema (6.2.1), teremos que a s�erie de potências
∞∑
n=0

an x
n dever�a

ser convente para

x ∈ (−|x1| , |x1|) , ou seja, |x1| ∈ S ,

o que �e um absurdo pois

|x1| > R = supS .

Portanto a s�erie de potência
∞∑
n=0

an x
n ser�a diverge em

(−∞ , R) ∪ (R ,∞) ,

mostrando que R ∈ (0 ,∞) satisfaz o item 2., completando a demonstra�c~ao do resultado

�

Observação 6.2.3

1. O Teorema (6.2.2) acima nos diz que uma, e somente uma, das possibilidades

abaixo, para uma s�erie de potências

∞∑
n=0

an x
n (6.27)

poder�a ocorrer:

1.1 ou

R = 0 ; (6.28)

A �gura abaixo ilustra essa situa�c~ao:
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-
0

�

a s�erie de potências (6.27) s�o converge em x = 0

1.2 ou

R = ∞ ; (6.29)

A �gura abaixo ilustra essa situa�c~ao:

-
0

a s�erie de potências (6.27) converge em R

1.3 ou

R ∈ ( ,∞) . (6.30)

A �gura abaixo ilustra essa situa�c~ao:

-
0

︷ ︸︸ ︷a s�erie de potências (6.27) para |x| < R

a s�erie de potências (6.27) diverge para |x| > R

R︸ ︷︷ ︸ ︸ ︷︷ ︸−R

I >

Neste �ultimo caso, podem ocorrer todo tipo de situa�c~ao em rela�c~ao a con-

vergência da s�erie de potências (6.27) nos pontos

x = −R e x = R ,

como veremos em exemplos a seguir.

2. O n�umero real

R ∈ (0 ,∞) , (6.31)

obtido no item 3. do Teorema (6.2.2) acima, ter�a uma importância muito grande

no estudo das s�eries de potências, como veremos mais adiante.

Baseado nos fatos acima, podemos introduzir a seguinte:

Definição 6.2.1 De�niremos raio de convergência da série de potências
∞∑
n=0

an x
n como

sendo R ∈ [0 ,∞], obtido no Teorema (6.2.2) acima

O conjunto formado por todos os x ∈ R, onde a s�erie de potências
∞∑
n=0

an x
n �e con-

vergente ser�a dito intervalo de convergência da série de potências
∞∑
n=0

an x
n .
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Observação 6.2.4

1. Do Teorema (6.2.2) acima, segue que que toda s�erie de potências tem um (�unico)

raio de convergência e portanto um (�unico) intervalo de convergência.

2. O raio de convergência de uma s�erie de potências pode ser igual a

0 , isto �e, R = 0

e portanto o intervalo de convergência da s�erie de potências ser�a

I = {0} ,

ou seja, o conjunto formado por um ponto, que na verdade não �e um intervalo,

como mostra o Exemplo (6.2.3) a seguir.

3. O raio de convergência associado a uma s�erie de potências pode ser in�nito, ou

seja,

R = ∞ ,

e assim o intervalo de convergência ser�a

I = R ,

como mostra o Exemplo (6.2.4) a seguir.

4. Se

R ∈ (0 ,∞) ,

a priori, nenhuma conclus~ao podemos tirar sobre o comportamento da s�erie de

potência nos pontos

x = −R e x = R .

Podemos ter situa�c~oes, como veremos, que a s�erie de potências converge em um

dos pontos e diverge no outro, ou diverge nos dois ou ainda converge nos dois.

Um desses casos �e mostrado no Exemplo (6.2.5) a seguir

A seguir consideraremos alguns exemplos onde aplicaremos as ideias desenvolvidas acima.

Exemplo 6.2.3 Consideremos a s�erie de potências

∞∑
n=0

nn xn . (6.32)

Mostre que

R = 0 e I = {0} . (6.33)
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Resolução:

Observemos que, para todo xo > 0 �xado, a s�erie num�erica
∞∑
n=0

nn xn �e divergente.

De fato, para cada xo > 0 �xado, temos que

lim
n→∞ (nn xo

n)
1
n = lim

n→∞ (nxo)

xo>0= ∞ > 1 .

(6.34)

Logo, do crit�erio da raiz, por limites, para s�eries num�erica cujos termos s~ao n~ao-negativos

(isto �e, o item 2. do Teorema (3.5.7)) segue quea s�erie num�erica

∞∑
n=0

nn xo
n

�e divergente.

Assim, a s�erie de potências
∞∑
n=0

nn xn s�o converge quando x = 0, isto �e,

R = 0

e assim, o intervalo de convergência da s�erie de potências �e

I = {0} .

A �gura abaixo ilustra a situa�c~ao acima.

-
0

�

a s�erie de potências (6.32) s�o converge em x = 0

�

Exemplo 6.2.4 Consideremos a s�erie de potências

∞∑
n=0

xn

n!
. (6.35)

Mostremos que

R = ∞ e I = R . (6.36)

Resolução:

Observemos que para cada xo > 0 �xado, temos que a s�erie num�erica
∞∑
n=0

xo
n

n!
�e convergente

em R.
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De fato, pois

lim
n→∞

xo
n+1

(n+ 1)!
xo
n

n!

= lim
n→∞

xo

n+ 1

= 0 < 1,

Logo, do crit�erio da raz~ao, por limites, para s�eries num�erica cujos termos s~ao n~ao-negativos

(isto �e, o item 1. do Teorema (3.5.5)), segue que a s�erie num�erica
∞∑
n=0

xo
n

n!
�e convergente para

cada xo ∈ (0 ,∞).

Assim, segue do item 1. do Teorema (6.2.1), segue que a s�erie de potências
∞∑
n=0

xn

n!
converge

em R, isto �e,

R = ∞ ,

e o intervalo de convergência da s�erie de potências �e

I = R ,

completando a resolu�c~ao.

A �gura abaixo ilustra a situa�c~ao acima.

-
0

a s�erie de potências (6.35) converge em R

�

Exemplo 6.2.5 Consideremos a s�erie de potências

∞∑
n=1

(−1)n

n
xn . (6.37)

Mostre que

R = 1 e I = (−1 , 1] . (6.38)

Resolução:

Observemos que a s�erie de potências (6.37), converge em

xo = 1 ,

pois a s�erie num�erica
∞∑
n=1

(−1)n

n
�e convergente (�e a s�erie harmônica alternada - veja o Exemplo

(3.6.2)).

Logo, do item 1. do Teorema (6.2.1), segue que a s�erie de potências converge em

(−1 , 1) .
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Por outro lado, a s�erie de potências (6.37), diverge em

x1 = −1 ,

pois ela ser�a igula a s�erie num�erica
∞∑
n=1

1

n
que �e divergente (�e a s�erie harmônica - veja o

Exemplo (2.7.2)).

Logo, do item 2. do Teorema (6.2.1), segue que a s�erie de potências diverge em

(−∞ ,−1) ∪ (1 ,∞) .

Com isto temos que o raio de convergência da s�erie de potências (6.37) ser�a

R = 1 ,

e o intervalo de convergência �e

I = (−1,−1] ,

em particular, a s�erie de potência converge (6.37) em

x = R = 1

e diverge em

x = −R = −1 .

A �gura abaixo ilustra a situa�c~ao acima.

-
0

︷ ︸︸ ︷a s�erie de potências (6.37) converge se x ∈ (−1 , 1]

a s�erie de potências (6.37) diverge se x ∈ (−∞ ,−1] ∪ (1 ,∞)

1︸ ︷︷ ︸ ︸ ︷︷ ︸−1

I >

�

Exemplo 6.2.6 Encontre o raio de convergência e o intervalo de convergência da s�erie

de potências abaixo. ∞∑
n=0

n! xn (6.39)

Resolução:

Notemos que, se xo > 0, temos que a s�erie num�erica

∞∑
n=0

n! xo
n



6.2. CONVERGÊNCIA PONTUAL DE S�ERIES DE POTÊNCIAS 221

ser�a divergente pois, para cada n ∈ {0} ∪ N, de�nido-se

An
.
= n! xo

n xo>0
> 0 , (6.40)

teremos

lim
n→∞

An+1

An

(6.40)
= lim

n→∞
(n+ 1)! xo

n+1

n! xon

= lim
n→∞(n+ 1) xo

xo>0= ∞ > 1 .

Logo, do crit�erio da raz~ao, por limites, para s�eries num�erica cujos termos s~ao n~ao-negativos

(isto �e, o item 2. do Teorema (3.5.5)), segue que a s�erie num�erica
∞∑
n=0

n! xo
n �e divergente,

para cada xo > 0.

Portanto, do item 2. Teorema (6.2.1), segue que a s�erie de potência s�o converge em x = 0,

isto �e, o raio de convergência �e

R = 0

e o intervalo de convergência �e

I = {0} .

A �gura abaixo ilustra a situa�c~ao acima.

-
0

�

a s�erie de potências (6.39) s�o converge em x = 0

�

Exemplo 6.2.7 Encontre o raio de convergência e o intervalo de convergência da s�erie

de potências abaixo.

∞∑
n=0

n

n!
xn . (6.41)

Resolução:

Notemos que, se xo > 0, temos que a s�erie num�erica

∞∑
n=0

n

n!
xo
n

ser�a convergente pois, para cada n ∈ {0} ∪ N, de�nido-se

An
.
=
n

n!
xo
n xo>0
> 0 , (6.42)
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teremos

lim
n→∞

An+1

An

(6.42)
= lim

n→∞
n+ 1

(n+ 1)!
xo
n+1

n

n!
xo
n

= lim
n→∞

xo

n
= 0 < 1 .

Logo, do crit�erio da raz~ao segue que para todo xo > 0 a serie num�erica
∞∑
n=0

n

n!
xo
n �e

convergente.

Portanto, do item 1. do Teorema (6.2.1), segue que a s�erie de potência (6.41) converge

em R, isto �e, o raio de convergência �e

R = ∞
e o intervalo de convergência �e

I = R .

A �gura abaixo ilustra a situa�c~ao acima.

-
0

a s�erie de potência (6.41) converge em R

�

Exemplo 6.2.8 Encontre o raio de convergência e o intervalo de convergência da s�erie

de potências abaixo.

∞∑
n=1

1

n2
xn (6.43)

Resolução:

Notemos que, se xo > 0, temos que a s�erie num�erica∞∑
n=1

1

n2
xo
n

ser�a convergente pois, para cada n ∈ {0} ∪ N, de�nido-se

An
.
=
1

n2
xo
n xo>0
> 0 , (6.44)

teremos

lim
n→∞

An+1

An

(6.44)
= lim

n→∞
1

(n+ 1)2
xn+1o

1

n2
xno

= lim
n→∞

[
n2

(n+ 1)2
xo

]
Exerc��cio

= xo .
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Logo, para

xo ∈ [0 , 1) ,

do crit�erio da raz~ao, por limites, para s�eries num�erica cujos termos s~ao n~ao-negativos (isto �e,

os itens 1. e 2. do Teorema (3.5.5)), segue que a serie num�erica
∞∑
n=1

1

n2
xo
n ser�a convergente

e para

xo ∈ (1 ,∞)

ser�a divergente.

Portanto, dos itens 1. e 2. do Teorema (6.2.1), segue que a s�erie de potência (6.43) ser�a

convergente em

(−1 , 1)

e diverge em

(−∞ ,−1) ∪ (1 ,∞)

isto �e, o raio de convergência ser�a

R = 1 . (6.45)

Para encontrarmos o intervalo de convergência, precisaremos estudar o que ocorrre com

a s�erie de potências (6.43) para x = −1 e para x = 1.

Notemos que em

x = −1

a s�erie de potências (6.43) ser�a a s�erie num�erica

∞∑
n=1

(−1)n

n2
,

que �e convergente pelo crit�erio da s�erie alternada (veja o Teorema (3.6.1)).

Deixaremos como exerc��cio para o leitor a veri�ca�c~ao deste fato.

Observemos em

x = 1

a s�erie de potências (6.43) ser�a a s�erie num�erica

∞∑
n=1

1

n2
,

que �e convergente, pois �e uma p-s�erie, com p = 2 ∈ (1 ,∞) (veja o (3.203)).

Portanto o intervalo de convergência da s�erie de potências (6.43) ser�a

I = [−1 , 1] . (6.46)

A �gura abaixo ilustra a situa�c~ao acima.
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-
0

︷ ︸︸ ︷a s�erie de potência (6.43) converge em [−1 , 1]

a s�erie de potência (6.43) diverge em (−∞ ,−1) ∪ (1 ,∞)

1︸ ︷︷ ︸ ︸ ︷︷ ︸−1

I >

�
A seguir daremos um processo mais simples para encontrar o raio de convergência de uma

s�erie de potências dada, a saber:

Teorema 6.2.3 Dada uma s�erie de potências

∞∑
n=0

an x
n , (6.47)

consideremos

ρ
.
= lim

n→∞
∣∣∣∣an+1an

∣∣∣∣ , (6.48)

quando existir.

Ent~ao:

1. se

ρ = 0 , (6.49)

segue que o raio de convergência da s�erie de potências (6.47) ser�a

R = ∞ . (6.50)

2. se

ρ = ∞ , (6.51)

segue que o raio de convergência da s�erie de potências (6.47) ser�a

R = 0 . (6.52)

3. se

ρ ∈ (0 ,∞) , (6.53)

segue que o raio de convergência da s�erie de potências (6.47) ser�a

R =
1

ρ
. (6.54)

Demonstração:

Fixemos xo ̸= 0 e apliquemos o crit�erio da raz~ao, por limites (isto �e, os itens 1. e 2. do

Teorema (3.5.5)) para a serie num�erica

∞∑
n=0

|an xo
n| .
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Para cada n ∈ {0} ∪ N, de�namos

An
.
= |an xo

n| ≥ 0 . (6.55)

Com isto teremos:

lim
n→∞

An+1

An

(6.55)
= lim

n→∞
∣∣an+1 xon+1∣∣
|an xo

n|

= lim
n→∞

∣∣∣∣an+1an
xo

∣∣∣∣
= |xo| lim

n→∞
|an+1|

|an|

(6.48)
= |xo| ρ . (6.56)

Logo, do crit�erio da raz~ao, por limites para s�eries num�ericas cujos termos s~ao n~ao-negativos

(isto �e, os itens 1. e 2.do Teorema (3.5.5)), segue que se

ρ |xo| < 1 ,

a s�erie num�erica
∞∑
n=0

|an xo
n| ser�a convergente, e se

ρ |xo| > 1 ,

a s�erie num�erica
∞∑
n=0

|an xo
n| ser�a divergente.

Baseado nisso temos:

1. Se

ρ = 0 , teremos ρ|xo| = 0 < 1 .

Logo a s�erie de potências (6.47) ser�a convergente em R, isto �e, o raio de convergência

da s�erie de potências (6.47) ser�a

R = ∞ .

A �gura abaixo ilustra a situa�c~ao acima.

-
0

a s�erie de potências (6.47) converge em R

2. Se

ρ = ∞ , ent~ao para xo ̸= 0, teremos ρ |xo| = ∞ > 1 .

Logo a s�erie de potências (6.47) ser�a divergente, exceto quando xo = 0, isto �e, o raio de

convergência da s�erie de potências (6.47) ser�a

R = 0 .

A �gura abaixo ilustra a situa�c~ao acima.
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-
0

�

a s�erie de potências (6.47) s�o converge em x = 0

3. Se

ρ ∈ (0 ,∞) , como ρ |xo| < 1

ou seja,

|xo| <
1

ρ
,

a s�erie de potências (6.47) ser�a convergente e para

ρ |xo| > 1 ,

ou seja,

|xo| >
1

ρ
,

a s�erie de potências (6.47) ser�a divergente, isto �e, o raio de convergência da s�erie de

potências �e (6.47) ser�a

R =
1

ρ
.

A �gura abaixo ilustra a situa�c~ao acima.

-
0

︷ ︸︸ ︷(6.47) a s�erie de potências converge em
(
− 1

ρ
, 1
ρ

)

(6.47) a s�erie de potências diverge em
(
−∞ ,− 1

ρ

)
∪

(
1
ρ

,∞)

1
ρ︸ ︷︷ ︸ ︸ ︷︷ ︸− 1

ρ

I >

�
Aplicaremos o resultado acima para os seguintes exemplos:

Exemplo 6.2.9 Encontrar o raio de convergência e o intervalo de convergência da s�erie

de potência abaixo: ∞∑
n=1

1

n
xn . (6.57)

Resolução:

Para cada n ∈ N, de�ninamos

an
.
=
1

n
. (6.58)



6.2. CONVERGÊNCIA PONTUAL DE S�ERIES DE POTÊNCIAS 227

Com isto teremos:

ρ
(6.48)
= lim

n→∞
|an+1|

|an|

(6.58)
= lim

n→∞
1

n+ 1
1

n

= lim
n→∞

n

n+ 1

Exerc��cio
= 1 . (6.59)

Logo, do item 1. do Teorema (6.2.3) acima, segue que o raio de convergência da s�erie de

potências (6.57) ser�a

R =
1

ρ

(6.48)
= 1 . (6.60)

Portanto, do item 3. do Teorema (6.2.2), podemos garantir que a s�erie de potências (6.57)

convergente em (−1 , 1) e divergente em (−∞ ,−1) ∪ (1 ,∞).

Para completar o estudo dessa s�erie de potências (6.57), precisamos analizar o que ocorre

nos pontos

x = −1 e x = 1 .

Notemos que, em

x = 1 ,

a s�erie de potências (6.57) ser�a a s�erie num�erica
∞∑
n=1

1

n
que �e divergente (pois �e a s�erie

harmônica - veja o Exemplo (3.3.6)).

Por outro lado, em

x = −1 ,

a s�erie de potências (6.57) ser�a a s�erie num�erica
∞∑
n=1

(−1)n

n
que �e convergente (�e a s�erie

harmônica alternada - veja o Exemplo (3.6.2)).

Portanto o intervalo de convergência da s�erie de potências (6.57) �e

I = [−1 , 1) . (6.61)

�

Exemplo 6.2.10 Encontrar o raio de convergência e o intervalo de convergência da

s�erie de potência abaixo: ∞∑
n=1

1

n2
xn . (6.62)

Resolução:

Para cada n ∈ N, de�ninamos

an
.
=
1

n2
. (6.63)
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Com isto teremos:

ρ
(6.48)
= lim

n→∞
|an+1|

|an|

(6.63)
= lim

n→∞
|an+1|

|an|
= lim

n→∞

∣∣∣∣ 1

(n+ 1)2

∣∣∣∣∣∣∣∣ 1n2
∣∣∣∣

= lim
n→∞

n2

(n+ 1)2
Exerc��cio

= 1 . (6.64)

Logo, do item 3. do do Teorema (6.2.3) acima, segue que o raio de convergência da s�erie

de potências (6.62) ser�a

R =
1

ρ

(6.48)
= 1 .

Portanto, do item 3. do Teorema (6.2.2), podemos garantir que a s�erie de potências∞∑
n=1

1

n2
xn converge e (−1 , 1) e diverge em (−∞ ,−1) ∪ (1 ,∞).

Para completar o estudo dessa s�erie de potências (6.62), precisamos analizar o que ocorre

nos pontos

x = −1 e x = 1 .

Notemos que em

x = 1 ,

a s�erie de potências (6.62) ser�a a s�erie num�erica ser�a s�erie num�erica
∞∑
n=1

1

n2
que �e convergente,

pois �e uma p-s�erie, com p = 2 ∈ (1 ,∞) (veja (3.203)).

Por outro lado, em

x = −1 ,

a s�erie de potências (6.62) ser�a a s�erie num�erica ser�a s�erie num�erica
∞∑
n=1

(−1)n

n2
que tamb�em

�e convergente (veja o Exemplo (3.8.3)).

Portanto o intervalo de convergência da s�erie de potências (6.62) ser�a

I = [−1, 1] .

�

Observação 6.2.5 Os Teoremas (6.2.1), (6.2.2) e (6.2.3) acima podem ser adaptados

para s�eries de potências em (x − c), isto �e, centradas em x = c, ou seja, �a serie de

potências do tipo: ∞∑
n=1

an (x− c)
n . (6.65)
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Para ver isto basta observar que de�nindo-se:

y
.
= x− c (6.66)

a s�erie de potências (6.65) acima, tornar-se-�a a seguinte s�erie de potências:

∞∑
n=1

an y
n . (6.67)

Para esta �ultima, podemos aplicar os Teoremas (6.2.1), (6.2.2) e (6.2.3) e depois

voltarmos com a mudan�ca de vari�aveis que �zemos (6.66), ou seja,

x = y+ c , (6.68)

para obter todas as informa�c~oes que queremos sobre a s�erie de potências (6.65).

Para ilustrar, suponhamos que a s�erie de potências (6.67) tenha raio de convergência

R e seu intervalo de convergência seja

[−R , R) ,

isto �e, a s�erie de potências (6.67) converge se, e somente se,

y ∈ [−R , R) . (6.69)

Logo, considerando-se (6.66), segue que a s�erie de potências (6.65) converge se, e

somente se,

x− c
(6.66)
= y ∈ [−R , R) , ou seja, x ∈ [c− R , c+ R) . (6.70)

Logo o intervalo

I
.
= [c− R , c+ R)

ser�a o intervalo de convergência da s�erie de potências (6.65), ou seja, da s�erie de

potências
∞∑
n=1

an (x− c)
n.

Baseado nas considera�c~oes acima, podemos introduzir a:

Definição 6.2.2 De�nimos

R ∈ [0 ,∞] ,

obtido na Observa�c~ao (6.2.5) acima, como sendo o raio de convergência da série de

potências
∞∑
n=1

an (x− c)
n.

O maior subconjunto de R onde a s�erie de potências
∞∑
n=1

an(x − c)
n �e convergente

ser�a denominado intervalo de convergência da série de potências
∞∑
n=1

an(x− c)
n.
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Apliquemos as ideias acima ao:

Exemplo 6.2.11 Encontrar o raio de convergência e o intervalo de convergência da

s�erie de potências: ∞∑
n=1

(x− 2)n

n2
. (6.71)

Resolução:

De�namos

y
.
= x− 2 . (6.72)

Logo a s�erie de potências (6.71) tornar-se-�a a seguinte s�erie de potências:

∞∑
n=1

yn

n2
=

∞∑
n=1

1

n2
yn . (6.73)

A s�erie de potências (6.73) foi estudada no Exemplo (6.2.8), e vimos que seu raio de

convergência �e igual a (veja (6.45))

R = 1

e seu intervalo de convergência �e (veja (6.46))

Io
.
= [−1 , 1] . (6.74)

Ent~ao, da Observa�c~ao (6.2.5) acima, segue que o raio de convergência da s�erie de potências

(6.71) ser�a igual a

R = 1

Notemos que, de (6.74), a s�erie de potências (6.71) ser�a convergente, se, e somente se

x− 2 ∈ [−1 , 1] , isto �e, x ∈= [1 , 3] .

Portanto o intervalo de convergência da s�erie de potências (6.71), ou seja, da s�erie de

potências
∞∑
n=1

(x− 2)n

n2
, ser�a:

I1
.
= [1 , 3] .

A �gura abaixo ilustra a situa�c~ao acima.

-
2

︷ ︸︸ ︷a s�erie de potências (6.71) em [1 , 3]

a s�erie de potências (6.71) diverge em (−∞ , 1) ∪ (3 ,∞)

3︸ ︷︷ ︸ ︸ ︷︷ ︸1

I >

�
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Exemplo 6.2.12 Encontrar o raio de convergência e o intervalo de convergência da

s�erie de potências: ∞∑
n=1

(x+ 5)n

n
. (6.75)

Resolução:

De�namos

y
.
= x+ 5 . (6.76)

Com isto teremos que s�erie de potências (6.75) acima tornar-se-�a a seguinte s�erie de

potências ∞∑
n=1

yn

n
. (6.77)

Observemos que a s�erie de potências (6.77) foi estudada no Exemplo (6.2.9) e, como vimos,

seu raio de convergência ser�a igual a (veja (6.60))

R = 1

e seu intervalo de convergência ser�a (veja (6.61))

Io
.
= [−1 , 1) . (6.78)

Ent~ao, da Observa�c~ao (6.2.5) acima, segue que o raio de convergência da s�erie de potências

(6.75) ser�a igual a

R = 1

Notemos que, de (6.76), a s�erie de potências (6.75) ser�a convergente, se, e somente se

x+ 5
(6.76)
= y ∈ [−1 , 1) , isto �e, x ∈ [−6 ,−4) .

Portanto o intervalo de convergência da s�erie de potências (6.75), ou seja, da s�erie de

potências
∞∑
n=1

(x+ 5)n

n
, ser�a:

I1
.
= [−6 ,−4) .

A �gura abaixo ilustra a situa�c~ao acima.

-
−5

︷ ︸︸ ︷a s�erie de potências (6.71) converge em [−6 ,−4)

a s�erie de potências (6.71) diverge em (−∞ ,−6) ∪ [−4 ,∞)

−4︸ ︷︷ ︸ ︸ ︷︷ ︸−6

I >

�
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Exemplo 6.2.13 Encontrar o raio de convergência e o intervalo de convergência da

s�erie de potências: ∞∑
n=0

(x− 2)n

n!
. (6.79)

Resolução:

De�namos

y
.
= x− 2 (6.80)

Com isto teremos que s�erie de potências (6.79) acima tornar-se-�a a seguinte s�erie de

potências ∞∑
n=0

yn

n!
=

∞∑
n=0

1

n!
yn . (6.81)

Observemos que a s�erie de potências (6.81) foi estudada no Exemplo (6.2.4) e, como vimos,

seu raio de convergência ser�a igual a (veja (6.36))

R = ∞
e seu intervalo de convergência ser�a (veja (6.36))

Io
.
= R . (6.82)

Ent~ao, da Observa�c~ao (6.2.5) acima, segue que o raio de convergência da s�erie de potências

(6.79) ser�a igual a

R = ∞
Notemos que, de (6.80), a s�erie de potências (6.75) ser�a convergente, se, e somente se

x− 2
(6.80)
= y ∈ R , isto �e, x ∈ R .

Portanto o intervalo de convergência da s�erie de potências (6.79), ou seja, da s�erie de

potências
∞∑
n=1

(x− 2)n

n!
, ser�a:

I1
.
= R .

A �gura abaixo ilustra a situa�c~ao acima.

-
0

a s�erie de potências (6.79) converge em R

�
Para �nalizar esta se�c~ao temos o seguinte exerc��cio resolvido:

Exerćıcio 6.2.1 Estudar a s�erie de potências

∞∑
n=0

2n

ln(n+ 3)
xn . (6.83)
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Resolução:

Para cada n ∈ {0} ∪ N, de�namos

an
.
=

2n

ln(n+ 3)
. (6.84)

Deste modo, teremos:

ρ = lim
n→∞

|an+1|

|an|

(6.84)
= lim

n→∞ |

∣∣∣∣ 2n+1

ln(n+ 4)

∣∣∣∣∣∣∣∣ 2n

ln(n+ 3)

∣∣∣∣
Exerc��cio

= 2 . (6.85)

Logo, do item 3. do Teorema (6.2.3), segue que o raio de convergência da s�erie de potências

ser�a igual a

R
(6.54)
=

1

ρ

(6.85)
=

1

2
.

Para �nalizar precisaremos estudar a convergência da s�erie de potências (6.83) nos pontos

x =
1

2
e x =

−1

2
.

Notemos que, em x =
1

2
, a s�erie de potências (6.83) ser�a a s�erie num�erica

∞∑
n=0

[
2n

ln(n+ 3)

(
1

2

)n]
=

∞∑
n=0

1

ln(n+ 3)
. (6.86)

A�rmamos que

n+ 3 ≥ ln(n+ 3) , para cada n ∈ {0} ∪ N .

A demonstra�c~ao deste fato ser�a deixada como exerc��cio para o leitor.

Como consequência teremos

0 ≤ 1

n+ 3
≤ 1

ln(n+ 3)
, para cada n ∈ {0} ∪ N .

Como a s�erie num�erica ∞∑
n=0

1

n+ 3

�e divergente (�e a s�erie harmônica, translada de 3 - veja o Exemplo (3.3.6)) segue, do crit�erio

da compara�c~ao para s�eries num�ericas, cujos termos s~ao n~ao-negativos (ou seja, o item 1. do

Teorema (3.5.2)), que a s�erie num�erica (6.86) ser�a divergente, ou seja, a s�erie de potências

(6.83) ser�a divergente em x =
1

2
.
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Notemos que, em x = −
1

2
, a s�erie de potências (6.83) ser�a a s�erie num�erica

∞∑
n=0

[
2n

ln(n+ 3)

(
−1

2

)n]
=

∞∑
n=0

(−1)n

ln(n+ 3)
. (6.87)

Aplicando o crit�erio da s�erie alternada (veja o Teorema (3.6.1)), pode-se mostrar que a

s�erie num�erica (6.87) �e convergente.

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor.

Logo a s�erie de potências (6.83) ser�a convergente em x = −
1

2
.

Logo, das informa�coes obtidas acima, podemos conclui que o intervalo de convergência da

s�erie de potências (6.83) ser�a

I
.
=

[
−
1

2
,
1

2

)
.

-
0

︷ ︸︸ ︷s�erie de potências (6.83) converge em

[
−

1

2
,
1

2

)

s�erie de potências (6.83) diverge em
(
−∞ ,− 1

2

)
∪

[
1
2

,∞)

1
2︸ ︷︷ ︸ ︸ ︷︷ ︸− 1

2

I >

�

6.3 Convergência Uniforme de Séries de Potências

Come�caremos esta se�c~ao com a seguinte importante observa�c~ao:

Observação 6.3.1 Suponhamos que a s�erie de potências

∞∑
n=0

an x
n (6.88)

converge em xo ̸= 0.
Com isto podemos a�rmar que a s�erie de potências convergir�a absolutamente uni-

formemente em

[−a , a] , para cada a ∈ (0 , |xo|) . (6.89)

De fato, se a s�erie num�erica
∞∑
n=0

an xo
n �e convergente em R ent~ao, do crit�erio da

divergência (isto �e, do Teorema (3.4.2)) segue que

lim
n→∞ (an xo

n) = 0 .

Logo a sequência num�erica (an xo
n)n∈N ser�a limitada em R, isto �e, podemos encontrar

M ∈ R, de modo que

|an xo
n| ≤M, para cada n ∈ {0} ∪ N . (6.90)
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Logo, para cada

a ∈ (0 , |xo|) �xado,

isto �e, 0 < a < |xo| ,

ou ainda, 0 <
a

|xo|
< 1 , (6.91)

segue que, se

x ∈ [−a , a]

teremos:

|an x
n|
xo ̸=0
= |an xo

n|

∣∣∣∣ xnxon
∣∣∣∣

(6.90)

≤ M

∣∣∣∣ anxon
∣∣∣∣

=M

∣∣∣∣ axo
∣∣∣∣n

=Mrn , (6.92)

onde

r
.
=

∣∣∣∣ axo
∣∣∣∣ (6.91)< 1 . (6.93)

Notemos que a s�erie num�erica

∞∑
n=0

Mrn =M

∞∑
n=0

rn

�e convergente em R (�e uma s�erie geom�etrica cuja raz~ao r, de (6.93), satisfaz r ∈ [0 , 1)

- veja o Exemplo (3.3.5))..

Logo, do teste M. de Weierstrass (isto �e, o Teorema (5.3.1)), segue que a s�erie

de potências
∞∑
n=0

an x
n ser�a absolutamente uniformemente convergente em [−a , a], para

cada a ∈ [0 , |xo|) �xado.

A �gura abaixo ilustra a situa�c~ao acima.

0−R Ra xo−xo −a︸ ︷︷ ︸
a s�erie de potências (6.88) converge pontualmente em (−|xo| , |xo|)

︷ ︸︸ ︷a s�erie de potências (6.88) converge uniformemente em [−a , a]

Em geral temos o:

Teorema 6.3.1 Consideremos a s�erie de potências

∞∑
n=0

an x
n (6.94)
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cujo raio de convergência �e R ∈ (0 ,∞].

Ent~ao a s�erie de potências (6.94) ser�a absolutamente uniformemente em qualquer

intervalo fechado e limitado contido dentro do intervalo (−R , R), isto �e, em qualquer

intervalo

[a , b] ⊆ (−R , R) . (6.95)

Demonstração:

Seja

[a , b] ⊆ (−R , R) .

Podemos supor, sem perda de generalidade que

|a| < |b| .

O caso em isso n~ao ocorre ser�a deixado como exerc��cio para o leitor.

Deste modo, segue que

[a , b] ⊆ (−|b| , |b|) . (6.96)

A �gura abaixo ilustra a situa�cao acima para o caso que |b| = b > 0:

−|b| |b| = ba

Observemos que podemos encontrar

xo ∈ (0 , R) , de modo que − xo < −|b| < |b| < xo .

A �gura abaixo ilustra a situa�cao acima

0−R R|b| |xo|−|xo| −|b|

Como xo ∈ (−R , R) temos que a s�erie num�erica
∞∑
n=0

anxo
n ser�a convergente.

Logo da Observa�c~ao (6.3.1) acima, podemos concluir que a s�erie de potências
∞∑
n=0

an x
n

convergir�a absolutamente uniformemente em [−|b| , |b|).

Portanto, de (6.96), a s�erie de potências
∞∑
n=0

an x
n convergir�a absolutamente uniforme-

mente em intervalo [a , b], como quer��amos demonstrar.

�
Como consequência do Teorema (6.3.1) acima, temos o:
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Corolário 6.3.1 Suponhamos que a s�erie de potências

∞∑
n=0

an x
n (6.97)

tenha raio de convergência igual a R ∈ (0 ,∞].

Considere a fun�c~ao f : (−R , R) → R dada por

f(x)
.
=

∞∑
n=0

an x
n , para cada x ∈ (−R , R) . (6.98)

Ent~ao a fun�c~ao f ser�a cont��nua em (−R , R).

Demonstração:

Mostremos que a fun�c~ao f �e cont��nua em xo ∈ (−R , R).

Para isto consideremos a e b tal que

−R < a ≤ xo < b < R ,

que sempre existem pois

−R < xo < R .

Do Teorema (6.3.1) acima, sabemos que a s�erie de potências (6.97) converge absolutamente

uniformemente em [a , b].

Notemos que, para cada n ∈ N, a fun�c~ao fn : R → R dada por

fn(x)
.
= an x

n , para cada x ∈ R , (6.99)

�e cont��nuas em R, em particular, ser�a cont��nua no intervalo [a , b].

Logo, do item 1. do Corol�ario (5.3.1), segue que a fun�c~ao f ser�a cont��nua em [a , b], em

particular em xo ∈ [a , b] ⊆ (−R , R).

Portanto, a fun�c~ao f ser�a cont��nua em (−R , R), completando a demonstra�c~ao do resultado.

�

Observação 6.3.2 Todas as s�eries de potências estudadas nas se�c~oes anteriores, con-

vergem absolutamente uniformemente em cada intervalo fechado e limitado [a , b],

que est�a contido no interior dos intervalos de convergência das respectivas s�eries de

potências.

Logo suas fun�c~oes somas de�nem fun�c~oes cont��nuas, nos respectivos interiores dos

intervalos de convergência das s�eries de potências.

6.4 Integração Séries de Potências

Para integrar uma s�erie de potências temos o seguinte resultado:
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Teorema 6.4.1 Suponhamos que a s�erie de potências

∞∑
n=0

an x
n (6.100)

tenha raio de convergência R ∈ (0 ,∞].

Ent~ao, para cada x ∈ (−R , R) �xado, a soma da s�erie de potências (6.100) �e uma

fun�c~ao integr�avel em [0 , x], se x ∈ (0 ,∞), ou em [x , 0], se x ∈ (−∞ , 0), e a integral da

mesma pode ser obtida integrando-se a s�erie de potências (6.100), termo a termo, no

intervalo [0 , x], se x ∈ (0 ,∞), ou em [x , 0], se x ∈ (−∞ , 0), ou seja,∫ x
0

f(t)dt =

∞∑
n=0

an

n+ 1
xn+1

= ao x+
a1

2
x2 +

a2

3
x3 + · · ·+ an

n+ 1
xn+1 · · · , (6.101)

ou ainda, ∫ x
0

[ ∞∑
n=0

an t
n

]
dt =

∞∑
n=0

an

[∫ x
0

tn dt

]
, (6.102)

ou seja, ∫ x
0

[ ∞∑
n=0

an t
n

]
dt =

∞∑
n=0

an

n+ 1
xn+1 . (6.103)

Demonstração:

Suponhamos que x ∈ (0 ,∞).

A demonstra�c~ao do caso x ∈ (−∞ , 0) �e semelhante a que faremos e ser�a deixada como

exerc��cio para o leitor.

Para cada x ∈ (−R , R), temos que

[0 , x] ⊆ (−R , R) .

Logo, do Teorema (6.3.1), segue que a s�erie de potências (6.100) ser�a uniformemente

convergente em [0 , x].

Portanto, do item 2. do Corol�ario (5.3.1), segue que a s�erie de potências (6.100) pode ser

integrada, termo a termo, em [0 , x], ou seja,∫ x
0

[ ∞∑
n=0

an t
n

]
dt

(5.22)
=

∞∑
n=0

[∫ x
0

an t
n dt

]
Teor. Fundamental do C�alculo

=

∞∑
n=0

[
an

n+ 1
tn+1

∣∣∣∣t=x
t=0

]
.

=

∞∑
n=0

an

n+ 1
xn+1 ,
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completando a demonstra�c~ao do resultado.

�
A seguir faremos mais algumas considera�c~oes importantes sobre o comportamento de uma

s�erie de potênia.:

Observação 6.4.1

1. Suponhamos que a s�erie de potências

∞∑
n=0

an x
n (6.104)

tenha raio de convergência R ∈ (0 ,∞] e x ∈ (−R , R).

Seja

ρo
(6.48)
= lim

n→∞
∣∣∣∣an+1an

∣∣∣∣ , (6.105)

obtido pelo Teorema (6.2.3).

Notemos que, tamb�em pelo Teorema (6.4.1), a s�erie de potências (6.104), pode

ser integrada, termo a termo, no intervalo [0 , x], se x ∈ (0 ,∞), ou em [x , 0], se

x ∈ (−∞ , 0).

Al�em disso, a aplica�c~ao do resultado acima produzir�a uma nova s�erie de potências

de potências, que �e a s�erie de potências dada por (6.103), isto �e, a s�erie de

potências

∞∑
n=0

an

n+ 1
xn+1 , (6.106)

para x ∈ (−R , R).

Neste caso os coe�cientes da s�erie de potências (6.106) ser~ao dados por

An
.
=

an

n+ 1
, para cada n ∈ {0} ∪ N . (6.107)

Encontremos o raio de convergência desta nova s�erie de potências (6.106).
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Para isto, basta calcularmos:

ρ1

(6.48)
.
= lim

n→∞
∣∣∣∣An+1An

∣∣∣∣
(6.107)
= lim

n→∞
∣∣∣∣∣∣∣
an+1

n+ 2
an

n+ 1

∣∣∣∣∣∣∣
= lim

n→∞
∣∣∣∣n+ 1

n+ 2

an+1

an

∣∣∣∣
=

[
lim
n→∞

n+ 1

n+ 2

]
︸ ︷︷ ︸

Exerc��cio
= 1

[
lim
n→∞

∣∣∣∣an+1an

∣∣∣∣]

= lim
n→∞

∣∣∣∣an+1an

∣∣∣∣
(6.105)
= ρo ,

ou seja, as duas s�eries de potências (6.104) e (6.106) (a original e a integrada,

termo a termo) têm o mesmo raio de convergência, pois

ρ1 = ρo . (6.108)

2. De modo semelhante, a s�erie de potências (6.106), ou seja,

∞∑
n=0

an

n+ 1
xn+1 ,

por ser uma s�erie de potências com raio de convergência R ∈ (0 ,∞] (que �e igual ao

da s�erie de potências original, isto �e, (6.104)), para cada x ∈ (−R , R), poder�a ser

integrada, termo a termo, no intervalo [0 , x], se x ∈ (0 ,∞), ou no intervalo [x , 0],

se x ∈ (−∞ , 0), obtendo-se, deste modo, uma nova s�erie de potência, a saber

∞∑
n=0

an

(n+ 1) (n+ 2)
xn+2 ,

que ter�a o mesmo raio de convergência R ∈ (0 ,∞], da s�erie original, isto �e, da

s�erie de potências (6.104).

Podemos repetir esse processo inde�nidamente obtendo-se, em cada passo do pro-

cesso, uma nova s�erie de potências, que ter�a o mesmo raio de convergência da

s�erie de potências a qual iniciamos o processo, isto �e, da s�erie de potências (6.104).

Conclusão: se R ∈ (0 ,∞] �e o raio de convergência de uma s�erie de potências, para

cada x ∈ (−R , R), integrando-se a s�erie de potências no [0 , x], se x ∈ (0 ,∞), ou no

intervalo [x , 0], se x ∈ (−∞ , 0), obteremos uma nova s�erie de potências, cujo raio

de convergência ser�a igual a R, ou seja, ser�a o mesmo da s�erie de potências que

iniciamos.
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3. Como veremos, em alguns exemplos a seguir, os intervalos de convergência não

precisar~ao, necessariamente, serem iguais, isto �e, os raios de convergência das

s�eries de potêcias acima consideradas s~ao iguais, mas os respectivos intervalos de

convergência poderão ser diferentes.

4. Se denotarmos por Io, o intervalo de convergência da s�erie potências (6.104) e por

I1, o intervalo de convergência da s�erie potências (6.106), em geral, teremos:

Io ⊆ I1 , (6.109)

ou seja, o intervalo de convergência da s�erie de potências obtida da integra�c~ao de

uma s�erie de potências dada pode, eventualmente, "aumentar" .

Veremos, adiante, exemplos onde isto ocorrer�a (veja o Exemplo (6.4.1)).

3. Notemos que podemos demonstrar um resultado an�alogo ao Teorema (6.4.1), trocando-

se o intervalo [0 , x], para x ∈ (0 ,∞), por um intervalo

[b , c] ⊆ (−R , R) ,

ou seja, podemos mostrar que∫ c
b

∞∑
n=0

ant
n dt

an�alogo a (6.102)
=

∞∑
n=0

[∫ c
b

an t
n dt

]
Teor. Fund. C�alculo

=

∞∑
n=0

[
an

n+ 1
tn+1

∣∣∣∣t=c
t=b

]

=

∞∑
n=0

an

n+ 1

(
cn+1 − bn+1

)
as s�eries num�ericas s~ao convergentes

=

∞∑
n=0

an

n+ 1
cn+1 −

∞∑
n=0

an

n+ 1
bn+1 . (6.110)

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor.

Apliquemos as ideias acima ao:

Exemplo 6.4.1 Considere a s�erie de potências

∞∑
n=0

(−1)n xn . (6.111)

Encontre os raios de convergência, o intervalo de convergência da s�erie de potências

e da s�erie de potências integrada, termo a termos, associada �a mesma.

Resolução:

Para cada n ∈ {0} ∪ N, de�namos

an
.
= (−1)n . (6.112)
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Notemos que

ρo
(6.48)
= lim

n→∞
∣∣∣∣an+1an

∣∣∣∣
(6.112)
= lim

n→∞
∣∣∣∣(−1)n+1(−1)n

∣∣∣∣ = 1 , (6.113)

logo, do item 3. Teorema (6.2.3), segue que o raio de convergência da s�erie de potências

(6.111) ser�a

Ro
.
=
1

ρo

(6.113)
= 1 . (6.114)

Observemos que, para

x = 1 ,

a s�erie de potências (6.111), tornar-se-�a a s�erie num�erica

∞∑
n=0

(−1)n 1n =

∞∑
n=0

(−1)n

que, pelo crit�erio da divergência (isto �e, o Teorema (3.4.2)) �e uma s�erie num�erica divergente.

De modo semelhante, notemos que, para

x = −1 ,

a s�erie de potências (6.111), tornar-se-�a a s�erie num�erica

∞∑
n=0

(−1)n (−1)n =

∞∑
n=0

1

que, pelo crit�erio da divergência (isto �e, o Teorema (3.4.2)) tamb�em �e uma s�erie num�erica

divergente.

Portanto intervalo de convergência da s�erie de potências (6.111) ser�a

Io
.
= (−1 , 1) . (6.115)

Al�em disso, a soma da s�erie de potências (6.111), ser�a a fun�c~ao f : (−1 , 1) → R, dada por

f(x)
.
=

∞∑
n=0

(−1)n xn =
1

1+ x
, para cada x ∈ (−1 , 1) . (6.116)

Lembremos que, para cada x ∈ (−1 , 1) �xado, a s�erie de potências (6.111) tornar-se-�a uma

s�erie geom�etrica raz~ao −x, com |x| < 1, logo convergente e sua soma ser�a dada por (6.114)

(veja o Exemplo (3.3.5)).

Notemos agora que, do Teorema (6.4.1) acima, segue que a s�erie de potências (6.111) pode

ser integrada, termo a termo, em qualquer intervalo fechado e limitado contido dentro do seu

intervalo de convergência, ou seja em [a , b] onde [a , b] ⊆ (−1 , 1) .
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Assim, para cada x ∈ (−1 , 1) �xado, aplicando-se o argumento acima, ao intervalo [0 , x],

se x ∈ (0 ,∞), ou ao intervalo [x , 0], se x ∈ (−∞ , 0), segue que:∫ x
0

f(t)dt
(6.106)
=

∫ x
0

[ ∞∑
n=0

(−1)n xn dt

]
(6.102)
=

∞∑
n=0

[∫ x
0

(−1)ntn dt

]
Teor. Fund. C�alculo

=

∞∑
n=0

[
(−1)n

n+ 1
tn
∣∣∣∣t=x
t=0

]

=

∞∑
n=0

(−1)n

n+ 1
xn+1

m
.
=n+1
=

∞∑
m=1

(−1)m−1

m
xm

=

∞∑
n=1

(−1)n−1

n
xn . (6.117)

Notemos que a s�erie de potências (6.117) �e convergente em x = 1.

De fato, pois a s�erie de potências (6.117) em x = 1 tornar-se-�a a s�erie num�erica

∞∑
n=1

(−1)n−1

n

que a s�erie harmônica alternada que, como vimos (veja o Exemplo (3.6.2)), �e convergente.

Notemos que a s�erie de potências (6.117) �e divergente em x = −1.

De fato, pois a s�erie de potências (6.117) em x = −1 tornar-se-�a a s�erie num�erica

∞∑
n=1

(−1)n−1

n
(−1)n =

∞∑
n=1

1

n

que a s�erie harmônica que, como vimos (veja o Exemplo (3.3.6)), �e divergente.

Logo o raio de convergência da s�erie de potências (6.117) (que a s�erie de potências inte-

grada da s�erie de potências (6.111)) ser�a igual a

R1
.
= 1 (6.118)

e o intervalo de convergência da s�erie (6.117) integrada (que a s�erie de potências integrada

da s�erie de potências (6.111)) ser�a igual a

I1
.
= (−1 , 1] . (6.119)

Logo, neste exemplo, de (6.114), (6.115), (6.118) e (6.119), segue que

R1
(6.114)
= 1

(6.118)
= Ro e Io

(6.115)
= (−1 , 1) ⊆ (−1 , 1]

(6.118)
= I1 , com Io ̸=I1 (6.120)

�
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Observação 6.4.2

1. Um outro modo de obtermos a express~ao da fun�c~ao que nos fornece soma da s�erie

de potências (6.111), ou seja, (6.116), �e o seguinte:

Para cada x ∈ (−1 , 1) �xado, temos que :

f(x)
.
=

∞∑
n=0

(−1)n xn

= 1− x+ x2 − x3 + x4 + · · ·
= 1− x

(
1− x+ x2 − x3 + x4 + · · ·

)︸ ︷︷ ︸
(6.116)

= f(x)

= 1− x f(x) .

Logo

f(x) = 1− x f(x) ,

portanto: f(x) =
1

1+ x
, para cada |x| < 1 ,

como apresentado em (6.116).

2. Notemos que, para cada x ∈ (−1 , 1), temos que∫ x
0

f(t)dt =

∫ x
0

1

1+ t
dt

Teor. Fund. C�alculo
=

[
ln(1+ t)

∣∣∣∣t=x
t=0

]
= ln(1+ x) ,

logo

ln(1+ x) =
∞∑
n=1

(−1)n−1

n
xn , para cada x ∈ (−1 , 1) . (6.121)

Fazendo x = 1 na identidade (6.118) acima (notemos que a s�erie num�erica obtida �e

convergente em R), obteremos

ln(2) =
∞∑
n=1

(−1)n−1

n
, (6.122)

como hav��amos a�rmado anteriormente (veja a Obseva�c~ao (3.6.2)).

Temos tamb�em o:
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Exemplo 6.4.2 Consideremos a s�erie de potências

∞∑
n=0

(−1)n x2 n =

∞∑
n=0

(
−x2

)n
. (6.123)

Encontre os raios de convergência, o intervalo de convergência da s�erie de potências

e da s�erie de potências integrada, termos a termo, associada �a mesma.

Resolução:

Notemos que, de�ndo

y
.
= −x2 , (6.124)

a s�erie de potências (6.123) torna-se-�a a s�erie de potências

∞∑
n=0

yn . (6.125)

Notemos que, para cada y ∈ R �xado, a s�erie de potências (6.125) �e uma s�erie geom�etrica,

cuja raz~ao �e igual a y.

Logo, do Exemplo (3.3.5) e o Teorema (3.8.1), segue que ela ser�a convergente se, e somente

se,

y ∈ (−1 , 1) . (6.126)

Al�em disso, para cada y ∈ (−1 , 1) �xado, a soma da s�erie num�erica (6.125), ser�a (veja

(3.30)) dada por ∞∑
n=0

yn =
1

1− y
. (6.127)

Logo, de (6.124) e (6.126), segue que a s�erie de potências (6.123) ser�a convergente se, e

somente se,

−x2
(6.124)
= y ∈ (−1 , 1) , ou seja, x ∈ (−1 , 1) .

Portanto, o raio de convergência da s�erie de potências (6.123) ser�a

Ro
.
= 1 (6.128)

e o intervalo de convergência s�erie de potências (6.123) ser�a

Io
.
= (−1 , 1) . (6.129)

Al�em disso, de (6.124) e (6.127), segue que a fun�c~ao soma da s�erie de potências (6.123),

ser�a a fun�c~ao f : (−1 , 1) → R dada por

f(x)
(6.124) e (6.127)

.
=

1

1−
(
−x2

)
=

1

1+ x2
, para cada x ∈ (−1 , 1) . (6.130)
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Logo, para cada x ∈ (−1 , 1) temos:

f(x) =

∞∑
n=0

(−1)n x2 n

= 1− x2 + x4 − x6 + x8 + · · · (6.131)

Notemos agora que, do Teorema (6.4.1) acima, segue que a s�erie de potências (6.123) pode

ser integrada, termo a termo, em qualquer intervalo fechado e limitado contido dentro do seu

intervalo de convergência, ou seja em [a , b] onde [a , b] ⊆ (−1 , 1) .

Assim, para cada x ∈ (−1 , 1) �xado, aplicando-se o argumento acima, ao intervalo [0 , x],

se x ∈ (0 ,∞), ou ao intervalo [x , 0], se x ∈ (−∞ , 0), segue que:

∫ x
0

f(t)dt
(6.12)
=

∫ x
0

[ ∞∑
n=0

(−1)n t2 n dt

]
(6.102)
=

∞∑
n=0

[∫ x
0

(−1)n t2n dt

]
Teor. Fund. C�alculo

=

∞∑
n=0

[
(−1)n

2n+ 1
t2 n+1

∣∣∣∣t=x
t=0

]

=

∞∑
n=0

(−1)n

2n+ 1
x2 n+1 . (6.132)

Notemos que o raio de convergência da s�erie de potências (6.132) (isto �e, da s�erie de

potências integrada da s�erie de potências (6.113)) �e

R1
.
= 1 . (6.133)

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor

Encontremos o intervalo de convergência da s�erie de potências (6.132) (isto �e, da s�erie de

potências integrada da s�erie de potências (6.113)).

Para isto notemos que se �zermos x = 1 na s�erie de potências (6.132), obteremos a s�erie

num�erica ∞∑
n=0

(−1)n

2n+ 1
(−1)n︸ ︷︷ ︸

=1

=

∞∑
n=0

(−1)n

2n+ 1

que, pelo crit�erio da s�erie alternada (veja o Teorema (3.6.1) ou o Exemplo (3.6.3), fazendo

m
.
= n− 1 naquela), temos que ela ser�a convergente.

Por outro lado, se �zermos x = −1 na s�erie de potências (6.132), obteremos a s�erie

num�erica ∞∑
n=0

(−1)n

2n+ 1
(−1)2 n+1︸ ︷︷ ︸

=−1

= −

∞∑
n=0

(−1)n

2n+ 1

que, como vimos acima, �e convergente.
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Logo, o intervalo de convergência da s�erie de potências (6.132) (isto �e, da s�erie de potências

integrada, termo a termo, da s�erie de potências (6.113)), ser�a

I1
.
= [−1 , 1] . (6.134)

Logo, neste exemplo, de (6.128), (6.133), (6.129) e (6.134), segue que

R1
(6.133)
= 1

(6.128)
= Ro e Io

(6.129)
= (−1 , 1) ⊆ (−1 , 1]

(6.134)
= I1 , com Io ̸=I1 (6.135)

�

Observação 6.4.3 Notemos que, no Exemplo (6.4.2) acima, para cada x ∈ [−1 , 1], tere-

mos ∫ x
0

f(t)dt
(6.130)
=

∫ x
0

1

1+ t2
dt

Teor. Fund. C�alculo
=

[
arctg(x)

∣∣∣∣t=x
t=0

]
= arctg(x) .

Logo, de (6.132), segue que

arctg(x) =
∞∑
n=0

(−1)n

2n+ 1
x2 n+1 , para cada x ∈ [−1 , 1] . (6.136)

Em particular, se �zermos x = 1, temos que

π

4
= arctg(1)

(6.136)
=

∞∑
n=0

(−1)n

2n+ 1

= 1−
1

3
+
1

5
−
1

7
+ · · · , (6.137)

como a�rmamos anteriromente (veja o Exemplo (3.6.3), na verdade (3.242), fazendo

m = n− 1).

Temos tamb�em o seguinte exerc��cio resolvido:

Exerćıcio 6.4.1 Considere a s�erie de potências

∞∑
n=0

xn (6.138)

Encontre os raios de convergência, o intervalo de convergência da s�erie de potências

e da s�erie de potências integrada, termo a termo, associada �a mesma.



248 CAP�ITULO 6. S�ERIES DE POTÊNCIAS

Resolução:

Notemos que, para cada x ∈ R �xado, a s�erie de potências (6.138) �e uma s�erie geom�etrica,

cuja raz~ao �e igual a x.

Logo, do Exemplo (3.3.5) e o Teorema (3.8.1), segue que ela ser�a convergente se, e somente

se,

x ∈ (−1 , 1) . (6.139)

Al�em disso, para cada x ∈ (−1 , 1) �xado, a soma da s�erie num�erica (6.138), ser�a (veja

(3.30)) dada por ∞∑
n=0

xn =
1

1− x
. (6.140)

Portanto, o raio de convergência da s�erie de potências (6.138) ser�a

Ro
.
= 1 (6.141)

e o intervalo de convergência s�erie de potências (6.138) ser�a

Io
.
= (−1 , 1) . (6.142)

A fun�c~ao soma da s�erie de potências (6.138), ser�a a fun�c~ao f : (−1 , 1) → R dada por

f(x)
.
=

1

1− x
, para cada x ∈ (−1 , 1) . (6.143)

Notemos agora que, do Teorema (6.4.1) acima, segue que a s�erie de potências (6.138) pode

ser integrada, termo a termo, em qualquer intervalo fechado e limitado contido dentro do seu

intervalo de convergência, ou seja em [a , b] onde [a , b] ⊆ (−1 , 1) .

Assim, para cada x ∈ (−1 , 1) �xado, aplicando-se o argumento acima, ao intervalo [0 , x],

se x ∈ (0 ,∞), ou ao intervalo [x , 0], se x ∈ (−∞ , 0), segue que:∫ x
0

f(t)dt
(6.12)
=

∫ x
0

[ ∞∑
n=0

tn dt

]
(6.102)
=

∞∑
n=0

[∫ x
0

tn dt

]
Teor. Fund. C�alculo

=

∞∑
n=0

[
1

n+ 1
tn+1

∣∣∣∣t=x
t=0

]

=

∞∑
n=0

1

n+ 1
xn+1 . (6.144)

Notemos que o raio de convergência da s�erie de potências (6.144) (isto �e, da s�erie de

potências integrada da s�erie de potências (6.138)) �e

R1
.
= 1 . (6.145)

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor
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Encontremos o intervalo de convergência da s�erie de potências (6.144) (isto �e, da s�erie de

potências intergrada da s�erie de potências (6.138)).

Para isto notemos que se �zermos x = 1 na s�erie de potências (6.144), obteremos a s�erie

num�erica ∞∑
n=0

1

n+ 1
1n︸︷︷︸
=1

=

∞∑
n=0

1

2n+ 1

que �e uma s�erie divergente (veja o Exemplo (3.5.8)).

Por outro lado, se �zermos x = −1 na s�erie de potências (6.132), obteremos a s�erie

num�erica

∞∑
n=0

1

n+ 1
(−1)n =

∞∑
n=0

(−1)n

n+ 1

m=n+1
=

∞∑
n=1

(−1)m−1

m

=

∞∑
n=1

(−1)m+1

m

que, pelo crit�erio da s�erie alternada (veja o Teorema (3.6.1) ou o Exemplo (3.6.2)) temos que

ela ser�a convergente.

Logo, o intervalo de convergência da s�erie de potências (6.144) (isto �e, da s�erie de potências

integrada, termo a termo, da s�erie de potências (6.138)), ser�a

I1
.
= [−1 , 1) . (6.146)

Logo, neste exemplo, de (6.141), (6.142), (6.145) e (6.146), segue que

R1
(6.141)
= 1

(6.145)
= Ro e Io

(6.142)
= (−1 , 1) ⊆ (−1 , 1]

(6.146)
= I1 , com Io ̸=I1 (6.147)

�

Observação 6.4.4 Notemos que, no Exemplo (6.138) acima, para cada x ∈ [−1 , 1),

teremos ∫ x
0

f(t)dt
(6.130)
=

∫ x
0

1

1− t
dt

Teor. Fund. C�alculo
=

[
− ln(1− x)

∣∣∣∣t=x
t=0

]
= − ln(1− x) + ln(1)︸ ︷︷ ︸

=0

= − ln(1− x) ,

de (6.144), segue que ln(1− x) =
∞∑
n=0

1

n+ 1
xn+1 , para cada x ∈ [−1 , 1) . (6.148)
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Em particular, se �zermos x = −1 em (6.148), obteremos

ln(2)
(6.148) com x=−1

=

∞∑
n=0

(−1)n+1

n+ 1

= −1+
1

2
−
1

3
+
1

4
− · · · . (6.149)

6.5 Derivação de Séries de Potências

Para derivar s�eries de potências, termo a termo, temos o seguinte resultado:

Teorema 6.5.1 Suponhamos que a s�erie de potências

∞∑
n=0

an x
n (6.150)

tenha raio de convergência igual a Ro ∈ (0 ,∞].

Ent~ao a fun�c~ao soma da s�erie de potências (6.150), isto �e, a fun�c~ao f : (−Ro , Ro) → R
dada por

f(x)
.
=

∞∑
n=0

an x
n , para cada x ∈ (−Ro , Ro) , (6.151)

ser�a uma fun�c~ao diferenci�avel em (−Ro , Ro) e, al�em disso, a s�erie de potência (6.150)

pode ser derivada, termo a termo, em (−Ro , Ro), isto �e,

f ′(x) =

∞∑
n=1

nan x
n−1 , (6.152)

ou seja,
d

dx

[ ∞∑
n=0

an x
n

]
=

∞∑
n=1

d

dx
[an x

n] (6.153)

ou ainda,
d

dx

[ ∞∑
n=0

an x
n

]
=

∞∑
n=1

nan x
n−1 , para cada x ∈ (−Ro , Ro) . (6.154)

Demonstração:

Seja

ρo
(6.48)
= lim

n→∞
∣∣∣∣an+1an

∣∣∣∣ , (6.155)

obtido pelo Teorema (6.2.3).

Encontremos o raio de convergência, que denotaremos por R ′, associado �a s�erie de potências

∞∑
n=1

nan x
n−1 . (6.156)

Para isto, para cada n ∈ N, de�namos

An
.
= nan (6.157)
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e calculemos

ρ ′
(6.48)
.
= lim

n→∞
∣∣∣∣An+1An

∣∣∣∣
(6.157)
= lim

n→∞
∣∣∣∣(n+ 1)an+1

nan

∣∣∣∣
= lim

n→∞
[
n+ 1

n

∣∣∣∣an+1an

∣∣∣∣]

=

 lim
n→∞

n+ 1

n︸ ︷︷ ︸
Exerc��cio

= 1


[
lim
n→∞

∣∣∣∣an+1an

∣∣∣∣]

= lim
n→∞

∣∣∣∣an+1an

∣∣∣∣ (6.155)= ρo . (6.158)

Como

ρ ′ = ρo ,

segue que, do Teorema (6.2.3), que os raios de convergência das s�erie de potências (6.156) e

(6.150) s~ao iguais, ou seja,

R ′ = Ro .

Em particular, a s�erie de potências (6.156) ser�a uniformemente convergente em qualquer

intervalo fechado e limitado, contido no intervalo (−Ro , Ro), isto �e, em [a , b] ⊆ (−Ro , Ro).

Logo, do item 3. do Teorema (5.3.1), segue que a fun�c~ao soma da s�erie de potências

(6.150) (isto �e, a fun�c~ao f dada por (6.151)) ser�a uma fun�c~ao diferenci�avel em (−Ro , Ro) e,

al�em disso, a a s�erie de potências (6.150) poder�a ser derivada, termo a termo, no intervalo

(−Ro , Ro), ou seja, para x ∈ (−Ro , Ro), teremos:

f ′(x)
(6.150)
=

d

dx

[ ∞∑
n=0

an x
n

]

=

∞∑
n=1

[
d

dx
(an x

n)

]
C�alcilo 1
=

∞∑
n=1

nan x
n−1 ,

como quer��amos mostrar.

�

Observação 6.5.1

1. O Teorema (6.5.1) acima nos diz que a s�erie de potências

∞∑
n=0

an x
n (6.159)
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pode ser derivada, termo a termo, no intervalo (−Ro, Ro).

Al�em disso, sua derivada, ∞∑
n=1

nan x
n−1 (6.160)

tamb�em ser�a uma s�erie de potências, cujo raio de convergência �e igual ao da s�erie

de potências original, isto �e, ser�a igual ao da s�erie de potências (6.159).

Vale observar que os respecivos intervalos de convergência podem, em geral, ser

diferentes, como ser�a tratado no item 1. da Observa�c~ao (6.5.2), que vir�a a seguir

2. Notemos tamb�em que (6.160) �e uma s�erie de potências.

Logo podemos aplicar Teorema (6.5.1) acima a ela pr�opria.

Com isto a fun�c~ao f, dada por (6.151), ser�a duas vezes diferenci�avel em (−Ro , Ro)

e, al�em disso, podemos derivar a s�erie de potêncais (6.160), termo a termo, em

(−Ro , Ro), e assim obter uma nova s�erie de potências, ou ainda,

f ′′(x) =
d

dx
[f ′(x)]

(6.160)
=

d

dx

[ ∞∑
n=1

nan x
n−1

]
(6.153)
=

∞∑
n=2

d

dx

[
nan x

n−1
]

Exerc��cio
=

∞∑
n=2

n (n− 1)an x
n−2 . (6.161)

Notemos que, pelo Teorema (6.5.1) acima, a s�erie de potências (6.161) ter�a o raio

de convergência da s�erie de potências (6.160) que, por sua vez, tem o mesmo

raio de convergência da da s�erie de potências inical, isto �e, da s�erie de potêncais

(6.159).

Podemos repetir o processo inde�nidamente e assim obter a seguinte consequência

do Teorema (6.5.1) acima:

Corolário 6.5.1 Suponhamos que a s�erie de potências

∞∑
n=0

an x
n (6.162)

tenha raio de convergência igual a R ∈ (0 ,∞].

Ent~ao a fun�c~ao soma da s�erie de potências (6.162), isto �e, a fun�c~ao f : (−R , R) → R
dada por

f(x)
.
=

∞∑
n=0

an x
n , para cada x ∈ (−R , R) , (6.163)
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pertencer�a C∞ ((−R , R) ; R).
Al�em disso, para cada k ∈ N, a s�erie de potência (6.162), pode ser derivada k-vezes,

termo a termo em (−R , R), isto �e, para x ∈ (−R , R) teremos:

f(k)(x) =

∞∑
n=k

n (n− 1) (n− 2) · · · (n− k+ 1)an x
n−k . (6.164)

Demonstração:

Consequência do Teorema (6.5.1) acima.

Para obter (6.164), basta notarmos que, para cada x ∈ (−R , R), de (6.153) e indu�c~ao,

sobre a ordem de deriva�c~ao, segue que

f(k)(x) =
dk

dxk
f(x)

(6.163)
=

dk

dxk

[ ∞∑
n=0

an x
n

]
(6.153)
=

∞∑
n=k

dk

dxk
[an x

n]

C�alculo 1. e indu�c~ao
=

∞∑
n=k

n (n− 1) (n− 2) · · · (n− k+ 1)an x
n−k ,

completando a demonstra�c~ao

�

Observação 6.5.2

1. Como resumo, temos que uma s�erie de potências, cujo raio de convergência �e igual

a R ∈ (0 ,∞], representa uma fun�c~ao que possui derivada, de qualquer ordem, no

intervalo (−R , R).

O raio de convergência de qualquer uma das s�eries de potências obtidas da s�erie

de potências inicial, derivando-se termo a termo, continua o mesmo.

O intervalo de convergência de uma s�erie de potências, obtida da deriva�c~ao da

s�erie de potências dada, pode mudar.

Em geral, temos

I ′ ⊆ I , (6.165)

onde I e I ′ denotam os intervalos de convergência da s�erie de potências inicial e

da s�erie de potências derivada termo a termo, respectivamente.

Pode ocorrer situa�c~oes em que

I ′ ̸= I . (6.166)

Um caso em que isto ocorre �e no Exemplo (6.4.2) olhado da seguinte forma:
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Vimos, no Exemplo (6.4.2), que a s�erie de potências

∞∑
n=0

(−1)n

2n+ 1
x2 n+1 (6.167)

tem como intervalo de convergência o intervalo

I
.
= [−1 , 1] (6.168)

Notemos que, a s�erie de potências obtida derivando-se a s�erie de potências (6.167),

termo a termo, ser�a a s�erie de potências

∞∑
n=0

(−1)n x2 n (6.169)

que tem como intervalo de convergência

I ′
.
= (−1 , 1) ,

ou seja, o intervalo de convergência I ′, da s�erie de potências obtida por deriva�c~ao

da s�erie de potências (6.167), est�a contido, propriamente, o intervalo de con-

vergência I da s�erie de potências (6.167).

2. As propriedades obtidas nos resultado acima, s~ao intr��secas de s�eries de potências,

ou seja, isto pode não ocorrer, em geral, para s�eries de fun�c~oes, como mostra o

seguinte exemplo:

A s�erie de fun�c~oes ∞∑
n=1

sen(nx)

n2

(que não �e uma s�erie de potências) �e uniformemente convergente na reta R, como

vimos no Exemplo (5.3.5).

Notemos que, se derivarmos a s�erie de fun�c~oes acima, termo a termo, obteremos

a seguinte s�erie de fun�c~oes ∞∑
n=1

cos(nx)

n
,

que não converge em, por exemplo,

x = 0 ,

na verdade, n~ao converge em x = 2 kπ, para cada k ∈ N.

3. Para a ∈ R �xado, vale o an�alogo do Corol�ario (6.5.1) acima, para a s�erie de

potências ∞∑
n=0

an (x− a)
n (6.170)
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no intervalo (a − R , a + R), onde R ∈ (0 ,∞] �e o raio de convergência da s�erie de

potências (6.170).

Mais precisamente, a fun�c~ao f : (a− R , a+ R) → R, dada por

f(x)
.
=

∞∑
n=0

an (x− a)
n , para cada x ∈ (a− R , a+ R) , (6.171)

pertencer�a C∞ ((a− R , a+ R) ; R).

Al�em disso, para cada k ∈ N, a s�erie de potência (6.170), pode ser derivada k-vezes,

termo a termo em (a− R , a+ R), isto �e, para x ∈ (a− R , a+ R) teremos:

f(k)(x) =

∞∑
n=k

n (n− 1) (n− 2) · · · (n− k+ 1)an (x− a)
n−k . (6.172)

Deixaremos a demonstra�c~ao do mesmo como exerc��cio para o leitor.

Podemos utilizar a representa�c~ao em s�eries de potência de fun�c~oes conhecidas para obter

uma representa�c~ao em s�erie de potências para outras fun�c~oes, como mostram os exemplos

aseguir:

Exemplo 6.5.1 Considere a fun�c~ao f : (−1 , 1) → R dada por

f(x) =
1

(1− x)2
, para cada x ∈ (−1 , 1) . (6.173)

Obter uma representa�c~ao em s�erie de potências para a fun�c~ao f, no intervalo (−1 , 1).

Resolução:

Observemos que, para cada x ∈ (−1 , 1), teremos:

d

dx

[
1

1− x

]
= (−1)

1

(1− x)2
(−1)

=
1

(1− x)2

(6.173)
= f(x) . (6.174)

Como vimos no Exemplo (6.4.1) (ou ainda, (6.140)),

1

1− x
=

∞∑
n=0

xn , para cada x ∈ (−1 , 1) , (6.175)

que �e uma s�erie de potências cujo raio de convergência �e R = 1.
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Logo, do Teorema (6.5.1) acima, segue que a s�erie de potências em (6.175) pode ser

derivada, termo a termo, no intervalo (−1 , 1), ou seja, para cada x ∈ (−1 , 1), teremos:

f(x)
(6.174)
=

d

dx

[
1

1− x

]
(6.175)
=

d

dx

[ ∞∑
n=0

xn

]
(6.153)
=

∞∑
n=1

[
d

dx
xn
]

=

∞∑
n=1

nxn−1 . (6.176)

Portanto,

1

(1− x)2
=

∞∑
n=1

nxn−1 , para cada x ∈ (−1 , 1) , (6.177)

ser�a a representa�c~ao da fun�c~ao f, dada por (6.173), em s�eries de potências, no intervalo

(−1 , 1), completando a resolu�c~ao.

�
Temos tamb�em o:

Exemplo 6.5.2 Consideremos a s�erie de potências

∞∑
n=0

(−1)n

(2n)!
x2 n . (6.178)

Mostre que a o intervalo deconvergência da s�erie de potências (6.178) �e igual a R.
Al�em disso, se fun�c~ao soma da s�erie de potências (6.115), que denotaremos por

f : R → R, dada por

f(x)
.
=

∞∑
n=0

(−1)n

(2n)!
x2 n , para cada x ∈ R , (6.179)

mostre que

f(x) = cos(x) , para cada x ∈ R . (6.180)

Resolução:

Notemos que

∞∑
n=0

(−1)n

(2n)!
x2 n =

∞∑
n=0

(−1)n

(2n)!

(
x2
)n
. (6.181)

Logo, de�nido-se

y
.
= x2 , para cada x ∈ R , (6.182)
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segue que basta estudarmos a s�erie de potências

∞∑
n=0

(−1)n

(2n)!
yn . (6.183)

Para cada n ∈ {0} ∪ N, de�namos

An
.
=

−(1)n

(2n)!
. (6.184)

Calculemos:

ρo
.
= lim

n→∞
∣∣∣∣An+1An

∣∣∣∣
(6.184)
= lim

n→∞

∣∣∣∣∣∣∣∣
−(1)n+1

[2 (n+ 1)]!

−(1)n

(2n)!

∣∣∣∣∣∣∣∣
= lim

n→∞
1

(2n+ 2) (2n+ 1)

Exerc��cio
= 0 .

Logo, do item 1. do Teorema (6.2.3), segue que o raio de convergência da s�erie de potências

(6.183) ser�a

R = ∞ ,

ou seja, a s�erie de potências (6.183) converge em R, ou ainda, o intervalo de convergência da

s�erie de potências (6.183) ser�a

Io
.
= R .

Logo, de (6.182), temos que a s�erie de potências (6.178) ter�a intervalo de convergência

igual a

Io
.
= R .

Em particular, do Corol�ario (6.5.1), segue que a fun�c~ao soma da s�erie de potências (6.115),

isto �e, a fun�c~ao f : R → R, dada por (6.179), pertencer�a a C∞(R ; R) e a s�erie de potências

(6.178) poder�a ser derivada, termo a termo, a qualquer ordem.
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Logo, para cada x ∈ R, teremos

f ′(x)
(6.179)
=

d

dx

[ ∞∑
n=0

(−1)n

(2n)!
x2 n

]

=

∞∑
n=1

d

dx

[
(−1)n

(2n)!
x2 n
]

=

∞∑
n=1

(−1)n(2n)

(2n)!
x2 n−1

=

∞∑
n=1

(−1)n

(2n− 1)!
x2 n−1

m
.
=n−1
=

∞∑
m=0

(−1)m+1

[2 (m+ 1) − 1]!
x2 (m+1)−1

=

∞∑
m=0

(−1)m+1

(2m+ 1)!
x2m+1 ,

ou seja,

f ′(x) =

∞∑
n=0

(−1)n+1

(2n+ 1)!
x2 n+1 (6.185)

= −x+
x3

3!
−
x5

5!
+ · · · , para cada x ∈ R .

Derivando mais uma vez, termo a termo, obtemos:

f ′′(x)
(6.185)
=

d

dx

[ ∞∑
n=0

(−1)n+1

(2n+ 1)!

]
x2n+1

=

∞∑
n=0

d

dx

[
(−1)n+1

(2n+ 1)!
x2 n+1

]
=

∞∑
n=0

(−1)n+1(2n+ 1)

(2n+ 1)!
x2n

=

∞∑
n=0

(−1)n+1

(2n)!
x2 n

= −

∞∑
n=0

(−1)n

(2n)!
x2 n

(6.179)
= −f(x) ,

ou seja,

f ′′(x) = −f(x) , para cada x ∈ R . (6.186)

Notemos que

f(0)
x=0 em (6.179)

=

∞∑
n=0

(−1)n

(2n)!
02 n = 1 (6.187)
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e

f ′(0)
x=0 em (6.185)

=

∞∑
n=0

(−1)m+1

(2m+ 1)!
02m+1 = 0, (6.188)

isto �e, a fun�c~ao f satisfaz ao seguinte PVI
f ′′(x) = −f(x) , para cada x ∈ R,
f(0) = 1,

f ′(0) = 0

.

Na disciplina de Equa�c~oes Diferencias Ordin�arias, foi mostrado que existe uma �unica

fun�c~ao que tem essas três propriedades e, esta fun�c~ao �e a fun�c~ao cosseno, ou seja,

f(x) = cos(x) , para cada x ∈ R.

Portanto

cos(x) =
∞∑
n=0

(−1)n

(2n)!
x2 n

= 1−
x

2!
+
x4

4!
−
x6

6!
+ · · · , para cada x ∈ R , (6.189)

completando a resolu�c~ao.

�
Como consequência, temos o:

Exemplo 6.5.3 Mostre que

sen(x) =
∞∑
n=1

(−1)n+1

(2n− 1)!
x2 n−1

= x−
x3

3!
+
x5

5!
−
x7

7!
+ · · · , para cada x ∈ R . (6.190)

Resolução:

Notemos que, para cada x ∈ R, temos:

d

dx
cos(x) = − sen(x) .

Logo podemos obter uma representa�c~ao em s�erie de potências para a fun�c~ao seno utilizando-

se representa�c~ao em s�erie de potências para a fun�c~ao cosseno, masi precisamente, para cada
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x ∈ R, temos

sen(x) = −
d

dx
cos(x)

(6.189)
= −

d

dx

[ ∞∑
n=0

−(1)n

(2n)!
x2 n

]
Teorema (6.5.1)

= −

∞∑
n=1

d

dx

[
(−1)n

(2n)!
x2 n
]

= −

∞∑
n=1

(−1)n(2n)

(2n)!
x2 n−1

=

∞∑
n=1

(−1)n+1

(2n− 1)!
x2 n−1

= x−
x3

3!
+
x5

5!
+ · · · ,

ou seja,

sen(x) =
∞∑
n=1

(−1)n+1

(2n− 1)!
x2 n−1

= x−
x3

3!
+
x5

5!
−
x7

7!
+ · · · , para cada x ∈ R ,

completando a resolu�c~ao.

�
A seguir temos os seguintes exerc��cios resolvidos:

Exerćıcio 6.5.1 Encontrar uma aproxima�c~ao de

e−1 ,

com um erro menor que 10−4, ou seja, três casas decimais exatas.

Resolução:

Do Exemplo (5.3.7) segue que

ex =

∞∑
n=1

1

n!
xn , para cada x ∈ R . (6.191)

Logo

e−x
(6.191)
=

∞∑
n=1

1

n!
(−x)n

=

∞∑
n=1

(−1)n

n!
xn , para cada x ∈ R . (6.192)
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Notemos que, para cada xo ∈ (0 ,∞), teremos que a s�erie num�erica

e−xo =

∞∑
n=1

(−1)n

n!
xo
n

�e uma s�erie alternada, que satisfaz do crit�erio da s�erie alternada (veja o Teorema (3.6.1)).

Logo deste, segue que

|e−xo − Sn(xo)| ≤ an+1(xo) ,

onde, para cada n ∈ {0} ∪ N, de�nimos

an(xo)
.
=
xo
n

n!
(6.193)

e Sn(xo) denota a soma parcial de ordem n da s�erie num�erica acima, isto �e,∣∣∣∣∣e−xo −
n∑
k=0

(−1)k

k
xo
k

∣∣∣∣∣ ≤ xo
n+1

(n+ 1)!
. (6.194)

Isto pode nos ser �util para obter aproxima�c~oes de e−xo , para cada xo ∈ (0 ,∞), por meio

das somas parciais da s�erie num�erica
∞∑
n=1

(−1)n

n!
xo
n, sabendo-se que o erro ser�a menor ou igual

a
xo
n

n!
.

Com isto, fazendo xo = 1 em (6.194), obteremos, para cada n ∈ {0} ∪ N, que:∣∣∣∣∣e−1 −
n∑
k=0

(−1)k

k

∣∣∣∣∣ ≤ 1

(n+ 1)!
. (6.195)

Observemos que para que

1

(n+ 1)!
< 10−4 se, e somente se, (n+ 1)! > 104,

que ocorre quando

n > 7 ,

pois

8! = 40320 > 104 .

Logo, de (6.195), segue que∣∣∣∣∣e−1 −
7∑
k=0

(−1)k

k

∣∣∣∣∣ ≤ 1

8!
< 10−4 .

Notemos que

S7(1) =

7∑
k=0

(−1)k

k
∼ 0, 36786

�e uma aproxima�c~ao de e−1, com erro inferior a 10−4, completando a resolu�c~ao.

�
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Exerćıcio 6.5.2 Calcule um valor aproximado de∫ 1
0

e−x
2

dx (6.196)

com um erro inferior a 10−4, ou seja, três casas decimais exatas.

Resolução:

Do Exemplo (5.3.7) segue que

ey =

∞∑
n=1

1

n!
yn , para cada y ∈ R. (6.197)

Logo, fazendo y
.
= −x2 em (6.197), obteremos

e−x
2

=

∞∑
n=1

1

n!

(
−x2

)n
=

∞∑
n=0

(−1)n

n!
x2 n , para cada x ∈ R . (6.198)

Portanto, do Teorema (6.4.1), a s�erie de potência (6.198) acima, pode ser integrada, termo

a termo, no intervalo [0, 1], ou seja,

∫ 1
0

e−x
2

dx
(6.198)
=

∫ 1
0

[ ∞∑
n=0

(−1)n

n!
x2n

]
dx

(6.102)
=

∞∑
n=0

[∫ 1
0

(−1)n

n!
x2 n
]
dx

Teor. Fund. C�alculo
=

∞∑
n=0

[
(−1)n

n! (2n+ 1)
x2 n+1

∣∣∣∣x=1
x=0

]

=

∞∑
n=0

(−1)n

n! (2n+ 1)
. (6.199)

Observemos que a s�erie num�erica acima �e uma s�erie alternada que satisfaz do crit�erio da

s�erie alternada (veja o Teorema (3.6.1)).

Assim, do crit�erio da s�erie alternada, segue que∣∣∣∣∫ 1
0

e−x
2

dx− Sn

∣∣∣∣ ≤ an+1 , (6.200)

onde, para cada n ∈ {0} ∪ N, de�nimos

an
.
=

1

n! (2n+ 1)
(6.201)
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e Sn(xo) denota a soma parcial de ordem n da s�erie num�erica acima, isto �e,∣∣∣∣∣
∫ 1
0

e−x
2

dx−

n∑
k=0

(−1)k

k! (2 k+ 1)

∣∣∣∣∣ ≤ 1

(n+ 1)! (2n+ 3)
. (6.202)

Observemos que para que

1

(n+ 1)! (2n+ 3)
< 10−4 se, e somente se (n+ 1)! (2n+ 3) > 104 ,

que ocorrer�a, por exemplo, se

n > 5 ,

pois

6! 15 = 10800 > 104 .

Logo ∣∣∣∣∣
∫ 1
0

e−x
2

dx−

5∑
k=0

(−1)k

k!(2k+ 1)

∣∣∣∣∣ ≤ 1

6!15
< 10−4 .

Notemos que

S5 =

5∑
k=0

(−1)n

n! (2n+ 1)
∼ 0, 74684

ser�a uma aproxima�c~ao de e−1, com erro inferior a 10−4, completando a resolu�c~ao.

�

6.6 Série de Taylor e de McLaurin

Lembraremos de um resultado importante do C�alculo I, que nos ser�a muito �util logo �a frente,

a saber o Teorema do Valor M�edio:

Teorema 6.6.1 Seja f : [a , b] → R uma fun�c~ao cont��nua em [a , b] e diferenci�avel em

(a , b).

Ent~ao podemos encontrar c ∈ (a , b) tal que

f ′(c) =
f(b) − f(a)

b− a
,

ou equivalentemente, f(b) = f(a) + f ′(c) (b− a) . (6.203)

Geometricamente, temos a seguinte situa�c~ao:
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-

6

a

b
x

y

c

?

(x, f(x))
(b, f(b))

(a, f(a))

Observação 6.6.1

1. O Teorema (6.6.1) acima nos diz que podemos determinar o valor da fun�c~ao f em

x = b (isto �e, f(b)) conhencdo-se o valor da f em x = aa (isto �e, f(a)) e o valor

da derivada da fun�c~ao f em um ponto intermedi�ario c, que est�a entre a e b (isto

�e, f ′(c), para algum c ∈ (a , b)).

2. Se para cada x ∈ [0 , b], a fun�c~ao f �e cont��nua em [0 , x] e diferenci�avel em (0, x)

ent~ao, do Teorema (6.6.1) acima (aplicado no intervalo [0 , x]), segue que podemos

encontrar cx ∈ (0 , x) tal que

f(x) = f(0) + f ′ (cx) x . (6.204)

Como consequência deste temos o Teorema de Rolle (tamb�em visto no C�alculo 1):

Teorema 6.6.2 Seja f : [a , b] → R uma fun�c~ao cont��nua em [a , b], diferenci�avel em

(a , b) e satisfazendo

f(a) = f(b) = 0 . (6.205)

Ent~ao podemos encontrar c ∈ (a , b), tal que

f ′(c) = 0 . (6.206)

Geometricamente temos a seguinte situa�c~ao:

-

6

x
a bc

�

(c, f(c))

y
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Demonstração:

Aplicando o Teorema (6.6.1), a segue que podemos encopntrar c ∈ (a , b), de modo que

f ′(c) =
f(b) − f(a)

b− a

(6.205)
= 0 ,

concluindo a demonstra�c~ao do resultado.

�
Podemos estender o Teorema do Valor M�edio (isto �e, o Teorema (6.6.1)), como mostra o:

Teorema 6.6.3 (Teorema de Taylor) Sejam n ∈ N e f : [a , b] → R uma fun�c~ao tal que

a fun�c~ao f(n) �e cont��nua em [a , b] e diferenci�avel em (a , b) (isto �e, existe f(n+1) em

(a ,b)).

Ent~ao podemos encontrar um c ∈ (a , b), de modo que

f(b) = f(a) +
f ′(a)

1!
(b− a) +

f ′′(a)

2!
(b− a)2 +

f ′′′(a)

3!
(b− a)3 + · · ·

+
f(n)(a)

n!
(b− a)n −

f(n+1)(c)

(n+ 1)!
(b− a)n+1 . (6.207)

Demonstração:

Consideremos a fun�c~ao F : [a , b] → R, dada por:

F(x)
.
= f(b) − f(x) −

f ′(x)

1!
(b− x) −

f ′′(x)

2!
(b− x)2 −

f ′′′(x)

3!
(b− x)3 − · · ·

−
f(n)(x)

n!
(b− x)n −

k

(n+ 1)!
(b− x)n+1 , (6.208)

onde k ∈ R �e escolhido de modo que

F(a) = 0 , (6.209)

isto �e,

k
.
=

[
f(b) − f(a) −

f ′(a)

1!
(b− a) −

f ′′(a)

2!
(b− a)2 −

f ′′′(a)

3!
(b− a)3 − · · ·

−
f(n)(a)

n!
(b− a)n

]
(n+ 1)!

(b− a)n+1
. (6.210)

Notemos tamb�em que:

F(b)
.
= f(b) − f(b) −

f ′(b)

1!
(b− b) −

f ′′(b)

2!
(b− b2 −

f ′′′(b)

3!
(b− b)3 − · · ·

−
f(n)(b)

n!
(b− b)n −

k

(n+ 1)!
(b− b)n+1

= 0 , (6.211)

Como a fun�c~ao f(n) �e cont��nua em [a , b] e diferenci�avel em (a , b), segue que a fun�c~ao F

ser�a cont��nua em [a , b] e diferenci�avel em (a , b).



266 CAP�ITULO 6. S�ERIES DE POTÊNCIAS

Para cada x ∈ (a , b), temos que:

F ′(x)
(6.208)
= 0− f ′(x) −

[
f ′′(x)

1!
(b− x) +

f ′(x)

1!
(−1)

]
−

[
f ′′′(x)

2!
(b− x)2 +

f ′′(x)

2!
2 (b− x) (−1)

]
−

[
f ′′′(x)

3!
(b− x)3 +

f(4)(x)

3!
(b− x)3 +

f ′′′(x)

3!
3 (b− x)2 (−1)

]
− · · ·

−

[
f(n+1)(x)

n!
(b− x)n +

f(n)(x)

n!
n (b− x)n−1 (−1)

]
−

k

(n+ 1)!
(b− x)n (−1)

=
k− f(n+1)(x)

n!
(b− x)n . (6.212)

Como

F(b)
(6.211)
= 0

(6.209)
= F(a) ,

segue do Teorema de Rolle (isto �e, o Teorema (6.6.2)), que podemos encontrar c ∈ (a , b) tal

que

F ′(c) = 0 ,

que, de (6.212), implcar�a em: f(n+1)(c) = k . (6.213)

Assim

0
(6.209)
= F(a)

(6.208)
= f(b) − f(a) −

f ′(a)

1!
(b− a) +

f ′′(a)

2!
(b− a)2 −

f ′′′(a)

3!
(b− a)3 − · · ·− f(n)(a)

n!
(b− a)n

−
k

(n+ 1)!
(b− a)n+1

(6.213)
= f(b) − f(a) −

f ′(a)

1!
(b− a) −

f ′′(a)

2!
(b− a)2 −

f ′′′(a)

3!
(b− a)3 − · · ·− f(n)(a)

n!
(b− a)n

−
f(n+1)(c)

(n+ 1)!
(b− a)n+1 ,

isto �e,

f(b) = f(a) +
f ′(a)

1!
(b− a) +

f ′′(a)

2!
(b− a)2 +

f ′′′(a)

3!
(b− a)3 + · · ·

+
f(n)(a)

n!
(b− a)n +

f(n+1)(c)

(n+ 1)!
(b− a)n+1 ,

como quer��amos demonstrar.

�

Observação 6.6.2

1. O Teorema (6.6.3) acima tamb�em �e conhecido como Fórmula de Taylor com resto

de Lagrange.
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2. Com as hip�oteses do Teorema (6.6.3) satisfeitas, para cada x ∈ [a , b], se aplicar-

mos o Teorema de Taylor ao intervalo [a , x] (isto �e, o Teorema (6.6.3) no intervalo

[a , x]), obteremos a seguinte express~ao:

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · ·

+
f(n)(a)

n!
(x− a)n +

f(n+1)(cx)

(n+ 1)!
(x− a)n+1 , (6.214)

onde cx ∈ (a , x), que ser�a denominada Fórmula de Taylor associada a função f,

em x = a .

3. Na situa�c~ao acima, (6.214), pode ser reescrita na forma

f(x) = Pn(x) + Rn(x) , (6.215)

onde

Pn(x)
.
= f(a) +

f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · ·

+
f(n)(a)

n!
(x− a)n (6.216)

ser�a dito polinômio de Taylor, de grau n, associado à função f, em x = a e

Rn(x)
.
=
f(n+1)(cx)

(n+ 1)!
(x− a)n+1 , (6.217)

ser�a dito resto de Taylor, de grau n, associado à função f, em x = a.

Neste caso, (6.217) ser�a dito resto de Taylor na forma de Lagrange (1783-1813).

4. Na situa�c~ao acima, se consideramros

a = 0 , (6.218)

de (6.214), segue que

f(x) = f(0) +
f ′(0)

1!
x+

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·+ f(n)(0)

n!
xn

+
f(n+1)(cx)

(n+ 1)!
xn+1, (6.219)

onde cx ∈ (0 , x), que ser�a dita fórmula de McLaurin associada à função f.

5. Na situa�c~ao acima, (6.219), pode ser reescrita na forma

f(x) = Pn(x) + Rn(x) , (6.220)

onde

Pn(x)
.
= f(0) +

f ′(0)

1!
x+

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·+ f(n)(0)

n!
xn (6.221)
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ser�a dito polinômio de McLaurin, de grau n, associado à função f, em x = a e

Rn(x)
.
=
f(n+1)(cx)

(n+ 1)!
xn+1 , (6.222)

ser�a dito resto de McLaurin, de grau n, associado à função f.

6. A f�ormula de Taylor, isto �e, (6.214) (ou a f�ormula de McLaurin, ou seja, (6.219)),

pode ser usada para aproximar uma fun�c~ao f "bem comportada", por um po-

linômio, que �e o polinômio de Taylor associado �a fun�c~ao f, isto �e ,(6.216) (ou

o polinômio de McLaurin, ou seja, (6.221)), se soubermos controlar o resto de

Taylor, isto �e, (6.217) (ou o resto de McLaurin, ou seja, (6.222)).

7. Suponhamos que f ∈ C∞([a , b] ; R), e que podemos encontrar um limitante ε > 0,

para o resto de Taylor associado a fun�c~ao f (isto �e, (6.217)), mais precisamente,

|Rn(x)| < ε , para cada x ∈ [a , b] , (6.223)

Neste caso, teremos

|f(x) − Pn(x)|
(6.215)
= |Rn(x)|

(6.223)
< ε , para cada x ∈ [a, b] ,

ou seja, f(x) − ε < Pn(x) < f(x) + ε , para cada x ∈ [a , b] . (6.224)

Portanto se, dado ε > 0, podemos encontrar n ∈ N, de modo que (6.223) ocorra,

teremos que (6.224) tamb�em ocorrer�a, ou seja, a sequência de fun�c~oes formada

pelos polinômios de Taylor de ordem n (isto �a a sequência de fun�c~oes polinomiais

(Pn)n∈N) ir�a convergir uniformemente, no intervalo [a , b], para a fun�c~ao f, ou

ainda

Pn
u→ f , em [a , b] , (6.225)

onde, para cada n ∈ {0} ∪ N, a fun�c~ao polinomial Pn �e dada por (6.216).

8. A express~ao da f�ormula de Taylor, isto �e, (6.214) (ou da f�ormula de McLaurin, ou

seja, (6.219)) tamb�em �e conhecida como desenvolvimento de Taylor (respectiva-

mente, de McLaurin), de ordem n, da função f, em torno de x = a .

Apliquemos as ideias acima ao:

Exemplo 6.6.1 Encontrar a f�ormula de McLaurin, de ordem n ≥ 5, para a fun�c~ao

f : R → R dada por

f(x)
.
= x4 − 2 x3 + 2 x− 1 , para cada x ∈ R . (6.226)
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Resolução:

Observemos que a fun�c~ao f tem derivada de qualquer ordem em R (pois �e uma fun�c~ao

polinomial).

Logo podemos aplicar o Teorema de Taylor (isto �e, o Teorema (6.6.3)) em qualquer intevalo

[a , b] ⊆ R.
Em particular, se aplicarmos para

a = 0 e b = x ,

ou seja, aplicaremos f�ormula de McLaurin (veja o item 4. da Observa�c~ao (6.6.2)) que nos

garante a existência de c ∈ (0 , x), se x ∈ (0 ,∞), ou c ∈ (x , 0), se x ∈ (−∞ , 0), de modo que:

f(x)
(6.219)
= f(0) +

f ′(0)

1!
x+

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·+ f(n)(0)

n!
xn +

f(n+1)(c)

(n+ 1)!
xn+1. (6.227)

Mas,

f(x) = x4 − 2 x3 + 2 x− 1 , logo: f(0) = −1 ;

f ′(x) = 4 x3 − 6 x2 + 2 , logo: f ′(0) = 2 ;

f ′′(x) = 12 x2 − 12 x , logo: f ′′(0) = 0 ;

f ′′′(x) = 24 x− 12 , logo: f ′′′(0) = −12;

f(4)(x) = 24 , logo: f(4)(0) = 24 ;

f(n)(x) = 0 , para todo n ≥ 5 , logo: f(n)(c) = 0 , para n ≥ 5 e c ∈ R . (6.228)

Sustituindo (6.228) em (6.227), obteremos

f(x)
(6.219)
= f(0) +

f ′(0)

1!
x+

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 +

f(4)(0)

n!
x4 +

f(5)(c)

(n+ 1)!
xn+1

(6.228)
= −1+

2

1!
x+

0

2!
x2 +

(−12)

3!
x3 +

24

4!
x4 +

0

5!
x5

= x4 − 2 x3 + 2 x− 1 ,

para todo x ∈ R, isto �e, a pr�opria fun�c~ao (que �e um polinômio!).

�

Exemplo 6.6.2 Encontrar a f�ormula de McLaurin, de ordem n ∈ N, da fun�c~ao f : R → R
dada por

f(x)
.
= sen(x) , para cada x ∈ R . (6.229)

Resolução:

Observemos que a fun�c~ao f tem derivada de qualquer ordem em R.
Logo podemos aplicar o Teorema de Taylor (isto �e, o Teorema (6.6.3)) em qualquer intevalo

[a , b] ⊆ R.
Em particular, se aplicarmos para

a = 0 e b = x ,
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ou seja, aplicaremos f�ormula de McLaurin (veja o item 4. da Observa�c~ao (6.6.2)), que nos

garante a existência de c ∈ (0 , x), se x ∈ (0 ,∞), ou c ∈ (x , 0), se x ∈ (−∞ , 0), de modo que:

f(x)
(6.219)
= f(0) +

f ′(0)

1!
x+

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·+ f(n)(0)

n!
xn +

f(n+1)(c)

(n+ 1)!
xn+1. (6.230)

Notemos que

f(x) = sen(x) , logo: f(0) = 0 ;

f ′(x) = cos(x) , logo: f ′(0) = 1 ;

f ′′(x) = sen(x) , logo: f ′′(0) = 0 ;

f ′′′(x) = − cos(x) , logo: f ′′′(0) = −1 ;

f(4)(x) = sen(x) , logo: f(4)(0) = 0 . (6.231)

Em geral,

f(2n)(x) = 0 e f(2n+1)(x) = ±1 ,

mais precisamente,

f(n)(0) =

{
0 , se n �e par;

(−1)
n+3
2 , se n �e ��mpar

. (6.232)

Susbtituindo (6.232) em (6.230), obteremos:

f(x)
(6.219)
= f(0) +

f ′(0)

1!
x+

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 +

f(4)(0)

n!
x4 + · · ·+ f(n)(0)

n!
xn +

f(n+1)(c)

(n+ 1)!
, xn+1

(6.232)
= 0+

1

1!
x+

0

2!
x2 −

1

3!
x3 +

0

4!
x4 +

1

5!
x5 + · · ·+ f(n)(0)

n!
+
f(n+1)(c)

(n+ 1)!
xn+1

= x−
x3

3!
+
x5

5!
+ · · ·+ f(n)(0)

n!
+
f(n+1)(c)

(n+ 1)!
,

para cada x ∈ R.
�

Observação 6.6.3 Observemos que o resto de McLaurin de ordem (n+ 1), associado �a

fun�c~ao f do Exemplo (6.6.2) acima (veja (6.222)), ter�a a seguinte propriedade:

|Rn(x)|
(6.222)
=

∣∣∣∣f(n+1)(c)(n+ 1)!
xn+1

∣∣∣∣
=

∣∣f(n+1)(c)∣∣
(n+ 1)!

|x|n+1

(6.234)

≤ 1

(n+ 1)!
|x|n+1, (6.233)

pois

f(n+1)(c) = ± sen(c) ou f(n+1)(c) = ± cos(c) ,
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implicando que ∣∣f(n+1)(c)∣∣ ≤ 1 , para cada c ∈ R e n ∈ N . (6.234)

Assim, se

|x| ≤ b ,

segue, de (6.234), que

|Rn(x)| ≤
1

(n+ 1)!
bn+1 . (6.235)

Notemos que a s�erie num�erica

∞∑
n=0

1

(n+ 1)!
bn+1

�e convergente em R.
Para veri�car este fato, basta aplicar o crit�erio da raz~ao por limites para s�eries

num�ericas cujos termos s~ao n~ao-negativos (isto �e, o item 1. do Teorema (3.5.5)).

Deixaremos os detalhes da veri�ca�c~ao deste fato como exerc��cio para o leitro.

Logo , do crit�erio da divergência para s�eries num�ericas (isto �e, o Teorema (3.4.2)),

segue que

lim
n→∞

1

(n+ 1)!
bn+1 = 0 ,

ou seja, dado ε > 0, podemos encontrar No ∈ N, de modo que se n ≥ No temos

|Rn(x)| < ε , para todo x ∈ [−b , b] .

Portanto, para n ≥ No, o polinômio de McLaurin, calculado em x ∈ [−b , b], associ-

ado �a fun�c~ao f, aproximar-se-�a do valor da fun�c~ao f em x (ou seja, de f(x) = sen(x)),

com erro menor que ε > 0 (o erro ser�a o resto de McLaurin).

Com isto podemos concluir que a sequência de fun�c~oes formada pelos polinômios

de McLaurin, (Pn)n∈N, converge uniformemente para a fun�c~ao f, em cada intervalo

limitado e fechado da reta R.
Acabamos de exibir um modo de aproximar uma fun�c~ao f, por um polinômio, no

caso, por meio da f�ormula de McLaurin.

Podemos obter uma outra express~ao para o resto de Taylor de ordem (n + 1), asso-

ciado �a uma fun�c~ao f, em x = a, isto �e, Rn = Rn(x), dado por (6.217), chamado de

resto de Taylor na forma integral:

Teorema 6.6.4 Sejam n ∈ N e f : [a , b] → R uma fun�c~ao de modo que f(n+1) �e uma

fun�c~ao cont��nua em [a , b], Pn e Rn s~ao o polinômio de Taylor de ordem n, associado �a

fun�c~ao f, em x = a, e o resto de Taylor de ordem n, , associado �a fun�c~ao f, em x = a,

respectivamente, dados por (6.216) e (6.217).

Ent~ao

Rn(x) =
1

n!

∫ x
a

(x− t)n f(n+1)(t)dt , para cada x ∈ [a , b] . (6.236)
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Demonstração:

A demonstra�c~ao �e feita por indu�c~ao.

Daremos a seguir uma ideia da demonstra�c~ao.

Do Teorema Fundamental do C�alculo segue que:

f(x) − f(a) =

∫ x
a

f ′(t)dt ,

ou seja, f(x) = f(a) +

∫ x
a

f ′(t)dt , (6.237)

ou ainda, f(x) = Po(x) + Ro(x) ,

onde

Po(x)
.
= f(a) e Ro(x)

.
=

∫ x
a

f ′(t)dt .

Com isto mostramos que o resultado �e valido para n = 0.

Utilizando (6.237) e integra�c~ao por partes na integral de�nida, teremos:

f(x)
(6.237)
= f(a) +

∫ x
a

f ′(t)︸ ︷︷ ︸
=u

dt︸︷︷︸
=dv⟨

u
.
= f ′(t) , logo: du = f ′′(t)dt

dv
.
= dt , logo: v = t− x

⟩
= f(a) +

[
(t− x) f ′(t)

∣∣∣∣t=x
t=a

]
−

∫ x
a

(t− x) f ′′(t)dt

= f(a) + (x− x) f ′(x) − (a− x) f ′(a) −

∫ x
a

(t− x) f ′′(t)dt

= f(a) + f ′(a) (x− a) +

∫ x
a

(x− t) f ′′(t)dt (6.238)

= P1(x) + R1(x) ,

onde

P1(x)
.
= f(a) + f ′(a) (x− a) e R1(x)

.
=

∫ x
a

(x− t) f ′′(t)dt .

Com isto mostramos que o resultado �e valido para n = 1.

Utilizando (6.238) e integra�c~ao por partes na integral de�nida, teremos:

f(x)
(6.238)
= f(a) + f ′(a) (x− a) +

∫ x
a

(x− t) f ′′(t)dt⟨
u
.
= f ′′(t) , logo: du = f ′′′(t)dt

dv
.
= (x− t)dt , logo: v = −

(x− t)2

2

⟩

= f(a) + f ′(a) (x− a) −

[
(x− t)2

2
f ′′(t)

∣∣∣∣t=x
t=a

]
+

∫ x
a

(t− x)2

2
f ′′′(t)dt

= f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 ++

∫ x
a

(t− x)2

2
f ′′′(t)dt

= P2(x) + R2(x) ,
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onde

P2(x)
.
= f(a) +

f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 e R2(x)

.
=

∫ x
a

(t− x)2

2
f ′′′(t) .

Com isto mostramos que o resultado �e valido para n = 2.

Podemos prosseguir utilizando integra�c~ao por partes uma vez mais.

A prova pode ser completada utilizando-se indu�c~ao matem�atica e esses detalhes ser~ao

deixados como exerc��cio para o leitor.

�
Apliquemos as ideias acima ao:

Exemplo 6.6.3 Encontrar o desenvolvimento de McLaurin de ordem n, para a fun�c~ao

f : R → R dada por

f(x)
.
= ex , para cada x ∈ R . (6.239)

Resolução:

Notemos que f ∈ C∞(R ; R) e, para cada n ∈ N, temos que

f(n)(x) = ex , para cada x ∈ R , (6.240)

em particular

f(n)(0) = 1 , para cada ≥ 0 . (6.241)

Assim, da f�ormula de MacLaurin (isto �e, (6.219)), segue que, existe cx ∈ (0 , x), se x ∈
(0 ,∞), ou cx ∈ (x , 0), se x ∈ (−∞ , 0), tal que:

f(x)
(6.219)
= f(0) +

f ′(0)

1!
x+

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·+ f(n)(0)

n!
xn +

f(n+1)(cx)

(n+ 1)!
xn+1

(6.241)
= 1+ x+

1

2!
x2 +

1

3!
x3 + · · ·+ 1

n!
xn +

ecx

(n+ 1)!
xn+1 . (6.242)

Neste caso, o polinômio de McLaurin de ordem n, associados �a fun�c~ao f, ser�a dado por:

Pn(x)
.
= 1+ x+

1

2!
x2 +

1

3!
x3 + · · ·+ 1

n!
xn , para cada x ∈ R (6.243)

e o resto de McLaurin de ordem n+ 1, associados �a fun�c~ao f, ser�a dado por:

Rn(x)
.
=

ecx

(n+ 1)!
xn+1 , para cada x ∈ R , (6.244)

ou seja, (6.242), (6.243) e (6.244), teremos:

ex
(6.239)
= f(x) = Pn(x) + Rn(x) , para cada x ∈ R . (6.245)

�
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Observação 6.6.4 Observemos que, se

x ∈ [a , b] ,

podemos encontrar M ∈ (0 ,∞), de modo que

[a , b] ⊆ [−M,M] ,

e assim, teremos

|Rn(x)|
(6.244)
=

∣∣∣∣ ec

(n+ 1)!
xn+1

∣∣∣∣
ecx

(n+ 1)!
|x|n+1

cx∈(−M,M) e exponencial �e crescente:

≤ eM

(n+ 1)!
|x|n+1

|x|≤M
≤ eM

(n+ 1)!
Mn+1 veja (6.235) do Exemplo (6.6.2)→ 0 , (6.246)

quando n→ ∞.

Ou seja, a sequência de fun�c~oes formada pelos polinômios de McLaurin, associados

�a fun�c~ao f, isto �e, a sequência de fun�c~oes (Pn)n∈N, onde, para cada n ∈ {0}∪N, a fun�c~ao

polinomial Pn �e dada por (6.243), converge uniformemente para f, no intervalo fechado

e limitado [a , b] ⊆ R.
Como, para cada n ∈ N, a fun�c~ao Pn �e a soma parcial de ordem n, associada a s�erie

de potências ∞∑
n=1

f(n)(0)

n!
xn , (6.247)

das discuss~oes acima (isto �e, de (6.245) e (6.246)), podemos concuir que a s�erie de

potências (6.247) converge uniformemente para a fun�c~ao f, em [a , b].

Em particular, teremos

ex =

∞∑
n=1

1

n!
xn , para cada x ∈ R . (6.248)

Temos tamb�em o:

Exemplo 6.6.4 Encontrar o desenvolvimento de McLaurin para a fun�c~ao f : R → R
dada por

f(x)
.
= cos(x) , para cada x ∈ R. (6.249)

Resolução:

Notemos que f ∈ C∞(R ; R) e, para cada n ∈ N, temos que temos:

f(x) = cos(x) , logo: f(0) = cos(0) = 1 ,

f ′(x) = − sen(x) , logo: f ′(0) = − sen(0) = 0 ,

f ′′(x) = − cos(x) , logo: f ′′(0) = − cos(0) = −1 ,

f ′′′(x) = sen(x) , logo: f ′′′(0) = sen(0) = 0 ,

f(4)(x) = cos(x) , logo: f(4)(0) = cos(0) = 1 . (6.250)
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Cm isto teremos que:

f(n)(0) =

{
0 , se n �e ��mpar

(−1)
n
2 , se n �e par

.

Assim, da f�ormula de MacLaurin (isto �e, (6.219)), segue que, existe cx ∈ (0 , x), se x ∈
(0 ,∞), ou cx ∈ (x , 0), se x ∈ (−∞ , 0), tal que:

f(x)
(6.219)
= f(0) +

f ′(0)

1!
x+

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·++

f(n)(0)

n!
xn +

f(n+1)(cx)

(n+ 1)!
xn+1

(6.250)
= 1−

1

2!
x2 +

1

4!
x4 + · · ·+ f(n)(0)

n!
xn +

f(n+1)(cc)

(n+ 1)!
xn+1 . (6.251)

Neste caso, o polinômio de McLaurin de ordem n, associados �a fun�c~ao f, ser�a dado por:

Pn(x)
.
= 1−

1

2!
x2 +

1

4!
x4 + · · ·+ f(n)(0)

n!
xn , para cada x ∈ R (6.252)

e o resto de McLaurin de ordem n+ 1, associados �a fun�c~ao f, ser�a dado por:

Rn(x) =
f(n+1)(c)

(n+ 1)!
xn+1 , (6.253)

ou seja, (6.251), (6.252) e (6.253), teremos:

cos(x)
(6.249)
= f(x) = Pn(x) + Rn(x) , para cada x ∈ R . (6.254)

�

Observação 6.6.5 Observemos que, se

x ∈ [a , b] ,

podemos encontrar M ∈ (0 ,∞), de modo que

[a , b] ⊆ [−M,M] ,

e assim, teremos

|Rn(x)|
(6.253)
=

∣∣∣∣f(n+1)(c)(n+ 1)!
xn+1

∣∣∣∣
|f(n+1)(c)|

(6.250)

≤ 1

≤ 1

(n+ 1)!
|x|n+1

|x|≤M
≤ 1

(n+ 1)!
Mn+1

veja (6.235) do Exemplo (6.6.2)→ 0 , (6.255)

quando n→ ∞.
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Ou seja, a sequência de fun�c~oes formada pelos polinômios de McLaurin, associados

�a fun�c~ao f, isto �e, a sequência de fun�c~oes (Pn)n∈N, onde, para cada n ∈ {0}∪N, a fun�c~ao

polinomial Pn �e dada por (6.252), converge uniformemente para f, no intervalo fechado

e limitado [a , b] ⊆ R.
Como, para cada n ∈ N, a fun�c~ao Pn �e a soma parcial de ordem n, associada a s�erie

de potências ∞∑
n=1

f(n)(0)

n!
xn , (6.256)

das discuss~oes acima (isto �e, de (6.254) e (6.255)), podemos concuir que a s�erie de

potências (6.256) converge uniformemente para a fun�c~ao f, em [a , b].

Em particular, teremos

cos(x) =
∞∑
n=1

(−1)n

n!
x2 n , para cada x ∈ R , (6.257)

6.7 Representação de Funções em Séries de Potências

Como vimos no Corol�ario (6.5.1), podemos utilizar uma s�erie de potências para de�nir uma

fun�c~ao, cujo dom��nio ser�a o intervalo de convergência da s�erie de potências.

Lembremos que (veja o Corol�ario (6.5.1)), se R ∈ (0 ,∞] �e o raio de convergência da s�erie

de potências
∞∑
n=0

anx
n, ent~ao a fun�c~ao f : (−R , R) → R dada por

f(x)
.
=

∞∑
n=0

anx
n

= ao + a1 x+ a2 x
2 + a3 x

3 + · · · , para cada x ∈ (−R , R) , (6.258)

est�a bem de�nida e pertencer�a a C∞((−R , R) ; R).

Definição 6.7.1 Na situa�c~ao acima, diremos que a s�erie de potências
∞∑
n=0

an x
n �e uma

representação da função f, por meio de uma série de potências, ou ainda, que a fun�c~ao

f pode ser representada pela série de potências
∞∑
n=0

anx
n.

Para ilustrar temos o:

Exemplo 6.7.1 Representar a fun�c~ao f : (−1 , 1) → R dada por

f(x)
.
=

1

1+ x
, para cada x ∈ (−1 , 1) , (6.259)

em s�erie de potências de x, em (−1 , 1).

Resolução:



6.7. REPRESENTAC� ~AO DE FUNC� ~OES EM S�ERIES DE POTÊNCIAS 277

Observemos que (veja (6.175), trocado-se x por −x) a s�erie de potências

f(x)
(6.259)
=

1

1+ x

(6.175)
=

∞∑
n=0

(−1)n xn , para cada x ∈ (−1 , 1) , (6.260)

pode ser derivada termo a termo, para x ∈ (−1 , 1), quantas vezes quisermos.

Para cada n ∈ {0} ∪N, de�namos

an
.
= (−1)n . (6.261)

Deste modo, temos que

f(x)
(6.259)
=

∞∑
n=0

(−1)n xn

(6.261)
=

∞∑
n=0

an x
n , para cada x ∈ (−1 , 1) . (6.262)

Notemos que

f(0)
(6.259)
= 1

(6.261)
= ao = ao 0! .

Observemos tamb�em que, para x ∈ (−1 , 1), temos:

f ′(x)
(6.260)
=

d

dx

[ ∞∑
n=0

(−1)n xn

]
Teorema (6.5.1)

=

∞∑
n=1

(−1)n
[
d

dx
xn
]

=

∞∑
n=1

(−1)n nxn−1 , (6.263)

em particular, f ′(0)
(6.263) com x=0

= −1
(6.261)
= a1 1! .

De modo semelhante, temos

f ′′(x) =
d

dx
[f ′(x)]

(6.263)
=

d

dx

[ ∞∑
n=1

(−1)n nxn−1

]
Teorema (6.5.1)

=

∞∑
n=1

(−1)n n

[
d

dx
xn−1

]
=

∞∑
n=2

(−1)n n (n− 1) xn−2 , (6.264)

em particular, f ′′(0)
(6.264) com x=0

= 2
(6.261)
= a2 2! .
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Podemos repetir o procedimento e assim, obter

f ′′′(x) =
d

dx
[f ′′(x)]

(6.264)
=

d

dx

[ ∞∑
n=2

(−1)n n (n− 1) xn−1

]
Teorema (6.5.1)

=

∞∑
n=2

(−1)n n (n− 1)
d

dx

[
xn−1

]
=

∞∑
n=3

(−1)n n (n− 1) (n− 2) xn−3 , (6.265)

em particular, f ′′′(0)
(6.265) com x=0

= −6
(6.261)
= a3 3! .

Assim, neste exemplo, podemos mostrar (por indu�c~ao) que

f(n)(0) = an n! , para cada n ∈ {0} ∪ N ,

isto �e,

f(x) = f(0) +
f ′(0)

1!
x+

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · ·+ f(n)(0)

n!
xn + · · · ,

para x ∈ (−1 , 1)

Como veremos, no resultado a seguir, isto ocorre em geral, a saber, temos o:

Teorema 6.7.1 Consideremos a ∈ R e suponhamos que a fun�c~ao f : (a− R , a+ R) → R
seja uma fun�c~ao dada por uma s�erie de potências, centrada em x = a, ou seja,

f(x)
.
=

∞∑
n=0

an (x− a)
n, x ∈ (a− R , a+ R) . (6.266)

Ent~ao f ∈ C∞((a− R , a+ R) ; R) com e, al�em disso, teremos:

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · ·

+
f(n)(a)

n!
(x− a)n + · · · (6.267)

ou seja, para cada n ∈ {0} ∪ N, temos que

an =
f(n)(a)

n!
. (6.268)

Demonstração:

Como a s�erie de potências (6.266) converge para x ∈ (a − R , a + R) segue que sua soma

de�ne uma fun�c~ao, f : (a − R , a + R) → R que, do item 3. da Observa�c~ao (6.5.2), segue que

a fun�c~ao f pertencer�a a C∞((a− R , a+ R) ; R).
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Al�em disso, a s�erie de potências (6.266) pode ser derivada, termo a termo, no intervalo

(a− R , a+ R), a qualquer ordem e, al�em disso, teremos:

f(x)
(6.266)
=

∞∑
n=0

an (x− a)
n ,

logo: f(a) =

∞∑
n=0

an (a− a)n = ao 0!;

f ′(x)
(6.172) com k=1

=

∞∑
n=1

an n (x− a)n−1 ,

logo: f ′(a) =

∞∑
n=1

an n (a− a)n−1 = a1 1! ;

f ′′(x) =

∞∑
n=2

an n (n− 1) (x− a)n−2 ,

logo: f ′′(a) =

∞∑
n=2

an n (n− 1) (a− a)n−2 = a2 · 2 · 1 = a2 2! ; ,

f ′′′(x) =

∞∑
n=3

an n (n− 1) (n− 2) (x− a)n−3 ,

logo: f ′′′(a) =

∞∑
n=3

an n (n− 1) (n− 2) (a− a)n−3 = a3 · 3 · 2 · 1 = a3 3! ,

e assim, por indu�c~ao, podemos mostrar que

f(k)(x) =

∞∑
n=k

an n (n− 1) (n− 2) · · · (n− k+ 1) (x− a)n−k ,

para cada k ∈ {0} ∪ N e x ∈ (a− R , a+ R).
Deixaremos como exerc��cio para o leitor a veri�ca�c~ao deste fato.

Em particular, segue que:

f(k)(a) =

∞∑
n=k

ann(n− 1)(n− 2) · · · (n− k+ 1)(a− a)n−k

= ak · k · (k− 1) · · · 3 · 2 · 1
= ak k! . (6.269)

Portanto, de (6.269), segue que

an =
f(n)(a)

n!
,

para n ∈ {0} ∪ N, comletando a demonstra�c~ao

�

Observação 6.7.1
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1. A s�erie de potências (6.266), ser�a denominada série de Taylor da função f, em

x = a.

Para cada n ∈ {0} ∪ N o n�umero real an, dado por (6.268), ser�a denominado

coeficiente de Taylor, de ordem n, da função f, em x = a ou n-ésimo coeficien-

te de Taylor da função f, em x = a .

2. Se no Teorema (6.7.1) acima,

a = 0 ,

a s�erie de potências obtida ser�a denominada série de McLaurin da função f, isto

�e, se a s�erie de potências ∞∑
n=1

an x
n (6.270)

�e converge em (−R , R), ent~ao a fun�c~ao soma da s�erie de potências (6.270), que

indicaremos por f : (−R , R) → R, ter�a a seguinte representa�c~ao:

f(x) = f(0) + f ′(0) x+ · · ·+ f(n)(0)

n!
xn + · · · , para cada x ∈ (−R , R) , (6.271)

isto �e,

an =
f(n)(0)

n!
, para cada n ∈ {0} ∪ N , (6.272)

que ser�a denominado coeficiente de MacLaurin, de ordem n, da função f ou n-

ésimo coeficiente de MacLaurin, da função f, em x = a .

3. O Teorema (6.7.1) acima nos diz que se uma fun�c~ao f : (a− R , a+ R) → R possui

representa�c~ao em s�erie de potências de (x−a) (ou seja, centrada em x = a), ent~ao

esta s�erie de potências dever�a ser a s�erie de Taylor da fun�c~ao f, em x = a, ou

seja, temos a unicidade de representa�c~ao em s�eries de potências.

4. O Teorema (6.7.1) acima não nos fornece condi�c~oes su�cientes para garantir a

existência de uma representa�c~ao em series de potências para uma dada fun�c~ao f.

Para isto tratar desta quest~ao, temos o:

Teorema 6.7.2 Suponhamos que a fun�c~ao f : (b , d) → R tem derivada de qualquer

ordem em (b , d), isto �e, f ∈ C∞((b , d)) ; R) e a ∈ (b , d).

Suponhamos que

lim
n→∞Rn(x) = 0 , (6.273)

para cada x ∈ (b , d) onde, para cada n ∈ {0} ∪ N, Rn = Rn(x) �e o resto de Taylor, de

ordem n, associado a fun�c~ao f, em x = a, ou ainda

Rn(x)
.
=
f(n+1)(cx)

(n+ 1)!
(x− a)n+1 , para cada x ∈ (a− δ , a+ δ) ⊆ (b , d) , (6.274)

para algum cx ∈ (a− δ , a+ δ), para δ > 0, su�cientemente pequeno.
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Ent~ao a fun�c~ao f pode ser representada em s�erie de Taylor em x = a, isto �e,

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · ·+ f(n)(a)

n!
(x− a)n + · · ·

=

∞∑
n=0

f(n)(a)

n!
(x− a)n , para cada x ∈ (a− δ , a+ δ) . (6.275)

Demonstração:

Observemos que, para cada n ∈ {0} ∪ N, temos que o polinômio de Taylor, de ordem n,

associado �a fun�c~ao f, em x = a, ser�a dado por (veja (6.216))

Pn(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · ·+ f(n)(a)

n!
(x− a)n

=

∞∑
n=0

f(n)(a)

n!
(x− a)n

que coincide com a soma parcial, de ordem n, da s�erie de potências

∞∑
n=0

f(n)(a)

n!
(x− a)n

ou seja, as somas parciais da s�erie de potências associada a fun�c~ao f, em (x − a), s~ao os

polinômios de Taylor, associados a fun�c~ao f, em x = a.

Mas

|f(x) − Pn(x)|
(6.215)
= |Rn(x)|

p→ 0 ,

para cada x ∈ (a− δ , a+ δ), por hip�otese.

Logo, da De�ni�c~ao (4.2.1), segue que

f(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · ·+ f(n)(a)

n!
(x− a)n + · · ·

=

∞∑
n=0

f(n)(a)

n!
(x− a)n , para cada x ∈ (a− δ , a+ δ) ,

como quer��amos demonstrar.

�

Observação 6.7.2

1. Para cada a ∈ (b , d), a convergência da s�erie de potências (6.275) acima, ser�a

uniforme em qualquer intervalo fechado e limitado contido em dentro do interior

do seu intervalo de convergência.

De fato, pois uma s�erie de potências converge uniformemente em qualquer inter-

valo limitado e fechado contido no intervalo de convergência da s�erie de potências.

2. O resultado nos d�a condi�c~oes suficientes sobre uma fun�c~ao f, para que ela possua

uma representa�c~ao em s�eries de Taylor, em x = a.
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3. Exitem fun�c~oes f ∈ C∞((b , d) ; R), cuja s�erie de Taylor (ou de McLaurin) não

converge para a fun�c~ao, como mostra o exemplo a seguir:

Considere f : R → R dada por

f(x) =

{
e
− 1

x2 , para x ̸= 0
0 , para x = 0

. (6.276)

A�rmamos que f ∈ C∞(R ; R) e que

f(n)(0) = 0 , para cada n ∈ {0{∪N . (6.277)

Observemos que para x ̸= 0, da regra da cadeia, a fun�c~ao f, tem derivada de

qualquer ordem.

O problema �e no ponto x = 0, que passaremos a estudar a seguir.

Mostremos que a fun�c~ao f �e cont��nua em x = 0.

Para isto notemos que

lim
x→0 f(x)

x ̸=0 em (6.276)
= lim

x→0 e−
1

x2

limx→0(− 1

x2
)=−∞

= 0

x=0 em (6.276)
= f(0).

Portanto, a fun�c~ao f �e cont��nua em x = 0.

Mostremos que a fun�c~ao f �e diferenci�avel em x = 0.

Para isto calculemos:

lim
h→0

x ̸=0 em (6.276)
= e

− 1

h2︷︸︸︷
f(h) −

x=0 em (6.276)
= 0︷︸︸︷
f(0)

h
= lim

h→0
e
− 1

h2

h
Exerc��cio

= 0 .

Com isto mostramos que a fun�c~ao f �e diferenci�avel em x = 0 e

f ′(0) = 0 . (6.278)

Assim, da regra da cadeia (para x ̸= 0) e de (6.278), segue que a fun�c~ao f ′ : R → R
ser�a dada

f ′(x) =


2

x3
e
− 1

x2 , para x ̸= 0

0 , para x = 0

. (6.279)

Pode-se mostrar que a fun�c~ao f ′ �e cont��nua em R.
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Como a composta de fun�c~oes cont��nuas �e uma fun�c~ao cont��nua, segue que a fun�c~ao

f ′ �e cont��nua em R \ {0}.

Deixaremos como exerc��cio para o leitor, mostrar que a f ′ �e cont��nua em x = 0.

Prosseguindo, por indu�c~ao, podemos mostrar que f ∈ C∞(R) e que

f(n)(0) = 0 , para cada n ∈ {0} ∪ N .

Deixaremos como exerc��cio para o leitor a veri�ca�c~ao deste fato.

Portanto a s�erie de McLaurin associada �a fun�c~ao f, ser�a dada por

∞∑
n=0

(6.277)
= 0

f(n)(0)︸ ︷︷ ︸
n!

xn = 0 ̸= f(x) ,

para x ̸= 0, isto �e, a s�erie de McLaurin associada �a fun�c~ao f, não converge para

a pr�opria fun�c~ao associada �a fun�c~ao f (exceto se x = 0).

Introduziremos agora a:

Definição 6.7.2 Seja I um intervalo aberto de R.
Diremos que uma fun�c~ao f : I → R �e anaĺıtica (real) em I se para cada a ∈ I,

podemos encontrar δ = δ(a) > 0, de modo que a s�erie de Taylor associada �a fun�c~ao f,

em x = a, isto �e, a s�erie de potências

∞∑
n=0

f(n)(a)

n!
(x− a)n ,

for converge para f(x), para cada x ∈ (a− δ , a+ δ), isto �e,

f(x) =

∞∑
n=0

f(n)(a)

n!
(x− a)n , para cada x ∈ (a− δ , a+ δ) . (6.280)

Uma fun�c~ao f : R → R ser�a dita função inteira se ela for anal��tica em qualquer

intervalo aberto de R.

A seguir daremos algumas fun�c~oes e suas respectivas representa�c~oes em s�erie de potências

(de McLaurin):

Exemplo 6.7.2 Do Exemplo (6.6.3), temos que a fun�c~ao f : R → R, dada por

f(x)
.
= ex , para cada x ∈ R , (6.281)

possui representa�c~ao em s�erie de McLaurin na reta R dada por

ex
(6.248)
=

∞∑
n=0

1

n!
xn , para cada x ∈ R . (6.282)
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Exemplo 6.7.3 Como consequência do Exemplo (6.6.2) e da Observa�c~ao (6.6.3), segue

que a fun�c~ao f : R → R, dada por

f(x)
.
= sen(x) , para cada x ∈ R , (6.283)

possui representa�c~ao em s�erie de McLaurin na reta R, dada por

sen(x) =
∞∑
n=0

(−1)n

(2n+ 1)!
x2 n+1 , para cada x ∈ R . (6.284)

Exemplo 6.7.4 Do Exemplo (6.6.4), segue que a fun�c~ao f : R → R, dada por

f(x)
.
= cos(x) , para cada x ∈ R , (6.285)

possui representa�c~ao em s�erie de McLaurin na reta R, dada por

cos(x)
(6.257)
=

∞∑
n=0

(−1)n

(2n)!
x2 n , para cada x ∈ R . (6.286)

Exemplo 6.7.5 De (6.175), segue que a fun�c~ao f : (−1 , 1) → R, dada por

f(x)
.
=

1

1− x
, para cada x ∈ (−1 , 1) , (6.287)

possui representa�c~ao em s�erie de McLaurin em (−1 , 1). dada por

1

1− x

(6.175)
=

∞∑
n=0

xn , para cada x ∈ (−1 , 1) . (6.288)

Exemplo 6.7.6 Da Observa�c~ao (6.4.3), segue que a fun�c~ao f : (−1 , 1) → R, dada por

f(x)
.
= arctg(x) , para cada x ∈ (−1 , 1) , (6.289)

possui representa�c~ao em s�erie de McLaurin em (−1 , 1), dada por

arctg(x)
(6.136)
=

∞∑
n=0

(−1)n

2n+ 1
x2 n+1 , para cada x ∈ (−1 , 1) . (6.290)

Exemplo 6.7.7 Do item 2. da Observa�c~ao (6.4.2), segue que a fun�c~ao f : (−1 , 1) → R,
dada por

f(x)
.
= ln(x+ 1) , para cada x ∈ (−1 , 1) , (6.291)

possui representa�c~ao em s�erie de McLaurin em (−1 , 1), dada por

ln(x+ 1)
(6.121)
=

∞∑
n=1

(−1)n−1

n
xn , para cada x ∈ (−1 , 1) . (6.292)

A seguir vamos obter uma representa�c~ao em s�erie de Taylor para:
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Exemplo 6.7.8 Considere a fun�c~ao f : R → R, dada por

f(x)
.
= sen(x) , para cada x ∈ R . (6.293)

Obter uma representa�c~ao da fun�c~ao f em s�erie de Taylor, em x =
π

6
.

Resolução:

Observemos que f ∈ C∞(R ; R).
Al�em disso, par δ > 0 �xado, para cada∣∣∣x− π

6

∣∣∣ < δ , (6.294)

temos que o resto de Taylor, de ordem n, associado �a fun�c~ao f, em x =
π

6
, satisfaz:

|Rn(x)|
(6.274)
=

∣∣∣∣f(n+1)(cx)(n+ 1)!

(
x−

π

6

)n∣∣∣∣
|f(k)(x)|≤1

≤

∣∣∣x− π

6

∣∣∣n
(n+ 1)!

(6.294)
=

δn+1

(n+ 1)!

Exemplo (6.6.2)→ 0 , quando n→ ∞ .

Ou seja,

lim
n→∞Rn(x) = 0 , para cada

∣∣∣x− π

6

∣∣∣ < δ .
Logo, do Teorema (6.7.2) acima (com a

.
=
π

6
), segue que

f(x) =

∞∑
n=0

f(n)
(π
6

)
n!

(
x−

π

6

)n
, para cada x ∈ R . (6.295)

Mas,

f(k)(x) =


sen(x) , k = 4m , para m ∈ {0} ∪ N ,
cos(x) , k = 4m+ 1 , para m ∈ {0} ∪ N ,
− sen(x) , k = 4m+ 2 , para m ∈ {0} ∪ N
− cos(x) , k = 4m+ 3 , para m ∈ {0} ∪ N

.

Logo

f(k)
(π
6

)
=



1

2
, k = 4m , para m ∈ {0} ∪ N

√
3

2
, k = 4m+ 1 , para m ∈ {0} ∪ N

−
1

2
, k = 4m+ 2 , para m ∈ {0} ∪ N

−

√
3

2
, k = 4m+ 3 , para m ∈ {0} ∪ N

. (6.296)
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Assim, substituindo (6.296) em (6.295), obteremos:

f(x) =

∞∑
n=0

f(n)
(π
6

)
n!

(
x−

π

6

)n
=
1

2
+

√
3

2 · 1!

(
x−

π

6

)
−

1

2 · 2!

(
x−

π

6

)2
−

√
3

2 · 3!

(
x−

π

6

)3
+ · · · , para cada x ∈ R .

Observemos que a convergência da s�erie de potências acima ser�a uniforme, em cada in-

tervalo [a , b] ⊆ R.
�

Observação 6.7.3

1. Todas as fun�c~oes dos Exemplos acima s~ao anal��ticas nos seus respectivos dom��nios.

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor.

2. Lembremos que se 0 ∈ (−a , a) e f : (−a , a) → R �e uma fun�c~ao ��mpar ent~ao

f(0) = 0 . (6.297)

De fato, pois

f(−x) = f(x) , para cada x ∈ (−a , a) .

Logo −x ∈ (−a , a) e assim

f(−0) = −f(0) = f(0) ,

ou seja, 2 f(0) = 0 ,

assim: f(0) = 0 ,

como a�rmamos.

2. Seja R ∈ (0 ,∞].

Observemos que se uma fun�c~ao f : (−R , R) → R possui representa�c~ao em s�erie de

McLaurin no intervalo (−R , R) e ela �e uma fun�c~ao par, isto �e,

f(−x) = f(x) , para cada x ∈ (−a , a) ,

ent~ao sua s�erie de McLaurin s�o apresentar�a potências pares (isto �e, do tipo x2 n),

ou seja, os coe�cientes das potências ��mpares (isto �e, de x2 n+1) ser~ao iguais a

zero.

Lembremos que a fun�c~ao f, em particular, dever�a ter derivada de qualquer ordem

em (−R , R).

De fato, pois se a fun�c~ao f �e uma fun�c~ao par ent~ao, da regra da cadeia, segue que

sua fun�c~ao derivada, isto �e, a fun�c~ao f ′ : (−R , R) → R, ser�a uma fun�c~ao ��mpar.



6.7. REPRESENTAC� ~AO DE FUNC� ~OES EM S�ERIES DE POTÊNCIAS 287

A veri�aca�c~ao deste dao ser�a deixado como exerc��cio para o leitor.

Logo, de (6.297), segue que

f ′(0) = 0 . (6.298)

Suponhamos que a fun�c~ao f ′ �e uma fun�c~ao ��mpar ent~ao, da regra da cadeia, segue

que sua fun�c~ao derivada segunda, isto �e, f ′′ : (−R , R) → R ser�a uma fun�c~ao par.

Logo, novamente, da regra da cadeia, segue que sua fun�c~ao derivada terceira, isto

�e, f ′′′ : (−R , R) → R ser�a uma fun�c~ao ��mpar e assim, de (6.297), deveremos ter:

f ′′′(0) = 0 . (6.299)

Prosseguindo o racioc��cio, por indu�c~ao, podemos mostrar que todas as derivadas

de ordem ��mpar, isto �e, f(2n+1), ser~ao fun�c~oes ��mpares.

Logo deveremos ter

f(2 n+1)(0) = 0 , para cada n ∈ {0} ∪ N . (6.300)

Portanto a s�erie de McLaurin associada �a fun�c~ao f (veja (6.271)) tornar-se-�a:

f(x)
(6.271)
=

∞∑
n=0

f(n)(0)

n!
xn

(6.300)
=

∞∑
n=0

f(2 n)(0)

(2n)!
x2n , para cada x ∈ (−R , R) .

3. Seja R ∈ (0 ,∞].

De modo an�alogo, se uma fun�c~ao f : (−R , R) → R possui representa�c~ao em s�erie

de McLaurin (−R , R) e ela �e uma fun�c~ao ��mpar, isto �e,

f(−x) = −f(x) , para cada x ∈ (−R , R) ,

ent~ao sua s�erie de McLaurin s�o apresentar�a potências ��mpares (isto �e, do tipo

x2 n+1), ou seja, os coe�cientes das potências pares (isto �e, do tipo x2 n) ser~ao

iguais a zero, ou seja,

f(x)
(6.271)
=

∞∑
n=0

f(n)(0)

n!
xn

=

∞∑
n=0

f(2n+1)(0)

(2n+ 1)!
x2 n+1 , para cada x ∈ (−R , R) .

Para msotrar a a�rma�c~ao acima, basta observar que se uma fun�c~ao �e ��mpar e �e

diferenci�avel em um intervalo aberto sim�etrico em rela�c~ao �a origem, ent~ao sua

derivada ser�a uma fun�c~ao par nesse intervalo aberto.

Assim, de (6.297)), segue que

f(2 n)(0) = 0 , para cada n ∈ {0} ∪ N . (6.301)
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Um resultado �nal sobre a convergência de s�eries de Taylor �e dado pelo:

Teorema 6.7.3 Sejam a ∈ R, R ∈ (0 ,∞] e a fun�c~ao f : (a−R , a+R) → R tal que a fun�c~ao

f tenha derivada de qualquer ordem em (a−R , a+R) (isto �e, f ∈ C∞((a−R , a+R) ; R)).
Al�em disso, suponhamos que existe M > 0, de modo que∣∣f(n)(x)∣∣ ≤M para todo n ∈ {0} ∪ N e x ∈ (a− R , a+ R) . (6.302)

Ent~ao a fun�c~ao f pode ser representada em s�erie de Taylor, em x = a, isto �e,

f(x) =

∞∑
n=0

f(n)(a)

n!
(x− a)n , para cada x ∈ (a− R , a+ R) . (6.303)

Demonstração:

Observemos que se

x ∈ (a− R , a+ R) ou seja, |x− a| < R , (6.304)

temos que o resto de Taylor, de ordem n, associado �a fun�c~ao f, em x = a, vai satisfazer:

|Rn(x)|
(6.274)
=

∣∣∣∣f(n+1)(c)(n+ 1)!
(x− a)n+1

∣∣∣∣
≤
∣∣f(n+1)(c)∣∣
(n+ 1)!

| |x− a|n+1

(6.303) e (6.304)

≤ M

(n+ 1)!
Rn+1

Exemplo (6.6.2)→ 0 , quando n→ ∞ .

Logo, do Teorema (6.7.2), segue que

f(x) =

∞∑
n=0

f(n)(a)

n!
(x− a)n , para cada x ∈ (a− R , a+ R) ,

como quer��amos demonstrar.

�
Apliquemos o resultado acima ao:

Exemplo 6.7.9 Considere a fun�c~ao f : R → R dada por

f(x) = sen(x) , para cada x ∈ R . (6.305)

Mostre que

f(x) =

∞∑
n=0

(−1)n

(2n+ 1)!
x2 n+1 , para cada x ∈ R . (6.306)
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Resolução:

Notemos que f ∈ C∞(R ; R) e, para cada n ∈ N, temos que

|f(n)(x)| =

{
| sen(x)| , para n �e par

| cos(x)| , para n �e ��mpar
,

ou seja, ∣∣f(n)(x)∣∣ ≤ 1 , para x ∈ R .

Portanto, pelo Teorema (6.7.3) acima, segue que s�erie de MacLurin, associada a fun�c~ao f,

converge para a fun�c~ao f, em R, ou seja, vale (6.306).

�

Exemplo 6.7.10 Considere a fun�c~ao f : R → R dada por

f(x) = cos(x) , para cada x ∈ R . (6.307)

Mostre que

f(x) =

∞∑
n=0

(−1)n

(2n)!
x2 n , para cada x ∈ R . (6.308)

Notemos que f ∈ C∞(R ; R) e, para cada n ∈ N, temos que

|f(n)(x)| =

{
| cos(x)| , para n �e par

| sen(x)| , para n �e ��mpar
,

ou seja,

|f(n)(x)| ≤ 1 , para x ∈ R .

Portanto, pelo Teorema (6.7.3) acima, segue que s�erie de MacLurin, associada a fun�c~ao f,

converge para a fun�c~ao f, em R, ou seja, vale (6.308).

�

Observação 6.7.4 Podemos mostrar que as fun�c~oes dos dois exemplos acima s~ao fun�c~oes

inteiras.

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor.

Com isto podemos resolver o:

Exemplo 6.7.11 Encontre uma s�erie num�erica convergente cuja soma �e igual a∫ 1
0

sen(x)

x
dx . (6.309)
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Resolução:

Do Exemplo (6.7.9) acima, temos que (veja (6.306)):

sen(x) =
∞∑
n=0

(−1)n

(2n+ 1)!
x2 n+1

= x−
x3

3!
−
x5

5!
+
x7

7!
+ · · ·+ (−1)n

(2n+ 1)!
x2 n+1 + · · · , para cada x ∈ R . (6.310)

Notemos que, se x ̸= 0, segue que

sen(x)

x

(6.310)
=

1

x

[ ∞∑
n=0

(−1)n

(2n+ 1)!
x2 n+1

]
∞∑
n=0

(−1)n

(2n+ 1)!
x2 n

= 1−
x2

3!
−
x4

5!
+
x6

7!
+ · · ·+ (−1)n

(2n)!
x2 n+1 + · · · . (6.311)

Observemos que em

x = 0 ,

a s�erie de potências em (6.311), converge para 1.

Observação 6.7.5 Isto nada mais �e que uma outra demonstra�c~ao do primeiro limite

fundamental, a saber, que

lim
x→0

sen(x)

x
= 1 .

Podemos mostrar que o raio de convergência da s�erie de potências (6.311) �e R = ∞.

Em particular, do Teorema (6.3.1), a s�erie de potências (6.311), converge uniformemente

em [0 , 1].

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor.

Logo podemos integrar a s�erie de potências (6.311), termo a termo, em [0 , 1], isto �e,∫ 1
0

sen(x)

x
dx

(6.311)
=

∫ 1
0

[ ∞∑
n=0

(−1)n

(2n+ 1)!
x2 n dx

]
(6.103)
=

∞∑
n=0

[∫ 1
0

(−1)n

(2n+ 1)!
x2 n dx

]
Teor. Fund. C�aclulo

=

∞∑
n=0

(−1)n

(2n+ 1)!(2n+ 1)

[
x2n+1

∣∣∣∣x=1
x=0

]

=

∞∑
n=0

(−1)n

(2n+ 1)!(2n+ 1)
, (6.312)

�nalizando o exerc��cio.

�
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Observação 6.7.6 A s�erie num�erica (6.312) �e uma s�erie alternada, que satisfaz as

condi�c~oes do Teorema da s�erie alternada (veja o Teorema (3.6.1)).

Logo podemos concluir deste resultado que (na verdade de (3.224)), para cada n ∈
{0} ∪ N, teremos ∣∣∣∣∫ 1

0

sen(x)

x
dx− Sn

∣∣∣∣ ≤ an+1 ,
onde,

Sn
.
=

n∑
k=0

(−1)k

(2 k+ 1)!(2 k+ 1)
,

isto �e, Sn �e soma parcial de ordem n da s�erie num�erica (6.312) e

an
.
=

1

(2n+ 1)!(2n+ 1)
,

ou seja, ∣∣∣∣∣
∫ 1
0

sen(x)

x
dx−

n∑
k=0

(−1)k

(2 k+ 1)!(2 k+ 1)

∣∣∣∣∣ ≤ 1

(2n+ 3)!(2 k+ 3)
. (6.313)

Deste modo podemos obter uma aproxima�c~ao para o valor da integral

∫ 1
0

sen(x)

x
dx

utlizando-se (6.313).

6.8 Série Binomial

Do Binômio de Newton, segue o:

Teorema 6.8.1 Se a, b ∈ R e m ∈ N ent~ao

(a+ b)m =

m∑
n=0

(
m

n

)
an bm−n , (6.314)

onde (
m

n

)
.
=

m!

(m− n)!n!
. (6.315)

Demonstração:

A demonstra�c~ao desse fato ser�a deixada como exerc��cio para o leitor.

�

Observação 6.8.1

1. Tomando-se

a = 1 e b = x ,
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na express~ao (6.314) acima, obteremos:

(1+ x)m
(6.314)
=

m∑
n=0

(
m

n

)
xm−n

= 1+mx+
m (m− 1)

2!
x2 +

m (m− 1) (m− 2)

3!
x3

+ · · ·+

k−fatores︷ ︸︸ ︷
m (m− 1) · · · [m− (k− 1)]

k!
xk + · · ·+ xm ,

2. A express~ao acima coincide com a soma da s�erie de McLaurin da fun�c~ao f : R → R,
dada por

f(x)
.
= (1+ x)m , para cada x ∈ R (6.316)

onde m ∈ N est�a �xado.

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor.

3. Observemos que para m ∈ R \ N �xado, a s�erie de potências

1+mx+
m (m− 1)

2!
x2 +

m (m− 1) (m− 2)

3!
x3 + · · ·

+

k−fatores︷ ︸︸ ︷
m (m− 1) · · · [m− (k− 1)]

k!
xk + · · · , (6.317)

�e a soma da s�erie de McLaurin que representa a fun�c~ao f : I ⊆ R → R, dada por

f(x)
.
= (1+ x)m , para cada x ∈ I , (6.318)

onde I �e o intervalo de convergência da s�erie de potências (6.317).

A demonstra�c~ao deste fato ser�a deixada como exerc��cio para o leitor.

Definição 6.8.1 A s�erie de potências (6.317) ser�a denominada série binomial.

Observação 6.8.2

1. Determinemos o raio de convergência da s�erie binomial (6.317).

Para isto, observamos que, para cada m ∈ R \ N �xado, e para cada n ∈ {0} ∪ N,
de�namos:

an
.
=
m (m− 1) · · · [m− (n− 1)]

n!
. (6.319)
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Com isto, teremos:

lim
n→∞

∣∣∣∣an+1an

∣∣∣∣ (6.319)= lim
n→∞

∣∣∣∣∣∣∣∣
m (m− 1) · · · (m− n+ 1) (m− n)

(n+ 1)!

m (m− 1) · · · (m− n+ 1)

n!

∣∣∣∣∣∣∣∣
= lim

n→∞
|m− n|

n+ 1

= lim
n→∞

∣∣∣∣ m

n+ 1
−

n

n+ 1

∣∣∣∣ = 1 .
Portanto, do Teorema (6.2.3) (ou de (6.48)) o raio de convergência da s�erie bino-

mial (6.317) ser�a igual a

R = 1 ,

ou seja, a s�erie binomial (6.317)

converge em (−1 , 1) e diverge em (−∞ ,−1) ∪ (1 ,∞) . (6.320)

2. Observemos que para m ∈ N �xado, a s�erie binomial (6.317), tornar-se-�a:

(1+ x)m =

∞∑
n=0

an x
n , (6.321)

onde

a1 = 1 ,

an =
m (m− 1) · · · [m− (n− 1)]

n!
, para cada n ∈ {2 , 3 , · · · ,m} ,

an = 0 para n ∈ {m+ 1 ,m+ 2 ,m+ 3 , · · · } .

Apliquemos as ideias acima ao:

Exemplo 6.8.1 Considere a fun�c~ao f : (−1 , 1) → R, dada por

f(x)
.
=

1√
1+ x

= (1+ x)−
1
2 , para cada x ∈ (−1 , 1) . (6.322)

Encontrar uma em s�erie de potências de x, que represente a fun�c~ao f em (−1 , 1).

Resolução:

Tomando-se

m = −
1

2
,
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na express~ao da s�erie binomial (6.317), obteremos:

(1+ x)−
1
2 =

∞∑
n=0

anx
n ,

onde ao = 1 ,

an =

n-fatores︷ ︸︸ ︷
−
1

2

(
−
1

2
− 1

)
· · ·
[
−
1

2
− (n− 1)

]
n!

, para cada n ∈ N . (6.323)

Ou seja,

ao = 1,

a1
n=1 em (6.323)

=
−
1

2
1!

= −
1

2
,

a2
n=2 em (6.323)

=

−
1

2

(
−
1

2
− 1

)
2!

=

3

4
2!

=
3

22 2!
,

a3
n=3 em (6.323)

=

−
1

2

(
−
1

2
− 1

)(
−
1

2
− 2

)
3!

=
−1 · 3 · 5
23 3!

,

...

an
por indu�c~ao

=
1 · 3 · 5 · · · (2n− 1) (−1)n

2n n!
, para cada n ∈ N , (6.324)

ou ainda,

1√
1+ x

= (1+ x)−
1
2

(6.324)
= 1−

1

2
x+

1 · 3
22 2!

x2 −
1 · 3 · 5
23 3!

x3 + · · ·+ 1 · 3 · 5 · · · (2n− 1) (−1)n

2n n!
xn + · · · , (6.325)

para cada x ∈ (−1 , 1).

�
Como exerc��cio para o leitor temos os
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Exerćıcio 6.8.1 Encontrar o desenvolvimnto em s�erie de McLaurin da fun�c~ao f : (−1, 1) →
R dada por

f(x)
.
=

1√
1− x2

=
(
1− x2

)− 1
2 , para cada x ∈ (−1 , 1) . (6.326)

Resolução:

Como vimos no Exemplo (6.8.1) acima (na verdade em (6.326)), a s�erie de McLaurin da

fun�c~ao g : (−1, 1) → R dada por

g(y)
.
= (1+ y)−

1
2 , para cada y ∈ (−1 , 1) ,

�e dada por:

g(y) = (1+ y)−
1
2

= 1−
1

2
y+

1 · 3
22 2!

y2 −
1 · 3 · 5
23 3!

y3 + · · ·+ 1 · 3 · 5 · · · (2n− 1) (−1)n

2n n!
yn + · · · , (6.327)

para cada y ∈ (−1 , 1).

Logo, para x ∈ (−1 , 1), temos que

y
.
= x2 ∈ (−1 , 1) ,

assim, de (6.327), teremos:

(
1− x2

)− 1
2 = 1−

1

2

(
−x2

)
+
1 · 3
22 2!

(
−x2

)2
−
1 · 3 · 5
23 3!

(
−x2

)3
+ · · ·

+
1 · 3 · 5 · · · (2n− 1) (−1)n

2n n!

(
−x2

)n
+ · · ·

= 1− (−1)
1

2
x2 +

1 · 3
22 2!

x4 − (−1)
1 · 3 · 5
23 3!

x6 + · · ·

+
1 · 3 · 5 · · · (2n− 1)(−1)n(−1)n

2n n!
x2 n + · · ·

= 1+
1

2
x2 +

1 · 3
22 2!

x4 +
1 · 3 · 5
23 3!

x6 + · · ·+ 1 · 3 · 5 · · · (2n− 1)

2n n!
x2 n + · · · , (6.328)

para cada x ∈ (−1 , 1).

�

Exerćıcio 6.8.2 Encontrar a s�erie de McLaurin que represente a fun�c~ao f : (−1, 1) → R
dada por

f(x)
.
= arcsen(x) , para cada x ∈ (−1 , 1) . (6.329)

Resolução:
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Observemos que, do C�alculo 1, sabemos que, para cada x ∈ (−1 , 1), teremos:

arcsen(x) =

∫ x
0

1√
1− t2

dt

=

∫ x
0

1(
1− t2

) 1
2

dt . (6.330)

Do Exerc��cio (6.8.1) acima, temos uma representa�c~ao da fun�c~ao do integrando de (6.330)

em s�erie de potências.

Sabemos, pelo Teorema (6.4.1), que a s�erie de potências (6.328) pode ser integrada, termo

a termo, no intervalo [0 , x], se x ∈ [0 , 1), ou em [x , 0], se x ∈ (−1 , 0).

Com isto obteremos:

arcsen(x)
(6.330)
=

∫ x
0

1(
1− t2

) 1
2

dt

(6.328)
=

∫ x
0

[ ∞∑
n=0

an t
2 n dt

]
(6.103)
=

∞∑
n=0

an

[∫ x
0

t2 n dt

]
C�alculo 1

=

∞∑
n=0

an

[
1

2n+ 1
t2 n

∣∣∣∣t=x
t=0

]

=

∞∑
n=0

an

2n+ 1
x2 n+1

= x+

∞∑
n=1

1 · 3 · 5 · · · (2n− 1)

2n n! (2n+ 1)
x2 n+1 ,

para cada x ∈ (−1 , 1), ou seja,

arcsen(x) = x+
∞∑
n=1

1 · 3 · 5 · · · (2n− 1)

2n n! (2n+ 1)
x2n+1 , para cada x ∈ (−1 , 1) . (6.331)

6.9 Resolução de PVI’s associados a EDO’s via Séries de

Potencias

A seguir daremos um m�etodo para encontrar solu�c~ao para o problema de valor inicial (PVI)

associado a uma Equa�c~ao Diferencial Ordin�aria (EDO), utilizando-se s�eries de potências.

Para o desenvolvimento do m�etodo precisamos supor que a solu�c~ao do PVI pode ser

representada em s�erie de potências.

A veri�ca�c~ao dessa condi�c~ao ser�a estudada no curso de Equa�c~oes Diferenciais Ordin�arias.

Para exempli�carmos o m�etodo, consideraremos o seguinte exemplo, que �sicamente cor-

responde ao movimento de um sistema massa-mola, com uma for�ca externa agindo no sistema:



6.9. APLICAC� ~AO DE S�ERIES DE POTÊNCIAS 297

Exemplo 6.9.1 Encontrar uma fun�c~ao x : (−R , R) → R que possua representa�c~ao em

s�erie de McLaurin, isto �e,

x(t)
.
=

∞∑
n=0

an t
n , para cada t ∈ (−R , R) (6.332)

que satisfaz o seguinte problema:
x ′′(t) + x(t) = sen(t) , para cada t ∈ (−R , R)

x(0) = 0

x ′(0) = 1

. (6.333)

Resolução:

Suponhamos que (6.332) seja a representa�c~ao da solu�c~ao do PVI (6.333), no intervalo

(−R , R), para algum R ∈ (0 ,∞].

Do Teorema (6.5.1), temos que a s�erie de potências (6.332) pode ser derivada, termo a

termo, em [a , b] ⊆ (−R, R), ou seja,

x ′(t) =
d

dt

[ ∞∑
n=0

an t
n

]
(6.153)
=

∞∑
n=1

d

dt
[an t

n]

(6.153)
=

∞∑
n=1

an n t
n−1 (6.334)

e assim:

x ′′(t) = (x ′) ′(t)
(6.134)
=

d

dt

[ ∞∑
n=1

an n t
n−1

]
(6.153)
=

∞∑
n=2

d

dt

[
an n t

n−1
]

=

∞∑
n=2

an n (n− 1) tn−2 , (6.335)

para cada t ∈ (−R , R).

Do Exemplo (6.7.9) temos que (veja (6.306)):

sen(t) =
∞∑
n=0

(−1)n

(2n+ 1)!
t2 n+1 , para cada t ∈ R . (6.336)

Logo substituindo (6.332), (6.335) e (6.336) na EDO de (6.333), obteremos, para cada

t ∈ (−R , R), a seguinte identidade:

∞∑
n=2

an n (n− 1) tn−2︸ ︷︷ ︸
.
=I

+

∞∑
n=0

an t
n =

∞∑
n=0

(−1)n

(2n+ 1)!
t2 n+1 . (6.337)
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Fazendo

m
.
= n− 2

na s�erie de potências I, (6.337) tornar-se-�a:

∞∑
m=0

am+2 (m+ 2) (m+ 1) tm +

∞∑
n=0

an t
n =

∞∑
n=0

(−1)n

(2n+ 1)!
t2n+1 ,

ou seja (fazendo m
.
= n):

∞∑
n=0

[an+2 (n+ 2) (n+ 1) + an] t
n =

∞∑
n=0

(−1)n

(2n+ 1)!
t2 n+1 , (6.338)

para cada t ∈ (−R , R).

Identi�cando os correspondentes termos nas duas s�eries de potências de (6.338), segue

que (observemos que, no lado direito da identidade acima, os coe�cientes dos termos das

potências de ordem par, s~ao todos iguais a zero), para cada n ∈ {0} ∪ N, teremos:

a2 n+2 (2n+ 2) (2n+ 1) + a2 n = 0 , (6.339)

a[(2 n+1)+2] [(2n+ 1) + 2] [(2n+ 1) + 1] + a2 n+1 =
(−1)n

(2n+ 1)!
,

ou seja,

a2 n+3 (2n+ 3) (2n+ 2) + a2 n+1 =
(−1)n

(2n+ 1)!
(6.340)

Notemos que, em (6.339), fazendo:

n = 0 : a2 · 2+ ao = 0 ,

ou seja, a2 = −
ao

2
(6.341)

n = 1 : a4 · 4 · 3+ a2 = 0 ,

ou seja, a4 = −
a2

4 · 3
(6.341)
=

ao

4 · 3 · 2
, (6.342)

n = 2 : a6 · 6 · 5+ a4 = 0 ,

ou seja, a6 = −
a4

6 · 5
(6.342)
= −

ao

6 · 5 · 4 · 3 · 2
.

Por indu�c~ao, pode-se mostrar que

a2 n =
(−1)n

(2n)!
ao , para cada n ∈ N . (6.343)

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor.
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Por outro lado, em (6.340), fazendo:

n = 0 : a3 · 3 · 2+ a1 = 1 ,

ou seja, a3 =
1− a1
3 · 2

, (6.344)

n = 1 : a5 · 5 · 4+ a3 = −
1

3!

ou seja, a5 =
−
1

3!
− a3

5 · 4
(6.344)
=

−2+ a1
5!

, (6.345)

n = 2 : a7 · 7 · 6+ a5 =
1

5!
,

ou seja, a7 =

1

5!
− a5

7 · 6
(6.345)
=

3− a1
7!

.

Por indu�c~ao, pode-se mostrar que:

a2n+1 = (−1)n+1
n− a1

(2n+ 1)!
, para cada n ∈ N . (6.346)

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor.

Deste modo obtemos os coe�cientes

an , para cada n ∈ {0} ∪ N

e portanto a fun�c~ao x = x(t), dada por (6.332), que ser�a a candidata a solu�c~ao do PVI (6.333).

Notemos que deveremos ter

0 = x(0)
t=0 em (6.332)

= ao ,

ou seja, de (6.343), segue que

a2 n = 0 , para cada n ∈ N . (6.347)

Por outro lado

1 = x ′(0)
t=0 em (6.332)

= a1

ou seja, de (6.346), segue que

a2 n+1 = (−1)n+1
n− 1

(2n+ 1)!
, para cada n ∈ N . (6.348)

Logo, substituindo (6.347) e (6.348) em (6.332), obteremos

x(t) =

∞∑
n=0

(−1)n+1 (n− 1)

(2n+ 1)!
t2 n+1 , para cada t ∈ (−R , R) , (6.349)

ser�a uma representa�c~ao em s�erie de MacLaurin da solu�c~ao do PVI (6.333) em (−R , R).

�
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Observação 6.9.1

1. Notemos que a s�erie de potências (6.349) pode ser reescrita na seguinte forma:

x(t) = t

∞∑
n=0

(−1)n+1 (n− 1)

(2n+ 1)!

(
t2
)n
, para cada t ∈ (−R , R) , (6.350)

2. Para cada n ∈ N, de�namos

An
.
=

(−1)n+1 (n− 1)

(2n+ 1)!
. (6.351)

Observemos que, que

ρ = lim
n→∞

∣∣∣∣An+1An

∣∣∣∣
(6.351)
= lim

n→∞

∣∣∣∣(−1)(n+1)+1[(n+ 1) − 1]|

[(2n+ 1) + 1]!

∣∣∣∣∣∣∣∣(−1)n+1(n− 1)

(2n+ 1)!

∣∣∣∣
= lim

n→∞

∣∣∣∣(−1)n+2 n|(2n+ 2)!

∣∣∣∣∣∣∣∣(−1)n+1 (n− 1)

(2n+ 1)!

∣∣∣∣
= lim

n→∞
n (2n+ 1)!

(2n+ 3)! (n− 1)

Exerc��cio
= 0 .

Portanto, do Teorema (6.2.3) (ou de (6.48)), segue que o raio de convergência da

s�erie de potências �e

R = ∞ ,

isto �e, a s�erie de potências converge em R, ou seja, a solu�c~ao do PVI dada pela

s�erie de potências (6.349) pertencer�a a C∞(R ; R).

3. Notemos que na solu�c~ao obtida em Exemplo (6.9.1) acima (isto �e, em (6.349)) ,

se �zermos

t→ ∞ ,

teremos que

x(t) → ∞ .

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor.

No curso Equa�c~oes Diferencias Ordin�arias ser�a desenvolvido a teoria e outros exemplos

associados a problemas do tipo acima.

6.10 Exerćıcios



Caṕıtulo 7

Séries de Fourier

7.1 Introdução

Nas pr�oximas se�c~oes estudaremos uma outra classe especial de s�eries de fun�c~oes, denominadas

séries de Fourier.

O objetivo �e representar fun�c~oes f : R → R que sejam peri�odicas (por exemplo, 2 π-

peri�odicas) na forma de uma s�erie de fun�c~oes que envolvem somente senos e cossenos.

Mais precisamente, para o caso 2π-peri�odico, corresponderia a representar uma fun�c~ao

f : R → R, que �e 2π-peri�odica "bem comportada"(que ser�a explicitado no decorrer das notas)

da seguinte forma:

f(x) =
ao

2
+

∞∑
n=1

[an cos(nx) + bn sen(nx)] , para cada x ∈ R . (7.1)

As perguntas que ser~ao respondidas estar~ao relacionadas com os seguintes t�opicos:

1. Se a fun�c~ao f puder ser representada na forma (7.1) acima, quem ser~ao os coe�cientes

an , para cada n ∈ {0} ∪ N
e os coe�cientes bn , para cada n ∈ N ? (7.2)

2. Que propriedades a fun�c~ao f deve ter para pode ser representada na forma (7.1) acima?

3. Em que sentido a s�erie de fun�c~oes (7.1) converge pontualmente, uniformemente, em

algum subconjunto de R ?

Na verdade estudaremos uma situa�c~ao um pouco mais geral, a saber, para o caso em que

a fun�c~ao f : R → R �e 2 L-peri�odica e a representa�c~ao que procuraremos, para a fun�c~ao f, ser�a

da forma

f(x) =
ao

2
+

∞∑
n=1

[
an cos

(nπ
L
x
)
+ bn sen

(nπ
L
x
)]
, para cada x ∈ I

intervalo
⊆ R . (7.3)

301
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Observação 7.1.1 Notemos que no caso em que

L = π

temos que a s�erie de fun�c~oes (7.3) tornar-se-�a a s�erie de fun�c~oes (7.1) acima.

Para motivar o estudo das s�eries de fun�c~oes do tipo (7.3), introduziremos um m�etodo

(denominado método da separação de variáveis) que, como consequência, nos levar�a a

necessidade de estudarmos fun�c~oes que possuam representa�c~ao em s�erie de fun�c~oes do tipo

(7.3).

7.2 Método das Separação de Variáveis

Para motivar os t�opicos que ser~ao desenvolvidos nas pr�oximas se�c~oes vamos introduzir um

m�etodo para encontrar solu�c~ao para uma Equa�c~ao Diferencial Parcial (EDP) importante nas

aplica�c~oes, denominada Equação do Calor.

Tal m�etodo, que pode ser aplicado a outros problemas relacionados com outras EDP's, por

exemplo, a Equa�c~ao da Onda, a Equa�c~ao de Laplace e �e denominado Método da Separação

de Variáveis.

Como dito acima, aplicaremos o m�etodo para encontrar (ou tentar encontrar) uma solu�c~ao

para o problema da distribui�c~ao de calor, em um �o �nito, de comprimento L ∈ (0 ,∞), para

os quais conhecemos a temperatura em cada ponto do mesmo, no instante inicial, ou seja,

t = 0, que est�a isolado termicamente, por exemplo, o �o est�a dentro de um isopor, e cujas

extremidades s~ao mantidas temperatuda 0oC, ao longo de todo o processo.

Vamos imaginar que o �o �e o intervalo

[0 , L] ⊆ R

e que

u = u(t , x) ,

nos fornece a temperatura no ponto x ∈ [0 , L] do �o, no instante t ∈ [0 ,∞).

0 Lx

?

Tempertatura no instante t no ponto x do �o �e: u(t , x)

Matematicamente, o problema acima corresponde a encontrar um fun�c~ao

u = u(t , x) , para cada (t , x) ∈ [0 ,∞)× [0 , L] ,

que venha satisfazer o seguinte problema:

∂u

∂t
(t , x) = α2

∂2 u

∂x2
(t , x) , para cada (t , x) ∈ (0 ,∞)× (0 , L) (7.4)

u(0 , x) = f(x) , para cada x ∈ [0 , L] , (7.5)

u(t , 0) = u(t , L) = 0 , para cada t ∈ [0 ,∞) . (7.6)
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A condi�c~ao (7.5) nos diz que, no instante inicial, isto �e, t = 0, a temperatura no ponto

x ∈ [0 , L] do �o �e igual a f(x) oC.

A condi�c~ao (7.6) nos diz que a temperatura nos extremos do �o igual a 0 oC, ao longo de

todo o processo, isto �e, para t ∈ [0 ,∞).

A Equa�c~ao Diferencial Parcial (7.4) �e denominada Equação do Calor.

A constante

α ∈ (0 ,∞) ,

est�a relacionada com a condutibilidade t�ermica do �o, isto �e, depende do material que o �o

�e feito.

No nosso caso, vamos supor que

α = 1 .

O caso geral ser�a tratado mais adiante.

O m�etodo que desenvolveremos a seguir �e simples e o pr�oprio nome j�a nos diz o que

faremos.

Observemos, inicialmente que, por quest~oes de compatibilidade, deveremos ter:

f(0)
x=0 em (7.5)

= u(0 , 0)

t=0 em (7.6)
= 0

t=0 em (7.6)
= u(0 , L)

x=L em (7.5)
= f(L) ,

ou seja, f(0) = f(L) = 0 . (7.7)

Do ponto de vista matem�atico �e razo�avel, �a primeira vista, procurarmos solu�c~oes u =

u(t, x) na seguinte classe:

u ∈ C([0 ,∞)× [0 , L] ; R) ∩ C2((0 ,∞)× (0 , L) ; R) (7.8)

o que implicar�a, por (7.5), que

f(·) (7.5)
= u(0 , ·)

(7.9)
∈ C([0 , L] ; R) , (7.9)

A EDP (7.4) �e uma equa�c~ao importante que ocorre em muitas aplica�c~oes e tamb�em �e um

exemplo importante das EDP's lineares de tipo parabólico.

Um dos primeiros a estudar, de modo sistem�atico, o problema da condu�c~ao de calor foi

Joseph B. Fourier (1768-1830).

Ele desenvolveu o m�etodo que trataremos a seguir, dito Método de Fourier.

O m�etodo consiste em procurar solu�c~oes do problema acima do tipo

u(t , x) = ψ(t)ϕ(x) , para cada (t , x) ∈ [0 ,∞)× ∈ [0 , L] , (7.10)

isto �e, solu�c~oes do tipo variáveis separadas, dai o nome do m�etodo.

Come�caremos tentando solu�c~oes do tipo acima para (7.4), (7.6) e, posteriormente, uti-

lizaremos (7.5).
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De (7.8) e (7.10) segue que

ψ ∈ C([0 ,∞) ; R) ∩ C2((0 ,∞) ; R) e ϕ ∈ C([0 , L] ; R) ∩ C2((0 , L) ; R) . (7.11)

Na verdade estaremos interessados em solu�c~oes n~ao nulas, isto �e,

u(t , x) ̸= 0 , para algum (t , x) ∈ [0 ,∞)× x ∈ [0 , L] ,

o que implicar�a que

ψ(t) , ϕ(x) ̸= 0 , para algum t ∈ [0 ,∞) e x ∈ [0 , L] . (7.12)

Supondo que as fun�c~oes ψ = ψ(t) e ϕ = ϕ(x) satisfa�cam (7.11), de (7.10), para cada

(t , x) ∈ (0 ,∞)× (0 , L), teremos:

∂u

∂t
(t , x)

(7.10)
=

∂

∂t
[ψ(t)ϕ(x)]

= ψ ′(t)ϕ(x) (7.13)

e

∂2 u

∂x2
(t , x)

(7.10)
=

∂2

∂x2
[ψ(t)ϕ(x)]

= ψ(t)ϕ ′′(x) . (7.14)

Substituindo (7.13) e (7.14) em (7.4), obteremos

ψ ′(t)ϕ(x) = ψ(t)ϕ ′′(x) , para cada (t , x) ∈ (0 ,∞)× (0 , L) .

Dividindo a igualdade acima por ψ(t)ϕ(x) (nos pontos onde ψ(t)ϕ(x) ̸= 0), obteremos

a seguinte identidade:

ψ ′(t)ϕ(x)

ψ(t)ϕ(x)
=
ψ(t)ϕ ′′(x)

ψ(t)ϕ(x)
, para cada (t , x) ∈ (0 ,∞)× (0 , L) .

Como ψ(t), ϕ(x) ̸= 0, teremos:

ψ ′(t)

ψ(t)
=
ϕ ′′(x)

ϕ(x)
, para cada (t , x) ∈ (0 ,∞)× (0 , L) . (7.15)

Notemos que o lado direito da identidade (7.15) acima, �e uma fun�c~ao que depende de x,

enquanto o lado esquerdo da mesma �e uma fun�c~ao que depende de t.

Logo ambos dever~ao ser iguais a uma constante, que chamaremos de

− λ . (7.16)

O motivo do sinal negativo ser�a justi�cado mais adiante.

Portanto, de (7.15), segue que

ψ ′(t)

ψ(t)
= −λ =

ϕ ′′(x)

ϕ(x)
, para cada (t , x) ∈ (0 ,∞)× (0 , L) ,
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que dar~ao origem a duas Equa�c~oes Diferencias Ordin�arias (EDO), a saber:

ψ ′(t) = −λψ(t) , para cada t ∈ (0 ,∞) , (7.17)

ϕ ′′(x) = −λϕ(x) , para cada x ∈ (0 , L) . (7.18)

Impondo a condi�c~ao (7.6), devermos ter:

ψ(t)ϕ(0)
t=0 em (7.10)

= u(t , 0)

(7.6)
= 0

(7.6)
= u(t , L)

t=L em (7.10)
= ψ(t)ϕ(L)

ou seja, ψ(t)ϕ(0) = ψ(t)ϕ(L) , para cada t ∈ [0 ,∞) . (7.19)

Como

ψ(t) ̸= 0 , para algum t ∈ (0 ,∞) ,

dividindo ambos os membros da identidade (7.19) por ψ(t), obteremos

ϕ(0) = 0 = ϕ(L) , (7.20)

Portanto, de (7.18), (7.20) e (7.11), segue que a fun�c~ao ϕ = ϕ(x) dever�a satisfazer o

seguinte problema de valor de contorno:

ϕ ′′(x) = −λϕ(x) , para cada x ∈ (0 , L) (7.21)

ϕ(0) = ϕ(L) = 0 (7.22)

ϕ ∈ C([0 , L] ; R) ∩ C2((0 , L) ; R) . (7.23)

Observação 7.2.1

1. Um valor λ, para os quais (7.21)-(7.22) admite solu�c~ao, n~ao nula, na classe (7.23)

ser�a dito autovalor do problema (7.21), e as solu�c~oes n~ao triviais da equa�c~ao

(7.21), na classe

eqrefE8 ser~ao ditas autofunções correspondentes ao autovalor λ.

2. Como estamos procurando solu�c~oes reais, isto �e,

u(t , x) ∈ R , para cada (t , x) ∈ [0 ,∞)× [0 , L] ,

s�o nos interessar�a o caso em que

λ ∈ R .

O item a seguir mostrar�a que λ dever�a ser um n�umero real maior do que zero,

isto �e, que

λ ∈ (0 ,∞) .
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3. A�rmamos que

λ ∈ (0 ,∞) (7.24)

(em particular, λ ∈ R).

De fato, suponhamos que a fun�c~ao ϕ = ϕ(x) satisfaz (7.21), (7.22) e (7.23), em

[0 , L], para algum λ ∈ C.

A�rmamos que existem os limites laterias

ϕ ′′(0+) e ϕ ′′(L−) .

De fato pois:

ϕ ′′(0+) = lim
x→0+ϕ ′′(x)

(7.21)
= −λ lim

x→0+ϕ(x)
(7.23)
= −λϕ(0)

(7.22)
= 0 (7.25)

ϕ ′′(L−) = lim
x→L−ϕ ′′(x)

(7.21)
= −λ lim

x→L−ϕ(x)
(7.23)
= −λϕ(L)

(7.22)
= 0 , (7.26)

ou seja, de (7.25) e (7.26), segue que

ϕ ′′(0+) = 0 = ϕ ′′(L−) . (7.27)

Por outro lado, como ϕ ∈ C([0 , L] ; R) ∩ C2((0 , L) ; R), para x ∈ (0 , L), teremos:

−λ

∫ x
0

ϕ(y)dy = lim
a→0+

[∫ x
a

−λϕ(y)dy

]
(7.21)
= lim

a→0+
[∫ x
a

ϕ ′′(y)dy

]
Teor. Fundamental do C�alculo

= lim
a→0+ [ϕ ′(x) − ϕ ′(a)]

= ϕ ′(x) −
[
lim
a→0+ϕ ′(a)

]
, (7.28)

−λ

∫L
x

ϕ(y)dy = lim
b→L−

[∫b
x

−λϕ(y)dy

]
(7.21)
= lim

b→L−
[∫b
x

ϕ ′′(y)dy

]
Teor. Fundamental do C�alculo

= lim
b→L− [ϕ ′(b) − ϕ ′(x)]

=
[
lim
b→L−ϕ ′(b)

]
− ϕ ′(x) , (7.29)
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portanto, de (7.28) e (7.29), segue que existem os limites lateriais

ϕ ′(0+)
.
= lim

a→0+ϕ ′(a) e ϕ ′(L−)
.
= lim

b→L−ϕ ′(b) . (7.30)

Logo podemos integrar as fun�c~oes ϕ ′ e ϕ ′′, no intervalo [0 , L], o que permite

fazermos os seguintes c�alculos a seguir.

Observemos que

λ

∫L
0

|ϕ(x)|2 dx
|z|2=z�z
= λ

∫L
0

ϕ(x)ϕ(x)dx

=

∫L
0

[λϕ(x)] ϕ(x)dx

(7.21)
= −

∫L
0

ϕ ′′(x)ϕ(x)dx

= − lim
a→ 0+

b→ L−

[∫b
a

ϕ ′′(x)ϕ(x)dx

]

Integra�c~ao por Partes
= − lim

a→ 0+

b→ L−

{[
ϕ ′(x)ϕ(x)

∣∣∣∣x=b
x=a

]
−

∫b
a

ϕ ′(x)ϕ ′(x)dx

}

= − lim
a→ 0+

b→ L−

[
ϕ ′(b)ϕ(b) − ϕ ′(a)ϕ(a)

]
−

∫L
0

|ϕ ′(x)|
2
dx

(7.30)
= −

ϕ ′(L−) ϕ(L)︸︷︷︸
(7.22)
= =0

− ϕ ′(0+)ϕ(0)︸︷︷︸
(7.22)
= 0

−

∫L
0

|ϕ ′(x)|2 dx

=

∫L
0

|ϕ ′(x)|2︸ ︷︷ ︸
≥0

dx ≥ 0 . (7.31)

A�rmamos que ∫L
0

|ϕ ′(x)|2 dx > 0 . (7.32)

De fato, suponhamos, por absurdo que∫L
0

|ϕ ′(x)|2 dx = 0 .

Como a fun�c~ao ϕ ′ �e cont��nua em (0 , L) (veja (7.23)), ter��amos que ter

ϕ ′(x) = 0 , para cada x ∈ (0 , L)
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ou seja , a fun�c~ao ϕ seria constante em (0 , L).

Mas a fun�c~ao ϕ �e cont��nua em [0 , L] (veja (7.23)) e, de (7.22), ter��amos

ϕ(x) = 0 , para cada x ∈ [0 , L] ,

que n~ao nos interessa pois neste caso

u(t , x) = ψ(t)ϕ(x) = 0 , para cada (t , x) ∈ [0 ,∞)× [0 , L] .

Assim

λ

∫L
0

|ϕ(x)|2︸ ︷︷ ︸
∈(0 ,∞)

dx
(7.31)
=

∫L
0

|ϕ ′(x)|2 dx
(7.32)
> 0 ,

mostrando que λ > 0 (em particular, λ ∈ R), como hav��amos a�rmado.

4. Observemos que se

λ1 , λ2 ∈ (0 ,∞)

s~ao autovalores distintos do problema (7.21)-(7.23) e a fun�c~oes

ϕ1 = ϕ(x) e ϕ2 = ϕ2(x)

s~ao suas correspondentes autofun�c~oes, ent~ao:

λ1

∫L
0

ϕ1(x)ϕ2(x)dx =

∫L
0

[λ1ϕ1(x)]ϕ2(x)dx

(7.21)
=

∫L
0

[−ϕ1
′′(x)] ϕ2(x)dx

Integra�c~ao por Partes
= −

{[
ϕ1

′(x)ϕ2(x)

∣∣∣∣x=L
x=0

]
−

∫L
0

ϕ1
′(x)ϕ2

′(x)dx

}

−


ϕ1 ′(L) ϕ2(L)︸ ︷︷ ︸

(7.22)
= 0

−ϕ1
′(0) ϕ2(0)︸ ︷︷ ︸

(7.22)
= 0

−

∫L
0

ϕ1
′(x)ϕ2

′(x)dx


(7.22)
=

∫L
0

ϕ1
′(x)ϕ2

′(x)dx

Integra�c~ao por Partes
=

[
ϕ1(x)ϕ2

′(x)

∣∣∣∣x=L
x=0

]
−

∫ L
0

ϕ1(x)ϕ2
′′(x)dx

=

ϕ1(L)︸ ︷︷ ︸
(7.22)
= 0

ϕ2
′(L) − ϕ1(0)︸ ︷︷ ︸

(7.22)
= 0

ϕ2
′(0)

−

∫L
0

ϕ1(x)ϕ2
′′(x)dx

= −

∫L
0

ϕ1(x)ϕ2
′′(x)dx

(7.21)
= −

∫L
0

ϕ1(x)
[
−λ2ϕ2(x)

]
dx

λ2∈R= λ2

∫L
0

ϕ1(x)ϕ2(x)dx ,
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ou seja,

λ1

∫L
0

ϕ1(x)ϕ2(x)dx = −λ2

∫L
0

ϕ1(x)ϕ2(x)dx,

ou ainda ,

(λ1 − λ2)

∫L
0

ϕ1(x)ϕ2(x)dx = 0 . (7.33)

Como

λ1 ̸= λ2 ,

de (7.33), segue que ∫L
0

ϕ1(x)ϕ2(x)dx = 0 ,

ou seja, as fun�c~oes ϕ1 = ϕ1(x) e ϕ2 = ϕ2(x) s~ao ortogonais, relativamente, ao

produto interno de C([0 , L] ; C) de�nido por:

(f , g) =

∫ L
0

f(x)g(x)dx ,

para f , g ∈ C([0 , L] ; C).

5. Como

λ > 0 ,

temos que a solu�c~ao geral real da EDO (7.21) ser�a dada por:

ϕ(x) = a cos
(√
λ x
)
+ b sen

(√
λ x
)
, para cada x ∈ [0 , L] , (7.34)

onde a e b s~ao constantes.

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor (visto na disci-

plina de EDO).

Mas a fun�c~ao ϕ = ϕ(x), deve satisfazer as condi�c~oes (7.22), ou seja:

a
(7.34)
= ϕ(0)

(7.22)
= 0 ,

logo , ϕ(x)
a=0 em (7.34)

= b sen
(√
λ x
)
, (7.35)

b sen
(√
λ L
)

(7.35)
= ϕ(L)

(7.22)
= 0 . (7.36)

Como

ϕ(x) ̸= 0 , para cada x ∈ [0 , L] ,

segue que deveremos ter

b ̸= 0 ,
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pois a = 0.

Assim, da identidade (7.36) acima, segue que

sen
(√
λ L
)
= 0 ,

ou seja,
√
λ L = nπ , para cada n ∈ N ,

isto �e,

λ = λn =
n2 π2

L2
, para cada n ∈ N , (7.37)

e assim, para cada n ∈ N, de (7.36) e (7.37), teremos que:

ϕ(x) = ϕn(x) = sen

√n2 π2
L2

x


= sen

(nπ
L
x
)
, para cada x ∈ [0 , L] . (7.38)

6. Resolvendo a EDO (7.17) com

λ = λn =
n2π2

L2
, para cada n ∈ N ,

obtemos, para cada n ∈ N, que

ψ(t) = ψn(t) = e
−n2π2

L2
t
, para cada t ∈ [0 ,∞) . (7.39)

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor (visto na disciplina

de EDO)

Podemos resumir tudo nisso no seguinte resultado, cuja demonstra�c~ao foi feita na Ob-

serva�c~ao (7.2.1) acima:

Proposição 7.2.1

1. Se λ ∈ C �e um autovalor a fun�c~ao ϕ = ϕ(x) �e autofun�c~ao associada a λ, para os

problemas (7.21)-(7.23), ent~ao

λ = λn =
n2 π2

L2
,

isto �e, λ = λn ∈ R+ e

ϕ(x) = ϕn(x) = sen
(nπ
L
x
)
, para cada x ∈ [0 , L] .

Al�em disso, toda solu�c~ao de (7.21)-(7.23) �e combina�c~ao linear �nita das fun�c~oes

abaixo:

ϕn(x) = sen
(nπ
L
x
)
, (7.40)

para cada x ∈ [0 , L] e n ∈ N.
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2. Toda solu�c~ao de (7.17) com

λ = λn =
n2 π2

L2
, para cada n ∈ N

�e combina�c~ao linear �nita das fun�c~oes abaixo:

ψn(t) = e
−n2 π2

L2
t
, (7.41)

para cada t ∈ [0 ,∞) e n ∈ N.

Observação 7.2.2

1. Obtivemos, agindo segundo a Observa�c~ao (7.2.1), para cada n ∈ N, solu�c~oes de

(7.4) e (7.6) da forma:

un(t , x)
(7.10)
= ψn(t)ϕn(x)

(7.40) e (7.41)
= e

−n2π2

L2
t sen

(nπ
L
x
)
, (7.42)

para cada (t , x) ∈ [0 ,∞)× [0 , L].

Tentaremos encontrar solu�c~oes do problema (7.4), (7.5), (7.6) da forma:

u(t , x) =

∞∑
n=1

bn un(t , x)

(7.42)
=

∞∑
n=1

bnψn(t)ϕn(x)

(7.40) e (7.41)
=

∞∑
n=1

bn e
−n2 π2

L2
t sen

(nπ
L
x
)
, (7.43)

para cada (t , x) ∈ [0 ,∞)× ∈ [0 , L].

Observemos que se soubermos que a s�erie de fun�c~oes (7.43) acima, pode ser deri-

vada, termo a termo, uma vez, em rela�c~ao �a t e duas vezes, em rela�c~ao �a x, em

(t , x) ∈ (0 ,∞)× (0 , L), ent~ao a fun�c~ao u = u(t , x), dada por (7.43), ir�a satisfazer

(7.4) e (7.6).

Isto ocorrer�a porque, para cada n ∈ N, a fun�c~ao

un(t, x) = ψn(t)ϕn(x) , para cada (t , x) ∈ [0 ,∞)× ∈ [0 , L] ,

tem essa propriedade, por constru�c~ao.

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor.
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Para que a fun�c~ao u = u(t , x), dada por (7.43), venha satisfazer a condi�c~ao (7.5),

deveremos ter:

f(x)
(7.5)
= u(0 , x)

t=0 em (7.43)
=

∞∑
n=1

bn e
−n2 π2

L2
0︸ ︷︷ ︸

=1

sen
(nπ
L
x
)

=

∞∑
n=1

bn sen
(nπ
L
x
)
, (7.44)

para cada x ∈ [0 , L].

Ou seja, devemos saber expressar a fun�c~ao f = f(x), como uma s�erie do tipo (7.44),

isto �e, uma série de senos.

2. Podemos aplicar as mesmas ideias acima a seguinte situa�c~ao:

Vamos imaginar que o �o do problema anterior, est�a isolado termicamente e que

suas extremidades n~ao troquem calor com o meio ambiente.

Matematicamente, o problema acima corresponde a encontrar uma fun�c~ao

u = u(t , x) , para cada (t , x) ∈ [0 ,∞)× [0 , L] ,

que satisfaz as seguintes condi�c~oes:

∂u

∂t
(t , x) =

∂2 u

∂x2
, para cada (t , x) ∈ (0 ,∞)× (0 , L) (7.45)

u(0 , x) = f(x) , para cada x ∈ [0 , L] , (7.46)

∂u

∂x
(t , 0) =

∂u

∂x
(t , L) = 0 , para cada t ∈ [0 ,∞) . (7.47)

A condi�c~ao (7.45) nos diz que a temperatura no ponto x ∈ [0 , L] do �o �e igual a

f(x)oC.

A condi�c~ao (7.45) nos diz que os extremos n~ao trocam calor com o meio ambiente.

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor.

Observemos, inicialmente que, por quest~oes de compatibilidade, deveremos ter:

f ′(0)
d
dx

(7.46) com x=0
=

∂u

∂x
(0 , 0)

(7.47), com t=0
= 0

(7.47), com t=0
=

∂u

∂x
(0 , L)

d
dx

(7.46), com x=L
= f ′(L) ,

ou seja, f ′(0) = f ′(L) = 0 . (7.48)
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Do ponto de vista aplicado �e razo�avel procurarmos solu�c~oes u = u(t, x) na seguinte

classe

u ∈ C1([0 ,∞)× [0 , L] ; R) ∩ C2((0 ,∞)× (0 , L) ; R) , (7.49)

o que implicar�a que

f
(7.46)
= u(0 , .) ∈ C1([0 , L] ; R) .

Como no caso tratado anteriormente (veja (7.10)), procuraremos solu�c~oes do pro-

blema do tipo

u(t , x)
.
= ψ(t)ϕ(x) , para cada (t , x) ∈ [0 ,∞)× [0 , L] , (7.50)

isto �e, solu�c~oes do tipo variáveis separadas.

Come�caremos tentando solu�c~oes do tipo acima para (7.45), (7.47) e posteriormente

utilizaremos (7.46).

De (7.49) e (7.50) segue que

ψ ∈ C1([0 ,∞) ; R) ∩ C2((0 ,∞) ; R) e ϕ ∈ C1([0 , L] ; R) ∩ C2((0 , L) ; R) . (7.51)

Estaremos interessados em solu�c~oes n~ao constantes, isto �e,

u(t , x) ̸= C , para cada (t , x) ∈ [0 ,∞)× [0 , L]

o que implicar�a que

ψ(t) , ϕ(x) ̸= C , para algum t ∈ [0 ,∞) e x ∈ [0 , L] , (7.52)

para qualquer C ∈ R �xado.

Supondo que as fun�c~oes ψ = ψ(t) e ϕ = ϕ(x) satisfa�cam (7.51), de (7.50), para

cada (t , x) ∈ (0 ,∞)× (0 , L), teremos:

∂u

∂t
(t , x)

(7.10)
=

∂

∂t
[ψ(t)ϕ(x)]

= ψ ′(t)ϕ(x) (7.53)

e

∂2 u

∂x2
(t , x)

(7.10)
=

∂2

∂x2
[ψ(t)ϕ(x)]

= ψ(t)ϕ ′′(x) . (7.54)

Substituindo (7.53) e (7.54) em (7.45), obteremos

ψ ′(t)ϕ(x) = ψ(t)ϕ ′′(x) , para cada (t , x) ∈ (0 ,∞)× (0 , L) .
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Dividindo a identidade acima por ψ(t)ϕ(x), nos pontos de [0 ,∞)× [0 , L] onde este

�e diferente se zero, obteremos:

ψ ′(t)ϕ(x)

ψ(t)ϕ(x)
=
ψ(t)ϕ ′′(x)

ψ(t)ϕ(x)
, para cada (t , x) ∈ (0 ,∞)× (0 , L) .

Como ψ(t) , ϕ(x) ̸= 0, em algun ponto de [0 ,∞)× [0 , L], segue que

ψ ′(t)

ψ(t)
=
ϕ ′′(x)

ϕ(x)
, para cada (t , x) ∈ (0 ,∞)× (0 , L) . (7.55)

Como no caso tratado anteriormente (veja (7.15)), o lado direito da identidade

(7.55), �e uma fun�c~ao de x, enquanto o lado esquerdo da mesma, �e uma fun�c~ao de

t.

Logo ambos os lados da identidade (7.55) dever~ao ser iguais a uma constante que

chamaremos de −λ.

O motivo do sinal negativo ser�a tratado a seguir, como no caso anterior (veja

(7.16)).

Portanto

ψ ′(t)

ψ(t)
= −λ =

ϕ ′′(x)

ϕ(x)
, para cada (t , x) ∈ (0 ,∞)× (0 , L) .

Com isto obtemos duas Equa�c~oes Diferencias Ordin�arias (EDO), a saber:

ψ ′(t) = −λψ(t) , para cada t ∈ (0 ,∞) (7.56)

ϕ ′′(x) = −λϕ(x) , para cada x ∈ (0 , L) . (7.57)

Impondo as condi�c~oes (7.47), teremos:

ψ(t)ϕ ′(0)
(7.50)
=

∂u

∂x
(t , 0)

(7.47)
= 0

(7.47)
=

∂u

∂x
(t , L)

(7.50)
= ψ(t)ϕ ′(L) , para cada t ∈ [0 ,∞) . (7.58)

Como

ψ(t) ̸= 0 ,

dividindo ambos os membros da identidade (7.58), por ψ(t), obteremos

ϕ ′(0) = 0 = ϕ ′(L) , (7.59)
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ou seja, a fun�c~ao ϕ = ϕ(x), dever�a satisfazer o seguinte problema de valor de

contorno:

ϕ ′′(x) = −λϕ(x) , para cada x ∈ (0 , L) (7.60)

ϕ ′(0) = ϕ ′(L) = 0 (7.61)

ϕ ∈ C1([0 , L) ; R) ∩ C1([0 , L] ; R) . (7.62)

3. A�rmamos que

λ ∈ (0 ,∞) (7.63)

(em particular, λ ∈ R).

De fato, suponhamos que a fun�c~ao ϕ = ϕ(x) satisfaz (7.60), (7.61), (7.62), para

algum λ ∈ C.

Observemos que existem os limites laterias:

ϕ ′′(0+) e ϕ ′′(L−) .

De fato, notemos que

ϕ ′′(0+) = lim
x→0+ϕ ′′(x)

(7.60)
= lim

x→0+ [−λϕ(x)]
= −λ lim

x→0+ϕ(x)
ϕ �e cont��nua em x = 0 - veja (7.62)

= −λϕ(0) ,

ϕ ′′(L−) = lim
x→L−ϕ ′′(x)

(7.60)
= lim

x→L− [−λϕ(x)]
= −λ lim

x→L−ϕ(x)
ϕ �e cont��nua em x = 0 - veja (7.62)

= −λϕ(L) .

Logo podemos fazer os seguintes c�alculos:

λ

∫L
0

ϕ(x)ϕ(x)dx =

∫L
0

[λϕ(x)] ϕ(x)dx

(7.60)
=

∫L
0

[−ϕ ′′(x)] ϕ(x)dx

= −

∫L
0

ϕ ′′(x)ϕ(x)dx

integra�c~ao por partes
= = −

{[
ϕ ′(x)ϕ(x)

∣∣∣∣x=L
x=0

]
−

∫b
a

ϕ ′(x)ϕ ′(x)dx

}
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= −


ϕ ′(L)︸ ︷︷ ︸

(7.61)
= 0

ϕ(L) − ϕ ′(0)︸ ︷︷ ︸
(7.61)
= 0

ϕ(0)

−

∫L
0

|ϕ ′(x)|2 dx


=

∫L
0

|ϕ ′(x)|2 dx ≥ 0 . (7.64)

A�rmamos que ∫L
0

|ϕ ′(x)|2 dx > 0 . (7.65)

De fato, suponhamos, por absurdo que∫L
0

|ϕ ′(x)|2 dx = 0 .

Como ϕ ∈ C1([0 , L] ; R) segue que

ϕ ′(x) = 0 , para cada x ∈ [0 , L] ,

ou seja, a fun�c~ao ϕ = ϕ(x) deveria ser constante, o que contraria (7.52).

Assim

λ

∫L
0

|ϕ(x)|2 dx
(7.64)
=

∫ L
0

|ϕ ′(x)|2 dx
(7.65)
> 0

implicando que

λ > 0 ,

como a�rmamos.

Em particular, λ ∈ R.

4. Observemos ainda que se

λ1 e λ2

satisfazem o problema (7.60), (7.61), (7.62) e as fun�c~oes

ϕ1 = ϕ1(x) e ϕ2 = ϕ2(x)

s~ao duas correspondentes solu�c~oes do problema acima, ent~ao:

λ1

∫L
0

ϕ1(x)ϕ2(x)dx =

∫L
0

[λ1ϕ1(x)]ϕ2(x)dx

(7.60)
=

∫L
0

[−ϕ1
′′(x)] ϕ2(x)dx

= −

∫L
0

ϕ1
′′(x)ϕ2(x)dx

integra�c~ao por partes
= −

{[
ϕ1

′(x)ϕ2(x)

∣∣∣∣x=L
x=0

]
−

∫L
0

ϕ1
′(x)ϕ2

′(x)dx

}

= −


ϕ1 ′(L)︸ ︷︷ ︸

(7.61)
= 0

ϕ2(L) − ϕ1
′(0)︸ ︷︷ ︸

(7.61)
= 0

ϕ2(0)

−

∫L
0

ϕ1
′(x)ϕ2 ′(x)dx


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=

∫ L
0

ϕ1
′(x)ϕ2 ′(x)dx

integra�c~ao por partes
=

[
ϕ1(x)ϕ2 ′(x)

∣∣∣∣x=L
x=0

]
−

∫L
0

ϕ1(x)ϕ2 ′′(x)dx

=

ϕ1(L) ϕ2 ′(L)︸ ︷︷ ︸
(7.61)
= 0

−ϕ1(0) ϕ2 ′(0)︸ ︷︷ ︸
(7.61)
= 0

−

∫ L
0

ϕ1(x)ϕ2 ′′(x)dx

= −

∫L
0

ϕ1(x)ϕ2 ′′(x)dx

(7.60)
= −

∫L
0

ϕ1(x) [−λ2ϕ2(x)]dx

λ2∈R= λ2

∫L
0

ϕ1(x)ϕ2(x)dx . (7.66)

Logo:

λ1

∫L
0

ϕ1(x)ϕ2(x)dx
(7.66)
= λ2

∫L
0

ϕ1(x)ϕ2(x)dx ,

ou seja, (λ1 − λ2)

∫L
0

ϕ1(x)ϕ2(x)dx = 0 . (7.67)

Logo, se

λ1 ̸= λ2 ,

de (7.67), segue que ∫L
0

ϕ1(x)ϕ2(x)dx = 0 ,

ou seja, a sfun�c~oes ϕ1 = ϕ1(x) e ϕ2 = ϕ2(x) s~ao ortogonais, relativamente, ao

produto interno de C([0 , L] ; C) de�nido por:

(f , g) =

∫ L
0

f(x)g(x)dx ,

para f , g ∈ C([0 , L] ; C).

5. Como

λ > 0 ,

temos que a solu�c~ao geral da EDO (7.60) �e dada por:

ϕ(x) = a cos
(√
λ x
)
+ b sen

(√
λ x
)
, para cada x ∈ [0 , L] , (7.68)

onde a e b s~ao constantes reais.
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A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor (visto na disci-

plina de EDO)

Com isto, segue que

ϕ ′(x)
(7.68)
= −a

√
λ sen

(√
λ x
)
+ b

√
λ cos

(√
λ x
)
, (7.69)

para cada x ∈ [0 , L].

Mas a fun�c~ao ϕ = ϕ(x), deve satisfazer:

b
√
λ

(7.69)
= ϕ ′(0)

(7.61)
= 0 ,

como
√
λ > 0, teremos: b = 0

ϕ(x)
b=0 em (7.68)

= a cos
(√
λ x
)

(7.70)

logo, − a
√
λ sen

(√
λ L
)

(7.69)
= ϕ ′(L)

(7.61)
= 0 . (7.71)

Como

ϕ(x) ̸= C

segue que

a ̸= 0 ,

pois b = 0.

Assim, de (7.71), segue que

sen
(√
λ L
)
= 0 ,

ou seja,
√
λ L = nπ , para cada n ∈ N

isto �e,

λ = λn =
n2 π2

L2
, para cada n ∈ N , (7.72)

e assim, de (7.70) e (7.72), segue que

ϕ(x) = ϕn(x)

= cos

√n2 π2
L2

x


= cos

(nπ
L
x
)
, para cada x ∈ [0 , L] e n ∈ N . (7.73)

6. Para cada n ∈ N, resolvendo a EDO (7.56), com (7.72), obteremos

ψ(t) = ψn(t) = e
−n2 π2

L2
t
, para cada t ∈ [0 ,∞) . (7.74)
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7. Obtivemos, para cada n ∈ N, agindo da forma acima, solu�c~oes de (7.45) e (7.47),

da forma:

un(t , x)
(7.50)
= ψn(t)ϕn(x)

(7.74) e (7.73)
= e

−n2 π2

L2
t cos

(nπ
L
x
)
, (7.75)

para cada (t , x) ∈ [0 ,∞)× [0 , L].

Utilizando o princ��pio da superposi�c~ao (in�nita), tentaremos encontrar solu�c~oes

do problema (7.45), (7.41), (7.47), da forma:

u(t , x) =
ao

2
+

∞∑
n=1

an un(t , x)

(7.50)
=

ao

2
+

∞∑
n=1

anψn(t)ϕn(x)

(7.74) e (7.73)
=

ao

2
+

∞∑
n=1

an e
−n2 π2

L2
t cos

(nπ
L
x
)
, (7.76)

para cada (t , x) ∈ [0 ,∞)× [0 , L].

Observemos que se soubermos que a s�erie de fun�c~oes acima puder se derivada

parcialmente, termo a termo, uma vez em rela�c~ao t e duas vezes, em rela�c~ao �a x,

a fun�c~ao u = u(t , x), dada por (7.76), ir�a satisfazer (7.45) e (7.47).

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor.

Finalmente, para satisfazer (7.46), deveremos ter:

f(x)
(7.46)
= u(0 , x)

(7.76)
=

ao

2
+

∞∑
n=1

an e
−n2 π2

L2
0 cos

(nπ
L
x
)

=
ao

2
+

∞∑
n=1

an cos
(nπ
L
x
)
, (7.77)

para cada x ∈ [0 , L].

Ou seja, devemos saber expressar a fun�c~ao f = f(x) como uma s�erie do tipo (7.77),

isto �e, uma série de cossenos.

8. Uma outra situa�c~ao, �e o estudo da temperatura em um �o, cujo 
uxo de calor nas

extremidades do �o seja proporcional �a temperatura nas extremidades do mesmo.

Matematicamente, em uma vers~ao simpli�cada, o problema acima corresponde a

encontrar um afun�c~ao

u = u(t , x) , para cada (t , x) ∈ [0 ,∞)× [0 , L]
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que satisfa�ca:

∂u

∂t
(t , x) =

∂2u

∂x2
(t , x) , para cada (t , x) ∈ (0 ,∞)× (0 , L) (7.78)

u(0 , x) = f(x) , para cada x ∈ [0 , L] (7.79)

∂u

∂x
(t , 0) + u(t , 0) = 0 =

∂u

∂x
(t , L) + u(t , L) , para cada t ∈ [0 ,∞) . (7.80)

Agindo como nos dois casos anteriores, ou seja, aplicando o m�etodo da separa�c~ao

de vari�aveis, podemos mostrar que, neste caso chegaremos a seguinte express~ao

para as solu�c~oes do problema (7.78), (7.79), (7.80):

u(t , x) =
ao

2
+

∞∑
n=1

e
−n2 π2

L2
t
[
an cos

(nπ
L
x
)
+ bn sen

(nπ
L
x
)]
, (7.81)

para cada (t , x) ∈ [0 ,∞)× [0 , L].

Observemos que se soubermos que a s�erie de fun�c~oes acima puder se derivada

parcialamente, termo a termo, uma vez, em rela�c~ao �a underlinet, e duas vezes,

em rela�c~ao �a x, em (0 ,∞) × (0 , L), ent~ao a fun�c~ao u = u(t , x), dada por (7.81),

ir�a satisfazer (7.78) e

eqrefE24.

Para satisfazer (7.79) deveremos ter:

f(x)
(7.79)
= u(0 , x)

t=0 em (7.81)
=

ao

2
+

∞∑
n=1

e
−n2 π2

L2
0
[
an cos

(nπ
L
x
)
+ bn sen

(nπ
L
x
)]

=
ao

2
+

∞∑
n=1

[
an cos

(nπ
L
x
)
+ bn sen

(nπ
L
x
)]
, (7.82)

para cada x ∈ [0 , L].

Ou seja, devemos saber expressar a fun�c~ao f = f(x) em uma s�erie do tipo (7.82),

isto �e, uma série de senos e cossenos tamb�em denominada de série de Fourier da

função f.

Isto nos motiva a estudar as fun�c~oes que podem ser representadas nesse tipo de

s�eries de fun�c~oes.

9. Podemos aplicar o m�etodo da separa�c~ao de vari�aveis para estudar outros tipos

de problemas, como por exemplo, o problema da corda de comprimento L > 0,

vibrante num plano com as extremidades presas.

Suponhamos que a corda acima, esteja estendida sobre o eixo dos Ox e que seus

extremos sejam

x = 0 e x = L .
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Neste caso, a fun�c~ao, que denotaremos por

u = u(t , x) ,

que nos fornece a de
ex~ao da corda, em rela�c~ao �a posi�c~ao de repouso, sendo

f = f(x) e g = g(x) , para cada x ∈ [0 , L] ,

a posi�c~ao inicial da corda e a velocidade inicial de vibra�c~ao da corda, respec-

tivamente, ent~ao, matematicamente, a fun�c~ao u = u(t , x), dever�a satisfazer ao

seguinte problema:

∂2u

∂t2
(t , x) − c2

∂2u

∂x2
(t , x) = 0 , para cada (t , x) ∈ (0 ,∞)× (0 , L) (7.83)

u(0 , x) = f(x) , para cada x ∈ [0 , L] (7.84)

∂u

∂t
(0 , x) = g(x) , para cada x ∈ [0 , L] (7.85)

u(t , 0) = u(t , L) = 0 , para cada t ∈ [0 ,∞) . (7.86)

Notemos que, (7.84) nos diz que a posi�c~ao da corda, no ponto x ∈ [0 , L], ser�a igula

a f(x), e (7.85), nos diz que e velocidade inicial, no ponto x ∈ [0 , L], ser�a igual a

g(x), respectivamente.

Al�em disso, (7.86) nos diz que as extremidades da corda est~ao �xas.

A cosntante c > 0 depende do material com que a corda �e feita.

A �gura abaixo ilustra a situa�c~ao acima.

-

6

x

u(t , x)

6

?
L

u(0 , x) = f(x)

6

?
?

∂u

∂t
(0 , x) = g(x)

A EDP (7.83) acima �e conhecida como Equação da Onda.

Essa equa�c~ao �e um exemplo importante de EDP's do tipo hiperbólico.

10. Podemos considerar outros tipos de problemas relacionados com a corda vibrante.

Eles aparecer~ao nas listas exerc��cios.
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11. Outro problema importante que podemos aplicar o m�etodo da separa�c~ao de vari�aveis

�e para encontrar uma fun�c~ao

u = u(x , y) , para cada (x , y) ∈ Ω
aberto
⊆ R2 ,

que satisfaz as seguinte condi�c~oes:

∂2u

∂x2
(x , y) +

∂2u

∂y2
(x , y) = 0 , para cada (x , y) ∈ Ω (7.87)

u|∂Ω = f (7.88)

onde ∂Ω �e a fronteira do conjunto Ω, em R2.

O problema acima �e conhecido como Problema de Dirichlet.

Tamb�em podemos considerar problema de encontrar uma fun�c~ao

u = u(x , y) , para cada (x , y) ∈ Ω ⊆ R2 ,

que satisfaz as seguinte condi�c~oes:

∂2u

∂x2
(x , y) +

∂2u

∂y2
(x , y) = 0 , para cada (x , y) ∈ Ω (7.89)

∂

∂ν
u|∂Ω = f, (7.90)

onde
∂

∂ν
denota a derivada direcional na dire�c~ao do vetor normal unit�ario exterior

da fronteira de Ω, em R2, que �e conhecido como Problema de Newman.

12. Esses dois �ultimos problemas, aparecer~ao nas listas de exerc��cios para serem tra-

tados nos casos em que

Ω = (a , b)× (c , d) ,

ou seja,o interior de um retângulo em R2, e no caso em que

Ω
.
=

{
(x , y) ; x2 + y2 ≤ R2

}
,

ou seja, o interior da circunferência de centro na origem (0 , 0) e tem raio igual

a R ∈ (0 ,∞) �xado, em R2, respectivamente.

Passaremos, a seguir, a estudar as fun�c~oes que possuem represent~ao na forma (7.82).

7.3 Os Coeficientes de Fourier

Come�caremos tentanto responder a 1.a quest~ao colocada no in��cio do cap��tulo (veja (7.2)),

isto �e, sabendo-se que a fun�c~ao f pode ser representada por uma s�erie de fun�c~oes do tipo

(7.3), como dever~ao ser os coe�cientes am e bn, para cada m ∈ {0} ∪ N e n ∈ N ?

Para isto, introduziremos uma classe de fun�c~oes que nos ajudar�a a tratar da resposta a

essa pergunta.
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Definição 7.3.1 Dado c ∈ R, diremos que uma fun�c~ao real (ou complexa) de vari�avel

real f : I\{c} → R (ou C), onde I �e um intervalo de R tem uma descontinuidade de 1.a es-

pécie em x = c, se a fun�c~ao f n~ao for cont��nua em x = c, mas existem e s~ao �nitos os

limites lateriais

lim
x→c+ f(x) e lim

x→c− f(x) .
Neste caso, denotaremos por

f (c+)
.
= lim

x→c+ f(x)
e f(c−)

.
= lim

x→c− f(x) . (7.91)

A �gura abaixo ilustra a situa�c~ao acima, para o caso da fun�c~ao ser a valores reais

(isto �e, f : I \ {c} → R).

6

-

f

c

-

�

f
(
c−

)

f
(
c+

)

Diremos que a fun�c~ao f �e cont́ınua por partes em I (ou seccionalmente cont́ınua

em I), se em cada intervalo (a , b), contido em I, a fun�c~ao f, tem, no m�aximo, um

n�umero �nito de pontos de descontinuidade de 1.a esp�ecie.

A �gura abaixo ilustra a situa�c~ao acima, para o caso da fun�c~ao ser a valores reais.

-

6

f

c1

c2

c3

O conjunto formado por todas as fun�c~oes a valores reais (respectivamente, com-

plexos), cont��nuas por partes (ou seccionalmente cont��nuas) em I ⊆ R, ser�a indicado

por

SC(I ; R) (respectivamente, SC(I ; C)) . (7.92)

Observação 7.3.1

1. Do ponto de vista geom�etrico, dizer que uma fun�c~ao f tem uma descontinuidade

de 1.a esp�ecie em x = c �e equivalente a dizer que a representa�c~ao geom�etrica do

seu gr�a�co tem um salto �nito, em x = c.
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2. Do ponto de vista geom�etrico, dizer que uma fun�c~ao f �e cont��nua por partes em I �e

equivalente a dizer que a representa�c~ao geom�etrica do seu gr�a�co tem um n�umero

�nito de saltos, em cada intervalo (a , b) contido em I.

3. Se f, g ∈ SC(I ; R) (respectivamente, SC(I ; C)) e α ∈ R (respectivamente, C) ent~ao
(f+ g) , (α f) ∈ SC(I ; ,R) (respectivamente, SC(I ; C)), isto �e,

SC(I ; R) (respectivamente, SC(I ; C))

�e um espa�co vetorial sobre R (respectivamente, C), quando munido das opera�c~oes

usuais de adi�c~ao de fun�c~oes e multiplica�c~ao de n�umero real (respectivamente,

complexo) por uma fun�c~ao.

A seguir exibiremos alguns exemplos importantes de seccionalmente cont��nuas de�nidas

em I
.
= R.

Exemplo 7.3.1 Considere a fun�c~ao f : R → R dada por

f(x)
.
=


1 , para x ∈ [0 , π)

−1 , para x ∈ [−π , 0)

f(x+ 2π) = f(x) , para cada x ∈ R
. (7.93)

Mostre que a fun�c~ao f �e seccionalmente cont��nua (ou cont��nua por partes) em R.

Resolução:

Notemos que os pontos de descontinuidade da fun�c~ao f ser~ao somente os pontos da forma

x = kπ , para cada k ∈ Z .

Observemos que, em cada um desse pontos, a fun�c~ao f tem um ponto de descotinuidade

de 1.a esp�ecie pois, para cada k ∈ Z, existem os limites laterais

lim
x→(k π)+

f(x) e lim
x→(k π)−

f(x) .

De fato, se k ∈ Z for par, isto �e,

k = 2m para algum m ∈ Z ,

teremos que:

lim
x→(k π)+

f(x) = lim
x→(2mπ)+

f(x)

x∈(2mπ ,2 (m+1)π) , logo, (7.93)
= 1

lim
x→(k π)−

f(x) = lim
x→(2mπ)−

f(x)

x∈((2m−1)π ,2mπ) , logo, (7.93)
= −1 .



7.3. OS COEFICIENTES DE FOURIER 325

Por outro lado, se k ∈ Z for ��mpar, isto �e,

k = 2m+ 1 para algum m ∈ Z ,

teremos que:

lim
x→(k π)+

f(x) = lim
x→[(2m+1)π]+

f(x)

x∈(2m+1 π ,2 (m+1)π) , logo, (7.93)
= −1 ,

lim
x→(k π)−

f(x) = lim
x→[(2m+1)π]−

f(x)

x∈((2m)π ,(2m+1)π) , logo, (7.93)
= 1 ,

mostrando que a fun�c~ao f tem um ponto de descontinuidade de 1.a esp�ecie no ponto x = kπ,

para cada k ∈ Z.
Logo em qualquer intervalo limitado [a , b], a fun�c~ao f ter�a, no m�aximo, um n�umero �nito

de pontos de descotinuidade de 1.a esp�ecie, pois em cada intevalo [a , b] existe, no m�aximo,

um n�umero �nito de pontos do tipo x = kπ, para cada k ∈ Z.
�

Observação 7.3.2 A fun�c~ao f do Exemplo (7.3.1) ser�a denominda onda quadrada.

A representa�c~ao geom�etrica do gr�a�co da fun�c~ao f do Exemplo (7.3.1) �e dada pela

�gura abaixo.

-

6

x

y

π 2π 3 π−π−2 π−3 π

Onda Quadrada

Outro exemplo importante �e:

Exemplo 7.3.2 Considere a fun�c~ao f : R → R, dada por

f(x) =

{
x , para x ∈ [−π , π)

f(x+ 2π) = f(x) , para cada x ∈ R
. (7.94)

Mostre que a fun�c~ao f �e seccionalmente cont��nua (ou cont��nua por partes) em R.
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Resolução:

Notemos que os pontos de descontinuidade da fun�c~ao f ser~ao somente os pontos da forma

x = (2 k+ 1)π , para cada k ∈ Z .

Observemos que em cada um desse pontos a fun�c~ao f tem um ponto de descotinuidade

de 1.a esp�ecie pois, para cada k ∈ Z, existem os limites laterais

lim
x→[(2 k+1)π]+

f(x) e lim
x→[(2 k+1)π]−

f(x) .

Como a fun�c~ao f �e 2π-peri�odica basta estudarmos os pontos de descontinuidade da fun�c~ao

no intervalo [−π , π], ou seja, nos pontos

−π e π .

Notemos que

se x ∈ (π , 3 π) , segue que: f(x)
(7.93)
= x− 2π (7.95)

se x ∈ (−3π ,−π) , segue que: f(x)
(7.93)
= x+ 2π (7.96)

Logo

lim
x→π+ f(x)

x∈(π ,3 π) , logo, (7.95)
= lim

x→π+(x− 2 π)
= −π ,

lim
x→π− f(x)

x∈(−π ,π) , logo, (7.93)
= lim

x→π− x
= π ,

e

lim
x→−π+

f(x)
x∈(−π ,π) , logo, (7.93)

= lim
x→−π+

x

= −π ,

lim
x→−π−

f(x)
x∈(−3 π ,−π) , logo, (7.96)

= lim
x→π−(x+ 2π)

= π ,

mostrando que a fun�c~ao f tem um ponto de descontinuidade de 1.a esp�ecie no ponto x =

(2 k+ 1)π, para cada k ∈ Z.
Logo em qualquer intervalo limitado [a , b], a fun�c~ao f ter�a, no m�aximo, um n�umero �nito

de pontos de descotinuidade de 1.a esp�ecie, pois em cada intevalo [a , b] existe, no m�aximo,

um n�umero �nito de pontos do tipo x = (2 k+ 1)π, para cada k ∈ Z.
�

Observação 7.3.3 A fun�c~ao f do Exemplo (7.3.2) ser�a denominda onda dente de serra.

A representa�c~ao geom�etrica do gr�a�co da fun�c~ao f do Exemplo (7.3.2) �e dada pela

�gura abaixo.
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-

6

x

y

π 3π−π−3 π

Onda Dente de Serra

Temos tamb�em o

Exemplo 7.3.3 Considere a fun�c~ao f : R → R, dada por

f(x)
.
=


1

x
, para x ∈ (0 ,∞)

0 , para x ∈ (−∞ , 0]

. (7.97)

Mostre que a fun�c~ao f não �e seccionalmente cont��nua (ou cont��nua por partes) em

R.

Resolução:

De fato, a fun�c~ao f tem um, �unico ponto de descont��nuidade, que �e o ponto x = 0.

Notemos que no ponto x = 0 a fun�c~ao f tem uma descotinuidade que não �e de 1.a esp�ecie,

pois n~ao existe

lim
x→0+ f(x) = lim

x→0+
1

x
(= +∞) .

A �gura abaixo nos fornece a representa�c~ao geom�etrica do gr�a�co da fun�c~ao f.

6

-
x

y

f(x)
.
= 1

x

�

Observação 7.3.4

1. Notemos que, uma fun�c~ao seccionalmente cont��nua em [a , b] não precisa, neces-

sariamente, estar de�nida em todo o intervalo [a , b] mas apenas em uma reuni~ao

�nita, do tipo
N∪
j=0

(xj , xj−1) ,
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onde xj ∈ [a , b], para cada j ∈ {1 , 2 , · · · ,N}.

Al�em disso, para cada j ∈ {1 , 2 , · · · ,N}, dever�a ser uma fun�c~ao cont��nua em

(xj , xj−1) e existirem e serem �nitso, os limites laterais

lim
x→xj+ f(x) e lim

x→xj− f(x) .

Essas observa�c~ao ser~ao importantes para incluirmos as derivadas de fun�c~oes (a

valores reais ou compexos), cujas representa�c~oes geom�etricas dos gr�a�cos s~ao for-

madas por poligonais.

A �gura abaixo ilustra a situa�c~ao acima, para o caso da fun�c~ao considerada ser

a valores reais.

-

6

a = xo x1 x2 x3 x4 b = x5

2. Observemos tamb�em que, toda fun�c~ao f secionalmente cont��nua em [a , b] �e uma

fun�c~ao limitada em [a , b], isto �e, existe M ∈ (0 ,∞) tal que

|f(x)| ≤M, para cada x ∈ [a , b] . (7.98)

De fato, como a fun�c~ao f �e secionalmente cont��nua em [a , b] segue que existem, no

m�aximo, um n�umero �nito de pontos xj ∈ [a , b], para j ∈ {0 , 1 , 2 , · · · ,N}, de modo

que a fun�c~ao f �e cont��nua em
N∪
j=1

(xj−1 , xj) e, al�em disso, existem, e s~ao �nitos, os

limites laterais

lim
x→xj+ f(x) e lim

x→xj− f(x) ,
excetuando-se, eventualmente, se xo

.
= a e xN

.
= b que, neste caso, seriam consi-

derados, nos extremos do intervalo [a , b], os limites laterias

lim
x→a+ f(x) e lim

x→b− f(x)
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serem �nitos.

Assim, para cada j ∈ {1 , 2 , · · · ,N}, a restri�c~ao da fun�c~ao f a cada um dos intervalos

abertos (xj−1 , xj), que denotaremos por

Fj
.
= f|(xj−1 ,xj)

,

pode ser estendida a uma fun�c~ao cont��nua no intervalo [xj−1, xj], de�nido-se

Fj(xj−1)
.
= lim

x→xj+ f(x) e Fj(xj+1)
.
= lim

x→xj+1
−
f(x) ,

e portanto esta ser�a uma fun�c~ao limitada nesse intervalo, implicando que a fun�c~ao

f tamb�em ser�a uma fun�c~ao limitada nesse intervalo.

Como temos somente N intervalos desse tipo, segue que a fun�c~ao f ser�a uma

fun�c~ao limitada em [a , b].

3. Notemos tamb�em que toda fun�c~ao f : I ⊆ R → R (respectivamente C) cont��nua em

I ser�a uma fun�c~ao seccionalmente cont��nua em I, ou seja,

C(I ; R) ⊆ SC(I ; R) (respectivamente, C(I ; C) ⊆ SC(I ; C)) .

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor.

4. Para �nalizar temos que toda fun�c~ao f : [a , b] → R (respectivamente, C) que �e

seccionalmente cont��nua em [a , b] �e uma fun�c~ao integr�avel em [a , b]

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor (visto em C�alculo

1).

Definição 7.3.2 Dadas as fun�c~oes f , g : [a , b] → R, seccionalmente cont��nuas em [a , b]

(isto �e, a valores reais), de�niremos

⟨f , g⟩ .=
∫b
a

f(x)g(x)dx ∈ R , (7.99)

ou seja,

⟨ · , ·⟩ : SC([a , b] ; R)× SC([a , b] ; R) → R ,

dada por (7.99).

Se as fun�c~oes f , g : [a , b] → C s~ao seccionalmente cont��nuas em [a , b] (isto �e, a

valores complexos), de�niremos

⟨f , g⟩ .=
∫b
a

f(x)g(x)dx ∈ C , (7.100)

onde, se

Z = A+ i B ∈ C ,

com A ,B ∈ R, ent~ao de�nimos

Z
.
= A− B i , (7.101)
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dito conjugado do número complexo Z, ou seja,

⟨ · , ·⟩ : SC([a , b] ; C)× SC([a , b] ; C) → C ,

dada por (7.100).

Com isto temos as seguints propriedades de < , >:

Proposição 7.3.1 A fun�c~ao ⟨ · , ·⟩ : SC([a , b] ; R)×SC([a , b] ; R) → R (respectivamente,

⟨ · , ·⟩ : SC([a , b] ; C)× SC([a , b] ; C) → C) tem as seguintes propriedades:

Se f, g, h ∈ SC([a , b] ; R) (respectivamente, SC([a , b] ; C)) e α ∈ R (respectivamente,

α ∈ C), temos que:

1. ⟨α f+ g , h⟩ = α ⟨f , h⟩+ ⟨g , h⟩ , (7.102)

2. ⟨f , g⟩ = ⟨g , f⟩ (respectivamente, ⟨f , g⟩ = ⟨g , f⟩) , (7.103)

3. ⟨f , f⟩ ≥ 0 . (7.104)

Demonstração:

Faremos a demonstra�c~ao para o caso ⟨ · , ·⟩ : SC([a , b] ; R)× SC([a , b] ; R) → R.
O caso de fun�c~oes a valores complexo, ser�a deixado como exerc��cio para o leitor.

De 1.:

Notemos que:

⟨α f+ g , h⟩ (7.99)
=

∫b
a

(α f+ g) (x)h(x)dx

=

∫b
a

[α f(x) + g(x)] h(x)dx

propriedades da integral de�nida
= α

∫b
a

f(x)h(x)dx+

∫b
a

g(x)h(x)dx

(7.99)
= α ⟨f , h⟩+ ⟨g , h⟩ ,

mostrando a validade da identidade (7.102).

De 2.:

Observmeos que

⟨f , g⟩ (7.99)
=

∫b
a

f(x)g(x)dx

propriedades de R
=

∫b
a

g(x) f(x)dx

(7.99)
= ⟨g , f⟩ ,

mostrando a validade da identidade (7.103).
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De 3.:

Notemos que:

⟨f , f⟩ (7.99)
=

∫b
a

f(x) f(x)dx

=

∫b
a

f 2(x)︸ ︷︷ ︸
≥0

dx
propriedades da integral de�nida

≥ 0 ,

mostrando a validade da identidade (7.104), completando a demonstra�c~ao do resultado.

�

Observação 7.3.5

1. A func~ao

⟨ · , ·⟩ : SC([a , b] ; R)× SC([a , b] ; R) → R ,

dada por (7.99) (respectivamente, ⟨ · , ·⟩ : SC([a , b] ; C)× SC([a , b] ; C) → C, dada
por (7.100) �e quase um produto interno no espa�co vetorial real (respectivamente,

complexo) (SC([a , b] ; R) ,+ , ·) (respectivamente, (SC([a , b] ; C) ,+ , ·)), onde + de-

nota a opera�c~ao usual de adi�c~ao de fun�c~oes e · denota a opera�c~ao multiplica�c~ao

de n�umero real (respectivamente, complexo) por uma fun�c~ao.

Para a fun�c~ao ⟨ · , ·⟩ ser um produto interno no respectivo espa�co vetorial, ela

teria que satisfazer, al�em das propriedades da Proposi�c~ao (7.3.1) (ou seja, 1., 2.

e 3.), tamb�em deveria satisfazer a seguinte propriedade:

se f ∈ SC([a , b] ; R) ent~ao ⟨f , f⟩ = 0 se, e somente se, f = O ,

(respectivamente, em SC([a , b] ; C)).

Mas essa propriedade não vale em SC([a , b] ; R) (ou em SC([a , b] ; C)), como mos-

tra o seguinte exemplo:

Considere a fun�c~ao f : [0 , 1] → R, dada por

f(x) =

{
0 , para x ∈ (0 , 1]

1 , para x = 0
. (7.105)

Observemos que f ∈ SC([0 , 1] ; R) e

⟨f , f⟩ (7.99) com a=0 e b=1
=

∫ 1
0

f 2(x)dx
Exerc��cio

= 0 ,

mas

f ̸= O .

Mesmo assim, a fun�c~ao ⟨ · , ·⟩, dada por (7.99) (respectivamente, (7.100)) desem-

penhar�a um papel inportante na determina�c~ao dos coe�cientes

am e bn , para m ∈ {0} ∪ N e n ∈ N ,

da expans~ao (7.3), associada �a fun�c~ao f, como veremos mais adiante.
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2. Notemos que a fun�c~ao ⟨ · , ·⟩, dada por (7.99) (respectivamente, (7.100)) satisfaz

a desiguladade de Cauchy-Schwartz, isto �e,

Dadas f , g ∈ SC([a , b] : ,R) (respectivamente, SC([a , b] : ,C)), segue que

| ⟨f , g⟩ | ≤ ∥f∥ ∥g∥ , (7.106)

onde

∥f∥ .=
√

⟨f , f⟩ , (7.107)

que ser�a denominada semi-norma da função f.

Faremos a demonstra�c~ao da desigualdade acima para o caso de fun�c~oes a valores

reais, isto �e, em SC([a , b] : ,R).

O caso de fun�c~oes a valores complexo, isto �e, em SC([a , b] : ,C), ser�a deixado com

exerc��cio para o leitor.

Notemos que, dada λ ∈ R \ {0}, sabemos que

0
(7.104)

≤ ⟨λ f+ g , λ f+ g⟩
(7.102)
= λ2 ⟨f , f⟩+ λ ⟨f , g⟩+ λ ⟨g , f⟩︸ ︷︷ ︸

(7.103) caso real
= ⟨f ,g⟩

+ ⟨g , g⟩

= λ2 ⟨f , f⟩+ 2 λ ⟨f , g⟩+ ⟨g , g⟩
(7.107)
= ∥f∥ 2 λ 2 + 2 ⟨f , g⟩ λ+ ∥g∥ 2 . (7.108)

Logo o trinômio do 2.o grau �a direita dever�a ser n~ao negativo, para todo λ ∈
R \ {0}, para que isto aconte�ca �e necess�ario e su�ciente, que o discriminante, que

indicaremos por ∆, do trinômio do 2.o grau �a direita dever�a ser n~ao positivo, isto

�e

∆ ≤ 0 ,

ou seja,

0 ≥ ∆ (7.108)
= 4 ⟨f , g⟩2 − 4 ∥f∥ 2 ∥g∥2 ,

que dividindo por 4, implicar�a em

| ⟨f , g⟩ | ≤ ∥f∥ ∥g∥,

como quer��amos demonstrar.

3. Como consequência de (7.106), temos que a fun�c~ao ∥ ∥ : SC([a , b] ; R) → R (res-

pectivamente, ∥ ∥ : SC([a , b] ; C) → R) satisfaz a, assim denominada, desigualda-

de triangular , ou seja:

∥f+ g∥ ≤ ∥f∥+ ∥g∥ (7.109)

onde f , g ∈ SC([a , b] ; R) (respectivamente, SC([a , b] ; C)).
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De fato, notemos que

∥f+ g∥2 (7.107)
= ⟨f+ g , f+ g⟩

(7.102)
= ⟨f , f⟩+ ⟨f , g⟩+ ⟨g , f⟩︸ ︷︷ ︸

(7.103) caso real
= ⟨f ,g⟩

+ ⟨g , g⟩

(7.107)
= ∥f∥ 2 + 2 ⟨f , g⟩+ ∥g∥ 2

≤ ∥f∥ 2 + 2 |⟨f , g⟩|+ ∥g∥ 2

(7.106))

≤ ∥f∥ 2 + 2 ∥f∥ ∥g∥+ ∥g∥ 2

= (∥f∥+ ∥g∥)2 ,

mostrando que

∥f+ g∥ ≤ ∥f∥+ ∥g∥ ,

como quer��amos demonstrar.

4. Al�em disso vale, o assim denominado Teorema de Pitágoras, ou seja, se f , g ∈
SC([a , b] ; R) (respectivamente, SC([a , b] ; C)), ent~ao

⟨f , g⟩ = 0 se, e somente se, ∥f+ g∥ 2 = ∥f∥ 2 + ∥g∥ 2 (7.110)

∥f+ g∥2 = ∥f∥2 + ∥g∥2 (7.111)

De fato, notemos que

∥f+ g∥2 (7.107)
= ⟨f+ g , g+ g⟩

(7.102)
= ⟨f , f⟩+ ⟨f , g⟩+ ⟨g , f⟩︸ ︷︷ ︸

(7.103) caso real
= ⟨f ,g⟩

+ ⟨g , g⟩

(7.107)
= ∥f∥ 2 + 2 ⟨f , g⟩+ ∥g∥ 2 (7.112)

Logo, de (7.112), segue que

⟨f , g⟩ = 0 se, e somente se, ∥f+ g∥ 2 = ∥f∥ 2 + ∥g∥ 2

como quer��amos demonstrar.

A segui exibiremos algumas propriedades gerais de integrais de�nidas de algumas classes

de fun�c~oes especiais, que ser~ao importantes no calculo dos coe�cientes

an e bn , para m ∈ {0} ∪ N e m ∈ N

na express~ao (7.3).
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Observação 7.3.6 Seja L ∈ (0 ,∞) �xado.

Observemos que:

1. Se a fun�c~ao f : R → R (respectivamente, f : R → C) �e 2 L− peri�odica, ou seja,

f(x+ 2 L) = f(x) , para cada x ∈ R , (7.113)

e �e integr�avel em [−L , L], segue que∫ 2 L
0

f(x)dx =

∫L
−L

f(x)dx . (7.114)

Em geral, para cada xo ∈ R �xado, temos:∫ xo+L
xo−L

f(x)dx =

∫L
−L

f(x)dx . (7.115)

De fato, notemos que∫L
−L

f(x)dx
propriedades da integral de�nida

=

∫ 0
−L

f(x)dx+

∫ 2 L
0

f(x)dx+

∫L
2 L

f(x)dx . (7.116)

Aplicando mudan�ca de vari�aveis na integral de�nida, obteremos:

∫L
2 L

f(x)dx =

⟨ y = x− 2 L , logo: dy = dx

assim x = y+ 2 L

x = 2 L , logo: y = 0

x = L , logo: y = −L

⟩
=

∫−L

0

f(y+ 2 L)dy

(7.113)
=

∫−L

0

f(y)dy

= −

∫ 0
−L

f(y)dy . (7.117)

Substituindo (7.117) em (7.116), obteremos∫ L
−L

f(x)dx =

∫ 0
−L

f(x)dx+

∫ 2 L
0

f(x)dx−

∫ 0
−L

f(x)dx

=

∫ 2 L
0

f(x)dx , (7.118)

mostrando a validade da identidade (7.114).

A veri�ca�c~ao da identidade (7.115) ser�a deixada como exerc��cio para o leitor.

2. Suponhamos que a fun�c~ao f : [−L , L] → R (respectivamente, f : [−L , L] → C) �e uma

fun�c~ao par, isto �e,

f(−x) = f(x) , para cada x ∈ [−L , L] . (7.119)
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e integr�avel em [−L , L].

Ent~ao teremos ∫L
−L

f(x)dx = 2

∫ L
0

f(x)dx . (7.120)

De fato, notemos que∫L
−L

f(x)dx
propriedades da integral de�nida

=

∫ 0
−L

f(x)dx+

∫ L
0

f(x)dx . (7.121)

Mas, de uma mudan�ca de vari�aveis na integral de�nida, obteremos:

∫ 0
−L

f(x)dx =

⟨ y = −x , logo : dy = −dx

assim : x = −y

x = −L , logo : y = L

x = 0 , logo : y = 0

⟩
=

∫ 0
L

f(−y) (−dy)

(7.119)
= −

∫ 0
L

f(y)dy

propriedade da integral de�nida
=

∫L
0

f(y)dy , (7.122)

ou seja, ∫ 0
−L

f(x)dx =

∫L
0

f(x)dx . (7.123)

Portanto, substituindo (7.123) em (7.121), teremos∫L
−L

f(x)dx =

∫L
0

f(x)dx+

∫L
0

f(x)dx

= 2

∫L
0

f(x)dx ,

como quer��amos demonstrar.

3. Suponhamos que a fun�c~ao f : [−L , L] → R (respectivamente, f : [−L , L] → C) seja

uma fun�c~ao ��mpar, isto �e,

f(−x) = −f(x) , para cada x ∈ [−L , L] , (7.124)

e integr�avel em [−L , L].

Ent~ao, teremos ∫L
−L

f(x)dx = 0 . (7.125)

De fato, observemos que∫L
−L

f(x)dx
propriedades da integral de�nida

=

∫ 0
−L

f(x)dx+

∫ L
0

f(x)dx . (7.126)
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Mas, de uma mudan�ca de vari�aveis na integral de�nida, obteremos:

∫ 0
−L

f(x)dx =

⟨ y = −x , logo: dy = −dx

assim: x = −y

x = −L , logo: y = L

x = 0 , logo: y = 0

⟩
=

∫ 0
L

f(−y) (−dy)

(7.124)
= −

∫L
0

f(y)dy ,

ou seja, ∫ 0
−L

f(x)dx = −

∫L
0

f(x)dx . (7.127)

Portanto, substituindo (7.127) em (7.126), teremos∫L
−L

f(x)dx = −

∫ L
0

f(x)dx+

∫L
0

f(x)dx

= 0 ,

como quer��amos demonstrar.

4. Lembremos que se f , g : [−L , L] → R (respectivamente, f , g : [−L , L] → C) s~ao

fun�c~oes pares, ent~ao as fun�coes

f · g , f+ g , f− g , e
f

g

(na �ultima, onde ela estiver de�nida) tamb�em ser~ao fun�c~oes pares.

Por outro lado, se as fun�c~ao f , g : [−L , L] → R (respectivamente, f , g : [−L , L] → C)
forem fun�c~oes ��mpares, ent~ao as fun�c~oes

f · g e
f

g

(esta �ultima, onde estiver de�nida) ser~ao fun�c~oes pares e as fun�c~oes

f+ g e f− g

ser~ao fun�c~oes ��mpares.

Por �m se a fun�c~ao f : [−L , L] → R for uma fun�c~ao par e a fun�c~ao g : [−L , L] → R
for uma fun�c~ao ��mpar (respectivamente, f , g : [−L , L] → C) ent~ao as fun�c~oes

f · g e
f

g

(esta �ultima, onde estiver de�nida) ser~ao fun�c~oes ��mpares.

As demonstra�c~oes destes fatos ser~ao deixadas como exerc��cio para o leitor.
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5. No resultado que vem a seguir, precisaremos das seguintes rela�c~oes trigonom�etricas:

cos(a+ b) = cos(a) cos(b) − sen(a) sen(b) (7.128)

cos(a− b) = cos(a) cos(b) + sen(a) sen(b) (7.129)

Notemos que, somando-se (7.128) com (7.129), obteremos

cos(a) cos(b) =
cos(a+ b) + cos(a− b)

2
(7.130)

e subtraindo-se (7.128) de (7.129), teremos

sen(a) sen(b) =
cos(a− b) − cos(a+ b)

2
. (7.131)

Al�em disso,

sen(a+ b) = sen(a) cos(b) + sen(b) cos(a) (7.132)

sen(a− b) = sen(a) cos(b) − sen(b) cos(a) (7.133)

Notemos que, somando-se (7.132) com (7.133), obteremos

sen(a) cos(b) =
sen(a+ b) + sen(a− b)

2
. (7.134)

A seguir de�niremos duas fam��lias de fun�c~oes que ser~ao muito importantes no estudo das

fun�c~oes que podem ser expandidas em uma s�erie de fun�c~oes do tipo (7.3).

Definição 7.3.3 Para cada n ∈ N, de�niremos a fun�c~ao ϕn : R → R, dada por

ϕn(x)
.
= sen

(nπ
L
x
)
, para cada x ∈ R , (7.135)

e para cada m ∈ {0} ∪ N, de�niremos a fun�c~ao ψm : R → R, dada por

ψm(x)
.
= cos

(mπ
L
x
)
, para cada x ∈ R . (7.136)

Estas duas fam��lias de fun�c~oes têm as seguintes propriedades:

Proposição 7.3.2

1. Para cada n ∈ N, as fun�c~oes ψn e ϕn s~ao
2 L

n
-peri�odicas.

Em particular, todas elas ser~ao 2 L-peri�odicas;

2. Para cada n ∈ N, a fun�c~aos ϕn �e uma fun�c~ao ��mpar;

3. Para cada m ∈ N, a fun�c~ao ψm �e uma fun�c~ao par;
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4. Valem as seguintes identidades:

⟨ψk , ψm⟩ =


0 , para k ,m ∈ {0} ∪ N , com k ̸= m
L , para k = m ∈ N
2 L , para k = m = 0

; (7.137)

⟨ψm , ϕn⟩ = 0 , para m ∈ {0} ∪ N e n ∈ N ; (7.138)

⟨ϕn , ϕj⟩ =

{
0 , para n , j ∈ N com n ̸= j
L , para n = j ∈ N

. (7.139)

Demonstração:

De 1.:

Seja n ∈ N e consideremos

T
.
=
2 L

n
. (7.140)

Para a fun�c~ao ϕn teremos:

Para cada x ∈ R, temos que

ϕn(x+ T)
(7.135)
= sen

[nπ
L

(x+ T)
]

(7.140)
= sen

[
nπ

L

(
x+

2 L

n

)]
= sen

(nπ
L
x+ 2π

)
sen �e 2 π-peri�odica

= sen
(nπ
L
x
)

(7.135)
= ϕn(x) .

Logo o n�umero real T , dado por (7.140), �e um per��odo para a fun�c~ao ϕn.

Por outro lado, notemos que se T ′ ∈ (0 ,∞) �e um outro per��odo para a fun�c~ao ϕn ent~ao,

para cada x ∈ R, deveremos ter

ϕn(x+ T
′) = ϕn(x) ,

de (7.135), teremos sen
[nπ
L

(x+ T ′)
]
= sen

(nπ
L
x
)
,

de (7.132), segue que sen
(nπ
L
x
)
cos
(nπ
L
T ′
)

+ cos
(nπ
L
x
)

sen
(nπ
L
T ′
)
= sen

(nπ
L
x
)
. (7.141)

Tomando-se

x =
L

2n
,
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na identidade (7.141), obteremos:

sen
(π
2

)
︸ ︷︷ ︸

=0

cos
(nπ
L
T ′
)
+ cos

(π
2

)
︸ ︷︷ ︸

=1

sen
(nπ
L
T ′
)
= sen

(π
2

)
︸ ︷︷ ︸

=0

,

isto �e, cos
(nπ
L
T ′
)
= 1 ,

logo,
nπ

L
T ′ = 2 kπ ,

para algum k ∈ Z.

Portanto

T ′ = k
2 L

n

(7.140)
= k T ,

para algum k ∈ Z, mostrando que T , dado por (7.140), �e o per��odo fundamental da

fun�c~ao ϕn, para cada n ∈ N.

Para a fun�c~ao ψn:

Para cada x ∈ R, temos que

ψm(x+ T)
(7.136)
= cos

[nπ
L

(x+ T)
]

(7.140)
= cos

[
nπ

L

(
x+

2 L

n

)]
= cos

(nπ
L
x+ 2π

)
cos �e 2π-peri�odica

= cos
(nπ
L
x
)

(7.136)
= ψn(x) .

Por outro lado se T ′ ∈ (0 ,∞) �e um outro per��odo para a fun�c~ao ψn ent~ao, para cada

x ∈ R, deveremos ter

ψn(x+ T
′) = ψn(x) ,

de (7.136), teremos cos
[nπ
L

(x+ T ′)
]
= cos

(nπ
L
x
)
,

de (7.128), segue que cos
(nπ
L
x
)
cos
(nπ
L
T ′
)

+ sen
(nπ
L
x
)

sen
(nπ
L
T ′
)
= cos

(nπ
L
x
)
. (7.142)

Tomando-se

x =
L

n

na identidade (7.142), obteremos:

cos(π)︸ ︷︷ ︸
=−1

cos
(nπ
L
T ′
)
+ sen(π)︸ ︷︷ ︸

=0

sen
(nπ
L
T ′
)
= cos(π)︸ ︷︷ ︸

=−1

,

isto �e, cos
(nπ
L
T ′
)
= 1 ,

logo,
nπ

L
T ′ = 2 kπ ,
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para algum k ∈ Z.

Portanto

T ′ = k
2 L

n

(7.140)
= k T ,

mostrando que T , dado por (7.140), �e o per��odo fundamental da fun�c~ao ψn, para cada

n ∈ N, completando a demonstra�c~ao do item 1. .

De 2.:

Observemos que, para cada n ∈ N e x ∈ R, temos que:

ϕn(−x)
(7.135)
= sen

[nπ
L

(−x)
]

sen �e uma fun�c~ao ��mpar
= − sen

(nπ
L
x
)

(7.135)
= −ϕn(x) ,

mostrando que a fun�c~ao ϕn �e uma fun�c~ao ��mpar, completando a demonstra�c~ao do item

2. .

De 3.:

Observemos que, para cada m ∈ N e x ∈ R, temos que:

ψm(−x)
(7.136)
= cos

[mπ
L

(−x)
]

cos �e uma fun�c~ao par
= cos

(mπ
L
x
)

(7.136)
= ψm(x) ,

mostrando que a fun�c~ao ψm �e uma fun�c~ao par, completando a demonstra�c~ao do item

3. .

De 4.:

Notemos que, para k ,m ∈ N, teremos:

⟨ψk , ψm⟩
(7.99)
=

∫L
−L

ψk(x)ψm(x)dx

(7.136)
=

∫ L
−L

cos

(
kπ

L
x

)
cos
(mπ
L
x
)
dx

(7.130)
=

∫ L
−L

1

2

[
cos

(
kπ

L
x+

mπ

L
x

)
+ cos

(
kπ

L
x−

mπ

L
x

)]
dx

=
1

2

∫L
−L

{
cos

[
(k+m)π

L
x

]
+ cos

[
(k−m)π

L
x

]}
dx . (7.143)
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Logo, se k ̸= m, segue que:

⟨ψk , ψm⟩
(7.143)
=

1

2

∫L
−L

{
cos

[
(k+m)π

L
x

]
+ cos

[
(k−m)π

L
x

]}
dx

Teorema Fundamental do C�alculo
=

1

2

{
sen

[
(k+m)π

L
x

]
L

(k+m)π

∣∣∣∣L
−L

+ sen

[
(k−m)π

L
x

]
L

(k−m)π

∣∣∣∣x=L
x=−L

}

=
1

2

{
L

(k+m)π
{ sen[(n+m)π] − sen[(k+m) (−π)]}

+
L

(k−m)π
{ sen[(k−m)π] − sen[(k−m) (−π)]}

}
= 0 . (7.144)

Se k = m ∈ N, teremos:

⟨ψm , ψm⟩
(7.143)
=

1

2

∫L
−L


cos

[
(k+m)π

L
x

]
+

=1︷ ︸︸ ︷
cos


=0︷ ︸︸ ︷

(k− k) π

L
x



dx

=
1

2

∫L
−L

[
cos

(
2nπ

L
x

)
+ 1

]
dx

Teorema Fundamental do C�alculo
=

1

2

[
sen

(
2mπ

L
x

)
L

2mπ
+ x

] ∣∣∣∣x=L
x=−L

=
1

2

 L

2mπ
sen(2mπ)︸ ︷︷ ︸

=0

+L−

 L

2mπ
sen(−2mπ)︸ ︷︷ ︸

=0

−L


= L .

Se k = m = 0, teremos:

⟨ψo , ψo⟩
(7.136)
=

1

2

∫ L
−L

2 dx

= 2 L ,

com isto completamos a demonstra�c~ao de (7.137).
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Por outro lado se n , j ∈ N, teremos:

⟨ϕn , ϕj⟩
(7.99)
=

∫L
−L

ϕn(x)ϕj(x)dx

(7.135)
=

1

2

∫L
−L

[
sen
(nπ
L
x
)

sen

(
j π

L
x

)]
dx

(7.131)
=

1

2

∫L
−L

{
cos

[
(n− j)π

L
x

]
− cos

[
(n+ j)π

L
x

]}
. (7.145)

Se j = n ∈ N, teremos:

⟨ϕn , ϕn⟩
(7.145)
=

1

2

∫ L
−L


cos


=0︷ ︸︸ ︷

(n− n) π

L
x


︸ ︷︷ ︸

=1

− cos

[
(n+ n)π

L
x

]


=
1

2

∫L
−L

{
1− cos

[
(n+ n)π

L
x

]}
Teorema Fundamental do C�alculo

=
1

2

[
x− cos

(
2nπ

L
x

)
L

2nπ

] ∣∣∣∣x=L
x−L

=
1

2

{[
L− cos

(
2nπ

L
L

)
L

2nπ

]
−

[
(−L) − cos

(
2nπ

(−L)

)
L

2nπ

]}

=
1

2


[
L− cos (2nπ)

L

2nπ

]
−

−L− cos (−2nπ)︸ ︷︷ ︸
=cos(2 nπ)

L

2nπ




=
1

2


L− cos (2nπ)︸ ︷︷ ︸

=1

L

2nπ

−

−L− cos (−2nπ)︸ ︷︷ ︸
=1

L

2nπ


=
1

2

{[
L−

L

2nπ

]
−

[
−L−

L

2nπ

]}
= L ,

mostrando (7.139).

Por outro lado j ̸= n, teremos:

⟨ϕn , ϕj⟩
(7.145)
=

1

2

∫L
−L

{
cos

[
(n− j)π

L
x

]
− cos

[
(n+ j)π

L
x

]}
= 0 .

A veri�ca�c~ao da �ultima igualdade acima �e semelhante ao que �zemos em (7.144) e assim,

deixaremos os detalhes como exerc��cio para o leitor.
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Al�em disso, se n ∈ {0} ∪N e m ∈ N, segue que

⟨ψn , ϕm⟩
(7.99)
=

∫L
−L

ψn(x)ϕm(x)dx

(7.136) e (7.135)
=

∫L
−L

cos
(nπ
L
x
)

sen
(mπ
L
x
)
dx

(7.134)
=

∫ L
−L

1

2

[
sen
(nπ
L
x+

mπ

L
x
)
+ sen

(nπ
L
x−

mπ

L
x
)]
dx

=
1

2

∫L
−L

{
sen

[
(n+m)π

L
x

]
+ sen

[
(n−m)π

L
x

]}
dx . (7.146)

Se n ̸= m, segue que:

⟨ψn , ϕm⟩
(7.146)
=

1

2

∫L
−L

{
sen

[
(n+m)π

L
x

]
+ sen

[
(n−m)π

L
x

]}
dx

Teorema Fundamental do C�alculo
=

1

2

{
− cos

[
(n+m)π

L
x

]
L

(n+m)π

∣∣∣∣x=L
x=−L

− cos

[
(n−m)π

L
x

]
L

(n−m)π

∣∣∣∣x=L
x=−L

}
Exerc��cio

= 0

e, �nalmente, para n = m ∈ N, teremos:

⟨ψn , ϕn⟩
(7.146)
=

∫L
−L


sen

[
(n+ n)π

L
x

]
+

=0︷ ︸︸ ︷
sen


=0︷ ︸︸ ︷

(n− n) π

L
x



dx

(7.146)
=

1

2

∫L
−L

sen

(
2nπ

L
x

)
dx

Teorema Fundamental do C�alculo
= −

1

2
cos

(
2nπ

L
x

)
L

2nπ

∣∣∣∣x=L
x=−L

(7.147)

Exerc��cio
= 0 ,

mostrando (7.138) e completando do item 4. e do resultado.

�

Observação 7.3.7

1. Suponhamos que a fun�c~ao f : [−L , L] → R pode ser representada por uma s�erie de

fun�c~oes do tipo

f(x) =
ao

2
+

∞∑
n=1

[
an cos

(nπ
L
x
)
+ bn sen

(nπ
L
x
)]
, (7.148)
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para cada x ∈ [−L , L], que, de (7.136) e (7.135), �e o mesmo que escrever

f(x) =
ao

2
ψo(x) +

∞∑
n=1

[anψn(x) + bnϕn(x)] . (7.149)

Formalmente, notemos que:

⟨f , ψo⟩
(7.149)
=

⟨
ao

2
ψo +

∞∑
n=1

[anψn + bnϕn] , ψo

⟩

todo cuidado!
=

ao

2
⟨ψo , ψo⟩︸ ︷︷ ︸
(7.137)

= 2 L

+

∞∑
n=1

an ⟨ψn , ψo⟩︸ ︷︷ ︸
(7.137)

= 0

+bn ⟨ϕn , ψo⟩︸ ︷︷ ︸
(7.138)

= 0


=
ao

2
2 L

= ao L , (7.150)

ou seja,

ao
(7.150)
=

1

L
⟨f , ψo⟩

(7.99)
=

1

L

∫ L
−L

f(x)ψo(x)dx

=
1

L

∫L
−L

f(x) .dx (7.151)

De modo an�alogo, se m ̸= 0, temos:

⟨f , ψm⟩ =

⟨
ao

2
ψo +

∞∑
n=1

[anψn + bnϕn] , ψm

⟩

todo cuidado!
=

ao

2
⟨ψo , ψm⟩︸ ︷︷ ︸

(7.137) com m̸=0
= 0

+

∞∑
n=1


an ⟨ψn , ψm⟩︸ ︷︷ ︸

(7.137) com n ,m ̸=0
=


0 , se n ̸= m
L , se n = m

+bn ⟨ϕn , ψm⟩︸ ︷︷ ︸
(7.138)

= 0


= am L , (7.152)

ou seja, para m ∈ N, teremos

am
(7.152)
=

1

L
⟨f , ψm⟩

(7.99)
=

1

L

∫L
−L

f(x)ψm(x)dx

(7.136)
=

1

L

∫ L
−L

f(x) cos
(mπ
L
x
)
dx . (7.153)
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Finalmente, para k ∈ N, temos:

⟨f , ϕk⟩ =

⟨
ao

2
ψo +

∞∑
n=1

[anψn + bnϕn] , ϕk

⟩
todo cuidado!

=
ao

2
⟨ψo , ϕk⟩︸ ︷︷ ︸

(7.138)
= 0

+

∞∑
n=1

[an ⟨ψn , ϕk⟩︸ ︷︷ ︸
(7.138)

= 0

+bn ⟨ϕn , ϕk⟩︸ ︷︷ ︸
(7.139)

=


0 , se n ̸= k
L , se n = k

]

= bk L , (7.154)

ou seja, para k ∈ N, teremos

bk
(7.154)
=

1

L
⟨f , ϕk⟩

(7.99)
=

1

L

∫L
−L

f(x)ϕk(x)dx

(7.135)
=

1

L

∫L
−L

f(x) sen

(
kπ

L
x

)
dx . (7.155)

Conclus~ao, de (7.150), (7.153) e (7.155), segue que os coe�cientes da s�erie de

fun�c~oes (7.148) (ou, equivalentemente, da s�erie de fun�c~oes (7.149)) ser~ao dados

por:

am
.
=
1

L

∫L
−L

f(x) cos
(mπ
L
x
)
dx , para cada m ∈ {0} ∪ N (7.156)

e

bk
.
=
1

L

∫L
−L

f(x) sen

(
kπ

L
x

)
dx , para cada k ∈ N . (7.157)

2. A obten�c~ao de (7.156) e (7.157) foi formal, isto �e, sem o rigor matem�atico ne-

cess�ario com rela�c~ao a convergência das s�eries de fun�c~oes envolvidas.

Na verdade precisar��amos justi�car o "todo cuidado!" nos c�aculos do teim 1

acima.

3. Dada uma fun�c~ao f : [−L , L] → R que seja integr�avel em [−L , L], segue que os

coe�cientes (7.156) e (7.157) existem, e podemos considerar a s�erie de fun�c~oes,

que denotaremos por S[f]:

S[f](x)
.
=
ao

2
+

∞∑
n=1

[
an cos

(nπ
L
x
)
+ bn sen

(nπ
L
x
)]
, (7.158)

ou ainda,

S[f]
.
=
ao

2
ψo +

∞∑
n=1

[anψn + bnϕn] , (7.159)
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onde, para cada m ∈ {0} ∪ N, o coe�ciente am ser�a dado por (7.156) e, para cada

k ∈ N, o coe�ciente bk ser�a dado por (7.157), e assim podemos pensar em estudar

a convergência da serie de fun�c~oes (7.158) (ou, equivalentemente, da s�erie de

fun�c~oes (7.159)).

A f�ormulas (7.156) e (7.157), que nos fornecem express~oes para os coe�cientes na

s�erie de fun�c~oes (7.158) (ou, equiavelentemente, da s�erie de fun�c~oes (7.159)), s~ao

denominadas fórmulas de Euler-Fourier.

Com isto podemos introduzir a:

Definição 7.3.4 Sejam L > 0 �xado e f : [−L , L] → R uma fun�c~ao integr�avel em [−L , L].

A s�erie de fun�c~oes (7.158) (ou, equivalentemente, da s�erie de fun�c~oes (7.159)), onde

os coe�cientes am e bk s~ao dados por (7.156) e (7.157), respectivamente, ser�a denomi-

nada série de Fourier associada à fun-ção f.

Os coe�cientes am e bk, dados por (7.156) e (7.157), respectivamente, ser~ao ditos

coeficientes de Fourier associados à função f.

A seguir faremos algumas observ�c~oes sobre as considera�c~oes acima.

Observação 7.3.8

1. Se f ∈ SC([−L , L] ; R), logo ser�a uma fun�c~ao integr�avel em [−L , L].

Portanto, existem os coe�cientes de Fourier associados a fun�c~ao f, ou seja, os

coe�cientes am e bk, para cada m ∈ {0} ∪ N e k ∈ N, dados por (7.156) e (7.157),

respectivamente.

2. Do item 1. da Proposi�c~ao (7.3.2), segue que cada termo da s�erie de fun�c~oes (7.158)

(ou, equivalentemente, da s�erie de fun�c~oes (7.159)) ser�a uma fun�c~ao 2 L-peri�odica.

Logo se a s�erie de fun�c~oes (7.158) (ou, equivalentemente, da s�erie de fun�c~oes

(7.159)) for convergente, ela ser�a convergente para uma fun�c~ao que dever�a ser

2 L-peri�odica em R.

Em particular, se a fun�c~ao f ∈ SC([−L , L] ; R) tem a propriedade

f(−L) ̸= f(L) , (7.160)

n~ao poderemos esperar que a s�erie de Fourier associada �a fun�c~ao f, ou seja, a

s�erie de fun�c~oes (7.158) (ou, equivalentemente, a s�erie de fun�c~oes (7.159)), venha

a convergir para a fun�c~ao f, em [−L , L], pois a f deveria possuir uma extens~ao

2 L-peri�odica �a R, que denotatemos por F : R → R, e esta deveria satisfazer

f(−L)
F �e extens~ao de f

= F(−L)

F �e 2 L-peri�odica
= F(−L+ 2L)

= F(L)

F �e extens~ao de f
= = f(L) ,
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contrariando (7.160).

Portanto, �e natural estudarmos as s�eries de Fourier associadas �a fun�c~oes que est~ao

de�nidas em R e que sejam 2 L-peri�odicas, ou ainda, se a fun�c~ao f : [−L , L] → R,
ent~ao deveremos ter

f(−L) = f(L) (7.161)

e assim, se a s�erie de Fourier associada �a fun�c~ao f, ou seja, S[f], for convergente

para a fun�c~ao f, em [−L , L], ent~ao a s�erie de fun�c~oes S[f] ir�a convergir para uma

fun�c~ao F : R → R, de modo que a fun�c~ao F ser�a a extens~ao 2 L-peri�odica da fun�c~ao

f �a R.

3. Observemos que se a fun�c~ao f : [−L , L] → R �e uma fun�c~ao integr�avel em [−L , L] e

for uma função par, ent~ao, para cada m ∈ {0} ∪ N, temos que a fun�c~ao

x 7→ f(x) cos
(mπ
L
x
)

tamb�em ser�a uma fun�c~ao par e, para cada k ∈ N, a fun�c~ao

x 7→ f(x) sen

(
kπ

L
x

)
ser�a uma fun�c~ao ��mpar.

Logo, dos itens 2. e 3. da Observa�c~ao (7.3.6), para cada m ∈ {0} ∪ N, teremos:

am
(7.156)
=

1

L

∫L
−L

f(x) cos
(mπ
L
x
)

︸ ︷︷ ︸
fun�c~ao par

dx

(7.120)
=

2

L

∫L
0

f(x) cos
(mπ
L
x
)
dx (7.162)

e, para cada k ∈ N, segue que

bk
(7.157)
=

1

L

∫L
−L

f(x) sen

(
kπ

L
x

)
︸ ︷︷ ︸

fun�c~ao ��mpar

dx

(7.125)
= 0 . (7.163)

4. Observemos que se a fun�c~ao f : [−L , L] → R �e uma fun�c~ao integr�avel em [−L , L] e

for uma função ı́mpar, ent~ao, para cada m ∈ {0} ∪ N, a fun�c~ao

x 7→ f(x) cos
(mπ
L
x
)

ser�a uma fun�c~ao ��mpar e, para cada k ∈ N, a fun�c~ao

x 7→ f(x) sen

(
kπ

L
x

)
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ser�a uma fun�c~ao par.

Logo, dos itens 2. e 3. da Observa�c~ao (7.3.6), para cada m ∈ {0} ∪ N, teremos:

am
(7.156)
=

1

L

∫L
−L

f(x) cos
(mπ
L
x
)

︸ ︷︷ ︸
fun�c~ao ��mpar

dx

(7.125)
= 0 (7.164)

e, para cada k ∈ N, segue que

bk
(7.157)
=

1

L

∫L
−L

f(x) sen

(
kπ

L
x

)
︸ ︷︷ ︸

fun�c~ao par

dx

(7.120)
=

2

L

∫L
0

f(x) sen

(
kπ

L
x

)
dx . (7.165)

Apliquemos os conceitos desenvolvidos acima aos seguintes exemplos:

Exemplo 7.3.4 Encontrar a s�erie de Fourier, qua denotaremos por S[f], associada �a

fun�c~ao f : [−1 , 1] → R, dada por

f(x) =

{
−x , para cada x ∈ [−1 , 0)

x , para cada x ∈ [0 , 1]
. (7.166)

Resolução:

A representa�c~ao geom�etrica do gr�a�co da fun�c~ao f �e dada pela �gura abaixo.

-

6

−1 1

Onda Dente de Serra

Notemos que, neste caso, temos que

L
.
= 1

e a fun�c~ao f �e cont��nua e par em [−1 , 1].
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Logo

ao
(7.156) com m=0

=
1

L

∫L
−L

f(x)dx

=

∫ 1
−1

f(x)dx

f �e par, (7.162) com m = 0
= 2

∫ 1
0

f(x)dx

(7.166)
= 2

∫ 1
0

xdx

Teor. Fund. C�alculo
= 2

[
x2

2

∣∣∣∣x=1
x=0

]
Exerc��cio

= 1 . (7.167)

Por outro lado, m ∈ N temos:

am
(7.156) com m∈N

=

∫ L
−L

f(x) cos
(mπ
L
x
)
dx

L=1
=

∫ 1
−1

f(x) cos(mπx)dx

f e cos s~ao pares, (7.162) com m ∈ N
= 2

∫ 1
0

f(x) cos(mπx)dx

(7.166)
= 2

∫ 1
0

x cos(mπx)dx⟨
u
.
= x , logo, du = dx

dv
.
= cos(mπx)dx , logo, v =

sen(mπx)
mπ

⟩

= 2

[
x
sen(mπx)

mπ

∣∣∣∣x=1
x=0

−

∫ 1
0

sen(mnπx)

mπ
dx

]

Teor. Fund. C�alculo
= 2




=0︷ ︸︸ ︷
sen(mπ)

mπ
−

=0︷ ︸︸ ︷
sen(mπ0)

mπ

+
cos(mπx)

(mπ)2

∣∣∣∣x=1
x=0


=

=(−1)m︷ ︸︸ ︷
cos(mπ)

(mπ)2
−

=1︷ ︸︸ ︷
cos(mπ0)

(mπ)2

=
2

m2 π2
[(−1)m − 1]

=


−4

m2 π2
, para cada m ��mpar

0 , para cada m par

. (7.168)
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e, para cada k ∈ N, teremos

bk
(7.157) com k∈N

=

∫L
−L

f(x) sen

(
kπ

L
x

)
dx

L=1
=

∫ 1
−1

f(x) sen(kπ x)dx

f �e par e sen �e ��mpar - (7.163)
= 0 . (7.169)

Portanto, de (7.167), (7.168) e (7.169), segue que

S[f](x)
(7.158) com L=1

=
ao

2
+

∞∑
n=1

[an cos(nπx) + bn sen(nπx)]

(7.167) e (7.169)
=

1

2
+

∞∑
n=1

an cos(nπx)

(7.168)
=

1

2
−
4

π2

∞∑
n=1

1

(2n− 1)2
cos[(2n− 1)πx)] . (7.170)

�
Temos tamb�em o:

Exemplo 7.3.5 Encontrar a s�erie de Fourier, que denotaremos por S[f], associada �a

fun�c~ao f : [−π , π] → R, dada por

f(x) =

{
0 , para cada x ∈ [−π , 0) ou x = π

π , para cada x ∈ [0 , π)
. (7.171)

Resolução:

A representa�c~ao geom�etrica do gr�a�co da fun�c~ao f �e dado pela �gura abaixo.

-

6

π−π

π

Onda Quadrada

Notemos que, neste caso

L = π
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e a fun�c~ao f �e seccionalmente cont��nua em [−π , π], logo �e uma fun�c~ao integr�avel em [−π , π].

Assim temos que

ao
(7.156) com m=0

=
1

L

∫L
−L

f(x)dx

L=π
=
1

π

∫π
−π

f(x)dx

=
1

π

[∫ 0
−π

f(x)dx+

∫π
0

f(x)dx

]
(7.171)
=

1

π

∫π
0

πdx

Teor. Fund. C�alculo
=

[
x

∣∣∣∣x=π
x=0

]
= π . (7.172)

Por outro lado, para cada m ∈ N, temos:

am
(7.156) com m∈N

=
1

L

∫L
−L

f(x) cos
(mπ
L
x
)
dx

L=π
=
1

π

∫π
−π

f(x) cos(mx)dx

=
1

π

[∫ 0
−π

f(x) cos(mx)dx+

∫π
0

f(x) cos(mx)dx

]
(7.171)
=

1

π

∫π
0

π cos(mx)dx

Teor. Fund. C�alculo
=

[
sen(mx)

πm

∣∣∣∣x=π
x=0

]
Exerc��cio

= 0 . (7.173)

Finalmente, para cada k ∈ N, teremos:

bk
(7.157) com k∈N

=
1

L

∫L
−L

f(x) sen

(
kπ

L
x

)
dx

L=π
=
1

π

∫π
−π

f(x) sen(k x)dx

=
1

π

[∫ 0
−π

f(x) sen(k x)dx+

∫π
0

f(x) sen(k x)dx

]
(7.171)
=

1

π

∫π
0

π sen(k x)dx

Teor. Fund. C�alculo
=

[
−
cos(k x)

k

∣∣∣∣x=π
x=0

]

=
1

k
[−

=(−1)k︷ ︸︸ ︷
cos(kπ)+1]
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=
1

k

[
1− (−1)k

]
=


2

k
, para cada k ��mpar

0 , para cada k par

. (7.174)

Portanto, de (7.172), (7.173) e (7.174), segue que:

S[f](x)
(7.158) com L=π

=
ao

2
+

∞∑
n=1

[an cos(nx) + bn sen(nx)]

(7.173)
=

ao

2
+

∞∑
n=1

bn sen(nx)

(7.172) e (7.174)
=

π

2
+

∞∑
n=1

2

2n− 1
sen[(2n− 1)x)] . (7.175)

�
Antes de prosseguirmos faremos algumas considera�coes que ser~ao importantes no estudo

da convergência de series de Fourier associadas �a certas fun�c~oes.

Observação 7.3.9

1. Utilizando vari�aveis complexas, vamos encontrar as express~oes para os coe�cientes

de Fourier am e bk, para m ∈ {0} ∪ N e k ∈ N, dados por (7.156) e (7.157),

repectivamente, em uma forma diferente.

Para isto lembremos que

ei x = cos(x) + i sen(x) , para cada x ∈ R , (7.176)

onde

i2
.
= −1 .

Logo

e−i x = cos(−x) + i sen(−x)

= cos(x) − i sen(x) , para cada x ∈ R . (7.177)

Somando-se (7.176) com (7.177), obteremos

cos(x) =
ei x + e−i x

2
, para cada x ∈ R , (7.178)

e subtraindo-se (7.177) de (7.176), obteremos

sen(x) =
ei x − e−i x

2 i
, para cada x ∈ R . (7.179)
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Em particular, para cada n ∈ N, teremos:

cos
(nπ
L
x
)
=
ei

nπ
L
x + e−i

nπ
L
x

2
, para cada x ∈ R, (7.180)

e, para cada k ∈ N, segue que

sen

(
kπ

L
x

)
=
ei

kπ
L
x − e−i

kπ
L
x

2 i

= i
e−i

kπ
L
x − ei

kπ
L
x

2
, para cada x ∈ R . (7.181)

Com isto, para cada x ∈ R, temos que

S[f](x)
(7.158)
=

ao

2
+

∞∑
n=1

[
an cos

(nπ
L
x
)
+ bn sen

(nπ
L
x
)]

(7.180) e (7.181)
=

ao

2
+

∞∑
n=1

[
an
ei

nπ
L
x + e−i

nπ
L
x

2
+ bn i

e−i
nπ
L
x − ei

nπ
L
x

2

]
=
ao

2
+

∞∑
n=1

[
an − i bn

2
ei

nπ
L
x +

an + i bn
2

e−i
nπ
L
x

]
. (7.182)

De�ninamos a fun�c~ao f̂ : Z → C, dada por

f̂ (0)
.
=
ao

2
, (7.183)

e f̂ (n)
.
=
an − i bn

2
(7.184)

f̂ (−n)
.
=
an + i bn

2
, para cada n ∈ N , (7.185)

segue, de (7.182), (7.183), (7.184) e (7.185), que

S[f](x) = f̂ (0) +

∞∑
n=1

[
f̂ (n) ei

nπ
L
x + f̂ (−n) e−i

nπ
L
x
]

= f̂ (0) +

∞∑
n=1

[
f̂ (n) ei

nπ
L
x + f̂ (−n) ei

(−n)π
L

x
]

=

∞∑
m=−∞ f̂ (m) ei

mπ
L
x , (7.186)

onde a �ultima s�erie de fun�c~oes considerada em (7.186), ser�a encarada como uma

s�erie do tipo valor principal, isto �e, para cada x ∈ R, de�nimos

∞∑
m=−∞ f̂ (m) ei

mπ
L
x .= lim

N→∞
N∑

m=−N

f̂ (m) ei
mπ
L
x . (7.187)
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Para cada m ∈ Z, o coe�ciente f̂ (m), dado por (7.183), (7.184) e (7.185), ser�a de-

nominadom-ésimo coeficiente de Fourier na forma complexa, associados a fun-

ção f.

A s�erie de fun�c~oes (7.186) ser�a denominada série de Fourier na forma complexa,

associada à função f.

2. Estudar a convergência da s�erie de Fourier associada �a fun�c~ao f : [−L , L] → R na

forma (7.182) �e equivalente a estudar a convergência da s�erie de Fourier, na foma

comexa, isto �e, na forma (7.186), associada �a fun�c~ao f (no sentido (7.187)).

3. Observemos que teremos:

f̂ (0)
(7.183)
=

ao

2

(7.156) com m=0
=

1

L

∫ L
−L

f(x)dx

=
1

L

∫L
−L

f(x)

=1︷ ︸︸ ︷
e−i

0 π
L
x dx , (7.188)

Al�em disso, para cada n ∈ N, segue que:

f̂ (n)
(7.184)
=

an − i bn
2

(7.156) e (7.157)
=

1

2

[
1

L

∫L
−L

f(x) cos
(nπ
L
x
)
dx− i

1

L

∫L
−L

f(x) sen
(nπ
L
x
)
dx

]
=
1

2 L

∫L
−L

f(x)
[
cos
(nπ
L
x
)
− i sen

(nπ
L
x
)]
dx,

(7.180) e (7.181)
=

1

2L

∫L
−L

f(x)

[
ei

nπ
L
x + e−i

nπ
L
x

2
− i

ei
nπ
L
x − e−i

nπ
L
x

2 i

]
dx

Exerc��cio
=

1

2L

∫L
−L

f(x)e−i
nπ
L
x dx , (7.189)

f̂ (−n)
(7.185)
=

an + i bn
2

(7.156) e (7.157)
=

1

2

[
1

L

∫L
−L

f(x) cos
(nπ
L
x
)
dx+ i

1

L

∫L
−L

f(x) sen
(nπ
L
x
)
dx

]
=
1

2L

∫L
−L

f(x)
[
cos
(nπ
L
x
)
+ i sen

(nπ
L
x
)]
dx

(7.180) e (7.181)
=

1

2L

∫L
−L

f(x)

[
ei

nπ
L
x + e−i

nπ
L
x

2
+ i

ei
nπ
L
x − e−i

nπ
L
x

2 i

]
dx

Exerc��cio
=

1

2 L

∫L
−L

f(x) ei
nπ
L
x dx

=
1

2 L

∫L
−L

f(x) e−i
(−n)π

L
x dx . (7.190)
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Portanto, de (7.188), (7.189) e (7.190), segue que

f̂ (m) =
1

2 L

∫ L
−L

f(x) e−i
mπ
L
x dx , para cada m ∈ Z . (7.191)

4. Mesmo para fun�c~oes a valores reais, isto �e, fun�c~oes f : [−L , L] → R (que foi o

caso que est�avamos tratando no problema da condu�c~ao de calor no �o no in��cio

do cap��tulo), os coe�cientes de Fourier, na forma complexa, associados �a fun�c~ao

f s~ao, em geral, n�umeros complexos e n~ao reais, excetuando-se o caso em que os

bn = 0 , para cada n ∈ N ,

isto �e, o caso que fun�c~ao f �e uma fun�c~ao par (veja o item 3. da Observa�c~ao

(7.3.8), ou ainda (7.163)).

7.4 Interpretação Geométrica dos Coeficientes de Fou-

rier

Observemos que a maneira como obtivemos os coe�cientes de Fourier associados �a uma fun�c~ao

f : [−L , L] → R (isto �e, am, para m ∈ {0} ∪ N e bk, para k ∈ N, dados por (7.156) e (7.157),
respectivamente) �e bastante natural olharmos os mesmos do modo que faremos a seguir.

Consideremos, no espa�co vetorial real (Rn ,+ , ·) (onde + �e a opera�c~ao de adi�c~ao usual de

n-uplas e · �e a mulplica�c~ao usual de n�umero real por n-uplas), o produto interno usual, a

saber:

⟨⃗x , y⃗⟩ =
n∑
j=1

xj yj , (7.192)

onde os vetores u⃗ , v⃗ ∈ Rn, s~ao dados por:

x⃗ = (x1 , x2 , · · · , xn) e y⃗ = (y1 , y2 , · · · , yn) . (7.193)

Para cada i ∈ {1 , 2 , · · · , n}, de�namos o seguinte vetor de Rn:

e⃗i
.
= (0 , · · · , 0 ,

i-�esima posi�c~ao↓
1 , 0 , · · · , 0) . (7.194)

Como foi visto na disciplina de �Algebra Linear, temos que o conjunto

{e⃗1 , e⃗2 , · · · , e⃗n}

�e uma base ortonormal do espa�co vetorial real (Rn ,+ , ·), relativamente ao produto interno

(7.192).

Tal base �e denominada base canônica de (Rn ,+ , ·), ou seja, para i , j ∈ {1 , 2 , · · · , n},
teremos:

⟨e⃗i , e⃗j⟩ =

{
1 , se i = j

0 , se i ̸= j . (7.195)
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Notemos que, se x⃗ ∈ Rn �e dado por (7.193), teremos:

x⃗
(7.193)
= (x1 , x2 , · · · , xn)

= (x1 , 0 , · · · , 0) + (0 , x2 , 0 , · · · , 0) + · · ·+ (0 , , · · · , 0 , xn)
= x1 · (1 , 0 , · · · , 0) + x2 · (0 , 1 , 0 , · · · , 0) + · · ·+ xn · (0 , · · · , 0 , 1)
= x1 · e⃗1 + x2 · e⃗2 + · · ·+ xn · e⃗n

=

n∑
j=1

xj · e⃗j . (7.196)

Com isto, para cada i ∈ {1 , 2 , · · · , n}, teremos:

⟨⃗x , e⃗i⟩
(7.196)
=

⟨
n∑
j=1

xj · e⃗j , e⃗i

⟩
propriedades de produto interno

=

n∑
j=1

xj ⟨e⃗j , e⃗i⟩

(7.195)
= xi ,

ou seja, xi · e⃗i = ⟨⃗x , e⃗i⟩ · e⃗i ,

o que signi�ca dizer que, geometricamente, para cada i ∈ {1 , 2 , · · · , n}, temos que o vetor

xi · e⃗i

�e a proje�c~ao ortogonal do vetor x⃗, na dire�c~ao do vetor (unit�ario) e⃗i.

A �gura abaixo ilustra a situa�c~ao acima.

-

>

-
e⃗i

x⃗

xi · e⃗i

Apliquemos as ideias acima para o caso de s�eries de Fourier:

Observação 7.4.1

1. Notemos que

C([−L , L] ; R) ,

o conjunto formado por todas as fun�c~oes cont��nuas, a valores reais, de�nidas em

[−L , L], �e um espa�co vetorial sobre R, quando munido das opera�c~oes de soma de
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fun�c~oes, indicada por +, e multiplica�c~ao de n�umero real por fun�c~ao, indicada por

·.
A veri�ca�c~ao deste fato foi vista na disciplina de �Algebra Linear e ser�a deixada

como exerc��cio para o leitor.

Com iso o espa�co vetorial real (C([−L , L] ; R) ,+ , ·), poder�a ser munido do seguinte

produto interno

⟨f , g⟩ .=
∫ L
−L

f(x)g(x)dx , (7.197)

onde f , g ∈ C([−L , L] ; R).
A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor.

2. Do item 4. da Proposi�c~ao (7.3.2), segue que o conjunto

{ψm ; m ∈ {0} ∪ N} ∪ {ϕk ; k ∈ N} (7.198)

�e um subconjunto do espa�co vetorial real (C([−L , L] ; R) ,+ , ·), que �e ortogonal,

relativamente ao produto interno (7.197) (veja (7.137), (7.138) e (7.139)).

Notemos que o conjunto (7.198) ser�a ortonormal, relativamente ao produto interno

(7.197), se

L = 1 ,

excetuando-se o caso de m = 0 (veja (7.137), (7.138) e (7.139)).

3. Embora o conjunto (7.198) não seja uma base para o espa�co vetorial real

C([−L , L] ; R) ,+ , ·) ,

no sentido alg�ebrico, se uma fun�c~ao f ∈ C([−L , L] ; R) puder ser expandida em

s�erie de Fourier (associada �a mesma), se a s�erie convergir para a fun�c~ao f, em

[−L , L], e se a s�erie de Fourier puder ser integrada, termo a termo, (por exemplo,

se a convergência da s�erie de Fourier for uniforme, em [−L , L]), ent~ao podemos

justi�car as contas formais (onde se vê: todo cuidado!) feitas na Observa�c~ao

(7.3.7), para obter as f�ormulas de Euler-Fourier (7.156), (7.157) .

4. Para ilustrar consideraremos o caso em que L = 1, ou seja, o conjunto (7.198) �e

um conjunto ortonormal, relativamente ao produto interno (7.197), exceto quando

m = 0.

Neste caso, para cada m ∈ {0} ∪ N e n ∈ N, teremos:

am
(7.156)
=

1

L

∫L
−L

f(x) cos
(mπ
L
x
)
dx

(7.136)
=

1

L

∫L
−L

f(x)ψm(x)dx

L=1
=

∫ 1
−1

f(x)ψm(x)dx

(7.197)
= ⟨f , ψm⟩ ,
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bn
(7.157)
=

1

L

∫L
−L

f(x) sen
(nπ
L
x
)
dx

(7.135)
=

1

L

∫L
−L

f(x)ϕn(x)dx

L=1
=

∫ 1
−1

f(x)ϕn(x)dx

(7.197)
= ⟨f , ϕn⟩ ,

ou seja, para cada m ∈ {0} ∪ N e n ∈ N, os vetores

am ·ψm e bn · ϕn

ser~ao as proje�c~oes ortogonais da fun�c~ao f, na dire�c~ao dos vetores ψm e ϕn (neste

caso, ser~ao unit�arios), respectivamente, relativamente ao produto interno (7.197).

5. Observemos que se L ̸= 1 ent~ao, para cada m ∈ {0} ∪ N e n ∈ N, trocando-se as

fun�c~oes

ψm e ϕn

pelas fun�c~oes

Ψm e Φn ,

respectivamente, dadas por:

Ψn(x)
.
=
ψn(x)

∥ψn∥
e Φn(x)

.
=
ϕn(x)

∥ϕn∥
, para cada x ∈ R , (7.199)

onde, para cada f ∈ C([−L , L] ; R), de�nimos

∥f∥ .=
√

⟨f , f⟩ (7.197)
=

(∫L
−L

f 2(x)

) 1
2

, (7.200)

(que �e uma norma no espa�co vetorial real (C([−L , L] ; R) ,+ , ·)), ent~ao o conjunto

{Ψm ; m ∈ {0} ∪N} ∪ {Φn ; n ∈ N} (7.201)

ser�a um conjunto ortonormal, relativamente ao produto interno (7.197), e pode-

remos aplicar as mesma ideias do item 4. acima, utilizando o conjunto (7.201),

para concluir que, para cada m ∈ {0} ∪ N e n ∈ N, os vetores

am · Ψm e bn ·Φn

ser~ao as proje�c~oes ortogonais da fun�c~ao f, na dire�c~ao dos vetores (unit�arios) Ψm
e Φn, respectivamente, relativamente ao produto interno (7.197).
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Notemos que, neste caso, teremos:

am
(7.156)
=

1

L

∫ L
−L

f(x) cos
(mπ
L
x
)
dx

(7.136) e (7.99)
=

1

L
⟨f , ψm⟩ ,

=
1

L
⟨f , ψm⟩ , (7.202)

e

bn
(7.157)
=

1

L

∫ L
−L

f(x) sen
(mπ
L
x
)
dx

(7.135) e (7.99)
=

1

L
⟨f , ϕn⟩ , (7.203)

para cada m ∈ {0} ∪ N e n ∈ N.

Utilizaremos algumas das ideias acima para obter algumas propriedades da s�eries de Fou-

rier associada a uma f : [−L , L] → R, que �e fun�c~ao integr�avel em [−L , L].

Consideraremos o espa�co vetorial real (SC([−L , L] ; R) ,+ , ·) em vez do espa�co vetorial

real (C([−L , L] ; R) ,+ , ·) para o que faremos a seguir.

O primeiro resultado interessante �e dado pela:

Proposição 7.4.1 Para f ∈ SC([−L , L] ; R) consideremos a s�erie de Fourier associada �a

fun�c~ao f, isto �e, (7.158) (ou (7.159)).

Ent~ao para M ∈ {0} ∪ N e N ∈ N �xados, se considerarmos

cm , dn ∈ R , para cada m ∈ {0 , 1 , · · · ,M} e n ∈ {1 , 2 , · · · ,N} (7.204)

teremos:∥∥∥∥∥f−
[
ao

2
ψo +

M∑
m=1

amψm +

N∑
n=1

bnϕn

]∥∥∥∥∥ ≤

∥∥∥∥∥f−
[
co

2
ψo +

M∑
m=1

cmψm +

N∑
n=1

dnϕn

]∥∥∥∥∥ ,
(7.205)

onde as fun�c~oes ψm e ϕn s~ao dadas por (7.136) e (7.135), respectivamente.

Al�em disso, a ocorrer�a igualdade em (7.205) se, e somente se,

cm = am e dn = bn , para cada m ∈ {0 , 1 , · · · ,M} e n ∈ {1 , 2 , · · · ,N}. (7.206)

Demonstração:

Dados M,N ∈ N de�namos o conjunto SMN, como sendo o seguinte subconjunto de

SC([−L , L] ; R):

SMN
.
= {ψm ; m ∈ {0 , 1 , · · · ,M}} ∪ {ϕn ; n ∈ {1 , 2 , · · · ,N}} . (7.207)

Observemos que o conjunto SMN �e um conjunto �nito de vetores de L.I., do espa�co vetorial

real (SC([−L , L] ; R) ,+ , ·).
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De fato, pois da Proposi�c~ao (7.3.2) (veja (7.137), (7.138) e (7.139)), segue que o conjunto

SMN um conjunto ortogonal, relativamente ao produto interno (7.99), e formado por vetores

n~ao nulos.

Consideremos o subespa�co vetorial gerado pelo conjunto SMN, do espa�co vetorial real

(SC([−L , L] ; R) ,+ , ·), que indicaremos por [SMN], isto �e, o conjunto formado por todas as

combin�c~oes lineares de elementos do conjunto SMN, do espa�co vetorial real (SC([−L , L] ; R) ,+ , ·).
Mais precisamente:

[SMN]
.
=

{
co

2
ψo +

M∑
m=1

cmψm +

N∑
n=1

dnϕn ; cm , dn ∈ R ,

para cada m ∈ {0 , 1 , · · · ,M} e n ∈ {1 , · · · ,N}} . (7.208)

De�namos a fun�c~ao g : [−L , L] → R, dada por:

g(x)
.
= f(x) −

[
ao

2
ψo(x) +

M∑
m=1

amψm(x) +

N∑
n=1

bnϕn(x)

]
, (7.209)

para cada x ∈ [−L , L].

Deste modo, teremos:

⟨g ,ψo⟩
(7.209)
=

⟨
f−

[
ao

2
ψo +

M∑
m=1

amψm +

N∑
n=1

bnϕn

]
, ψo

⟩
item 1. da Proposi�c~ao (7.3.1)

= ⟨f , ψo⟩︸ ︷︷ ︸
(7.202) com m=0

= L ao

−
ao

2
⟨ψo , ψo⟩︸ ︷︷ ︸

(7.137) com m=0
= 2 L

−

N∑
n=1

an ⟨ψn , ψo⟩︸ ︷︷ ︸
(7.137)

= 0

+

M∑
m=1

bm ⟨ϕm , ψo⟩︸ ︷︷ ︸
(7.139)

= 0

= Lao −
ao

2
2 L

= 0 .

Por outro lado, para k ∈ N �xado, teremos:

⟨g ,ψk⟩ =

⟨
f−

[
ao

2
ψo +

M∑
m=1

amψm +

N∑
n=1

bnϕn

]
, ψk

⟩
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item 1. da Proposi�c~ao (7.3.1)
= ⟨f , ψk⟩︸ ︷︷ ︸

(7.202)
= L ak

−
ao

2
⟨ψo, ψk⟩︸ ︷︷ ︸

(7.137) com k ̸=1
= 0

−

M∑
m=1

am ⟨ψm , ψk⟩︸ ︷︷ ︸
(7.139)

=


0 , se m ̸= k
L , se m = k

+

N∑
n=1

bn ⟨ϕn , ψk⟩︸ ︷︷ ︸
(7.137)

= 0

= Lak − Lak

= 0 ,

e

⟨g ,ϕk⟩ =

⟨
f−

[
ao

2
ψo +

M∑
m=1

amψm +

N∑
n=1

bnϕn

]
, ϕk

⟩
item 1. da Proposi�c~ao (7.3.1)

= ⟨f , ϕk⟩︸ ︷︷ ︸
(7.203)

= L bk

−
ao

2
⟨ψo , ϕk⟩︸ ︷︷ ︸

(7.137) com k ̸=1
= 0

−

M∑
n=1

am ⟨ψm , ϕk⟩︸ ︷︷ ︸
(7.139)

= 0

+

N∑
n=1

bn ⟨ϕn , ϕk⟩︸ ︷︷ ︸
(7.139)

=


0 , se n ̸= k
L , se n = k

= Lbk − Lbk

= 0 ,

isto �e, a fun�c~ao g, dada por (7.209), �e ortogonal a cada um dos elementos do conjunto SMN.

Logo, como os elementos do conjunto SMN s~ao geradores do subsepa�co vetorial gerado

pelo vetores do conjunto SMN, segue que a fun�c~ao g ser�a ortogonal a todos elementos do

subespa�co vetorial [SNM] (a ortogonalidade �e relativa ao produto intermo (7.99)), ou seja,

g ⊥ [SMN] . (7.210)

De�namos a fun�c~ao h : [−L , L] → R, dada por

h(x)
.
=
ao − co
2

ψo(x) +

M∑
m=1

(am − cm)ψm(x) +

N∑
n=1

(bn − dn)ϕn(x) , (7.211)

para cada x ∈ [−L , L].

Notemos que a fun�c~ao h �e uma combina�c~ao linear dos elementos do conjunto SMN, ou

seja,

h ∈ [SNM] . (7.212)

Logo, de (7.210) e (7.212), segue que a fun�c~ao g ser�a ortogonal �a fun�c~ao h, relativamente

ao produto intermo (7.99), ou seja,

g ⊥ h . (7.213)
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Portanto, pelo Teorema de Pit�agoras (isto �e, o item 4. da Observa�c~ao (7.3.5), ou ainda,

(7.110)), segue que∥∥∥∥∥f−
[
co

2
ψo +

M∑
m=1

cmψm +

N∑
n=1

dnϕn

]∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥∥∥∥
f−

[
ao

2
ψo +

M∑
m=1

amψm +

N∑
n=1

bnϕn

]
︸ ︷︷ ︸

(7.209)
= g

+

[
ao

2
ψo +

M∑
m=1

amψm +

N∑
n=1

bnϕn

]

−

[
co

2
ψo +

M∑
m=1

cmψm +

N∑
n=1

dnϕn

]∥∥∥∥∥
2

=

∥∥∥∥∥∥∥∥∥∥∥
g+


ao − co
2

ψo +

M∑
m=1

(am − cm)ψm +

N∑
n=1

(bn − dn)ϕn︸ ︷︷ ︸
(7.211)

= h



∥∥∥∥∥∥∥∥∥∥∥

2

= ∥g+ h∥2

g⊥h e (7.110)
= ∥g∥2 + ∥h∥2︸︷︷︸

≥0

(∗)
≥ ∥g∥2 (7.214)

(7.209)
=

∥∥∥∥∥f−
[
ao

2
ψo +

M∑
m=1

amψm +

N∑
n=1

bnϕn

]∥∥∥∥∥
2

,

isto �e,∥∥∥∥∥f−
[
co

2
ψo +

M∑
m=1

cmψm +

N∑
n=1

dnϕn

]∥∥∥∥∥
2

≤

∥∥∥∥∥f−
[
ao

2
ψo +

M∑
m=1

amψm +

N∑
n=1

bnϕn

]∥∥∥∥∥
2

mostrando a desigualdade (7.205).

Observemos que se

cm = am e dn = bn , para cada m ∈ {0 , 1 , · · · ,M} e n ∈ {1 , 2 , · · · , N}

ent~ao vale a igualdade em (7.205).

Reciprocamente, se vale a igualdade em (7.205), de (*) em (7.214), teremos:

∥g∥2 + ∥h∥2 Pit�agoras
= ∥g+ h∥2 vale a igualdade em (*)

= ∥g∥2 ,

ou seja,

∥h∥2 = 0 ,

isto �e, de (7.99), deveremos ter:

∫L
−L

|h(x)|2 dx = 0 . (7.215)
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Como a fun�c~ao h �e uma fun�c~ao cont��nua em [−L , L] (veja (7.211)) e

|h(x)| ≥ 0 , para cada x ∈ [−L , L] e vale (7.215) ,

segue que que

h(x) = 0 , para cada x[−L , L] ,

que, de (7.211), �e equivalente a:

ao − co
2

ψo +

M∑
m=1

(am − cm)ψm +

N∑
n=1

(bn − dn)ϕn = 0 , em [−L , L] . (7.216)

Como o conjunto SMN �e um conjunto L.I. no espa�co vetorial real (SC([−L , L] ; R) ,+ , ·),
segue que todos os coe�cientes da combina�c~ao linear (7.216) devem ser iguais a zero, ou seja,

cm = am e dn = bn ,

para m ∈ {0 , 1 , · · · ,N} e m ∈ {1 , 2 , · · · ,M}, completando a demonstra�c~ao do resultado.

�

Observação 7.4.2 A Proposi�c~ao (7.4.1) acima, nos diz que a soma parcial da s�erie de

Fourier de uma fun�c~ao que pertence �a SC([−L , L] ; R), nos fornece a melhor aproxima�c~ao

poss��vel entre todas as aproxima�c~oes, por combina�c~oes lineares envolvendo senos e

cossenos, relativamente �a norma que prov�em do produto interno (7.99).

Uma outra propriedade importante das s�eries de Fourier associada a uma fun�c~ao "bem

comportada", �e dado pela:

Proposição 7.4.2 (Desigualdade de Bessel, na forma real)

Seja f ∈ SC([−L , L] ; R) e consideremos a s�erie de Fourier associada �a fun�c~ao f, isto

�e, (7.158) (ou (7.159)).

Ent~ao as s�eries num�ericas

∞∑
m=1

am
2 e

∞∑
n=1

bm
2 ,

s~ao convergentes e al�em disso, vale

L

(
ao

2

2
+

∞∑
m=1

am
2 +

∞∑
n=1

bn
2

)
≤ ∥f∥2 , (7.217)

onde

∥f∥ .=
[∫L

−L

|f(x)|2 dx

] 1
2

(7.218)

�e a semi-norma que prov�em do "quase" produto interno (7.99).
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Demonstração:

Notemos que, para cada M,N ∈ N, teremos

0 ≤

∥∥∥∥∥f−
[
ao

2
ψo +

M∑
m=1

amψm +

N∑
n=1

bnϕn

]∥∥∥∥∥
2

(7.107)
=

⟨
f−

ao

2
ψo −

M∑
k=1

akψk −

N∑
l=1

blϕl , f−
ao

2
ψo −

M∑
m=1

amψm −

N∑
n=1

bnϕn

⟩
item 1. da Proposi�c~ao (7.3.1)

= ⟨f , f⟩︸ ︷︷ ︸
(7.218)

= ∥f∥2

−
ao

2
⟨f , ψo⟩︸ ︷︷ ︸

(7.202) com m=0
= L ao

−

M∑
m=1

am ⟨f , ψm⟩︸ ︷︷ ︸
(7.202) com m̸=0

= L am

−

N∑
n=1

bn ⟨f , ϕn⟩︸ ︷︷ ︸
(7.203)

= L bn

−
ao

2
⟨ψo , f⟩︸ ︷︷ ︸

(7.202) com m=0
= L ao

+
ao

2

4
⟨ψo , ψo⟩︸ ︷︷ ︸

(7.137) com k=m=0
= 2 L

+

M∑
m=1

ao

2
am ⟨ψo , ψm⟩︸ ︷︷ ︸

(7.137) com m̸=0
= 0

+

N∑
n=1

ao

2
bn ⟨ψo , ϕn⟩︸ ︷︷ ︸

(7.138)
= 0

−

M∑
k=1

ak ⟨ψk , f⟩︸ ︷︷ ︸
(7.202)

= L ak

+

M∑
k=1

ak
ao

2
⟨ψk , ψo⟩︸ ︷︷ ︸

(7.137) com k ̸=0
= 0

+

M∑
k=1

M∑
m=1

ak am ⟨ψk , ψm⟩︸ ︷︷ ︸
(7.137)

=


0 , se m ̸= k
L , se m = k

+

M∑
k=1

N∑
n=1

ak bn ⟨ψk , ϕn⟩︸ ︷︷ ︸
(7.138)

= 0

−

N∑
l=1

bl ⟨ϕl , f⟩︸ ︷︷ ︸
(7.203)

= L bl

+

N∑
l=1

bl
ao

2
⟨ϕl , ψo⟩︸ ︷︷ ︸

(7.138)
= 0

+

N∑
l=1

M∑
m=1

bl am ⟨ϕl , ψm⟩︸ ︷︷ ︸
(7.138)

= 0

+

N∑
l=1

N∑
n=1

bl bn ⟨ϕl , ϕn⟩︸ ︷︷ ︸
(7.137)

=


0 , se n ̸= l
L , se n = l

= ∥f∥2 − L

2
ao

2 − L

M∑
m=1

am
2 − L

N∑
n=1

bn
2 −

L

2
ao

2 +
L

2
ao

2 − L

M∑
k=1

ak
2 + L

M∑
k=1

ak
2

− L

N∑
l=1

bl
2 + L

N∑
l=1

bl
2

= ∥f∥2 − L

(
ao

2

2
+

M∑
m=1

am
2 +

N∑
n=1

bn
2

)
, (7.219)

isto �e,

0 ≤ ∥f∥2 − L

(
ao

2

2
+

M∑
m=1

am
2 +

N∑
n=1

bn
2

)
,

ou seja,

0 ≤ ao
2

2
+

M∑
m=1

am
2 +

N∑
n=1

bn
2 ≤ 1

L
∥f∥2 , (7.220)
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para todo M,N ∈ N �xado.

Assim, segue de (7.220), que as sequências das somas parcias das s�eries num�ericas

∞∑
m=1

am
2 e

∞∑
n=1

bn
2 , (7.221)

s~ao limitadas em R.
Como

am
2, bn

2 ≥ 0 , para cada n ,m ∈ N ,

segue que as sequências das somas parcias das s�eries num�ericas (7.221) ser~ao crescentes em

R.
Logo as sequências das somas parcias das s�eries num�ericas (7.221) ser~ao mon�otonas (cres-

centes) e limitadas em R, de um resultado de An�alise I, temos que elas ser~ao convergentes

em R.
Portanto podemos passar os limites, quando

M,N→ ∞ ,

em (7.220), e com isto obteremos a desigualdade (7.217), completando a demosntra�c~ao do

resultado.

�
Temos uma vers~ao na forma complexa para ao resultado acima, a saber:

Corolário 7.4.1 (Desigualdade de Bessel, na forma complexo)

Suponhamos que f ∈ SC([−L , L] ; R) e

S[f](x) =

∞∑
n=−∞ f̂ (n) e

i nπ
L
x , para cada x ∈ [−L , L] , (7.222)

onde, para cada n ∈ Z, o n�umero complexo f̂ (n) �e o n-�esimo coe�ciente de Fourier na

forma complexa, dado por (7.191).

Ent~ao a s�erie num�erica ∞∑
n=1

∣∣∣f̂ (n)∣∣∣2
ser�a convergente e vale ∞∑

n=∞
∣∣∣f̂ (n)∣∣∣2 ≤ 1

2 L
∥f∥2 , (7.223)

onde

∥f∥ .=
[∫L

−L

|f(x)|2 dx

] 1
2

(7.224)

�e a semi-norma que prov�em do "quase" produto interno (7.100).
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Demonstração:

Segue, de (7.183), (7.184) e (7.185), que:

∣∣∣f̂ (0)∣∣∣2 (7.183)
=

ao
2

4
, (7.225)∣∣∣f̂ (n)∣∣∣2 (7.184)

=

∣∣∣∣an − i bn2

∣∣∣∣2
=
1

4

(
an

2 + bn
2
)

(7.226)

e ∣∣∣f̂ (−n)∣∣∣2 (7.185)
=

∣∣∣∣an + i bn2

∣∣∣∣2
=
1

4

(
an

2 + bn
2
)
, para cada n ∈ N . (7.227)

Logo, para cada N ∈ N temos

N∑
n=−N

∣∣∣f̂ (n)∣∣∣2 = ∣∣∣f̂ (0)∣∣∣2 + N∑
n=1

∣∣∣f̂ (−n)∣∣∣2 + N∑
n=1

∣∣∣f̂ (n)∣∣∣2
(7.225),(7.226),(7.227)

=
ao

2

4
+
1

4

N∑
n=1

(
an

2 + bn
2
)
+
1

4

N∑
n=1

(
an

2 + bn
2
)

=
ao

2

4
+
1

2

(
N∑
n=1

an
2 +

N∑
n=1

bn
2

)

=
1

2

(
ao

2

2
+

N∑
n=1

an
2 +

N∑
n=1

bn
2

)
. (7.228)

Logo, de um crit�erio da compara�c~ao, na vers~ao complexa e da Proposi�c~ao (7.4.2), segue

que a s�erie num�erica
∞∑

n=−∞
∣∣∣f̂ (n)∣∣∣2 �e convergente em R.

Lembremos que o sentido da convergência da s�erie acima ser�a

∞∑
n=−∞

∣∣∣f̂ (n)∣∣∣2 = lim
N→∞

N∑
n=−N

∣∣∣f̂ (n)∣∣∣2 .
Al�em disso, passando o limite, quando

N→ ∞
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em (7.228), obteremos:

∞∑
n=∞

∣∣∣f̂ (n)∣∣∣2 = lim
N→∞

N∑
n=−N

∣∣∣f̂ (n)∣∣∣2
(7.228)
= lim

N→∞
[
1

2

(
ao

2

2
+

N∑
n=1

an
2 +

N∑
n=1

bn
2

)]

=
1

2

(
ao

2

2
+

∞∑
n=1

an
2 +

∞∑
n=1

bn
2

)
(7.217))

≤ 1

2 L
∥f∥2 ,

completando a demonstra�c~ao.

�

Observação 7.4.3

1. Seja f ∈ SC([−L , L] ; R) ent~ao

f̂ (0)
(7.184)
=

ao

2
a∈R
=
ao

2
(7.184)
= f̂ (−0) .

Se n ∈ N, teremos:

f̂ (n)
(7.184)
=

an − i bn
2

=
an − i bn

2

=
an − i bn

2
an ,bn∈R=

an + i bn
2

(7.184)
= f̂ (−n)

f̂ (−n)
(7.184)
=

an + i bn
2

=
an + i bn

2

=
an + i bn

2
an ,bn∈R=

an − i bn
2

(7.184)
= f̂ (n)

= f̂ [−(−n)] ,
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ou seja,

f̂ (n) = f̂ (−n) , para cada n ∈ Z . (7.229)

2. Seja f ∈ SC(R ; R) uma fun�c~ao 2 L-peri�odica e consideremos a fun�c~ao h : R → R,
dada por

h(x)
.
= f(−x) , para cada x ∈ R . (7.230)

Ent~ao, teremos que h ∈ SC(R ; R) e tamb�em ser�a uma fun�c~ao 2 L-peri�odica.

Al�em disso, para n ∈ Z, temos que:

ĥ (n)
(7.191)
=

1

2 L

∫L
−L

h(x) e−i
nπ
L
x dx

(7.230)
=

1

2 L

∫L
−L

f(−x) e−i
nπ
L
x dx⟨ y = −x , logo: dy = −dx

x = −L , logo: y = L

x = L , logo: y = −L

⟩
=
1

2 L

∫−L

L

f(y) e−i
nπ
L

(−y) (−dy)

=
1

2 L

∫L
−L

f(y) e−i
(−n)π

L
ydy

(7.191)
= f̂ (−n) ,

isto �e,

ĥ (n) = f̂ (−n) , para cada n ∈ Z . (7.231)

3. Sejam f , g ∈ SC([−L , L] ; R) e α ∈ R.

Ent~ao, para cada n ∈ Z, teremos

(̂f+ g) (n) = f̂ (n) + ĝ (n) , (7.232)

(̂α f) (n) = α f̂ (n) . (7.233)

De fato pois, para cada n ∈ Z, teremos:

(̂f+ g) (n)
(7.191)
=

1

2 L

∫L
−L

(f+ g)(x) e−i
nπ
L
x dx

=
1

2 L

∫L
−L

[f(x) + g(x)] e−i
nπ
L
x dx

=
1

2 L

∫L
−L

f(x) e−i
nπ
L
x dx+

1

2 L

∫L
−L

+g(x) e−i
nπ
L
x dx

(7.191)
= f̂ (n) + ĝ (n) .
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De modo semelhante, , para cada n ∈ Z, teremos:

(̂α f) (n)
(7.191)
=

1

2 L

∫ L
−L

(α f)(x) e−i
nπ
L
x dx

=
1

2 L

∫L
−L

[αf(x)] e−i
nπ
L
x dx

= α

[
1

2 L

∫ L
−L

f(x) e−i
nπ
L
x dx

]
(7.191)
= α f̂ (n) .

4. As conclus~oes do Corol�ario (7.4.1) permanece v�alido se a fun�c~ao f �e a valores

complexos, isto �e, se f ∈ SC([−L , L] ; C).

De fato, se f : [−L , L] → C �e seccionalmente cont��nua em [−L , L], ent~ao existem

fun�c~oes u , v ∈ SC([−L , L] ; R), de modo que

f(x) = u(x) + i v(x) , para cada x ∈ [−L , L] . (7.234)

Com isto, para n ∈ Z, segue que:

f̂ (n)
(7.191)
=

1

2 L

∫L
−L

f(x)e−i
nπ
L
x dx

(7.234)
=

1

2 L

∫L
−L

[u(x) + i v(x)] e−i
nπ
L
x dx

propriedade da integral de�nida
=

1

2 L

∫L
−L

u(x) e−i
nπ
L
x dx+ i

1

2 L

∫ L
−L

v(x) e−i
nπ
L
x dx

(7.191)
= û (n) + i v̂ (n) . (7.235)

Logo, para cada n ∈ Z, temos:∣∣∣f̂ (n)∣∣∣2 = f̂ (n) f̂ (n)
(7.234)
= [û (n) + i v̂ (n)]

[
û (n) + i v̂ (n)

]
= [û (n) + i v̂ (n)]

[
û (n) + i v̂ (n)

]
= [û (n) + i v̂ (n)]

[
û (n) + i v̂ (n)

]
(7.229)
= [û (n) + i v̂ (n)]

[
û (n) − i v̂ (−n)

]
= û (n) û (−n) − i û (n) v̂ (−n)) + i v̂ (n) û (−n) + v̂ (n) v̂ (−n)

(7.229)
= û (n) û (n) + i [û (−n) v̂ (n) − û (n) v̂ (−n)] + v̂ (n) v̂ (n)

= |û (n)|2 + i [û (−n) v̂ (n) − û (n) v̂ (−n)] + |v̂ (n)|2 . (7.236)
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Portanto, para N ∈ N, segue que

N∑
n=−N

∣∣∣f̂ (n)∣∣∣2 (7.236)
=

N∑
n=−N

{
|û (n)|2 + |v̂ (n)|2 + i [û (−n) v̂ (n) − û (n) v̂ (−n)]

}
somas �nitas

=

N∑
n=−N

[
|û (n)|2 + |v̂ (n)|2

]
+ i

N∑
n=−N

[û (−n) v̂ (n) − û (n) v̂ (−n)]

=

N∑
n=−N

[
|û (n)|2 + |v̂ (n)|2

]
+ i


N∑

n=−N

û (−n) v̂ (n) −

(∗)︷ ︸︸ ︷
N∑

n=−N

û (n) v̂ (−n)


m = −n, em (*)

=

N∑
n=−N

[
|û (n)|2 + |v̂ (n)|2

]
+ i

[
N∑

n=−N

û (−n) v̂ (n) −

N∑
m=−N

û (−m) v̂ (m)

]

=

N∑
n=−N

[
|û (n)|2 + |v̂ (n)|2

]
. (7.237)

Como, u , v ∈ SC([−L , L] ; R), do Corol�ario (7.4.1), segue que as s�eries num�ericas

∞∑
n−∞ |û (n)|2 e

∞∑
n−∞ |v̂ (n)|2

ser~ao convergentes.

Logo, deste fato e de (7.237), segue que a s�erie num�erica

∞∑
n−∞

∣∣∣f̂ (n)∣∣∣2
�e convergente e, al�em disso:

∞∑
n−∞

∣∣∣f̂ (n)∣∣∣2 (7.237)
=

∞∑
n=−∞

[
|û (n)|2 + |v̂ (n)|2

]
(7.223) para u e v)

≤ 1

2 L

(
∥u∥2 + ∥v∥2

)
(7.234)
=

1

2 L
∥f∥2 ,

ou seja, vale uma desigualdade de Bessel para o caso da fun�c~ao f ser a valores

complexos, isto �e, se f ∈ SC([−L , L] ; C), temos que:

∞∑
n−∞

∣∣∣f̂ (n)∣∣∣2 ≤ 1

2 L
∥f∥2 , (7.238)

Como consequência da desiguladade de Bessel temos o:
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Corolário 7.4.2 (Lema de Riemann-Lebesgue, na forma real) Seja f ∈ SC[−L , L] ; R)
e consideremos a s�erie de Fourier associada �a fun�c~ao f, isto �e, (7.158) (ou (7.159)).

Ent~ao:

lim
m→∞am = lim

n→∞bn = 0 , (7.239)

onde, para cada m ∈ {0} ∪ N e n ∈ N, os n�umeros reais am e bn, s~ao dados por (7.156)

e (7.157), respectivamente.

Demonstração:

Notemos que, da Proposi�c~ao (7.4.2), segue que as s�eries num�erica

∞∑
m=1

am
2 e

∞∑
n=1

bm
2

s~ao convergentes em R.
Logo, do crit�erio da divergência para s�eries num�ericas, segue que

lim
m→∞am2 = lim

n→∞bn2 = 0 ,
o que implicar�a que:

lim
m→∞am = lim

n→∞bn = 0 ,

completando a demonstra�c~ao do resultado.

�
Na forma complexa o resultado acima torna-se-�a:

Corolário 7.4.3 (Lema de Riemann-Lebesgue, na forma complexa)

Seja f ∈ SC([−L , L] ; R) (respectivamete, f ∈ SC([−L , L] ; C)) e consideremos a s�erie

de Fourier associada �a fun�c~ao f, na forma complexa, isto �e, dados por (7.222).

Ent~ao

lim
|n|→∞ f̂ (n) = 0 , (7.240)

ou seja,

lim
n→∞ f̂ (n) = lim

n→−∞ f̂ (n) = 0 . (7.241)

Demonstração:

Observemos que, do Corol�ario (7.4.1) (ou do item 3. da Observa�c~ao (7.4.3)), temos que

as s�eries num�erica ∞∑
n=−∞

∣∣∣f̂ (n)∣∣∣2
�e convergente em R (respectivamente, C).

Logo, como consequência do crit�erio da divergência para s�eries num�ericas, visto em An�alise

I, segue que

lim
n→∞ f̂ (n) = lim

n→−∞ f̂ (n) = 0 ,
como quer��amos demonstrar.

�
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7.5 Convergência Pontual da Série de Fourier

A seguir iniciaremos o estudo da convergência da s�erie de Fourier associada a uma fun�c~ao

f ∈ SC([−L , L] ; R).
Nesta se�c~ao estudaremos a convergência pontual da s�erie de Fourier e na pr�oxima se�c~ao a

convergência uniforme.

Antes por�em, vale observar que dada uma fun�c~ao f ∈ SC([−L , L] ; R), que satisfaz

f(−L) = f(L) ,

podemos estendê-la a uma fun�c~ao F : R → R, que �e 2 L-peri�odica e que seja seccionalmente

cont��nua em cada intervalo [a , b] ⊆ R, da seguinte forma:

Consideremos F : R → R dada por

F(x) = f(x− 2 k L), (7.242)

onde

x− 2 k L ∈ [−L , L] ,

para algum k ∈ Z.

-
x−L Lx − 2kL

︷ ︸︸ ︷Dom��nio de f

Com isto temos a:

Definição 7.5.1 De�namos

SCper(2L)
.
= {F : R → R ; F �e 2 L-peri�odica e seccional/e cont��nua em qualquer [a , b] ⊆ R}

e

Cper(2L)
.
= {F : R → R ; F �e 2 L-peri�odica e cont��nua R} .

Observação 7.5.1

1. Observemos que os conjunto

SCper(2 L) e Cper(2 L)

tornam-se espa�cos vetorias sobre R, quando munido das opera�c~oes usuais de soma

de fun�c~oes e multiplica�c~ao de n�umero real por uma fun�c~ao.

A veri�ca�c~ao destes fatos ser�a deixada como exerc��cio para o leitor.

2. Se f ∈ SCper(2L), para cada xo ∈ R, denotaremos por

f (x+o )
.
= lim

x→x+o f(x) e f (x−o )
.
= lim

x→x−o f(x) . (7.243)
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3. Podemos indenti�car de maneira natural, o espa�co vetorial SC([−L , L] ; R) com

SCper(2 L).

Para isto dado f ∈ SC([−L , L] ; R), rede�nimos , se necess�ario,

f(L)
.
= f(−L) ,

para que a fun�c~ao f assuma o mesmo valor nos extremos do intervalo [−L , L].

Com isto podemos considerar sua extens~ao 2 L-peri�odica �a R, que pertencer�a �a

SCper(2 L), como vimos em (7.242).

Analogamente, se F ∈ SCper(2 L), ent~ao sua restri�c~ao ao intervelo [−L , L], perten-

cer�a �a SC([−L , L] ; R).

4. Se f ∈ SCper(2 L), ent~ao a s�erie de Fourier de f estar�a bem de�nida (ou seja, os

coe�cientes de Fourier estar~ao bem de�nidos).

Logo,

S[f](x) =
ao

2
+

∞∑
n=1

an cos
(nπ
L
x
)
+ bn sen

(nπ
L
x
)
, (7.244)

onde

an =
1

L

∫L
−L

f(x) cos
(nπ
L
x
)
dx (7.245)

bn =
1

L

∫L
−L

f(x) sen
(nπ
L
x
)
dx , para cada n ∈ N , (7.246)

ou

S[f](x) =

∞∑
n=−∞ f̂ (n) e

i nπ
L
x , (7.247)

onde

f̂(n) =
1

2 L

∫L
−L

f(x) e−i
nπ
L
x dx , para cada n ∈ Z . (7.248)

Iniciaremos o nosso estudo da convergência pontual da s�erie de Fourirer estabelecendo o

seguinte resultado:

Lema 7.5.1 Seja f ∈ SCper(2 L), diferenci�avel em [−L , L], exceto em um n�umero �nito

de pontos, e de modo que que f ′ ∈ SCper(2 L).
Suponhamos tamb�em que a fun�c~ao f seja cont��nua em x = 0 e que

f(0) = 0 . (7.249)

Ent~ao a s�erie de Fourier da fun�c~ao f, converge para 0, no ponto x = 0, isto �e,
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fazendo x = 0 em (7.244), respectivamente (7.247), teremos:

ao

2
+

∞∑
n=1

an = 0 = f(0) , (7.250)

respectivamente,
∞∑

n=−∞ f̂ (n) = 0 = f(0) . (7.251)

Demonstração:

Demonstraremos a identidade para a forma complexa da s�erie de Fourier, isto �e, provare-

mos que

∞∑
n=−∞ f̂ (n) = lim

N→∞
N∑

n=−N

f̂ (n) = 0 .

Para isto consideremos a fun�c~ao g : R → R, dada por

g(x) =


f(x)

ei
π
L
x − 1

, para x ∈ [−L , 0) ∪ (0 , L]

−i L
f ′(0+)

π
, para x = 0

(7.252)

e de modo que

g(x+ 2 L) = g(x) , para cada x ∈ R . (7.253)

Observemos que existem

g (0+) e g (0−) .

De fato, pois:

g (0+)
(7.243)
= lim

x→0+ g(x)
x ̸=0 e (7.252)

= lim
x→0+

f(x)

ei
π
L
x − 1

f(0)
(7.249)

= 0
= lim

x→0+
f(x) − f(0)x− 0

1

ei
π
L
x − 1

x− 0

 . (7.254)

Notemos que

lim
x→0+

f(x) − f(0)

x− 0

(7.243)
= f ′(0+) , que existe pois f ′ ∈ SC−per(2 L) (7.255)

e

lim
x→0+

1

ei
π
L
x − 1

x− 0

=
1

d

dx

[
ei

π
L
x

∣∣∣∣
x=0

]
=
L

i π
. (7.256)
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Logo, de (7.255), (7.256) e (7.254), segue que

g(0+) = f ′(0+)
L

i π

= −i
L

π
f ′(0+)

(7.252)
= g(0) ,

portanto existe g(0+) e �e igual a g(0).

De modo semelhante, teremos:

g (0−)
(7.243)
= lim

x→0− g(x)
(7.253)
= lim

x→0− g(x+ 2 L)
x+2 L∈(−L ,L) e (7.252)

= lim
x→0−

f(x+ 2L)

ei
π
L
(x+2 L) − 1

f(x+2L)=f(x)
= lim

x→0−
f(x)

ei
π
L
x ei 2 π − 1

ei 2 π=1
= lim

x→0−
f(x)

ei
π
L
x − 1

= lim
x→0−

f(x) − f(0)x− 0

1

ei
π
L
x − 1

x− 0


(7.255) e (7.256)

= f ′(0−)
L

i π

= −i
L

i π
f ′(0−) ,

isto �e, existe g(0−).

Observemos que f ∈ SCper(2 L) e a fun�c~ao

x→ ei
π
L
x − 1

�e cont��nua e 2 L-peri�odica em R, e s�o se anula em x = 0, no intervalo [−L , L].

A�rmamos que g ∈ SCper(2 L).
De fato, pois, devido a observa�c~ao acima, al�em dos pontos onde a fun�c~ao f tem uam

descontinuidade de 1.a esp�ecie em [−L , L] (que s~ao, no m�aximo, um n�umero de pontos do

intervalo [−L , L]), o �unico "problema" da fun�c~ao g no intervalo [−L , L] seria x = 0, mas nesse

ponto existem os limites laterais, como vimos acima.

Logo, do Lema de Riemman-Lebesgue, na forma complexa, (isto �e, do Corol�ario 7.4.3))

segue que

lim
n→∞ ĝ (n) = lim

n→−∞ ĝ (n) = 0 . (7.257)
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Por outro lado, para cada n ∈ Z, temos que:

f̂ (n)
(7.248)
=

1

2 L

∫L
−L

f(x) e−i
nπ
L
x dx

(7.252)
=

1

2L

∫L
−L

g(x)
(
ei

π
L
x − 1

)
e−i

nπ
L
x dx

propriedades da integral de�nida
=

1

2 L

∫L
−L

g(x) e−i
(n−1)π

L
x dx−

1

2 L

∫L
−L

g(x) e−i
nπ
L
x dx

(7.248) com n−1 e n
= ĝ (n− 1) − ĝ (n) . (7.258)

Logo, para cada N ∈ N, teremos:

N∑
n=−N

f̂ (n) = f̂ (−N) + f̂ (−N+ 1) + · · ·+ f̂ (N− 1) + f̂ (N)

(7.258)
= [ĝ (−N− 1) − ĝ (−N)] + [ĝ (−N) − ĝ (−N+ 1)] + · · ·

+ [ĝ (N− 2) − ĝ (N− 1)] + [ĝ (N− 1) − ĝ (N)]

= ĝ (−N− 1) − ĝ (N) . (7.259)

Portanto,

∞∑
n=−∞ f̂ (n) = lim

N→∞
N∑

n=−N

f̂ (n)

(7.259)
= lim

n→∞ [ĝ (−N− 1) − ĝ (N)]
(7.257)
= 0 ,

ou seja, ∞∑
n=−∞ f̂ (n) = 0

(7.249)
= f(0).

Portanto a s�erie de Fourier associada �a fun�c~ao f, em x = 0, converge para 0 = f(0), como

quer��amos demonstrar.

�

Observação 7.5.2

1. A demonstra�c~ao do Lema (7.5.1) acima mostra, na verdade, que a convergência

da s�erie de Fourier, na forma complex,a
∞∑

n=−∞ f̂ (n), ocorre em um sentido mais

forte, a saber,

lim
N→∞
M→∞

M∑
n=−N

f̂ (n) = 0
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e n~ao apenas no sentido de valor principal, isto �e,

lim
N→∞

N∑
n=−N

f̂ (n) = 0 .

De fato, pelo que vimos da demonstra�c~ao do Lema (7.5.1) acima (veja a identidade

(7.259)) temos que:

M∑
n=−N

f̂ (n) = f̂ (−N) + f̂ (−N+ 1) + · · ·+ f̂ (M− 1) + f̂ (M)

(7.258)
= [ĝ (−N− 1) − ĝ (−N)] + [ĝ (−N) − ĝ (−N+ 1)] + · · ·

+ [ĝ (M− 2) − ĝ (M− 1)] + [ĝ (M− 1) − ĝ (M)]

= ĝ (−N− 1) − ĝ (M)

N→∞
M→∞→ 0, devido a (7.257). (7.260)

Portanto, de (7.260), segue que

lim
N→∞
M→∞

M∑
n=−N

f̂ (n) = 0 .

2. A soma (7.259) �e dita soma telescópica.

Podemos agora tratar do resultado principal, a saber:

Teorema 7.5.1 Suponhamos que f ∈ SCper(2 L) �e uma fun�c~ao diferenci�avel em [−L , L],

exceto em um n�umero �nito de pontos, que f ′ ∈ SCper(2 L) e xo ∈ R.

Ent~ao a s�erie de Fourier associada �a fun�c~ao f, em xo, converge, para
f (x+o ) + f (x

−
o )

2
,

isto �e,

f (x+o ) + f (x
−
o )

2
=
ao

2
+

∞∑
n=1

an cos
(nπ
L
xo

)
+ bn sen

(nπ
L
xo

)
, (7.261)

onde,

an =
1

L

∫L
−L

f(x) cos
(nπ
L
x
)
dx ,

bn =
1

L

∫L
−L

f(x) sen
(nπ
L
x
)
dx , para cada n ∈ N ,

ou

f (x+o ) + f (x
−
o )

2
=

∞∑
n=−∞ f̂ (n) e

i nπ
L
xo , (7.262)

onde,

f̂ (n) =
1

2 L

∫L
−L

f(x) e−i
nπ
L
x dx , para cada n ∈ Z . (7.263)
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Demonstração:

Consideremos a transforma�c~ao T : R2 → R2, dada por

T(x , y)
.
=

(
x− xo , y−

f (x+o ) + f (x
−
o )

2

)
, para cada (x , y) ∈ R2 . (7.264)

Observemos que

T

(
xo ,

f (x+o ) + f (x
−
o )

2

)
(7.264)
=

(
xo − xo ,

f (x+o ) + f (x
−
o )

2
−
f (x+o ) + f (x

−
o )

2

)
= (0 , 0) e

T(x , f(x))
(7.264)
=

(
x− xo , f(x) −

f(x+o ) + f(x
−
o )

2

)
.

De�namos a fun�c~ao g : R → R, dada por

g(x)
.
= f(x+ xo) −

f(x+o ) + f(x
−
o )

2
, para cada x ∈ R . (7.265)

Ent~ao os pontos do gr�a�co da fun�c~ao g, s~ao da forma:

(x , g(x))
(7.265)
=

(
x , f(x+ xo) −

f(x+o ) + f(x
−
o )

2

)
z
.
=x+xo=

(
z− xo , f(z) −

f(x+o ) + f(x
−
o )

2

)
(7.264)
= T(z , f(z))

z=x+xo= T(x+ xo, f(x+ xo)) , (7.266)

para cada x ∈ R.
Observemos que

g(0+) = lim
x→0+ g(x)

(7.265)
= lim

x→0+
[
f(x+ xo) −

f(x+o ) + f(x
−
o )

2

]
= f(x+o ) −

f(x+o ) + f(x
−
o )

2

=
f(x+o ) − f(x

−
o )

2
, (7.267)

g(0−) = lim
x→0− g(x)

(7.265)
= = lim

x→0−
[
f(x+ xo) −

f(x+o ) + f(x
−
o )

2

]
= f(x−o ) −

f(x+o ) + f(x
−
o )

2

=
f(x−o ) − f(x

+
o )

2
. (7.268)
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Logo, de (7.267) e (7.268), segue que

g(0+) + g(0−)

2
=
1

2

[
f(x+o ) − f(x

−
o )

2
+
f(x−o ) − f(x

+
o )

2

]
=
1

4
[f(x+o ) − f(x

−
o ) + f(x

−
o ) − f(x

+
o )]

= 0 . (7.269)

Observemos que como f , f ′ ∈ SCper(2 L), de (7.265), segue que g , g ′ ∈ SCper(2 L).
A veri�ca�c~ao destes fatos ser~ao deixados como exerc��cio para o leitor.

De�namos a fun�c~ao h : R → R, dada por

h(x)
.
=


g(x) + g(−x)

2
, para x ∈ [−L , 0) ∪ (0 , L]

0 , para x = 0
, (7.270)

e

h(x+ 2 L) = h(x) , para cada x ∈ R .

Com isto teremos que h , h ′ ∈ SCper(2 L).
A veri�ca�c~ao destes fatos ser~ao deixados como exerc��cio para o leitor.

Al�em disso, a fun�c~ao h �e cont��nua em x = 0.

De fato, pois

lim
x→0+ h(x)

x̸=0 e (7.270)
= lim

x→0+
g(x) + g(−x)

2

=
g(0+) + g(0−)

2
(7.269)
= 0

(7.270)
= h(0) ;

lim
x→0− h(x)

x̸=0 e (7.270)
= lim

x→0−
g(x) + g(−x)

2

=
g(0−) + g(0+)

2
(7.269)
= 0

(7.270)
= h(0) .

Logo

lim
x→0h(x) = 0

(7.270)
= h(0) ,

mostrando a continuidade da fun�c~ao h, em x = 0.

Aplicando o Lema (7.5.1) para a fun�c~ao h (notemos que a fun�c~ao h satisfaz todas as

hip�otese do Lema, veri�que!), teremos que

∞∑
n=−∞ ĥ (n) = lim

N→∞
N∑

n=−N

f̂ (n)

= 0 = h(0). (7.271)
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Mas, para cada n ∈ Z, temos que:

ĥ (n)
(7.232) e (7.231)

=
ĝ (n) + ĝ (−n)

2
, para cada n ∈ Z . (7.272)

Logo, para cada N ∈ N, �xado, teremos

N∑
n=−N

ĥ (n)
(7.272)
=

N∑
n=−N

ĝ (n) + ĝ (−n)

2

=

N∑
n=−N

ĝ (n)

2
+

N∑
n=−N

ĝ (−n)

2⟨
temos que:

N∑
n=−N

ĝ (n) =

N∑
n=−N

ĝ (−n)

⟩

=

N∑
n=−N

ĝ (n) . (7.273)

Por outro lado, para cada n ∈ Z, segue que:

ĝ (n)
(7.263)
=

1

2 L

∫L
−L

g(x) e−i
nπ
L
x dx

(7.265)
=

1

2 L

∫L
−L

[
f(x+ xo) −

f(x+o ) + f(x
−
o )

2

]
e−i

nπ
L
x dx

propriedades da integral de�nida
=

1

2 L

∫L
−L

f(x+ xo) e
−i nπ

L
x dx−

1

2 L

∫L
−L

f(x+o ) + f(x
−
o )

2
e−i

nπ
L
x dx

=

⟨
na 1.a integral fazendo:

y = x+ xo , logo: dy = dx

x = −L , logo: y = −L+ xo
x = L , logo: y = L+ xo

⟩
=

=
1

2 L

∫ L+xo
−L+xo

f(y) e−i
nπ
L

(y−xo) dx−
1

2 L

f(x+o ) + f(x
−
o )

2

∫ L
−L

e−i
nπ
L
x dx

y7→f(y) e−i n π
L

(y−xo) �e 2 L-per, e (7.115)
=

1

2L

∫L
−L

f(y) e−i
nπ
L
y ei

nπ
L
xo dx

−
1

2 L

f(x+o ) + f(x
−
o )

2

∫L
−L

e−i
nπ
L
x dx

= ei
nπ
L
xo

[
1

2L

∫ L
−L

f(y) e−i
nπ
L
y dx

]
−
1

2 L

f(x+o ) + f(x
−
o )

2

∫L
−L

e−i
nπ
L
x dx

(7.263)
= f̂ (n) ei

nπ
L
xo −

1

2 L

f(x+o ) + f(x
−
o )

2

∫L
−L

e−i
nπ
L
x dx . (7.274)

Observemos que, para cada n ∈ Z �xado, temos que:

∫ L
−L

e−i
nπ
L
x dx =


2 L , para n = 0

e−i
nπ
L
x

−i nπ
L

∣∣∣∣x=L

x=−L

=
L

−i nπ
[e−i n π − e+i n π]︸ ︷︷ ︸

=0

= 0 , para n ̸= 0 . (7.275)
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Assim, para cada n ∈ Z, de (7.274) e (7.275), segue que

ĝ (n) =

 f̂ (0) −
f(x+o ) + f(x

−
o )

2
, para = 0

f̂(n) ei
nπ
L
xo , para n ̸= 0.

(7.276)

Logo

N∑
n=−N

f̂ (n) ei
nπ
L
xo −

f(x+o ) + f(x
−
o )

2
=

N∑
n=−N ,N ̸=0

f̂ (n) ei
nπ
L
xo︸ ︷︷ ︸

(7.276) com n ̸=0
= ĝ (0)

+ f̂ (0) −
f(x+o ) + f(x

−
o )

2︸ ︷︷ ︸
(7.276) com n=0

= ĝ (n)

(7.276)
=

N∑
n=−N

ĝ (n)

(7.273)
=

N∑
n=−N

ĥ (n)
N→∞→ 0,

devido a (7.271), ou seja

∞∑
n=−∞ f̂ (n) e

i nπ
L
xo =

f(x+o ) + f(x
−
o )

2
,

como quer��amos demonstrar.

�

Observação 7.5.3

1. A demonstra�c~ao do Teorema (7.5.1) acima �e devido a P.R.Cherno� (1980).

2. O Teorema (7.5.1) acima, nos diz que nas hip�otese do Teorema (7.5.1), a s�erie de

Fourier associada a fun�c~ao f, converge para a m�edia do valor do salto da fun�c~ao

f, em xo.

3. Se al�em de satisfazer as hip�oteses do Teorema (7.5.1) acima, a fun�c~ao f for

cont��nua em xo, ent~ao teremos que

f(x+o ) = f(x
−
o ) = f(xo) .
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Logo, de (7.261), respectivamente, (7.262), segue que

f(xo) =
ao

2
+

∞∑
n=1

an cos
(nπ
L
xo

)
+ bn sen

(nπ
L
xo

)
, (7.277)

ou

f(xo) =

∞∑
n=−∞ f̂ (n) e

i nπ
L
xo . (7.278)

onde,

am =
1

L

∫ L
−L

f(x) cos
(mπ
L
x
)
dx , para cada m ∈ {0} ∪ N , (7.279)

bk =
1

L

∫ L
−L

f(x) sen

(
kπ

L
x

)
dx , para cada k ∈ N , (7.280)

ou

f (x+o ) + f (x
−
o )

2
=

∞∑
n=−∞ f̂ (n) e

i nπ
L
xo , (7.281)

onde,

f̂ (n) =
1

2 L

∫L
−L

f(x) e−i
nπ
L
x dx , para cada n ∈ Z . (7.282)

4. Em particular, se f ∈ C1(R ; R) �e uma fun�c~ao 2 L-peri�odica ent~ao, do Teorema

(7.5.1) acima, a s�erie de Fourier associada �a fun�c~ao f converge, pontualmente,

para a fun�c~ao f, em R, isto �e, para cada x ∈ R, teremos

f(x) =
ao

2
+

∞∑
n=1

an cos
(nπ
L
x
)
+ bn sen

(nπ
L
x
)
, (7.283)

ou

f(x) =

∞∑
n=−∞ f̂ (n) e

i nπ
L
x , (7.284)

onde, para cada m ∈ {0} ∪ N, k ∈ N e n ∈ Z, os coe�cientes am, bk e f̂ (n), s~ao

dados por (7.279), (7.281) e (7.282), respectivamente.

Aplicaremos, a seguir, as ideias e resultados acima a dois exemplos os quais j�a foram

calculados os coe�cientes de Fourier anteriormente.

Exemplo 7.5.1 Consideremos a fun�c~ao f : R → R, dada por

f(x) =

{
−x , para x ∈ [−1 , 0)

x , para x ∈ [0 , 1)
, (7.285)

satisfazendo

f(x+ 2) = f(x) , para cada x ∈ R . (7.286)

Estude a convergência da s�erie de Fourier associada �a fun�c~ao f.
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Resolução:

Neste caso, temos

L = 1

e

f(x) = |x| , para cada x ∈ [−1 , 1]

e satisfaz (7.286).

A representa�c~ao geom�etrica do gr�a�co da fun�c~ao f, �e dada pela �gura abaixo.

-

6

−1 1

Onda Dente de Serra

Vimos, no Exemplo (7.3.4), para cada n ∈ N, vimos que

bn
(7.169)
= 0 ,

ao
(7.168)
=

1

2
,

a2 n
(7.168)
= 0 ,

a2 n+1
(7.168)
=

−4

(2n+ 1)2 π2
,

ou seja, a s�erie de Fourier associada �a fun�c~ao f ser�a dada por:

S[f](x) =
1

2
−
4

π2

∞∑
n=0

1

(2n+ 1)2
cos [(2n+ 1)πx] . (7.287)

Observemos que f ∈ Cper(2) e a fun�c~ao f ′ �e seccionalmente cont��nua em qualquer intervalo

[a , b] ⊆ R, pois, de (7.285), temos que

f ′(x) = −1 , para cada x ∈ (−1 , 0) e f ′(x) = 1 , para cada x ∈ (0 , 1) .

Logo, do Teorema (7.5.1) e do item 2. da Observa�c~ao (7.5.3), segue que a s�erie de Fourier

associada �a fun�c~ao f (isto �e, (7.287)) converge para a fun�c~ao f, pontualmente em R, isto �e,

f(x) =
1

2
−
4

π2

∞∑
n=0

1

(2n+ 1)2
cos [(2n+ 1)πx] , para cada x ∈ R . (7.288)

�
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Observação 7.5.4 Em particular, segue que

0
(7.285)
= f(0)

(7.288) com x=0
=

1

2
−
4

π2

∞∑
n=0

1

(2n+ 1)2
cos [(2n+ 1)π · 0]︸ ︷︷ ︸

=1 , para todo n∈N

=
1

2
−
4

π2

∞∑
n=0

1

(2n+ 1)2
,

isto �e,
∞∑
n=0

1

(2n+ 1)2
=
π2

8
.

Exemplo 7.5.2 Conisderemos a fun�c~ao f : R → R, dada por

f(x) =

{
0 , para cada x ∈ [π , 0) ou x = π

π , para cada x ∈ [0 , π)
, (7.289)

satisfazendo

f(x+ 2 π) = f(x) , para cada x ∈ R . (7.290)

Estude a convergência da s�erie de Fourier associada a fun�c~ao f.

Resolução:

Neste caso, temos que

L = π .

A representa�c~ao geom�etrica do gr�a�co da fun�c~ao f, �e dada pela �gura abaixo.

-

6

π−π

π

Onda Quadrada

−2 π 2 π

Vimos, no Eexemplo (7.3.5), que a s�erie de Fourier associada �a fun�c~ao f �e dada por:

S[f](x) =
π

2
+

∞∑
n=0

2

2n+ 1
sen [(2n+ 1) x)] . (7.291)
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Observemos que f ∈ SCper(2π) e a fun�c~ao f ′ �e seccionalmente cont��nua em qualquer

intervalo [a , b] ⊆ R.
De fato, pois

f ′(x) = 0 , para cada x ∈ (−π , 0) ∪ (0 , π) .

Logo, do Teorema (7.5.1) e do item 3. da Observa�c~ao (7.5.3), segue que a s�erie de

Fourier associada �a fun�c~ao f, converge para fun�c~ao f, pontualmente em R, exceto nos

pontos da forma

x = kπ , para cada ∈ Z ,

pois a fun�c~ao f n~ao �e cont��nua, somente, neste pontos de R, ou seja,

f(x) =
π

2
+

∞∑
n=0

2

2n+ 1
sen[(2n+ 1) x)] , (7.292)

para cada x ∈ R com x ̸= kπ, para cada k ∈ Z.
Notemos que, do Teorema (7.5.1), em x = 0 teremos:

π

2

(7.289)
=

f(0+) + f(0−)

2

(7.261) e (7.291)
=

π

2
+

∞∑
n=0

2

2n+ 1
sen[(2n+ 1) · 0]︸ ︷︷ ︸
=0 , para todo n∈N

=
π

2
.

Notemos que, do Teorema (7.5.1), em x = π teremos:

π

2

(7.289)
=

f (π+) + f (π−)

2

(7.261) e (7.291)
=

π

2
+

∞∑
n=0

2

2n+ 1
sen[(2n+ 1)π]︸ ︷︷ ︸
=0 , para todo n∈N

=
π

2
.

Notemos que, do Teorema (7.5.1), em x = −π teremos:

π

2

(7.289)
=

f (−π+) + f (−π−)

2

(7.261) e (7.291)
=

π

2
+

∞∑
n=0

2

2n+ 1
sen[(2n+ 1) (−π)]︸ ︷︷ ︸

=0 , para todo n∈N

=
π

2
.

Como a fun�c~ao f �e cont��nua em x =
π

2
, pelo do Teorema (7.5.1) e do item 3. da

Observa�c~ao (7.5.3), temos que a s�erie de Fourier associada �a fun�c~ao f ser�a convergente
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para f
(π
2

)
, isto �e,

π
(7.289)
= f

(π
2

)
(7.261) e (7.291)

=
π

2
+

∞∑
n=0

2

2n+ 1
sen
[
(2n+ 1)

π

2
)
]

︸ ︷︷ ︸
=(−1)n , para todo n∈N

=
π

2
+

∞∑
n=0

2

2n+ 1
(−1)n

=
π

2
+

∞∑
n=0

2 (−1)n

2n+ 1
,

ou seja, ∞∑
n=0

(−1)n

2n+ 1
=
π

4
.

7.6 Convergência Uniforme da Série de Fourier

O objetivo desta se�c~ao �e apresentar um resultado que garanta a convergência uniforme da

s�erie de Fourier associada a uma fun�c~ao peri�odica "bem comportada".

Para a demonstra�c~ao desse resultado precisaremos de alguns outros, entre eles da:

Proposição 7.6.1 Consideremos f ∈ SCper(2 L) que seja uma fun�c~ao diferenci�avel em

[−L , L], exceto em um n�umero �nito de pontos, e de modo que f ′ ∈ SCper(2 L).
Ent~ao os coe�cientes de Fourier, na forma complexa, da fun�c~ao f e da fun�c~ao f ′,

se relacionam da seguinte forma:

f̂ ′ (n) =
i nπ

L
f̂ (n) , para cada n ∈ Z, (7.293)

ou seja, se

S[f](x) =

∞∑
n=−∞ f̂ (n) e

i nπ
L
x (7.294)

ent~ao

S [f ′] (x) =

∞∑
n=−∞

i nπ

L
f̂ (n) ei

nπ
L
x . (7.295)

Em rela�c~ao aos coe�cientes de Fourier, na forma real, associados �a fun�c~ao f, tere-

mos que:

ao
′ = 0 ,

an
′ =

nπ

L
bn ,

bn
′ = −

nπ

L
an , para cada n ∈ N , ; (7.296)
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onde

S[f] =
ao

2
ψo +

∞∑
n=1

anψn + bnϕn

S[f ′] =
ao

′

2
ψo +

∞∑
n=1

an
′ψn + bn

′ϕn ,

com, para cada m ∈ {0} ∪ N e n ∈ N, as fun�c~oes ψm e ϕn, dadas por (7.136) e (7.135),

respectivamente.

Demonstração:

Observemos que se a identidade (7.293) ocorrer, ent~ao as identidades em (7.296), tamb�em

ocorrer~ao.

De fato, pois:

ao
′ (7.183)= 2 f̂ ′ (0)

(7.293) com n=0)
= 2

(
0 · f̂ (0)

)
= 0 ,

an
′ − i bn

′

2

(7.184)
= f̂ ′ (n)

(7.293)
=

i nπ

L
f̂ (n)

(7.184)
=

i nπ

L

(
an − i bn

2

)

=

nπ

L
bn + i

nπ

L
an

2
, para cada n ∈ N ,

ou seja,

an
′ =

nπ

L
bn e bn

′ = −
nπ

L
an , para cada n ∈ N,

isto �e, vale as identidades em (7.296).

Mostremos que a identidade (7.293) ocorre.

Para isto notemos que, para cada n ∈ Z, teremos, por integra�c~ao por partes para a integral
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de�nida, que:

f̂ ′ (n)
(7.282)
=

1

2 L

∫L
−L

f ′(x) e−i
nπ
L
x dx⟨

u
.
= e−i

nπ
L
x , logo: du = −inπ

L
e−i

nπ
L
x dx

dv
.
= f ′(x)dx , logo: v = f(x)

⟩

=
1

2 L

 f(x) e−i
nπ
L
x

∣∣∣∣x=L
x=−L︸ ︷︷ ︸

f(·) e e
−i n π

L
·
s~ao 2 L-peri�odicas
= 0

−

∫L
−L

f(x)
(
−i
nπ

L
e−i

nπ
L
x
)
dx


= i

nπ

L

[
1

2 L

∫ L
−L

f(x) e−i
nπ
L
x)dx

]
(7.282)
= i

nπ

L
f̂ (n) ,

como quer��amos demonstrar.

�

Observação 7.6.1

1. Observemos que a identidade (7.293), nos diz que quanto mais derivadas a fun�c~ao

f tiver, mais r�apido a sequência dos coe�cientes de Fourier decai a zerom quando

n, tende a +∞ (ou quando n, tende a ±∞ para os coe�cientes complexos de

Fourier associados �A fun�c~ao f).

Para ver isto, observemos que se a fun�c~ao f : R → R for uma fun�c~ao 2 L-peri�odica

que �e duas vezes diferenci�avel, exceto em um n�umero �nito de pontos do intervalo

[−L , L], e f ′′ ∈ SCper(2 L) ent~ao, para cada n ∈ Z, teremos:

f̂ ′′ (n) = ̂(f ′) ′ (n)

(7.293)
=

i nπ

L
f̂ ′ (n)

(7.293)
=

(i nπ)2

L2
f̂ (n) . (7.297)

Em geral, para k ∈ N �xado, se a fun�c~ao f : R → R for uma fun�c~ao 2 L-peri�odica

�e k-vezes diferenci�avel e f(k) ∈ SCper(2 L), podemos mostrar, por indu�c~ao, que que

f̂(k) (n) =

(
i nπ

L

)k
f̂ (n) , para cada n ∈ Z .

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor.

2. Observemos que se f, f ′ ∈ Cper(2 L) e f ′′ existe, exceto em um n�umero �nito de

pontos de [−L , L], e satisfas f ′′ ∈ SCper(2 L) ent~ao, podemos a�rmar que a s�erie de

Fourier associada �a fun�c~ao f, converge uniformemente para a fun�c~ao f, em R.
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De fato, do Lema de Riemann-Lebesgue (isto �e, do Corol�ario (7.4.3)) aplicado �a

fun�c~ao f ′′, segue que

lim
|n|→∞ f̂ ′′ (n) = 0 .

Logo, da Proposi�c~ao (2.3.2), segue que a sequência num�erica
(
f̂ ′′ (n)

)
n∈Z

ser�a

limitada, ou seja, exite M > 0 tal que∣∣∣f̂ ′′ (n)
∣∣∣ ≤M, para cada n ∈ Z . (7.298)

Mas, para cada n ∈ Z, com n ̸= 0, temos que:∣∣∣f̂ (n) ei nπ
L
x
∣∣∣ = ∣∣∣f̂ (n)∣∣∣ ∣∣ei nπ

L
x
∣∣︸ ︷︷ ︸

=1

(7.297)
=

∣∣∣∣∣
(

L

inπ

)2
f̂ ′′ (n)

∣∣∣∣∣
=

L2

π2 n2

∣∣∣f̂ ′′ (n)
∣∣∣

(7.298)

≤ ML2

π2
1

n2
, para todo x ∈ R . (7.299)

Como a s�erie num�erica
∞∑
n=1

1

n2
�e convergente (�e uma p-s�erie, com p > 1 - veja

(3.203)) segue, de (7.299) e do Teste M.de Weierstrass (isto �e, do Teorema (5.3.1)),

que a s�erie de fun�c~oes ∞∑
n=−∞ f̂ (n) e

i nπ
L
x

(a s�erie de Fourier, na forma complexa, associada �a fun�c~ao f) ser�a uniformemente

convergente, em R para alguma fun�c~ao g : R → R.

Notemos que, do Teorema (7.5.1), segue que a s�erie de Fourier associada �a fun�c~ao

f converge pontualmente para a fun�c~ao f, em R, pois a fun�c~ao f �e cont��nua em

R.

Portanto, das duas conclus~oes acima segue que

f(x) =

∞∑
n=−∞ f̂ (n) e

i nπ
L
x , (7.300)

para x ∈ R, onde a convergência da s�erie de fun�c~oes (7.300), ser�a a uniforme em

R, isto �e,
N∑

n=−N

f̂ (n) ei
nπ
L
x N→∞−→ f(x) , unifomemente em R. (7.301)

Na verdade temos um resultado um pouco mais geral, a saber:
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Teorema 7.6.1 Consideremos f ∈ Cper(2 L) que seja uma fun�c~ao diferenci�avel em [−L , L],

exceto em um n�umero �nito de pontos deste intervalo, e satisfazendo f ′ ∈ SCper(2 L).
Ent~ao a s�erie de Fourier associada �a fun�c~ao f, converge uniformemente para a

fun�c~ao f, em R, isto �e,

lim
N→∞

[
ao

2
+

N∑
n=1

an cos
(nπ
L
x
)
+ bn sen

(nπ
L
x
)]

= f(x) , uniformemente em R , (7.302)

onde, para cada m ∈ {0} ∪ N e k ∈ N, temos que:

am
.
=
1

L

∫L
−L

f(x) cos
(mπ
L
x
)
dx , e bk

.
=
1

L

∫L
−L

f(x) sen

(
kπ

L
x

)
dx , (7.303)

ou

lim
N→∞

N∑
n=−N

f̂ (n) ei
nπ
L
x = f(x) , uniformemente em R , (7.304)

onde, para cada n ∈ Z, temos que:

f̂ (n)
.
=
1

2 L

∫L
−L

f(x) e−i
nπ
L
x dx . (7.305)

Demonstração:

Faremos a demonstra�c~ao de (7.304).

A demonstra�c~ao de (7.302) �e consequência da demonstra�c~ao de (7.304) e seus detalhes

ser~ao deixados como exerc��cio para o leitor.

Notemos que, para cada N ∈ N, temos:

N∑
n=−N

∣∣∣f̂ (n)∣∣∣ = ∣∣∣f̂ (0)∣∣∣+ ∑
1≤|n|≤N

∣∣∣f̂ (n)∣∣∣
(7.293)
=

∣∣∣f̂ (0)∣∣∣+ ∑
1≤|n|≤N

∣∣∣∣ Linπ f̂ ′ (n)

∣∣∣∣
|i|=1
=
∣∣∣f̂ (0)∣∣∣+ L

π

∑
1≤|n|≤N

1

|n|

∣∣∣f̂ ′ (n)
∣∣∣

(7.106)

≤
∣∣∣f̂ (0)∣∣∣+ L

π

 ∑
1≤|n|≤N

1

|n|2

 1
2
 ∑
1≤|n|≤N

∣∣∣f̂ ′ (n)
∣∣∣2
 1

2

≤
∣∣∣f̂ (0)∣∣∣+ L

π

 ∑
1≤|n|≤N

1

|n|2

 1
2 ( ∞∑

n=−∞
∣∣∣f̂ ′ (n)

∣∣∣2) 1
2

f ′∈SCper(2 L) e Corol�ario (7.4.1) - veja (7.223)

≤
∣∣∣f̂ (0)∣∣∣+ L

π

 ∑
1≤|n|≤N

1

|n|2

 1
2

1

2 L
∥f ′∥
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≤
∣∣∣f̂ (0)∣∣∣+ √

L√
2 π

(
2

∞∑
n=1

1

n2

) 1
2

∥f ′∥

=
∣∣∣f̂ (0)∣∣∣+ √

L

π

( ∞∑
n=1

1

n2

) 1
2

∥f ′∥ . (7.306)

Como f ′ ∈ SCper(2 L) segue

∥f ′∥ =

(∫L
−L

f(x)dx

) 1
2

<∞ . (7.307)

Logo, de (7.306) e (7.307) segue que a sequência das somas parciais(
N∑

n=−N

∣∣∣f̂ (n)∣∣∣)
N∈N

�e limitada.

Como ela tamb�em �e mon�otona, do Teorema (2.4.1), segue que ser�a convergente, ou seja,

existe ∞∑
n=−∞

∣∣∣f̂ (n)∣∣∣ = lim
N→∞

N∑
n=−N

∣∣∣f̂ (n)∣∣∣ .
Como a s�erie num�erica

∞∑
n=−∞

∣∣∣f̂ (n)∣∣∣ �e convergente segue, do Teste M.de Weierstrass (isto

�e, do Teorema (5.3.1), que a s�erie de fun�c~oes

∞∑
n=−∞ f̂ (n) e

i nπ
L
x

(a s�erie de Fourier, na forma complexa, associada �a fun�c~ao f) ser�a uniformemente convergente

para uma fun�c~ao g : R → R, em R.
Notemos que, do Teorema (7.5.1), temos que a s�erie de Fourier associada �a fun�c~ao f,

converge para a fun�c~ao f, pontualmente em R, pois a fun�c~ao f �e cont��nua em R.
Portanto, das conclus~oes acima, segue que

f(x) =

∞∑
n=−∞ f̂ (n) e

i nπ
L
x, (7.308)

para x ∈ R, onde a convergência da s�erie de fun�c~oes (7.308), ser�a a uniforme em R, isto �e,

N∑
n=−N

f̂ (n) ei
nπ
L
x N→∞−→ f(x) , unifomemente em R, ,

completando a demonstra�c~ao.

�
Nas condi�c~oes do Teorema (7.6.1), podemos mostrar que a desigualdade de Bessel, isot �e,

(7.4.1) �e, na verdade, uma igualdade, isto �e:
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Teorema 7.6.2 Consideremos f , g ∈ Cper(2 L) daus fun�c~oes que s~ao diferenci�aveis em

[−L , L], exceto em um n�umero �nito de pontos deste intevalo, satisfazenod f ′ , g ′ ∈
SCper(2 L).

Ent~ao

1

2 L
⟨f , g⟩ =

∞∑
n=−∞ f̂ (n) ĝ (n) . (7.309)

Em particular

1

2 L
∥f∥2 =

∞∑
n=−∞

∣∣∣f̂ (n)∣∣∣2 , (7.310)

que �e conhecida como a Identidade de Parseval.

Demonstração:

Notemos que, do Teorema (7.6.1), segue que sa s�eries de Fourier associadas �as fun�c~oes f

e g, convergem uniformemente para a fun�c~ao f e g, em R, respectivamente.

Em particular, teremos

f(x) =

∞∑
n=−∞ f̂ (n) e

i nπ
L
x (7.311)

e

g(x) =

∞∑
n=−∞ ĝ (n) ei

nπ
L
x , (7.312)

para x ∈ R.
Logo, do item 2. do Corol�ario (5.3.1), segue que:

1

2 L
⟨f , g⟩ (7.100)

=
1

2 L

∫L
−L

f(x)g(x)dx

(7.311)
=

1

2 L

∫L
−L

[ ∞∑
n−∞ f̂ (n) e

i nπ
L
x

]
g(x)dx

convergência uniforme de (7.311) e o item 2. do Corol�ario (5.3.1)
=

1

2 L

∞∑
n−∞

[∫ L
−L

f̂ (n) ei
nπ
L
x g(x)dx

]

=

∞∑
n−∞ f̂(n)

1

2L

∫L
−L

ei
nπ
L
xg(x)dx

∞∑
n−∞ f̂ (n)

[
1

2 L

∫L
−L

g(x) e−i
nπ
L
x dx

]

=

∞∑
n−∞ f̂ (n)

[
1

2 L

∫L
−L

g(x) e−i
nπ
L
x dx

]
(7.305) com f

.
=g

=

∞∑
n−∞ f̂ (n) ĝ (n) ,
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completando a demonstra�c~ao da identidade (7.309).

Para obtermos a identidade (7.310), basta considerarmos g
.
= f em (7.309) e obteremos a

mesma, completando a demonstra�c~ao do resultado.

�

Observação 7.6.2

1. O Teorema (7.6.2) pode ser generalizado para situa�c~oes mais gerais, como por

exemplo, se f , g ∈ SCper(2 L), ou at�e f ∈ L2([−L , L] ; R), o conjunto formado pelas

fun�c~oes de�nidas em [−L , L], a valores reais (ou complexos) que tenham quadrado

Lebesgue-integr�avel em [−L , L].

2. Em termos dos coe�cientes de Fourier, na forma real, associados a uam fun�c~ao f

que satisfa�ca as hip�otese do Teorema (7.6.2), as rela�c~oes (7.309) e (7.310) tornar-

se-~ao:

1

L
⟨f , g⟩ = aoAo

2
+

∞∑
n=1

(anAn + bn Bn) (7.313)

e
1

L
∥f∥2 = ao

2

2
+

∞∑
n=1

(
an
2 + bn

2
)
, (7.314)

onde

S[f] =
ao

2
ψo +

∞∑
n=1

anψn + bnϕn

e S[g] =
Ao

2
ψo +

∞∑
n=1

Anψn + Bnϕn ,

onde, para cada m ∈ {0}∪N e k ∈ N, as fun�c~oes ψm e ϕk, s~ao dadas por (7.136) e

(7.135), respectivamente.

Para mostrar isso basta notar que, para:

n = 0 : f̂ (0) ĝ (0)
(7.183)
=

ao

2

Ao

2
Ao∈R=

aoAo

4
; (7.315)

n ∈ N : f̂ (n) ĝ (n)
(7.184)
=

an − i bn
2

An − i Bn
2

An ,Bn∈R=
an − i bn

2

An + i Bn
2

=
1

4
[anAn + bn Bn + i (an Bn − bnAn)] ; (7.316)

n ∈ N : f̂ (−n) ĝ (−n)
(7.185)
=

an + i bn
2

An + i Bn
2

An,Bn∈R=
an + i bn

2

An − i Bn
2

=
1

4
[anAn + bn Bn + i (−an Bn + bnAn)] . (7.317)
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Logo

1

L
⟨f , g⟩ (7.309)

= 2

∞∑
n=−∞ f̂ (n) ĝ (n)

= 2 lim
N→∞

N∑
n=−N

f̂ (n) ĝ (n)

= 2 lim
N→∞

[
f̂ (0)ĝ (0) +

N∑
n=1

f̂ (−n)ĝ (−n) +

N∑
n=1

f̂ (n) ĝ (n)

]

(7.315) ,(7.316) e (7.317)
= 2 lim

N→∞
{
aoAo

4
+

N∑
n=1

1

4
[anAn + bn Bn + i (−an Bn + bnAn)]

+

N∑
n=1

1

4
[anAn + bn Bn + i (an Bn − bnAn)]

}

=
aoAo

2
+ lim
N→∞

N∑
n=1

(anAn + bn Bn)

=
aoAo

2
+

∞∑
n=1

(anAn + bn Bn) ,

como quer��amos demonstrar.

3. No caso real, a indentidade de Parseval, tornar-se-�a:

1

L
∥f∥2 = ao

2

2
+

∞∑
n=1

(
an
2 + bn

2
)
. (7.318)

4. A identidade de Parseval pode ser muito �util, tanto na forma complexa, isto �e,

(7.310), como na forma real, o seja, (7.318), para, por exemplo, encontrarmos a

soma de certas s�eries num�ericas que sabemos s~ao convergentes, como veremos em

alguns exemplos a seguir.

Apliquemos as ideias acima aos seguintes exemplos:

Exemplo 7.6.1 Consideremos a fun�c~ao f : R → R, dada por e

f(x)
.
=

{
−x , para cada x ∈ [−1 , 0)

x , para cada x ∈ [0 , 1)
, (7.319)

satisfazendo

f(x+ 2) = f(x) , para cada x ∈ R .

Estudar a convergência da s�erie de Fourier associada �a fun�c~ao f.
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Resolução:

Vimos no Exemplo (7.5.1), que

f(x)
(7.287)
=

1

2
−
4

π2

∞∑
n=0

1

(2n+ 1)2
cos[(2n+ 1)πx)] , para cada x ∈ R ,

onde a conververgência da s�erie de fun�c~oes acima �e pontual em R.
Em particular, para cada n ∈ N, vimos que

bn
(7.169)
= 0 ,

ao
(7.167)
= 1 ,

a2 n
(7.168)
= 0 ,

a2 n+1
(7.168)
=

−4

(2n+ 1)2 π2
. (7.320)

Como f ∈ Cper(2π) e f ′ ∈ SCper(2π) segue, do Teorema (7.6.1), que a convergência da

s�erie de Fourier associada �a fun�c~ao f, ser�a uniforme em R.
Logo, da identidade de Parseval, para o caso real, (isto �e, do item 2. da Observa�c~ao

(7.6.2)), segue que (com L = 1):

12

2
+

∞∑
n=1

[
−4

(2n+ 1)2 π2

]2
(7.320)
=

ao
2

2
+

∞∑
n=1

(
an
2 + bn

2
)

(7.314)
= ∥f∥2∫ 1

−1

f(x)2 dx

f �e fun�c~ao par
= 2

∫ 1
−1

f(x)2 dx

(7.319)
= 2

∫ 1
0

x2 dx

= 2

[
x3

3

∣∣∣∣x=1
x=0

]
=
2

3
,

ou seja,

∞∑
n=1

1

(2n+ 1)4
=
π4

96
.

�

Exemplo 7.6.2 Consideremos a fun�c~ao f : R → R, dada por

f(x)
.
= sen(10 x) + 5 cos(5 x) − 2 sen(20 x) − 4 cos(11 x) , (7.321)
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para cada x ∈ [−π , π), e satisfazendo

f(x+ 2 π) = f(x) , para cada x ∈ R .

Estudar a s�erie de Fourier associada �a fun�c~ao f.

Resolução:

Observemos que, neste caso,

L = π .

Notemos que cada fun�c~oes que s~ao as parcelas da fun�c~ao f tem 2π como um de seus

per��odos.

Deixaremos a veri�ca�c~ao deste fato como exerc��cio para o leitor.

Com isto segue que

f(x) = sen(10 x) + 5 cos(5 x) − 2 sen(20 x) − 4 cos(11 x) , para cada x ∈ R .

Logo teremos f ∈ C∞
per(2π) e, do Teorema (7.6.1), segue que a s�erie de Fourier associada

�a fun�c~ao f ir�a convergir uniformemente para a fun�c~ao f em R, isto �e,

sen(10 x) + 5 cos(5 x) − 2 sen(20 x) − 4 cos(11 x)
(7.321)
= f(x)

(7.302) com L=π
=

ao

2
+

∞∑
n=1

an cos(nx) + bn sen(nx) , (7.322)

para x ∈ R, onde a convergência da s�erie de fun�c~oes acima �e uniformemente em R.
Comparando, na identidade (7.322), o lado direito como o lado esquerdo, observamos que:

bn = 0 para n ̸= 10 , 20 ,
b10 = 1 , b20 = −2 ,

an = 0 , para n ̸= 5 , 11 ,
a5 = 5 , para a11 = −4 ,

isto �e, S[f](x) = sen(10 x) + 5 cos(5 x) − 2 sen(20 x) − 4 cos(11 x) , , para cada x ∈ R ,

ou seja, �e a expresss~ao da fun�c~ao f �e a expans~ao da fun�c~ao f em s�erie de Fourier, em [−π , π].

�
Temos o seguinte exerc��cio resolvido:

Exerćıcio 7.6.1 Consideremos a fun�c~ao f : R → R, dada por

f(x)
.
= x , para cada x ∈ [−π , π) , (7.323)

satisfazendo

f(x+ 2 π) = f(x) , para cada x ∈ R .

Estude a s�erie de Fourier associada �a fun�c~ao f.
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Resolução:

Notemos que, neste caso,

L = π .

A representa�c~ao geom�etrica do gr�a�co da fun�c~ao f, no per��odo fundamental, �e dado pela

�gura abaixo.

-

6

iπ

π x

y

y = x

−π

π

Notemos que f ∈ SCper(2π) e a fun�c~ao f ′ �e seccionalmente cont��nua em qualquer intervalo

[a , b] ⊆ R.
Observemos que

f ′(x) = 1 , para cada x ∈ (−π , π) .

Logo, teremos que f ′ ∈ SCper(2π) e assim, do Teorema (7.5.1), segue que a s�erie de Fourier

associada �a fun�c~ao f, converge pontualemnte, para

f(x+) + f(x−)

2
,

para cada x ∈ R.
Notemos que a fun�c~ao f �e uma fun�c~ao ��mpar em (−π , π).

Logo, do item 4. da Observa�c~ao (7.3.8) (veja (7.164)), segue que

an = 0 , para cada n =∈ {0} ∪ N . (7.324)

Por outro lado, para cada n ∈ N, teremos:

bn
(7.157) com L=π

=
1

π

∫π
−π

f(x) sen (nx) dx

f �e fun�c~ao ��mpar
=

2

π

∫π
0

x sen(nx)dx⟨
u = x , logo du = dx

dv = sen(nx) , logo v = −
cos(nx)

n

⟩

=
2

π

[
−x

cos(nx)

n

∣∣∣∣x=π
x=0

−

∫π
0

−
cos(nx)

n
dx

]
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=
2

π

−π
=(−1)n para cada n∈N︷ ︸︸ ︷

cos(nπ)

n
+

=0 para todo n∈N︷ ︸︸ ︷
sen(nx)

n2

∣∣∣∣x=π
x=0


= (−1)n+1

2

n
. (7.325)

Portanto, substituindo (7.325) em (7.324), obteremos:

f (x+) + f (x−)

2
=

∞∑
n=1

(−1)n+1 2

n
sen(nx) , para cada x ∈ R .

Observemos que se

xo ̸= kπ , para cada k ∈ Z ,

ent~ao a fun�c~ao f ser�a cont��nua em xo.

Logo, nesses pontos, a s�erie de Fourier associada �a fun�c~ao f, no ponto xo, convergir�a para

a f(xo), isto �e

f(xo) =

∞∑
n=1

(−1)n+1 2

n
sen(nxo) .

�

7.7 Notas Históricas

A seguir vamos fornecer um breve relato do desenvolvimento da teria associada as s�eries de

Fourier.

1. d'Almbert (1747) e Euler (1748) encontraram solu�c~ao geral para a equa�c~ao da onda em

R2:
∂2 u

∂t2
(t , x) −

∂2 u

∂x2
(t , x) = 0 , para cada (t , x) ∈ R2 , (7.326)

dada por:

u(t , x)
.
= F(x+ t) +G(x− t) , para cada (t , x) ∈ R2 , (7.327)

onde F ,G ∈ C2(R ; R).

2. D.Bernoulli (1753) a�rmou que a equa�c~ao da onda (7.326), deveria ter solu�c~ao da forma

(caso L
.
= π) :

u(t , x)
.
=

∞∑
n=1

an sen(nx) cos(n t) , para cada (t , x) ∈ [0 ,∞)× [0 , π] . (7.328)
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3. Lagrange (1759) a�rmou que a equa�c~ao da onda em [0 , 1] (caso L
.
= 1), com dado inicial

dado pela fun�c~ao f, e velocidade inicial dada pela fun�c~ao g, deveria ser dada por:

u(t , x) = 2

∫ 1
0

∞∑
n=1

[
sen(nπy) sen(nπx) cos(nπ t)

]
f(y)dy

+ 2

∫ 1
0

∞∑
n=1

[
1

n
sen(nπy) sen(nπx) sen(nπ t)

]
g(y)dy , (7.329)

para cada (t , x) ∈ [0 ,∞)× [0 , 1].

Ovservação:

Se �zermos t = 0 em (7.329) e trocarmos a integral com a s�erie de fun�c~oes (precisar��amos

garantir que podemos fazer isso), obteremos:

f(x) = u(0 , x)
t=0 em (7.329)

= 2 ,

∫ 1
0

∞∑
n=1

 sen(nπy) sen(nπx)

=1 , para todo n∈N︷ ︸︸ ︷
cos(nπ0)

 f(y)dy
+ 2

∫ 1
0

∞∑
n=1

 1
n

sen(nπy) sen(nπx) sen(nπ0)︸ ︷︷ ︸
=0 , para todo n∈N

 g(y)dy
= 2

∫ 1
0

∞∑
n=1

[
sen(nπy) sen(nπx

]
f(y)dy

∫ 1
0

∞∑
n=1

=

∞∑
n=1

∫ 1
0

= 2

∞∑
n=1

 ∫ 1
0

sen(nπy) f(y)dy︸ ︷︷ ︸
n-�esimo coe�ciente de Fourier

 sen(nπx) ,

para cada x ∈ [0 , 1].

4. Fourier (1811) obteve os coe�cientes de Fourier associado �a algumas fun�c~oes e escreveu

as s�eries de senos e cossenos de v�arias fun�c~oes.

Segundo consta, ele dizia que qualquer fun�c~ao peri�odica poderia ser expressa por uma

tal s�erie.

Mais tarde foi mostrado que isso, em geral, não �e verdade !

5. Dirichlet (1829 e 1837) foi um dos primeiros a reconhecer que nem toda fun�c~ao peri�odica

poderia ser representada por uma s�erie de Fourier.

Produziu os primeiros crit�erios de convergência das s�eries de Fourier.

6. Riemann (s�eculo XIX) propôs econtrar condi�c~oes necess�arias e su�cientes para que uma

fun�c~ao pudesse ser representada por uma s�erie de Fourier.

Como estas quest~oes estavam ligadas a integra�c~ao de fun�c~oes, neste instante, come�ca o

desenvolvimento mais profundo da teoria de integra�c~ao de Riemann.
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7. de Bois e Reymond (1876) construiram uma fun�c~ao cont��nua, cuja s�erie de Fourier

divergia em um ponto.

Mais tarde, construiram uma outra para o qual a s�erie de Fourier divergia num conjunto

denso de R.

F�ej�er (1909) exibiu exemplos, relacionados o problema acima, mais simples.

8. Dini (1880) obteve crit�erios para a convergência da s�erie de Fourier, conhecio como

teste ou critério de Dini.

9. Jordan (1881) demostrou outro crit�erio de convergência da s�erie de Fourier, denominado

teste ou critério de Jordan.

Observação: Todos estes trabalhos, e muitos outros, conduziram a uma melhor com-

preens~ao das fun�c~oes descont��nuas e propiciaram os trabalhos de Harnack, Hankel, Borel

e Lebesgue, culminando com a introdu�c~ao de um novo conceito de integra�c~ao, a saber,

a integral de Lebesgue.

Assim come�ca a teoria moderna das s�eries de Fourier.

10. Riesz e Fischer (1907) mostraram a convergência da s�eire de Fourier na norma ∥ · ∥2,
para fun�c~oes, cujo m�odulo, ao quadrado, s~ao Lebesgue-integr�aveis em [0 , L].

11. Carleson (1966) mostrou que para uma fun�c~ao, cujo m�odulo ao quadrado �e Lebesgue-

integr�avel em [0 , L], a s�erie de Fourier associadada �a mesma converge, exceto num

conjunto de medida de Lebesgue zero, para a pr�opria fun�c~ao.

7.8 Exerćıcios



Caṕıtulo 8

Aplicação de Série de Fourier às EDP’s

Faremos uso da teoria das s�eries de Fourier desenvolvida no cap��tulo anterior, para resolver

alguns problemas aplicados relacionados com algumas EDP's importantes.

Na verdade trataremos de alguns problemas f��sicos que envolvem EDP's (Equa�c~oes Dife-

renciais Parciais).

8.1 O Problema da Condução do Calor em um Fio

O objetivo �e encontrar a temperatura em cada ponto de um �o �nito, cujo comprimento �e

igual

L ∈ (0 ,∞) ,

os quais conhecemos a temperatura em cada ponto do mesmo no instante inicial t = 0, sendo

o que o �o est�a isolado termicamente (imagine que o �o est�a dentro de um isopor) e cujas

extremidades s~ao mantidas a 0oC, ao longo de todo o processo.

Se imaginarmos que o �o �e o intervalo

[0 , L] ⊆ R

e que u = u(t , x), nos fornece a temperatura no ponto x do �o, no instante t, para cada

x ∈ [0 , L] e t ∈ [0 ,∞), ent~ao, matematicamente, o problema acima corresponde a encontrar

uma fun�c~ao

u = u(t , x) , para cada (t , x) ∈ [0 ,∞)× [0 , L] ,

que satisfaz:

Matematicamente, o problema acima corresponde a encontrar um fun�c~ao

u = u(t, x) , para cada (t , x) ∈ [0 ,∞)× [0 , L] ,

que venha satisfazer o seguinte problema:

∂u

∂t
(t , x) = α2

∂2 u

∂x2
(t , x) , para cada (t , x) ∈ (0 ,∞)× (0 , L) (8.1)

u(0 , x) = f(x) , para cada x ∈ [0 , L] , (8.2)

u(t , 0) = u(t , L) = 0 , para cada t ∈ [0 ,∞) . (8.3)

u ∈ C([0 ,∞)× [0 , L] ; R) ∩ C2((0 ,∞)× (0 , L) ; R) . (8.4)

401
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A condi�c~ao (8.1) nos diz que, no instante inicial, isto �e, t = 0, a temperatura no ponto

x ∈ [0 , L] do �o �e igual a f(x) oC.

A condi�c~ao (8.2) nos diz que a temperatura nos extremos do �o igual a 0 oC, ao longo de

todo o processo, isto �e, para t ∈ [0 ,∞).

A Equa�c~ao Diferencial Parcial (8.1) �e denominada Equação do Calor.

A constante α ∈ (0 ,∞) est�a relacionada com a condutibilidade t�ermica do �o, isto �e,

depende do material que o �o �e feito.

No nosso caso, vamos supor que

α = 1 ,

para facilitarmos as contas que iremos tratar.

Aplicando o m�etodo da separa�c~ao de vari�aveis desenvolvido no in��cio do Cap��tulo anterior

(veja (7.10)) obtemos que a fun�c~ao u = u(t , x), dever�a ter a seguinte forma (veja (7.43)):

u(t , x) =

∞∑
n=1

bn e
−n2 π2

L2
t sen

(nπ
L
x
)
, (8.5)

para cada (t , x) ∈ [0 ,∞)× [0 , L].

Fazendo t = 0 em (8.5) e utilizando (8.2), obteremos:

f(x)
(8.2)
= u(0 , x)

(8.5) com t=0
=

∞∑
n=1

bn sen
(nπ
L
x
)
, (8.6)

para cada x ∈ [0 , L], isto �e, precisamos saber expandir a fun�c~ao f (o dado inicial) em uma

s�erie de Fourier (em senos), em [0 , L].

Observemos que o lado direito de (8.6) (ou seja, a s�erie de Fourier), caso seja convergente,

de�nir�a uma fun�c~ao ��mpar e 2 L-peri�odica.

Logo, precisamos estender a fun�c~ao f, de modo ��mpar e 2 L-peri�odicamente, a R.
Notemos que para estender, de modo ��mpar, a fun�c~ao f ao intervalo [−L , L], basta consi-

derarmos a fun�c~ao, que denotaremos por, F : [−L , L] → R, dada por:

F(x)
.
=

{
f(x) , para cada x ∈ [0 , L]

−f(−x) , para cada x ∈ [−L , 0]
. (8.7)

Notemos que (condi�c~oes de compatibilidade):

f(0)
x=0 em (8.2)

= u(0 , 0)

t=0 em (8.3)
= 0

t=0 em (8.3)
= u(0 , L)

x=L em (8.2)
= f(L) ,

ou seja,

f(0) = f(L) = 0 . (8.8)
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Logo como a fun�c~ao f �e cont��nua em [0 , L] e satisfaz (8.8), temos que a extens~ao ��mpar

da mesma ao intervalo [−L , L], isto �e, a fun�c~ao F, dada por (8.7), ser�a uma fun�c~ao cont��nua

em [−L , L].
�A esquerda, na �gura abaixo, temos ilustrado a representa�c~ao geom�etrica do gr�a�co da

fun�c~ao f, e �a direitatemos ilustrado a representa�c~ao geom�etrica do gr�a�co da fun�c~ao F.

-

6

−L L

y = f(x)

?

x

y

-

6

L
?

y = F(x)

x

y

−L

Notemos que

F(−L)
(8.7)
= −f[−(−L)]

= −f(L)

(8.7)
= F(L) .

Logo

F(−L) = F(L)

(8.7)
= f(L)

(8.8)
= 0 ,

ou seja,

F(−L) = F(L) = 0 . (8.9)

Portanto, de (8.9), podemos considerar uma extens~ao (na verdade, ser�a �unica) 2 L−peri�odica

da fun�c~ao F �a R, que indicaremos tamb�em por F, ou seja, F : R → R, ser�a dada por

F(x) = F(x+ 2 k L) , (8.10)

onde k ∈ Z �e escolhido de modo que

x+ 2 k L ∈ [−L , L] . (8.11)

Como f ∈ C([0 , L] ; R) e satisfaz (8.8), ent~ao teremos que sua extens~ao ��mpar e 2 L-

peri�odica �a R, isto �e, a fun�c~ao F, de�nida por (8.7) e (8.10), satisfaz F ∈ Cper(2 L ; R) e ser�a
uma fun�c~ao ��mpar.

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor.
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Logo a s�erie de Fourier associada �a fun�c~ao F (e portanto da fun�c~ao f) ter�a a seguinte

forma:

S[f](x) =
ao

2
+

∞∑
n=1

an cos
(nπ
L
x
)
+ bn sen

(nπ
L
x
)
, (8.12)

onde

am = 0 , para cada m ∈ {0} ∪ N ,

pois a fun�c~ao F �e uma fun�c~ao ��mpar (veja o item 4. da Observa�c~ao (7.3.8), ou ainda, (7.164)

e, para cada n ∈ N, teremos:

bn
(7.157)
=

1

L

∫L
−L

F(x) sen
(nπ
L
x
)
dx

=
1

L

∫L
−L

e F(x)︸︷︷︸
�e ��mpar

sen
(nπ
L
x
)

︸ ︷︷ ︸
�e ��mpar︸ ︷︷ ︸

ser�a par

dx

item 4. da Observa�c~ao (7.3.8), ou ainda, (7.165)
=

2

L

∫L
0

F(x) sen
(nπ
L
x
)
dx

(8.7)
=

2

L

∫L
0

f(x) sen
(nπ
L
x
)
dx ,

ou seja,

am = 0 , para cada m ∈ {0} ∪ N , (8.13)

bn =
2

L

∫ L
0

f(x) sen
(nπ
L
x
)
dx , para cada n ∈ N (8.14)

Logo, substituindo (8.13) em (8.12), segue que a s�erie de Fourier, associada �a fun�c~ao f,

ter�a a seguinte forma:

S[f](x) =

∞∑
n=1

bn sen
(nπ
L
x
)
, (8.15)

onde, para cada n ∈ N, temos que o coe�cientes bn ser�a dado por (8.14).

Portanto, voltando a (8.5), segue que, uma candidata a solu�c~ao do problema (8.1), (8.2),

(8.3), (8.4), ser�a dada por:

u(t , x)
.
=

∞∑
n=1

bn e
−n2 π2

L2
t sen

(nπ
L
x
)
, (8.16)

para cada (t , x) ∈ [0 ,∞)× [0 , L], onde, para cada n ∈ N, temos que

bn
.
=
2

L

∫L
0

f(x) sen
(nπ
L
x
)
dx . (8.17)

Para completar precisamos mostrar que a fun�c~ao u = u(t , x), dada por (8.16), �e realmente

solu�c~ao do problema (8.1), (8.2), (8.3), (8.4), isto �e:
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i. a s�erie de fun�c~oes (8.16) converge, para cada (t , x) ∈ [0 ,∞)× [0 , L] ;

ii. a s�erie de fun�c~oes (8.16) pode ser derivada, termo a termo, duas vezes em rela�c~ao �a x e

uma vez, rela�c~ao �a t, em (0 ,∞)× (0 , L) ;

iii. a fun�c~ao u = u(t , x), dada por (8.16), satisfaz (8.1), (8.2), (8.3) e (8.4).

Na verdade mostraremos que

u ∈ C([0 ,∞)× [0 , L] ; R) ∩ C∞((0 ,∞)× [0 , L] ; R)

e que a s�erie de fun�c~oes (8.16), pode ser derivada, termo a termo, quantas vezes precisarmos,

tanto em rela�c~ao �a t, quanto em rela�c~ao �a x, em

(0 ,∞)× [0 , L] ,

se f ∈ C([0 , L)] ; ) satisfaz (8.8), �e diferenci�avel em [0 , L], exceto em um n�umero �nito de

pontos de [0 , L], de modo que f ′ ∈ SC([0 , L] ; R).
Notemos que, neste caso, a extens~ao ��mpar e 2 L-peri�odica da fun�c~ao f, �a R, isto �e, fun�c~ao

F, dada por (8.7) e (8.10), ir�a satisfazer as seguintes condi�c~oes: F ∈ Cper(2 L) �e diferenci�avel
em R, exceto um n�umero �nito de pontos de [a , b] ⊆ R, e F ′ ∈ SCper(2 L).

Mais especi�camente, provaremos o seguinte resultado:

Teorema 8.1.1 Suponhamos que f ∈ C([0 , L)] ; R), satisfaz (8.8), �e diferenci�avel em

[0 , L], exceto um n�umero �nito de pontos de [0 , L], e f ′ ∈ SC([0 , L] ; R).
Ent~ao a s�erie de fun�c~oes (8.16), converge uniformemente em [0,∞)×[0, L], para uma

fun�c~ao u, de modo que

u ∈ C([0 ,∞)× [0 , L] ; R) ∩ C∞((0 ,∞)× [0 , L] ; R) , (8.18)

e �e solu�c~ao de (8.1), (8.2), (8.3)) onde, para cada n ∈ N, o coe�ciente bn, ser�a dado por

(8.17)) , ou seja,

u(t , x)
.
=
2

L

∞∑
n=1

[∫L
0

f(y) sen
(nπ
L
y
)
dy

]
e
−n2 π2

L2
t sen

(nπ
L
x
)
, (8.19)

Demonstração:

Mostremos, primeiramente que a s�erie de fun�c~oes (8.16) (ou (8.19)) converge uniforme-

mente em [0 ,∞)× [0 , L].

Para isto, observemos que, do Teorema (7.6.1), segue que a s�erie de Fourier associada �a

fun�c~ao f (na verdade, �a sua extens~ao ��mpar e 2L-peri�odica �a R), converge uniformemente

para a fun�c~ao f, isto �e,

f(x) =

∞∑
n=1

bn sen
(nπ
L
x
)
, uniformemente em R,

onde, para cada n ∈ N, o coe�ciente bn �e dados por (8.17).
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Logo, fazendo t = 0 em (8.16), segue que a s�erie de fun�c~oes (8.16) (ou (8.19)) converge

uniformemente para a fun�c~ao f em R, em particular,

u(0 , x) = f(x) , para cada x ∈ [0 , L] ,

ou seja, a fun�c~ao u, dada por (8.16) (ou (8.19)), satisfaz (8.2).

Notemos tamb�em que, do Lema de Riemann-Lebesgue (isto �e, do Corol�ario (7.4.2)) segue

que

lim
n→∞bn = 0 .

Em particular, (veja a Proposi�c~ao (2.3.2)) a sequência num�erica (bn)n∈N ser�a limitada,

isto �e, existe M ∈ R tal que

|bn| ≤M, para cada n ∈ N . (8.20)

Para cada to ∈ (0 ,∞) �xado, mostremos que a s�erie de fun�c~oes (8.16) (ou (8.19)), converge

uniformemente em

[to ,∞)× [0 , L] .

Para isso, observemos que para

(t , x) ∈ [to ,∞)× [0 , L]

temos: ∣∣∣∣bn e−n2 π2

L2
t sen

(nπ
L
x
)∣∣∣∣ = |bn|︸︷︷︸

(8.20)

≤ M

e
−n2 π2

L2
t︸ ︷︷ ︸

≤e
−n2 π2

L2
to

∣∣∣ sen(nπ
L
x
)∣∣∣︸ ︷︷ ︸

≤1 , para todo x∈R

≤Me
−n2 π2

L2
to . (8.21)

Para cada n ∈ N, de�namos

cn
.
=Me

−n2 π2

L2
to > 0 . (8.22)

A�rmamos que a s�erie num�erica

∞∑
n=1

cn =

∞∑
n=1

Me
−n2 π2

L2
to (8.23)

�e convergente em R.
De fato, considerando-se a sequência num�erica (dn)n∈N, onde

dn
.
=
1

n2
, para cada n ∈ N (8.24)

temos que:

lim
n→∞

cn

dn

(8.22) e (8.24)
= lim

n→∞
Me

−n2 π2

L2
to

1

n2

=M lim
n→∞

n2

e
n2 π2

L2
to
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Teorema (2.3.2)
= M lim

x→∞
x2

e
x2 π2

L2
to

L'Hôpital, caso ∞∞= M lim
x→∞

d

dx
x2

d

dx
e

x2 π2

L2
to

=M lim
x→∞

2 x

2 xπ2

L2
to e

x2 π2

L2
to

=
ML2

2 π2
lim
x→∞

1

e
x2 π2

L2
to

= 0 .

Como a s�erie num�erica
∞∑
n=1

1

n2
�e convergente em R (veja o Exemplo (3.5.12) , ou ainda,

(3.203)) segue, do crit�erio da raz~ao por limites, para s�eries num�ericas cujos termos s~ao n~ao

negativos (veja o Teorema (3.5.5)), segue que s�erie num�erica (8.23) �e convergente em R.
Logo, (8.21), (8.23) e do teste M.de Weierstrass (na verdade da Observa�c~ao (5.3.3)), segue

que a s�erie de fun�c~oes (8.16) (ou (8.19)), converge uniformemente em

[to ,∞)× [0 , L] ,

para cada to ∈ (0 ,∞) �xado.

Notemos que, para cada n ∈ N, a fun�c~ao

(t , x) 7→ bn e
−n2 π2

L2
t sen

(nπ
L
x
)

�e cont��nua em [0 ,∞)× [0 , L].

Logo, do item 1. do Corol�ario (5.3.1) (na verdade, do item 3. da Observa�c~ao (5.3.2)),

segue que, que

u ∈ C([0 ,∞)× [0 , L] ; R) . (8.25)

A�rmamos que

u ∈ C∞((0 ,∞)× [0 , L] ; R)

e que a s�erie de fun�c~oes (8.16) (ou (8.19)), pode ser derivada parcialmente (a qualquer ordem),

em rela�c~ao �a t ou, em rela�c~ao �a x, termo a termo, em

(0 ,∞)× [0 , L] .

Para isto, notemos que para to ∈ (0 ,∞) �xado, e para cada n ∈ N, de�namos a fun�c~ao

un : [to ,∞)× [0 , L] → R, dada por

un(t , x)
.
= bn e

−n2 π2

L2
t sen

(nπ
L
x
)
, (8.26)

para cada (t , x) ∈ [to ,∞)× [0 , L].
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Com isto temos que, para cada n ∈ N, segue que

un ∈ C∞([to ,∞)× [0 , L] ; R) .

Observemos tamb�em que:

∂un

∂t
(t , x)

(8.26)
=

∂

∂t

[
bn e

−n2 π2

L2
t sen

(nπ
L
x
)]

= bn

(
−
n2 π2

L2

)
e
−n2 π2

L2
t sen

(nπ
L
x
)

= −
n2 π2

L2
bn e

−n2 π2

L2
t sen

(nπ
L
x
)
, (8.27)

para cada (t , x) ∈ [to ,∞)× [0 , L].

Logo, para cada n ∈ N �xado, e (t , x) ∈ [to ,∞)× [0 , L], teremos:∣∣∣∣∂un∂t (t , x)

∣∣∣∣ (8.27)=

∣∣∣∣−n2 π2L2
bn e

−n2 π2

L2
t sen

(nπ
L
x
)∣∣∣∣

=
n2 π2

L2
|bn|︸︷︷︸

(8.20)

≤ M

e
−n2 π2

L2
t︸ ︷︷ ︸

≤e
−n2 π2

L2
to
, para todo t∈[to ,∞)

∣∣∣ sen(nπ
L
x
)∣∣∣︸ ︷︷ ︸

≤1 , para todo x∈R

≤M n2 π2

L2
e
−n2 π2

L2
to = sn , (8.28)

onde, para cada n ∈ N, de�nimos

sn
.
=M

n2 π2

L2
e
−n2 π2

L2
to . (8.29)

Notemos que

lim
n→∞

sn

dn

(8.29) e (8.24)
= lim

n→∞
M
n2 π2

L2
e
−n2 π2

L2
to

1

n2

=M lim
n→∞

n2
n2 π2

L2

e
n2 π2

L2
to

=
Mπ2

L2
lim
n→∞

n4

e
n2 π2

L2
to

Teorema (2.3.2)
=

Mπ2

L2
lim
x→∞

x4

e
x2 π2

L2
to

L'Hôpital, caso ∞∞ :
=

Mπ2

L2
lim
x→∞

d

dx
x4

d

dx
e

x2 π2

L2
to

=
Mπ2

L2
lim
x→∞

3 x3

2 xπ2

L2
to e

x2 π2

L2
to

(8.30)
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=
3M

2 to
lim
x→∞

x2

e
x2 π2

L2
to

L'Hôpital, caso ∞∞ :
=

3M

2 to
lim
x→∞

d

dx
x2

d

dx
e

x2 π2

L2
to

=
3M

2 to
lim
x→∞

2 x

2 xπ2

L2
to e

x2 π2

L2
to

=
3ML2

2π2 to2
lim
x→∞

1

e
x2 π2

L2
to

Exerc��cio
= 0 .

Como a s�erie num�erica
∞∑
n=1

1

n2
�e convergente (veja o Exemplo (3.5.12) , ou ainda, (3.203))

segue, do crit�erio da raz~ao por limites, para s�eries num�ericas cujos termos s~ao n~ao negativos

(veja o Teorema (3.5.5)), que s�erie num�erica

∞∑
n=1

sn
(8.29)
=

∞∑
n=1

M
n2 π2

L2
e
−n2 π2

L2
to (8.31)

�e convergente em R.
Logo, de (8.28), (8.31) e do teste M.de Weierstrass (na verdade da Observa�c~ao (5.3.3)),

segue que a s�erie de fun�c~oes

∞∑
n=1

∂un

∂t
(t , x)

(8.27)
=

∞∑
n=1

−
n2 π2

L2
bn e

−n2 π2

L2
t sen

(nπ
L
x
)

converge uniformemente em

[to ,∞)× [0 , L] .

Como a s�erie de fun�c~oes

∞∑
n=1

un(t , x) =

∞∑
n=1

bn e
−n2 π2

L2
t sen

(nπ
L
x
)

converge em cada ponto de [0 ,∞)× [0 , L] segue, do item 3. do Corol�ario (5.3.1) (na verdade,

do item 3. da Observa�c~ao (5.3.2)), que a s�erie de fun�c~oes (8.16) (ou (8.19)), pode ser derivada

parcialmente, em rela�c~ao �a t, termo a termo, em [to ,∞)× [0 , L], ou seja:

∂u

∂t
(t , x)

(8.16)
=

∂

∂t

[ ∞∑
n=1

bn e
−n2 π2

L2
t sen

(nπ
L
x
)]

(5.25)
=

∞∑
n=1

∂

∂t

[
bn e

−n2 π2

L2
t sen

(nπ
L
x
)]

=

∞∑
n=1

(
−
n2 π2

L2

)
bn e

−n2 π2

L2
t sen

(nπ
L
x
)
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= −
π2

L2

∞∑
n=1

n2 bn e
−n2 π2

L2
t sen

(nπ
L
x
)
, (8.32)

para cada (t , x) ∈ [to ,∞)× [0 , L].

Em particular, notemos que, (8.32), implicar�a que a fun�c~ao
∂u

∂t
�e cont��nua em [to ,∞)×

[0 , L], para cada to ∈ (0 ,∞), ou seja,

∂u

∂t
∈ C((0 ,∞)× [0 , L] ; R) . (8.33)

De modo semelhante, para cada n ∈ N �xado e (t , x) ∈ [to ,∞)× [0 , L], temos [to ,∞)×
[0 , L], para cada to ∈ (0 ,∞), temos que

∂un

∂x
(t , x)

(8.26)
=

∂

∂x

[
bn e

−n2 π2

L2
t sen

(nπ
L
x
)]

= bn

(nπ
L

)
e
−n2 π2

L2
t cos

(nπ
L
x
)

=
nπ

L
bn e

−n2 π2

L2
t cos

(nπ
L
x
)
, (8.34)

assim ∣∣∣∣∂un∂x (t , x)

∣∣∣∣ (8.34)=

∣∣∣∣−nπL bn e
−n2 π2

L2
t cos

(nπ
L
x
)∣∣∣∣

=
nπ

L
|bn|︸︷︷︸

(8.20)

≤ M

e
−n2 π2

L2
t︸ ︷︷ ︸

≤e
−n2 π2

L2
to

∣∣∣cos(nπ
L
x
)∣∣∣︸ ︷︷ ︸

≤1 , para todo x∈R

≤ Mπn

L
e
−n2 π2

L2
to = rn , (8.35)

onde, para cada n ∈ N, de�nimos

rn
.
=
Mπn

L
e
−n2 π2

L2
to . (8.36)

Mas

lim
n→∞

rn

dn

(8.36) e (8.24)
= lim

n→∞
Mπn

L
e
−n2 π2

L2
to

1

n2

=
Mπ

L
lim
n→∞

n3

e
n2 π2

L2
to

Teorema (2.3.2)
=

Mπ

L
lim
x→∞

x3

e
x2 π2

L2
to

L'Hôpital, caso ∞∞ :
=

Mπ

L
lim
x→∞

d

dx
x3

d

dx
e

x2 π2

L2
to
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=
Mπ

L
lim
x→∞

3 x2

2 xπ2

L2
to e

x2 π2

L2
to

=
3ML

2π to
lim
x→∞

x

e
x2 π2

L2
to

L'Hôpital, caso ∞∞ :
= =

3ML

2π to
lim
x→∞

d

dx
x

d

dx
e

x2 π2

L2
to

=
3ML

2π to
lim
x→∞

1

2 x π
2

L2
to e

x2 π2

L2
to

=
3ML3

4π3 to2
lim
x→∞

1

x e
x2 π2

L2
to

Exerc��cio
= = 0 .

Como a s�erie num�erica
∞∑
n=1

1

n2
�e convergente segue, do crit�erio da raz~ao por limites, para

s�eries num�ericas cujos termos s~ao n~ao negativos (veja o Teorema (3.5.5)), segue que s�erie

num�erica ∞∑
n=1

M
nπ

L
e
−n2π2

L2
to

�e convergente em R.
Logo, do teste M.de Weierstrass (na verdade da Observa�c~ao (5.3.3)), segue que a s�erie de

fun�c~oes ∞∑
n=1

∂un

∂x
(t , x)

(8.34)
=

∞∑
n=1

nπ

L
bn e

−n2 π2

L2
t cos

(nπ
L
x
)

converge uniformemente em

[to ,∞)× [0 , L] .

Como a s�erie de fun�c~oes

∞∑
n=1

un(t , x) =

∞∑
n=1

bne
−n2π2

L2
t sen(

nπ

L
x)

converge em [0 ,∞) × [0 , L] segue, do item do Corol�ario (5.3.1) (na verdade, do item 3. da

Observa�c~ao (5.3.2)), que a s�erie de fun�c~oes (8.16) (ou (8.19)), pode ser derivada parcial, em

rela�c~ao a x , termo a termo, em [to ,∞)× [0 , L], ou seja:

∂u

∂x
(t , x)

(8.16)
=

∂

∂x

[ ∞∑
n=1

bn e
−n2 π2

L2
t sen

(nπ
L
x
)]

(5.25)
=

∞∑
n=1

∂

∂x

[
bn e

−n2 π2

L2
t sen

(nπ
L
x
)]
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=

∞∑
n=1

nπ

L
bn e

−n2 π2

L2
t cos

(nπ
L
x
)
, (8.37)

para cada (t , x) ∈ (to ,∞)× [0 , L].

Em particular, notemos que, (8.37), implicar�a que a fun�c~ao
∂u

∂x
�e cont��nua em [to ,∞)×

[0 , L], para cada to ∈ (0 ,∞), ou seja,

∂u

∂x
∈ C((0 ,∞)× [0 , L] ; R) . (8.38)

Logo, de (8.25), (8.33) e (8.38) , segue que

u ∈ C([0 ,∞)× [0 , L] ; R) ∩ C1((0 ,∞)× [0 , L] ; R) (8.39)

e que a s�erie de fun�c~oes (8.16) (ou (8.19)), pode ser derivada parcialmente, em rela�c~ao �a t

ou, em rela�c~ao �a x, termo a termo, em

(0 ,∞)× [0 , L] .

De modo an�alogo mostra-se que

u ∈ C([0 ,∞)× [0 , L] ; R) ∩ C∞((0 ,∞)× [0 , L] ; R)

e que a s�erie de fun�c~oes (8.16) (ou (8.19)), pode ser derivada parcialmente, em rela�c~ao �a t

ou, em rela�c~ao �a x, a qualquer ordem, termo a termo, em

(0 ,∞)× [0 , L] ,

isto �e:

∂k+m u

∂tk xm
(t , x)

(8.16)
=

∂k+m u

∂tk xm

[ ∞∑
n=1

bn e
−n2 π2

L2
t sen

(nπ
L
x
)]

∞∑
n=1

∂k+m

∂tk xm

[
bn e

−n2 π2

L2
t sen

(nπ
L
x
)]
,

para (t , x) ∈ (0 ,∞)× [0 , L] e k ,m ∈ N.
A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor.

Finalmente, para cada (t , x) ∈ (0 ,∞)× [0 , L], temos que:

∂2 u

∂x2
(t , x)

(8.16)
=

∂2

∂x2

[ ∞∑
n=1

bn e
−n2 π2

L2
t sen

(nπ
L
x
)]

=

∞∑
n=1

∂2

∂x2

[
bn e

−n2 π2

L2
t sen

(nπ
L
x
)]

=

∞∑
n=1

∂

∂x2

[
bn e

−n2 π2

L2
t
(nπ
L

)
cos
(nπ
L
x
)]

=

∞∑
n=1

bn e
−n2 π2

L2
t
(nπ
L

)2 [
− sen

(nπ
L
x
)]

= −
π2

L2

∞∑
n=1

bn n
2 e

−n2 π2

L2
t sen

(nπ
L
x
)
. (8.40)
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Utilizando-se (8.32) e (8.40), obteremos:

∂u

∂t
(t , x) −

∂2 u

∂x2
(t , x)

(8.32) e (8.40)
= −

π2

L2

∞∑
n=1

bn n
2 e

−n2 π2

L2
t sen

(nπ
L
x
)

−

[
−
π2

L2

∞∑
n=1

bn n
2 e

−n2 π2

L2
t sen

(nπ
L
x
)]

= 0 ,

para cada (t , x) ∈ (0 ,∞) × [0 , L], isto �e, a fun�c~ao u : [0 ,∞) × [0 , L] → R, dada por (8.16)

(ou (8.19)), satisfaz a EDP (8.1), em (0 ,∞)× [0 , L].

Al�em disso, para cada t ∈ [0 ,∞), temos:

u(t , 0)
(8.16)) com x=0

=

∞∑
n=1

bn e
−n2 π2

L2
t sen

(nπ
L
0
)

︸ ︷︷ ︸
=0

= 0

=

∞∑
n=1

bn e
−n2 π2

L2
t sen

(nπ
L
L
)

︸ ︷︷ ︸
=0

(8.16)) com x=L
= u(t, L) ,

isto �e, a fun�c~ao u = u(t , x), dada por (8.16) (ou (8.19)), satisfaz a condi�c~ao (8.3)).

Conclusão: A fun�c~ao u : [0 ,∞)× [0 , L] → R, dada por

u(t , x)
.
=

∞∑
n=1

bn e
−n2 π2

L2
t sen

(nπ
L
x
)
, para cada (t , x) ∈ [0 ,∞)× [0 , L] (8.41)

�e uma solu�c~ao do problema (8.1), (8.2), (8.3) e, al�em disso,

u ∈ C([0 ,∞)× [0 , L] ; R) ∩ C∞((0 ,∞)× [0 , L] ; R) ,

onde os coe�cientes

bn , para cada n ∈ N ,

s~ao os coe�cientes de Fourier da expans~ao ��mpar e 2 L-peri�odica da fun�c~ao f �a R.
�

Observação 8.1.1

1. Pode-se mostrar que a solu�c~ao, dada por (8.41), �e a �unica solu�c~ao do problema

na classe (8.4).

2. De modo semelhante podemos tratar do problema de encontrar a temperatura em

cada ponto de um �o �nito, de comprimento

L ∈ (0 ,∞) ,
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os quais conhecemos a temperatura em cada ponto do mesmo, no instante inicial,

isto �e, quando t = 0, supondo que as extremidades do mesmo n~ao trocam calor

com o meio ambiente, ao longo de todo o processo.

Se imaginarmos que o �o �e o intervalo [0 , L] ⊆ R e que a fun�c~ao u = u(t , x) nos

fornece a temperatura no ponto x do �o, no instante t ∈ (0 ,∞) ent~ao, matemati-

camente, o problema acima corresponde a encontrar uma fun�c~ao u = u(t , x), para

(t , x) ∈ [0 ,∞)× [0 , L], que satisfa�ca:

∂u

∂t
(t , x) = α2

∂2u

∂x2
(t, x) , para cada (t x) ∈ (0 ,∞)× (0 , L) , (8.42)

u(0 , x) = f(x) , para cada x ∈ [0 , L] , (8.43)

∂u

∂x
(t , 0) =

∂u

∂x
(t , L) = 0 , para cada t ∈ [0 ,∞) , (8.44)

u ∈ C1([0 ,∞)× [0 , L] ; R) ∩ C2((0 ,∞)× (0 , L) ; R) . (8.45)

A condi�c~ao (8.43) nos diz que a temperatura no ponto x ∈ [0 , L] do �o �e igual a

f(x)oC.

A condi�c~ao (8.44) nos diz que os extremos n~ao trocam calor com o meio ambiente.

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor.

No nosso caso, vamos supor que

α = 1 ,

para facilitarmos as contas.

Aplicando o m�etodo da separa�c~ao de vari�aveis (como �zemos no item 2. da Ob-

serva�c~ao (7.2.2) - veja (7.76)), podemos mostrar que uma candidata a solu�c~ao do

problema acima �e a fun�c~ao u : [0 ,∞)× [0 , L] → R, dada por

u(t , x)
.
=
ao

2
+

∞∑
n=1

an e
−n2 π2

L2
t cos

(nπ
L
x
)

(8.46)

para cada (t , x) ∈ [0 ,∞)× [0 , L], onde

an , para cada n ∈ {0} ∪ N

s~ao os coe�cientes da extens~ao par, 2 L-peri�odica da fun�c~ao f �a R.

Neste caso, para cada n ∈ {0} ∪ N, teremos (veja o item 2 da Observa�c~ao (7.3.8),

ou ainda, (7.162)):

an =
2

L

∫ L
0

f(x) cos
(nπ
L
x
)
dx . (8.47)

Com isto podemos provar o seguinte resultado, cuja demosntra�c~ao �e an�aloga ao

caso tratado acima e ser�a deixada como exerc��cio para o leitor.
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Teorema 8.1.2 Suponhamos que f ∈ C([0 , L)] ; R) �e uma fun�c~ao diferenci�avel, exceto

um n�umero �nito de pontos [0 , L], e al�em disso f ′ ∈ SC([0 , L] ; R).
Ent~ao a s�erie de fun�c~oes (8.46) converge uniformemente em

[0 ,∞)× [0 , L]

para uma fun�c~ao

u ∈ C([0 ,∞)× [0 , L] ; R) ∩ C∞((0 ,∞)× [0 , L] ; R)

que �e solu�c~ao de (8.42), (8.43), (8.44), onde os coe�cientes

an , para cada n ∈ {0} ∪ N ,

s~ao dados por (8.47).

Observação 8.1.2 Pode-se mostrar que, como no caso anterior, que a solu�c~ao (8.46) �e

�unica.

A seguir aplicaremos as ideias acima a um exemplo onde a temperatura inicial no �o, f,

�e dada.

Exemplo 8.1.1 Determine uma solu�c~ao u = u(t , x) do problema:

∂u

∂t
(t , x) =

∂2u

∂x2
(t , x), (t , x) ∈ (0 ,∞)× (0 , π) , (8.48)

u(0 , x) = f(x) , para cada x ∈ [0 , π] , (8.49)

u(t , 0) = u(t , π) = 0 , para cada t ∈ [0 ,∞) , (8.50)

u ∈ C([0 ,∞)× [0 , π] ; R) ∩ C2((0 ,∞)× (0 , π) ; R) , (8.51)

onde f : [0 , π] → R �e dada por

f(x)
.
=


x , para cada x ∈

[
0 ,
π

2

]
π− x , para cada x ∈

(π
2
, π
] . (8.52)

Resolução:

Neste caso temos que

L
.
= π .

A representa�c~ao geom�etrica do gr�a�co da fun�c~ao f �e dada pela �gura abaixo.
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-

6

ππ
2

π
2

x

y

Consideremos a fun�c~ao F : R → R, como sendo a extens~ao ��mpar, 2π-peri�odica da fun�c~ao

f �a R.
Como

f(0) = f(π) = 0 ,

das observa�c~oes feitas anteriormente (veja (8.7) e o que segue a esta) segue que a fun�c~ao F

ser�a cont��nua R.
Observemos que a fun�c~ao F : R → R, ser�a dada por:

F(x) =



−x− π , para cada x ∈
[
−π ,−

π

2

]
−x , para cada x ∈

[
−
π

2
, 0
)

x , para cada x ∈
[
0 ,
π

2

]
π− x , para cada x ∈

[π
2
, π
)

(8.53)

e satisfazendo F(x+ 2π) = F(x) para cada x ∈ R.
A representa�c~ao geom�etrica do gr�a�co da fun�c~ao F, no per��odo fundamental [π , π], �e dada

pela �gura abaixo.

-

6

ππ
2

π
2

x

y

−π

−π
2
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Como vimos anteriormente (veja (8.41)), uma candidata a solu�c~ao a fun�c~ao u : [0 ,∞) ×
[0 , L] → R, dada por:

u(t , x)
.
=

∞∑
n=1

bn e
−n2 π2

L2
t sen

(nπ
L
x
)

L=π
=

∞∑
n=1

bn e
−n2 π2

π2
t sen

(nπ
π
x
)

=

∞∑
n=1

bn e
−n2 t sen(nx) , (8.54)

para cada (t , x) ∈ [0 ,∞)× [0 , L] onde, para cada n ∈ N, temos que:

bn
(8.17)
=

2

L

∫L
0

f(x) sen
(nπ
L
x
)
dx

L=π
=
2

π

∫π
0

f(x) sen
(nπ
π
x
)
dx

=
2

π

∫π
0

f(x) sen(nx)dx

0

[∫ π
2

0

f(x) sen(nx)dx+

∫π
π
2

f(x) sen(nx)dx

]
(8.52)
=

2

π

[∫ π
2

0

x sen(nx)dx+

∫π
π
2

(π− x) sen(nx)dx

]

=
2

π

[∫ π
2

0

x sen(nx)dx+ π

∫π
π
2

sen(nx)dx−

∫π
π
2

x sen(nx)dx

]
. (8.55)

Notemos que, para cada n ∈ N, temos que:

∫
x sen(nx)dx

integra�c~ao por partes
=

⟨
u = x , logo: du = dx

dv = sen(nx)dx , logo: v = − cos(nx)
n

⟩

= −x
cos(nx)

n
−

∫
−
cos(nx)

n
dx

= −x
cos(nx)

n
+

sen(nx)

n2
. (8.56)
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Logo, do Teorema fundamental do C�alculo, segue que:

bn
(8.55)
=

2

π

[∫ π
2

0

x sen(nx)dx+ π

∫π
π
2

sen(nx)dx−

∫π
π
2

x sen(nx)dx

]
(8.56)
=

2

π

{[
−x

cos(nx)

n
+

sen(nx)

n2

] ∣∣∣∣x=π
2

x=0

+

[
−π

cos(nx)

n

] ∣∣∣∣x=π
x=π

2

+

[
−x

cos(nx)

n
+

sen(nx)

n2

] ∣∣∣∣x=π
x=π

2

}

=
2

π


−π

2

cos
(
n
π

2

)
n

+
sen
(
n
π

2

)
n2

−

[
−0

cos(n0)

n
+

sen(n0)

n2

]
−π

cos(nπ)
n

−
cos
(
n
π

2

)
n


+

−π cos(nπ)

n
+

sen(nπ)

n2
−

−π
2

cos
(
n
π

2

)
n

+
sen
(
n
π

2

)
n2


=
2

π

−π

cos(nπ)
n

−
cos
(
n
π

2

)
n

− π
cos(nπ)

n


=
2

n

{
−2 (−1)n + cos

(
n
π

2

)}
. (8.57)

Observemos que:

cos
(
n
π

2

)
=

{
(−1)

n
2 , para cada n par

0 , para cada n ��mpar
. (8.58)

Assim, para cada n ∈ N, de (8.57) e (8.58), segue que

b2 n =
1

n
[−2− (−1)n]

b2 n+1 =
4

n
. (8.59)

Com isto, segue que uma candidata a solu�c~ao do problema (8.48), (8.49), (8.50) e (8.51),

ser�a:

u(t , x)
.
=

∞∑
n=1

bn e
−n2 t sen(nx) (8.60)

para cada (t , x) ∈ [0 ,∞)× [0 , L], onde os coe�cientes bn s~ao dados por (8.59).

Observemos que f ∈ C([0 , π] ; R) �e uam fun�c~ao diferenci�avel, exceto um n�umero �nito de

pontos de [0 , L] e que f ′ ∈ SC([0 , π] ; R), pois

f ′(x) =


1 , para cada x ∈

(
0 ,
π

2

)
−1 , para cada x ∈

(π
2
, 0
)
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e

f(0) = f(π) = 0 .

Logo, do Teorema (8.1.1), segue que a fun�c~ao u = u(t, x), dada por (8.60), ser�a a (�unica)

solu�c~ao do problema (8.48), (8.49), (8.50) e (8.51).

�
Temos o seguinte exerc��cio resolvido:

Exerćıcio 8.1.1 Determine uma fun�c~ao u : [0 ,∞) × [0 , π] → R que seja solu�c~ao do

problema:

∂u

∂t
(t , x) =

∂2u

∂x2
(t , x) , para cada (t , x) ∈ (0 ,∞)× (0 , π) , (8.61)

u(0 , x) = x , para cada x ∈ [0 , π] , (8.62)

∂u

∂x
(t , 0) =

∂u

∂x
(t , π) = 0 , para cada t ∈ [0 ,∞) , (8.63)

u ∈ C1([0 ,∞)× [0 , π] ; R) ∩ C2((0 ,∞)× (0 , π) ; R) . (8.64)

Resolução:

Neste caso, temos que

L
.
= π .

Notemos que o dado incial (veja (8.62), ser�a a fun�c~ao f : [0 , π] → R dada por

f(x)
.
= x , para cada x ∈ [0 , π] . (8.65)

A representa�c~ao geom�etrica do gr�a�co da fun�c~ao f �e dada pela �gura abaixo.

-

6

π

π

x

y

Consideremos a fun�c~ao F : R → R como sendo a extens~ao par, 2π-peri�odica da fun�c~ao f �a

R.
Logo, das observa�c~oes feitas anteriormente (veja (8.7) e o que segue a esta) segue que a

fun�c~ao F ser�a cont��nua R.
Observemos que a fun�c~ao F : R → R, ser�a dada por:
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F(x) = |x| , para cada x ∈ [−π , π] , (8.66)

satisfazendo

F(x+ 2π) = F(x) , para cada x ∈ R .

A representa�c~ao geom�etrica do gr�a�co da fun�c~ao F, no per��odo fundamental [π , π], �e dada

pela �gura abaixo.

-

6

π x

y

π

−π

Como vimos anteriormente (veja (8.46)), uma candidata a solu�c~ao a fun�c~ao u : [0 ,∞) ×
[0 , L] → R, dada por:

u(t , x) =
ao

2
+

∞∑
n=1

an e
−n2 π2

L2
t cos

(nπ
L
x
)

L=π
=
ao

2
+

∞∑
n=1

an e
−n2 π2

π2
t cos

(nπ
π
x
)

=
ao

2
+

∞∑
n=1

an e
−n2 t cos(nx) , (8.67)

para cada (t , x) ∈ [0 ,∞)× [0 , π], onde, para cada n ∈ {0} ∪N, an �e o n-�eismo coe�ciente da

extens~ao par, 2π-peri�odica da fun�c~ao f �a R, ou seja, da fun�c~ao F.

Logo para cada n ∈ {0} ∪ N, teremos:

an
(8.47)
=

2

L

∫L
0

f(x) cos
(nπ
L
x
)
dx

L=π
=
2

π

∫π
0

f(x) cos
(nπ
π
x
)
dx

(8.65)
=

2

π

∫π
0

x cos(nx)dx . (8.68)
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Notemos que, para cada n ∈ {0} ∪ N, segue que:∫
x cos(nx)dx

integra�c~ao por partes
=

⟨
u = x , logo: du = dx

dv = cos(nx)dx , logo: v = sen(nx)
n

⟩

= x
sen(nx)

n
−

∫
sen(nx)

n
dx

= x
sen(nx)

n
+

cos(nx)

n2
. (8.69)

Logo, de (8.68), (8.69) e do Teorema Fundamental do C�alculo, teremos:

an =
2

π

∫π
0

x cos(nx)dx

(8.69)
=

2

π

[
x
sen(nx)

n
+

cos(nx)

n2

] ∣∣∣∣x=π
x=0

=
2

π

π
=0 para todo n∈{0}∪N︷ ︸︸ ︷

sen(nπ)

n
+

cos(nπ)

n2
−

0
=0 para todo n∈{0}∪N︷ ︸︸ ︷

sen(n0)

n
+

=1 para todo n∈{0}∪N︷ ︸︸ ︷
cos(n0)

n2




=
2

π


=(−1)n︷ ︸︸ ︷

cos(nπ)

n2
−
1

n2


=
2 [(−1)n − 1]

n2 π
. (8.70)

Substituindo (8.70) em (8.67), obteremos

u(t, x) =

∞∑
n=1

2

0 , para n par e −2 , para n ��mpar︷ ︸︸ ︷
(−1)n − 1


n2 π

e−n
2 t cos(nx)

=

∞∑
m=1

−4

(2m+ 1)2 π
e−(2m+1)2 t cos[(2m+ 1) x] , (8.71)

para cada (t , x) ∈ [0 ,∞)× [0 , π].

Observemos que f ∈ C([0 , π] ; R) �e uma fun�c~ao diferenci�avel em (0 , π), pois

f ′(x) = 1 , para cada x ∈ (0 , π) ,

logo f ′ ∈ SC([0 , π] ; R).
Logo, do Teorema (8.1.1), segue que a fun�c~ao u : [0 ,∞) × [0 , π] → R, dada por (8.71) �e

a (�unica) solu�c~ao do nosso problema (8.61), (8.62), (8.63) e (8.64).

Na verdade

u ∈ C([0 ,∞)× [0 , L] ; R) ∩ C∞((0 ,∞)× [0 , L] ; R) ,
como a�rma (8.18).

�
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8.2 O Problema da Corda Vibrante

Consideraremos dois problemas associados �as vibra�c~oes de uma corda �nita num plano, a

saber:

8.2.0.1 Corda Vibrante com as Extremidades Fixas

Trataremos a seguir do problema de encontrar a posi�c~ao, em cada instante, de cada ponto

de uma corda de comprimento L, que vibra num plano, cujas extremidades da mesma est~ao

presas.

Denotemos a amplitude da vibra�c~ao em cada instante, t ∈ [0 ,∞), em cada ponto, x ∈
[0 , L], da corda por u = u(t, x).

A �gura abaixo ilustra a situa�c~ao acima.

-

6 Per�l da Corda no Instante t ≥ 0

u(t, x)

x L

6

?

x

y

Ent~ao, um modelo matem�atico que est�a associado a esse problema ser�a o de encontrar

uma fun�c~ao u : [0 ,∞)× [0 , L] → R que satisfa�ca:

∂2u

∂t2
(t , x) = c2

∂2u

∂x2
(t, x) , para cada (t x) ∈ (0 ,∞)× [0 , L] , (8.72)

u(0 , x) = f(x) , para cada x ∈ [0 , L] , (8.73)

∂u

∂t
(0 , x) = g(x) , para cada x ∈ [0 , L] , (8.74)

u(t , 0) = u(t , L) = 0 , para cada t ∈ [0 ,∞) , (8.75)

u ∈ C([0 ,∞)× [0 , π] ; R) ∩ C2((0 ,∞)× (0 , π) ; R) , (8.76)

onde a constante c2, �e uma constante que est�a relacionada com a tens~ao e a densidade da

corda.

A condi�c~ao (8.73) nos diz que, no instante inicial, isto �e, t = 0, o deslocamento do ponto

x ∈ [0 , L] do �o �e igual a f(x).

A condi�c~ao (8.74) nos diz que, no instante inicial, isto �e, t = 0, a velocidade do desloca-

mento do ponto x ∈ [0 , L] do �o �e igual a g(x).

A condi�c~ao (8.75) nos diz que as extremidades do �o igual est~ao presas, ao longo de todo

o processo, isto �e, para t ∈ [0 ,∞).

A Equa�c~ao Diferencial Parcial (8.72) �e denominada Equação da Onda.
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Esta equa�c~ao �e um exemplo importante de uma classe de EDP's do tipo hiperbólica.

Para simpli�carmos as contas, consideraremos o caso em que

c = 1 .

O caso geral ser�a deixado como exerc��cio para o leitor.

Aplicaremos o m�etodo da separa�c~ao de vari�aveis ao problema (8.72)), (8.73), (8.74), (8.75)

e (8.76), isto �e, tentaremos solu�c~oes de (8.72), (8.73), (8.74) e (8.75) e (8.76), do tipo

u(t , x) = ψ(t)ϕ(x) , para cada (t , x) ∈ [0 ,∞)× [0 , L] , (8.77)

onde ψ : [0 ,∞) → R e ϕ : [0 , L] → R.
Notemos que, supondo que as fun�c~oes ψ e ϕ s~ao duas vezes diferenci�aveis em (0 ,∞) e

(0 , L), respectivamente, ent~ao, para cada (t , x) ∈ (0 ,∞)× (0 , L), teremos:

∂u

∂t
(t , x)

(8.77)
=

∂

∂t
[ψ(t)ϕ(x)]

= ψ ′(t)ϕ(x) , (8.78)

∂2u

∂t2
(t , x) =

∂

∂t

[
∂u

∂t
(t , x)

]
(8.78)
=

∂

∂t
[ψ ′(t)ϕ(x)]

= ψ ′′(t)ϕ(x) , (8.79)

∂u

∂x
(t , x)

(8.77)
=

∂

∂x
[ψ(t)ϕ(x)]

= ψ(t)ϕ ′(x) , (8.80)

∂2u

∂x2
(t , x) =

∂

∂x

[
∂u

∂x
(t , x)

]
(8.80)
=

∂

∂x
[ψ(t)ϕ ′(x)]

= ψ(t)ϕ ′′(x) , (8.81)

Substituindo (8.79) e (8.81) em (8.72), obteremos:

0 =
∂2u

∂t2
(t , x) −

∂2u

∂x2
(t , x)

(8.79) e (8.81)
= ψ ′′(t)ϕ(x) −ψ(t)ϕ ′′(x) , (8.82)

para cada (t , x) ∈ (0 ,∞)× (0 , L).

Supondo que

u ̸= O ,

ou seja, a solu�c~ao trivial n~ao nos interessar�a, deveremos ter

ψ(t) , ϕ(x) ̸= 0 ,

para algum (t , x) ∈ (0 ,∞)× (0 , L).
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Logo, dividindo (8.82), por

ψ(t)ϕ(x) ,

obteremos:

ψ ′′(t)ϕ(x) −ψ(t)ϕ ′′(x)

ψ(t)ϕ(x)
= 0

ou seja,
ψ ′′(t)

ψ(t)
−
ϕ ′′(x)

ϕ(x)
= 0 ,

ou ainda,
ψ ′′(t)

ψ(t)
=
ϕ ′′(x)

ϕ(x)
.

Portanto, deveremos ter:
ψ ′′(t)

ψ(t)
= −λ =

ϕ ′′(x)

ϕ(x)

para cada (t , x) ∈ (0 ,∞)× (0 , L), ou seja, teremos:

ψ ′′(t) = −λψ(t) , para cada t ∈ (0 ,∞) , (8.83)

ϕ ′′(x) = −λϕ(x) , para cada x ∈ (0 , L) . (8.84)

Notemos que, para cada t ∈ [0 ,∞), de (8.75), segue:

ψ(t)ϕ(0)
(8.77)
= u(t , 0)

(8.74)
= 0

(8.74)
= u(t , L)

(8.77)
= ψ(t)ϕ(L) , (8.85)

Como ψ(t) ̸= 0, para algum t ∈ [0 ,∞) (pois caso contr�ario, ter��amos u(t , x) = 0, para

todo (t , x) ∈ [0 ,∞)× ∈ [0 , L]), dividindo ambos os membros da identidade (8.85), por ψ(t),

obteremos

ϕ(0) = 0 = ϕ(L) . (8.86)

Portanto, de (8.84) e (8.86), segue quea fun�c~ao ϕ, dever�a satisfazer o seguinte problema

(dito problema de valor de contorno):

ϕ ′′(x) = −λϕ(x) , para cada x ∈ (0 , L) (8.87)

ϕ(0) = ϕ(L) = 0 , (8.88)

ϕ ∈ C([0 , L] ; R) ∩ C2((0 , L) ; R) , (8.89)

que j�a foi tratado anteriormente (veja (7.21), (7.22) e (7.23)).

Vimos que, para cada n ∈ N,

λ = λn
.
=
n2 π2

L2
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e que

ϕ(x) = ϕn(x) = sen
(nπ
L
x
)
, (8.90)

para cada x ∈ [0 , L].

Temos tamb�em que, a solu�c~ao geral da EDO (8.83) (com λ = λn
.
=
n2 π2

L2
) ser�a dada por

ψn(t) = A cos
(nπ
L
t
)
+ B sen

(nπ
L
t
)

(8.91)

para cada t ∈ [0 ,∞).

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor (veja (7.34), com x = t

e λ como acima).

Assim, do m�etodo da separa�c~ao de vari�aveis, para cada n ∈ N, , de (8.91) e (8.90), temos

que a fun�c~ao un : [0 ,∞)× [0 , L] → R, dada por

un(t , x)
.
= ψn(t)ϕn(x) ,

para cada (t , x) ∈ [0 ,∞)× [0 , L] ser�a da forma:

un(t, x) = ψn(t)ϕn(x)

(8.91) e (8.90)
=

[
An cos

(nπ
L
t
)
+ Bn sen

(nπ
L
t
)]

sen
(nπ
L
x
)

= An cos
(nπ
L
t
)

sen
(nπ
L
x
)
+ Bn sen

(nπ
L
t
)

sen
(nπ
L
x
)
, (8.92)

para cada (t , x) ∈ [0 ,∞)× [0 , L], ser�a um solu�c~ao de (8.72) e (8.75).

Logo, formalmente, temos que a fun�c~ao u : [0 ,∞)× [0 , L] → R, dada por:

u(t, x)
.
=

∞∑
n=1

un(t , x)

=

∞∑
n=1

ψn(t)ϕn(x)

(8.92)
=

∞∑
n=1

[
An cos

(nπ
L
t
)

sen
(nπ
L
x
)
+ Bn sen

(nπ
L
t
)

sen
(nπ
L
x
)]
, (8.93)

para cada (t , x) ∈ [0 ,∞) × [0 , L], ser�a uma candidata a solu�c~ao para o problema (8.72),

(8.73), (8.74) e (8.75)) e (8.76).

Para que a fun�c~ao u, dada por (8.93), seja solu�c~ao do problema, ela dever�a satisfazer a

condi�c~ao (8.73)), ou seja:

f(x) = u(0 , x)

t=0 em (8.93)
=

∞∑
n=1

An

=1 , para todo n∈N︷ ︸︸ ︷
cos
(nπ
L
0
)

sen
(nπ
L
x
)
+An

=0 , para todo n∈N︷ ︸︸ ︷
sen
(nπ
L
0
)

sen
(nπ
L
x
)

=

∞∑
n=1

An sen
(nπ
L
x
)
,
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para cada x ∈ [0 , L], isto �e, a fun�c~ao f (ou melhor, sua extens~ao ��mpar e 2 L-peri�odica �a R)
dever�a possuir uma expans~ao em s�erie de Fourier (no caso, uma s�erie em senos), ou seja:

An
(7.165)
=

2

L

∫L
0

f(x) sen
(nπ
L
x
)
dx , para cada n ∈ N . (8.94)

Por outro lado, para a fun�c~ao u, dada por (8.93), satisfazer (8.74) (supondo que possamos

derivar parcialmente, a s�erie de fun�c~oes, termo a termo, em rela�c~ao a t), deveremos ter:

g(x)
(8.74)
=

∂u

∂t
(0 , x)

(8.93)
=

∂

∂t

{ ∞∑
n=1

[
An cos

(nπ
L
t
)

sen
(nπ
L
x
)
+ Bn sen

(nπ
L
t
)

sen
(nπ
L
x
)]} ∣∣∣∣

t=0

cuidado !
=

∞∑
n=1

∂

∂t

[
An cos

(nπ
L
t
)

sen
(nπ
L
x
)
+ Bn sen

(nπ
L
t
)

sen
(nπ
L
x
)] ∣∣∣∣

t=0

=

∞∑
n=1

{[
−An sen

(nπ
L
t
) nπ
L

]
sen
(nπ
L
x
)
+ Bn

[
cos
(nπ
L
t
) nπ
L

]
sen
(nπ
L
x
)}

=

∞∑
n=1

−An
=0 , para todo n∈N︷ ︸︸ ︷
sen
(nπ
L
0
) nπ

L
sen
(nπ
L
x
)
+ Bn

=1 , para todo n∈N︷ ︸︸ ︷
cos
(nπ
L
0
) nπ

L
sen
(nπ
L
x
)

=

∞∑
n=1

Bn
nπ

L
sen
(nπ
L
x
)
, (8.95)

para cada x ∈ [0 , L], isto �e, a fun�c~ao g (ou melhor, sua extens~ao ��mpar e 2 L-peri�odica �a R)
dever�a possuir uma expans~ao em s�erie de Fourier (no caso, uma s�erie em senos), ou seja, para

cada n ∈ N, deveremos ter:

Bn
nπ

L

(7.165)
=

2

L

∫ L
0

g(x) sen
(nπ
L
x
)
dx ,

ou seja,

Bn =
2 L

Lnπ

∫ L
0

g(x) sen
(nπ
L
x
)
dx

=
2

nπ

∫L
0

g(x) sen
(nπ
L
x
)
dx , (8.96)

para cada n ∈ N
Portanto uma candidata u : [0 ,∞)× [0 , L] → R, a solu�c~ao do problema dado inicialmente,

ser�a:

u(t , x)
.
=

∞∑
n=1

[
An cos

(nπ
L
t
)

sen
(nπ
L
x
)
+ Bn sen

(nπ
L
t
)

sen
(nπ
L
x
)]
, (8.97)
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para cada (t , x) ∈ [0 ,∞)× [0 , L] onde, para cada n ∈ N, temos que os coe�cientes An e Bn,

s~ao dados por:

An
.
=
2

L

∫ L
0

f(x) sen
(nπ
L
x
)
dx . (8.98)

Bn
.
=

2

nπ

∫ L
0

g(x) sen
(nπ
L
x
)
dx , (8.99)

Com isto podemos enunciar o seguinte resultado, cuja demostra�c~ao ser�a deixada como

exerc��cio para o leitor:

Teorema 8.2.1 Suponhamos que f ∈ C2([0 , L] ; R) e g ∈ C1([0 , L] ; R),

f(0) = f(L) = f ′′(0) = f ′′(L) = g(0) = g(L) = 0 . (8.100)

Ent~ao a s�erie de fun�c~oes (8.97), converge uniformemente em [0 ,∞)×[0 , L] para uma

fun�c~ao

u ∈ C2([0 ,∞)× [0 , L] ; R) ,

que �e solu�c~ao de (8.72), (8.73), (8.74) (8.75) onde, para cada n ∈ N, os coe�cientes An
e Bn, s~ao dados por (8.98) e (8.99), respectivamente .

Observação 8.2.1 Pode-se mostrar que a solu�c~ao, dada por (8.97)), acima �e �unica na

classe (8.76).

8.2.0.2 Corda Vibrante com as Extremidades num Trilho Vertical

Podemos tratar, de modo semelhante, o problema de encontrar a posi�c~ao, em cada instante,

de uma corda de comprimento L, que vibra num plano, cujas extremidades est~ao variando

em um trilho vertical.

A �gura abaixo ilustra a situa�c~ao descrita acima

-

6

Corda Vibrante com as Extremidades sobre um Trilho Vertical

u(t, x)

x L

6

?

x

y

Se denotarmos a amplitude da vibra�c~ao em cada instante t ∈ [0 ,∞), em cada ponto

x ∈ [0 , L] da corda pela fun�c~ao u : [0 ,∞) × [0 , L] → R (veja a �gura aciam), ent~ao um
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modelo matem�atico que est�a associado a esse problema �e que a fun�c~ao u que satisfa�ca as

seguinte condi�c~oes:

∂2u

∂t2
(t , x) = c2

∂2u

∂x2
(t , x) , para cada [0 ,∞)× [0 , L] , (8.101)

u(0 , x) = f(x) , para cada x ∈ [0 , L] , (8.102)

∂u

∂t
(0 , x) = g(x) , para cada x ∈ [0 , L] , (8.103)

∂u

∂x
(t , 0) =

∂u

∂x
(t , L) = 0 , para cada t ∈ [0 ,∞) , (8.104)

u ∈ C([0 ,∞)× [0 , π] ; R) ∩ C2((0 ,∞)× (0 , π) ; R) , (8.105)

onde c2 �e uma constante que est�a relacionada com a tens~ao e a densidade da corda.

A condi�c~ao (8.102) nos diz que, no instante inicial, isto �e, t = 0, o deslocamento do ponto

x ∈ [0 , L] do �o �e igual a f(x).

A condi�c~ao (8.103) nos diz que, no instante inicial, isto �e, t = 0, a velocidade do desloca-

mento do ponto x ∈ [0 , L] do �o �e igual a g(x).

A condi�c~ao (8.129) nos diz que as extremidades do �o igual est~ao variando em um trilho

vertical, ao longo de todo o processo, isto �e, para t ∈ [0 ,∞).

Trataremos, como anteriormente, o caso em que

c = 1 .

O caso geral ser�a deixado como exerc��cio pra o leitor.

Aplicaremos o m�etodo da separa�c~ao de vari�aveis ao problema (8.101), (8.102), (8.103),

(8.129) e (8.105), isto �e, tentaremos solu�c~oes de (8.101), (8.102), (8.103) e (8.129) e (8.105),

do tipo

u(t , x) = ψ(t)ϕ(x) , para cada (t , x) ∈ [0 ,∞)× [0 , L] , (8.106)

onde ψ : [0 ,∞) → R e ϕ : [0 , L] → R.

Notemos que, supondo que as fun�c~oes ψ e ϕ s~ao duas vezes diferenci�aveis em (0 ,∞) e
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(0 , L), respectivamente, ent~ao, para cada (t , x) ∈ (0 ,∞)× (0 , L), teremos:

∂u

∂t
(t , x)

(8.106)
=

∂

∂t
[ψ(t)ϕ(x)]

= ψ ′(t)ϕ(x) , (8.107)

∂2u

∂t2
(t , x) =

∂

∂t

[
∂u

∂t
(t , x)

]
(8.107)
=

∂

∂t
[ψ ′(t)ϕ(x)]

= ψ ′′(t)ϕ(x) , (8.108)

∂u

∂x
(t , x)

(8.106)
=

∂

∂x
[ψ(t)ϕ(x)]

= ψ(t)ϕ ′(x) , (8.109)

∂2u

∂x2
(t , x) =

∂

∂x

[
∂u

∂x
(t , x)

]
(8.109)
=

∂

∂x
[ψ(t)ϕ ′(x)]

= ψ(t)ϕ ′′(x) , (8.110)

Substituindo (8.108) e (8.110) em (8.101), obteremos:

0 =
∂2u

∂t2
(t , x) −

∂2u

∂x2
(t , x)

(8.108) e (8.110)
= ψ ′′(t)ϕ(x) −ψ(t)ϕ ′′(x) , (8.111)

para cada (t , x) ∈ (0 ,∞)× (0 , L).

Supondo que

u ̸= O ,

ou seja, a solu�c~ao trivial n~ao nos interessar�a, deveremos ter

ψ(t) , ϕ(x) ̸= 0 ,

para algum (t , x) ∈ (0 ,∞)× (0 , L).

Logo, dividindo (8.111), por

ψ(t)ϕ(x) ,

obteremos:

ψ ′′(t)ϕ(x) −ψ(t)ϕ ′′(x)

ψ(t)ϕ(x)
= 0

ou seja,
ψ ′′(t)

ψ(t)
−
ϕ ′′(x)

ϕ(x)
= 0 ,

ou ainda,
ψ ′′(t)

ψ(t)
=
ϕ ′′(x)

ϕ(x)
.
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Portanto, deveremos ter:
ψ ′′(t)

ψ(t)
= −λ =

ϕ ′′(x)

ϕ(x)

para cada (t , x) ∈ (0 ,∞)× (0 , L), ou seja, teremos:

ψ ′′(t) = −λψ(t) , para cada t ∈ (0 ,∞) , (8.112)

ϕ ′′(x) = −λϕ(x) , para cada x ∈ (0 , L) . (8.113)

Notemos que, para cada t ∈ [0 ,∞), de (8.108), segue:

ψ(t)ϕ ′(0)
(8.109)
=

∂u

∂x
(t , 0)

(8.129)
= 0

(8.129)
=

∂u

∂x
(t , L)

(8.109)
= ψ(t)ϕ ′(L) . (8.114)

Como ψ(t) ̸= 0, para algum t ∈ [0 ,∞), (pois caso contr�ario, ter��amos u(t , x) = 0, para

todo (t , x) ∈ [0 ,∞)× ∈ [0 , L]), dividindo ambos os membros da identidade (8.114), por ψ(t),

obteremos

ϕ ′(0) = 0 = ϕ ′(L) ,

ou seja, ϕ : [0 , L] → R, dever�a satisfazer o seguinte problema de valor de contorno:

ϕ ′′(x) = −λϕ(x) , para cada x ∈ (0 , L) (8.115)

ϕ ′(0) = ϕ ′(L) = 0 , (8.116)

ϕ ∈ C([0 , L] ; R) ∩ C2((0 , L) ; R) . (8.117)

cuja solu�c~ao ser�a, para cada n ∈ {0} ∪ N, dada por (teremos λ = λn = n2 π2

L2
):

ϕ(x) = ϕn(x)

= cos
(nπ
L
x
)
, para cada x ∈ [0 , L] . (8.118)

A veri�ca�cao destes fatos ser�a diexada como exerc��cio para o leitor.

Como no caso anterior (veja (8.91)), a solu�c~ao geral da EDO (8.112) ser�a :

ψn(t) = A cos
(nπ
L
t
)
+ B sen

(nπ
L
t
)

(8.119)

para cada t ∈ [0 ,∞).

Assim, para cada n ∈ N, temos que a fun�c~ao un : [0 ,∞)× [0 L] → R, dada por

un(t, x)
.
= ψn(t)ϕn(x)

(8.118) e (8.119)
= An cos

(nπ
L
t
)
cos
(nπ
L
x
)
+ Bn sen

(nπ
L
t
)
cos
(nπ
L
x
)

(8.120)
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para cada (t , x) ∈ [0 ,∞)× [0 L], ser�a uam solu�c~ao de (8.101) e (8.129).

Logo, formalmente, a fun�c~ao u : [0 ,∞)× [0 L] → R, dada por

u(t , x)
.
=

∞∑
n=1

un(t , x)

=

∞∑
n=1

ψn(t)ϕn(x)

(8.118) e (8.119)
=

∞∑
n=1

[
An cos

(nπ
L
t
)
cos
(nπ
L
x
)

+Bn sen
(nπ
L
t
)
cos
(nπ
L
x
)]
, (8.121)

para cada (t , x) ∈ [0 ,∞)×[0 L], ser�a a candidata a solu�c~ao para o problema dado inicialmente.

Suponnhamos que a s�erie de fun�c~oes em (8.121) seja convergente, ou seja, que a fun�c~ao

u, dada por (8.121), esteja bem de�nida.

Para que a fun�c~ao u, dada por (8.121), seja solu�c~ao do problema dado inicialmente, ela

dever�a satisfazer (8.102), ou seja:

f(x)
(8.102)
= u(0 , x)

t=0 em (8.121)
=

∞∑
n=1

An

=1 , para todo n∈N︷ ︸︸ ︷
cos
(nπ
L
0
)

cos
(nπ
L
x
)
+ Bn

=0 , para todo n∈N︷ ︸︸ ︷
sen
(nπ
L
0
)

cos
(nπ
L
x
)

=

∞∑
n=1

An cos
(nπ
L
x
)
, para cada x ∈ [0 , L] ,

isto �e, a fun�c~ao f (ou melhor, sua extens~ao par e 2 L-peri�odica �a R) dever�a possuir uma

expans~ao em s�erie de Fourier (no caso, uma s�erie em cossenos), ou seja:

An
(7.162)
=

2

L

∫L
0

f(x) cos
(nπ
L
x
)
dx , para cada n ∈ N . (8.122)

Por outro lado, para que a fun�c~ao u, dada por (8.121), satisfa�ca a condi�c~ao (8.103),

deveremos ter (derivando parcialmente a s�erie de fun�c~oes , termo a termo, em rela�c~ao �a t):

g(x)
(8.103)
=

∂u

∂t
(0 , x)

(8.121)
=

∂

∂t

{ ∞∑
n=1

[
An cos

(nπ
L
t
)
cos
(nπ
L
x
)
+ Bn sen

(nπ
L
t
)
cos
(nπ
L
x
)]} ∣∣∣∣

t=0

cuidado!
=

∞∑
n=1

∂

∂t

{[
An cos

(nπ
L
t
)
cos
(nπ
L
x
)
+ Bn sen

(nπ
L
t
)
cos
(nπ
L
x
)]} ∣∣∣∣

t=0

=

∞∑
n=1

−An
=0 , para todo n∈N︷ ︸︸ ︷
sen
(nπ
L
0
) nπ

L

 cos
(nπ
L
x
)
+ Bn


=1 , para todo n∈N︷ ︸︸ ︷
cos
(nπ
L
0
) nπ

L

 cos
(nπ
L
x
)

=

∞∑
n=1

Bn
nπ

L
cos
(nπ
L
x
)
, para cada x ∈ [0 , L] ,
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isto �e, a fun�c~ao g (ou melhor, sua extens~ao par e 2 L-peri�odica �a R) dever�a possuir uma

expans~ao em s�erie de Fourier (no caso, uma s�erie em cossenos), ou seja, para cada n ∈ N,
deveremos ter:

Bn
nπ

L

(7.162)
=

2

L

∫L
0

g(x) cos
(nπ
L
x
)
dx ,

isto �e,

Bn =
2 L

Lnπ

∫L
0

g(x) cos
(nπ
L
x
)
dx

=
2

nπ

∫ L
0

g(x) cos
(nπ
L
x
)
dx . (8.123)

Portanto, uma candidata a solu�c~ao do problema ser�a a fun�c~ao u, dada por:

u(t , x)
.
=

∞∑
n=1

[
An cos

(nπ
L
t
)
cos
(nπ
L
x
)
+ Bn sen

(nπ
L
t
)
cos
(nπ
L
x
)]

(8.124)

para cada (t , x) ∈ [0 ,∞)× [0 , L] onde, para cada n ∈ N, os coe�cientes An e Bn ser~ao dados

por (8.122) e (8.123), respectivamente.

Com isto podemos enunciar o seguinte resultado, cuja demonstra�c~ao ser�a deixada como

exerc��cio para o leitor:

Teorema 8.2.2 Suponhamos que f ∈ C2([0 , L] ; R) e g ∈ C1([0 , L]) ; R satisfca�cam

f ′(0) = f ′(L) = g ′(0) = g ′(L) = 0 . (8.125)

Ent~ao a s�erie de fun�c~oes (8.124) converge uniformemente em [0 ,∞) × [0 , L], para

uma fun�c~ao u ∈ C2([0 ,∞)× [0 , L] ; R) que �e solu�c~ao de (8.101), (8.102), (8.103), (8.129)

onde, para cada n ∈ N, os coe�cientes An e Bn ser~ao dados por (8.122) e (8.123),

respectivamente.

Observação 8.2.2 Pode-se mostrar que a solu�c~ao, dada por (8.124), �e �unica na classe

C2([0 ,∞)× [0 , L] ; R).

Para ilustrar, temos os seguintes exerc��cios resolvidos:

Exerćıcio 8.2.1 Determine uma fun�c~ao u : [0 ,∞) × [0 , π] → R, que seja solu�c~ao do

problema:

∂2u

∂t2
(t , x) = c2

∂2u

∂x2
(t , x) , para cada [0 ,∞)× (0 , π] , (8.126)

u(0 , x) = f(x) , para cada x ∈ [0 , π] , (8.127)

∂u

∂t
(0 , x) = g(x) , para cada x ∈ [0 , π] , (8.128)

u(t , 0) = u(t , π) = 0 , para cada t ∈ [0 ,∞) , (8.129)

u ∈ C([0 ,∞)× [0 , π] ; R) ∩ C2((0 ,∞)× (0 , π) ; R) , (8.130)
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onde as fun�c~oes f , g : [0 , π] → R s~ao dadas por

f(x)
.
=


x , para cada x ∈

[
0 ,
π

2

]
π− x , para cada x ∈

(π
2
, π
) (8.131)

g(x)
.
= 2 sen(3 x) − 9 sen(5 x) , para cada x ∈ [0 , π] . (8.132)

Resolução:

Observemos que

L = π ,

e a extens~ao ��mpar, 2π-peri�odica da fun�c~ao f �e a fun�c~ao F : R → R obtida no Exemplo (8.1.1)

(veja (8.52)), que �e uma fun�c~ao que pertence �a Cper(2π) ∩ SC2per(2 π).
Na verdade a fun�c~ao F tem derivada de qualquer ordem, exceto nos pontos da forma (veja

(8.53))

x = kπ , para cada k ∈ Z .

A representa�c~ao geom�etrica do gr�a�co da fun�c~ao F, no per��odo fundamental [π , π], �e dada

pela �gura abaixo.

-

6

ππ
2

π
2

x

y

−π

−π
2

De modo an�alogo, a fun�c~ao g, dada por (8.132), possui uma (�unica) extens~ao ��mpar,

2π-peri�odica �a R, que ser�a a fun�c~ao G : R → R, dada por

G(x)
.
= 2 sen(3 x) − 9 sen(5 x)pcx ∈ R , (8.133)

(a mesma express~ao da fun�c~ao g), portanto pertencer�a aC∞
per(2π).

A candidata a solu�c~ao do problema �e dada por (8.97), ou seja:

u(t , x)
(8.72)
=

∞∑
n=1

[
An cos

(nπ
L
t
)

sen
(nπ
L
x
)
+ Bn sen

(nπ
L
t
)

sen
(nπ
L
x
)]

L=π
=

∞∑
n=1

[
An cos

(nπ
π
t
)

sen
(nπ
π
x
)
+ Bn sen

(nπ
π
t
)

sen
(nπ
π
x
)]

=

∞∑
n=1

[An cos(n t) sen(nx) + Bn sen(nt) sen(nx)]
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para cada (t , x) ∈ [0 ,∞)× [0 , π] onde, para cada n ∈ N, os coe�cientes An e Bn ser~ao dados

por (8.98) e (8.99), respectivamente, isto �e:

An
(8.98)
=

2

L

∫L
0

f(x) sen
(nπ
L
x
)
dx

L=π
=
2

π

∫π
0

f(x) sen
(nπ
π
x
)
dx

=
2

π

∫π
0

f(x) sen(nx)dx

(8.59)
=

A2 n =
[−2− (−1)n]

n

A2 n+1 =
4

n

, para cada n ∈ N , (8.134)

Bn =


2 , para cada n = 3

−9 , para cada n = 5

0 , para cada n ̸= 3 , 5
(8.135)

pois a extens~ao ��mpar, 2π-peri�odica da fun�c~ao g j�a est�a representada por sua s�erie de Fourier,

com L = π.

Portanto, a candidata a solu�c~ao do problema ser�a dada por:

u(t , x) =

∞∑
n=1

[An cos(n t) sen(nx) + Bn sen(n t) sen(nx)]

(8.134)
=

∞∑
n=1

A2 n cos(2n t) sen(2n x) +
∞∑
n=1

A2 n+1 cos[(2n+ 1) t] sen[(2n+ 1) x]

+ B3 sen(3 t) sen(3 x) + B5 sen(5 t) sen(5 x)

(8.134) e (8.135)
=

∞∑
n=1

[−2− (−1)n]

n
cos(2nt) sen(2n x) +

∞∑
n=1

4

n
cos[(2n+ 1) t] sen[(2n+ 1) x]

+ 2 sen(3 t) sen(3 x) − 9 sen(5 t) sen(5 x) (8.136)

para cada (t , x) ∈ [0 ,∞)× [0 , π].

�

Observação 8.2.3 Pode-se mostrar que a fun�c~ao u, dada por (8.136), satisfaz nosso

problema, exceto sobre os segmentos de retas:

x+ t =
π

2
e x− t =

π

2
.

Ao longo desses segmentos de retas a fun�c~ao u n~ao ser�a diferenci�avel.

A veri�ca�c~ao deste fato ser�a deixada como exerc���cio para o leitor.

Vale observar que n~ao podemos aplicar o Teorema (8.2.1), pois a fun�c~ao f não

satisfaz as hip�otese (ela n~ao �e duas vezes continuamente diferenci�avel em [0 , π]).
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Exerćıcio 8.2.2 Determine uma fun�c~ao u : [0 ,∞) × [0 , π] → R, que seja solu�c~ao do

problema:

∂2u

∂t2
(t , x) =

∂2u

∂x2
(t , x) , para cada (0 ,∞)× [0 , π] , (8.137)

u(0 , x) = x , para cada x ∈ [0 , π] , (8.138)

∂u

∂t
(0 , x) = cos(3 x) − cos(5 x) + cos(6 x) , para cada x ∈ [0 , π] , (8.139)

∂u

∂x
(t , 0) =

∂u

∂x
(t , π) = 0 , para cada t ∈ [0 ,∞) , (8.140)

u ∈ C1([0 ,∞)× [0 , π] ; R) ∩ C2((0 ,∞)× (0 , π) ; R) . (8.141)

Resolução:

Observemos que

L = π .

Neste caso, temos que as fun�c~oes f , g : [0π] → R ser~ao dadas por

f(x)
.
= x , (8.142)

g(x)
.
= cos(3 x) − cos(5 x) + cos(6 x) , para cada x ∈ [0 , π] . (8.143)

Como no Exemplo (8.1.1), considerando a fun�c~ao F : R → R, a extens~ao par 2π-peri�odica

da fun�c~ao f �a R, teremos que a fun�c~ao F ser�a cont��nua em R, mas n~ao ser�a diferenci�avel nos

pontos

x = kπ , para cada k ∈ Z .

Como vimos em (8.66), a fun�c~ao F, ser�a dada por:

F(x)
.
= |x| , para cada x ∈ [−π , π] , (8.144)

satisfazendo

F(x+ 2π) = F(x) , para cada x ∈ R .

A representa�cao geom�etrica do gr�a�co da fun�c~ao F �e dada pela �gura abaixo.

-

6

π x

y

π

−π
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Observemos que a extens~ao par, 2π-peri�odica da fun�c~ao g �a R, ser�a a fun�c~ao G : R → R,
dada por

G(x)
.
= cos(3 x) − cos(5 x) + cos(6 x) , para cada x ∈ R . (8.145)

Notemos que �e a mesma express~ao que de�ne a fun�c~ao g.

Uma candidata a solu�c~ao do problema acima, ser�a dada por (8.124), ou seja:

u(t , x)
(8.124)
=

∞∑
n=1

[
An cos

(nπ
L
t
)
cos
(nπ
L
x
)
+ Bn sen

(nπ
L
t
)
cos
(nπ
L
x
)]

L=π
=

∞∑
n=1

[
An cos

(nπ
π
t
)
cos
(nπ
π
x
)
+ Bn sen

(nπ
π
t
)
cos
(nπ
π
x
)]

=

∞∑
n=1

[An cos(n t) cos(nx) + Bn sen(n t) cos(nx)] (8.146)

para cada (t , x) ∈ [0 ,∞)× [0 , π] onde, para cada n ∈ N, os coe�cientes An e Bn, s~ao dados

por (8.122) e (8.123), respectivamente, ou seja:

An
(8.122)
=

2

L

∫L
0

f(x) cos
(nπ
L
x
)

L=π
=
2

π

∫π
0

f(x) cos
(nπ
π
x
)
dx

=
2

π

∫π
0

f(x) cos (nx) dx

(8.70)
=

2 [(−1)n − 1]

n2 π
(8.147)

Bn =


1 , para cada n = 3

−1 , para cada n = 5

1 , para cada n = 6

0 , para cada n ̸= 3 , 5 , 6

. (8.148)

pois a extens~ao ��mpar, 2π-peri�odica da fun�c~ao g j�a est�a representada por sua s�erie de Fourier,

com L = π.

Portanto, a candidata a solu�c~ao do problema ser�a dada por:

u(t , x)
(8.146)
=

∞∑
n=1

[An cos(n t) cos(nx) + Bn sen(n t) cos(nx)]

(8.147) e (8.148)
=

∞∑
n=1

2 [(−1)n − 1]

n2 π
cos(n t) cos(nx)

+ sen(3 t) cos(3 x) − sen(5 t) cos(5 x) + sen(6 t) cos(6 x)

=

∞∑
n=1

−4

(2n+ 1)2 π
cos[(2n+ 1)n t] cos[(2n+ 1)nx]

+ sen(3 t) cos(3 x) − sen(5 t) cos(5 x) + sen(6 t) cos(6 x) (8.149)
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para cada (t , x) ∈ [0 ,∞)× [0 , π]

�

Observação 8.2.4 Pode-se mostrar que a fun�c~ao u, dada por (8.149), satisfaz nosso

problema, exceto sobre os segmentos de retas:

x+ t = 0 e x− t = π.

Ao longo desses segmentos de retas a fun�c~ao u, dada por (8.149), não ser�a dife-

renci�avel.

A veri�ca�c~ao destes fatos ser�a deixada como exerc���cio para o leitor.

Vale observar que não podemos aplicar o Teorema (8.2.2), pois a fun�c~ao f n~ao

satisfaz as hip�otese (ela n~ao �e duas vezes continuamente diferenci�avel em [0 , π]).

8.3 A Equação de Laplace

O �ultimo problema que trataremos associado estar�a associado a uma EDP importante deno-

minada Equação de Laplace.

Esta EDP �e um exemplo importante de uma classe de EDP's denominadas Eĺıpticas.

Trataremos de dois problemas relacionados a Equa�c~ao de Laplace, a saber: o problema

de Dirichlet em um retângulo e em u c��rculo contidos em R2.

8.3.0.3 O Problema de Dirichlet num Retângulo

Esse problema consiste em encontrar uma fun�c~ao u : [a ,A]× [b , B] → R que venha satisfazer

as seguintes condi�c~oes:

∂2u

∂x2
(x , y) +

∂2u

∂y2
(x , y) = 0 , para cada (x , y) ∈ (a ,A)× (b , B) , (8.150)

u(A ,y) = f1(y) , para cada y ∈ [b , B] , (8.151)

u(a , y) = f2(y) , para cada y ∈ [b , B] , (8.152)

u(x , b) = f3(x) , para cada x ∈ [a ,A] , (8.153)

u(x , B) = f4(x) , para cada x ∈ [a ,A] , (8.154)

u ∈ C([a ,A]× [b , B] ; R) ∩ C2((a ,A)× (b , B) ; R) . (8.155)

A �gura abaixo ilustra as condi�c~oes (8.151), (8.152), (8.154), (8.153), no retângulo ⊆ R2.



438 CAP�ITULO 8. APLICAC� ~AO DE S�ERIE DE FOURIER �AS EDP'S

6

-
a A

b

B

f2 f1

f3

f4

x

y

Observação 8.3.1 Se o conjunto Ω �e um subconjunto aberto de R2 o operador linear

∆ : C∞(Ω ; R) → C∞(Ω ; R), dada por

(∆h) (x , y)
.
=
∂2h

∂x2
(x , y) +

∂2h

∂y2
(x , y) , (8.156)

para cada (x , y) ∈ Ω, como h ∈ C∞(Ω ; R), ser�a denominado operador Laplaciano, em Ω.

Vamos considerar o caso em que

a = b = 0 ,

o problema de encontrar uma fun�c~ao u : [0 ,A]× [0 , B] → R que venha satisfazer as seguintes

condi�c~oes:

∂2u

∂x2
(x , y) +

∂2u

∂y2
(x , y) = 0 , para cada (x , y) ∈ (0 ,A)× (0 , B) ,

u(A ,y) = f1(y) , para cada y ∈ [0 , B] ,

u(a , y) = f2(y) , para cada y ∈ [0 , B] ,

u(x , b) = f3(x) , para cada x ∈ [0 ,A] ,

u(x , B) = f4(x) , para cada x ∈ [0 ,A] ,

u ∈ C([0 ,A]× [0 , B] ; R) ∩ C2((0 ,A)× (0 , B) ; R) .

O caso geral ser�a deixado como exerc��cio para o leitor, bastando fazer uma transla�c~ao

especial.

Al�em disso, consideraremos o caso em que

f1(y) = f2(y)
.
= 0 , para cada y ∈ [0 , B] (8.157)

f4(x)
.
= 0 , para cada x ∈ [0 ,A] . (8.158)

A �gura abaixo ilustra as restri�c~oes acima para as condi�c~oes (8.151), (8.152), (8.154),

(8.153), no retângulo de R2.
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Solu�c~ao u1(x, y):

6

-
x

y

A

B

f2(y) = 0 f1(y) = 0

f3

f4(x) = 0

Suponhamos que saibamos encontrar uma fun�c~ao u = u(x , y), de�nida em Ω
.
= [a ,A]×

[b , B], satisfazendo as condi�c~oes (8.150), (8.151),(8.152), (8.154) e (8.155), com as fun�c~oes f1,

f2, sastisfazendo (8.157) e a fun�c~ao f4 satisfazendo (8.158).

Com isto poderemos obter a solu�c~ao do problema que iniciamos (com a = b = 0),

somando-se as solu�c~oes de cada um dos problemas abaixo.

Solu�c~ao u2(x, y):

6

-
x

y

A

B

f2 f1(y) = 0

f3(x) = 0

f4(x) = 0

Solu�c~ao u3(x, y):

6

-
x

y

A

B

f2(y) = 0 f1

f3(x) = 0

f4(x) = 0
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Solu�c~ao u4(x, y):

6

-
x

y

A

B

f2(y) = 0 f1(y) = 0

f3(x) = 0

f4

ou seja, a a fun�c~ao u : [0 ,A]× [0 , B] → R, dada por:

u(x , y)
.
= u1(x , y) + u2(x , y) + u3(x , y) + u4(x , y) ,

para cada (x , y) ∈ [0 ,A]× [0 , B], ser�a a solu�c~ao do problema (8.150), (8.151),(8.152), (8.154)

e (8.155) que iniciamos (com a = b = 0).

Assim basta tratar do problema de encontrar uma fun�c~ao u1 : [0 ,A] × [0 , B] → R, que
venha satisfaz as seguinte condi�c~oes:

∂2u1

∂x2
(x , y) +

∂2u1

∂y2
(x , y) = 0 , para cada (x , y) ∈ (0 ,A)× (0 , B) ,

u1(A ,y) = 0 , para cada y ∈ [0 , B] ,

u1(a , y) = 0) , para cada y ∈ [0 , B] ,

u1(x , b) = f3(x) , para cada x ∈ [0 ,A] ,

u1(x , B) = 0 , para cada x ∈ [0 ,A] ,

u1 ∈ C([0 ,A]× [0 , B] ; R) ∩ C2((0 ,A)× (0 , B) ; R) ,

ou seja, simpli�cando a nota�c~ao, encontrar uma fun�c~ao u : [0 ,A] × [0 , B] → R, que venha

satisfaz as seguinte condi�c~oes:

∂2u

∂x2
(x , y) +

∂2u

∂y2
(x , y) = 0 , para cada (x , y) ∈ (0 ,A)× (0 , B) , (8.159)

u(0 , y) = u(A ,y) = 0 , para cada y ∈ [0 , B] , (8.160)

u(x , B) = 0 , para cada x ∈ [0 ,A] , (8.161)

u(x , 0) = f(x) , para cada x ∈ [0 ,A] , (8.162)

u ∈ C([0 ,A]× [0 , B] ; R) ∩ C2((0 ,A)× (0 , B) ; R) . (8.163)

Observemos que, de (8.160), com y = 0 e y = B, e (8.162), com x = 0 e x = A, teremos

que a fun�c~ao f dever�a satisfazer �as seguintes restri�c~oes (condi�c~oes de compatibilidade):

f(0)
(8.162) , com x=0

= = u(0 , 0)

(8.160) , com y=0
= 0 ,

f(A)
(8.162) , com x=A

= = u(A , 0)

(8.160) , com y=0
= 0
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Tentaremos encontrar uma fun�c~ao u = u(x , y) que satisfa�ca (8.159), (8.160), (8.161)

e (8.163), do tipo vari�aveis separadas (aplicaremos, novamente, o m�etodo da separa�c~ao de

vari�aveis), ou seja, tentaremos encontrar uma solu�c~ao u = u(x , y), do tipo:

u(x , y)
.
= ψ(x)ϕ(y) , (8.164)

para cada (x , y) ∈ [0 ,A]× [0 , B].

Estaremos procurando solu�c~oes u n~ao nulas, isto �e, de modo que

u ̸= O . (8.165)

Notemos que, supondo que as fun�c~oes ψ e ϕ s~ao duas vezes diferenci�aveis em (0 ,A) e

(0 , B), respectivamente, ent~ao, para cada (x , y) ∈ (0 ,A)× (0 , B), teremos:

∂u

∂x
(x , y)

(8.164)
=

∂

∂x
[ψ(x)ϕ(y)]

= ψ ′(x)ϕ(y) , (8.166)

∂2u

∂x2
(x , y) =

∂

∂x

[
∂u

∂x
(x , y)

]
(8.166)
=

∂

∂x
[ψ ′(x)ϕ(y)]

= ψ ′′(x)ϕ(y) , (8.167)

∂u

∂y
(x , y)

(8.164)
=

∂

∂y
[ψ(x)ϕ(y)]

= ψ(t)ϕ ′(y) , (8.168)

∂2u

∂y2
(x , y) =

∂

∂y

[
∂u

∂y
(x , y)

]

(8.168)
=

∂

∂y
[ψ(x)ϕ ′(y)]

= ψ(x)ϕ ′′(y) , (8.169)

Substituindo (8.167) e (8.169) na EDP (8.159), para (x , y) ∈ (0 ,A)×(0 , B), teremos que:

ψ ′′(x)ϕ(y) +ψ(x)ϕ ′′(y) = 0

ou seja, ψ ′′(x)ϕ(y) = −ψ(x)ϕ ′′(y) (8.170)

Como (8.165), deveremos ter

ψ(x) , ϕ(y) ̸= 0 ,

para algum (x , y) ∈ [0 ,A]× [0 , B].

Logo, dividindo (8.170), por

ψ(x)ϕ(y) ,
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obteremos:

ψ ′′(x)ϕ(y)

ψ(x)ϕ(y)
= −

ψ(x)ϕ ′′(y)

ψ(x)ϕ(y)

isto �e,
ψ ′′(x)

ψ(x)
= −

ϕ ′′(y)

ϕ(y)
= constante

.
= λ ,

para cada (x , y) ∈ (0 ,A)× (0 , B), ou seja, teremos as seguintes duas EDO's:

ϕ ′′(x) = −λϕ(x) , para cada x ∈ (0 ,A) , (8.171)

ψ ′′(y) = λψ(y) , para cada y ∈ (0 , B) . (8.172)

Al�em disso, deveremos ter:

0
(8.160)
= u(0 , y)

(8.164)
= ϕ(0) , ψ(y) ,

ψ(y) ̸= 0 para algum y ∈ [0 , B] , implicar�a: ϕ(0) = 0 , (8.173)

0
(8.160)
= u(A ,y)

(8.164)
= ϕ(A) , ψ(y) ,

ψ(y) ̸= 0 para algum y ∈ [0 , B] , implicar�a: ϕ(A) = 0 , (8.174)

0
(8.161)
= u(x , B)

=
(8.164)
= ϕ(x)ψ(B)

ϕ(x) ̸= 0 para algum x ∈ [0 ,A] , implicar�a: ψ(B) = 0 . (8.175)

Logo, de (8.171), (8.172), (8.173), (8.174), (8.175), as fun�c~oes ϕ : [0 ,A] → R e ψ : [0 , B] →
R dever~ao satisfazer as seguintes condi�c~oes:

ϕ ′′(x) = −λϕ(x) , para cada x ∈ (0 ,A) , (8.176)

ϕ(0) = ϕ(A) = 0 , (8.177)

ϕ ∈ C([0 ,A] ; R) ∩ C2((0 ,A) ; R) (8.178)

e

ψ ′′(y) = λψ(y) , para cada y ∈ (0 , B) , (8.179)

ψ(B) = 0 , (8.180)

ψ ∈ C([0 , B] ; R) ∩ C2((0 , B) ; R) . (8.181)

Encontrar uma solu�c~ao para o problema (8.176), (8.177) e (8.178) foi tratado anterior-

mente (veja (7.21) , (7.22) e (7.23), ou ainda, (7.38), com L
.
= A), para cada n ∈ N, teremos:

λ = λn
.
=
n2 π2

A2
,

ϕ(x) = ϕn(x)
.
= sen

(nπ
A
x
)
, para cada x ∈ [0 ,A] . (8.182)
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Assim, o problema (8.179), (8.180) e (8.181), tornar-se-�a:

ψ ′′(y) =
n2 π2

A2
ψ(y) , para cada y ∈ (0 , B) , (8.183)

ψ(B) = 0 , (8.184)

ψ ∈ C([0 , B] ; R) ∩ C2((0 , B) ; R) . (8.185)

Para cada n ∈ N, a solu�c~ao geral da EDO (8.183), ser�a:

ψn(y)
.
= Ce

nπ
A
y +De−

nπ
A
y , para cada y ∈ [0 , B] . (8.186)

A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitor (visto na disciplina de

EDO).

Como

0
(8.184)
= ψ(B)

(8.186), com y=B
= Ce

nπ
A
B +De−

nπ
A
B

ou seja, Ce
nπ
A
B = −De−

nπ
A
B ,

ou ainda, C = −De−
2nπB

A . (8.187)

Substituindo (8.187) em (8.186), obteremos:

ψn(y) = −De−
2nπB

A e
nπ
A
y +De−

nπ
A
y

= −De−
nπB
A

[
e

nπ
A

(y−B) − e−
nπ
A

(y−B)
]

= −2 ,De−
nπB
A

[
e

nπ
A

(y−B) − e−
nπ
A

(y−B)
]

2

= −2De−
nπB
A senh

[nπ
A

(y− B)
]
, para cada y ∈ [0 , B] ,

ou seja, para cada n ∈ N, temos que ψ : [0 , B] → R �e dada por:

ψn(y)
.
= e−

nπB
A senh

[nπ
A

(y− B)
]
, para cada y ∈ [0 , B] . (8.188)

Logo, de (8.182) e (8.188), segue que

un(x , y)
(8.164)
= ϕn(x)ψn(y)

(8.182) e (8.188)
=

{
sen
(nπ
A
x
)} {

e−
nπB
A senh

[nπ
A

(y− B)
]}

= e−
nπB
A sen

(nπ
A
x
)

senh
[nπ
A

(y− B)
]
, (8.189)

para cada (x , y) ∈ [0 ,A]× [0 , B].
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Consideremos, formalmente, a solu�c~ao do nosso problema, como sendo u : [0 ,A]×[0 , B] →
R, dada por

u(x , y) =

∞∑
n=1

un(x , y)

(8.164)
=

∞∑
n=1

ϕ(x)ψn(y)

(8.189)
=

∞∑
n=1

bn e
−nπ

A
B sen

(nπ
A
x
)

senh
[nπ
A

(y− B)
]
, (8.190)

para cada (x , y) ∈ [0 ,A]× [0 , B].

Notemos que, impondo a condi�c~ao (8.162), obteremos:

f(x)
(8.162)
= u(x , 0)

(8.190), com y=0
=

∞∑
n=1

bn e
−nπB

A sen
(nπ
A
x
)

senh
[nπ
A

(0− B)
]

︸ ︷︷ ︸
= senh[−nπ

A
B]

senh �e ��mpar
= − senh[nπ

A
B]

=

∞∑
n=1

bn e
−nπB

A

[
− senh

(
nπB

A

)]
sen
(nπ
A
x
)

=

∞∑
n=1

[
(−bn) e

−nπB
A senh

(
nπB

A

)]
sen
(nπ
A
x
)
,

para cada x ∈ [0 ,A], ou seja, a extens~ao, que indicaremos por F : R → R, ��mpar e 2A-

peri�odica da fun�c~ao f �a R, dever�a possuir uma representa�c~ao em s�erie de Fourier (no caso

uma s�erie em senos).

Portanto, para cada n ∈ N, deveremos ter:

−bn e
−nπB

A senh

(
nπB

A

)
(7.165), com L

.
=A

=
2

A

∫A
0

f(x) sen
(nπ
A
x
)
dx ,

ou seja,

bn = −
2 e

nπB
A

A senh
(
nπB
A

) ∫A
0

f(x) sen
(nπ
A
x
)
dx . (8.191)

Com isto podemos enunciar o seguinte resultado, cuja demonstra�c~ao ser�a deixada como

exerc��cio para o leitor:

Teorema 8.3.1 Suponhamos que f ∈ C2([0 ,A] ; R) satisfazendo

f(0) = f(A) = f ′′(0) = f ′′(A) = 0 . (8.192)

Ent~ao a s�erie de fun�c~oes (8.190) converge uniformemente em [0 ,A] × [0 , B] para

uma fun�c~ao u ∈ C2([0 ,A]× [0 , B] ; R), que �e solu�c~ao de (8.159), (8.160), (8.161), (8.162)

e (8.163) onde, para cada n ∈ N, o coe�ciente bn, ser�a dado por (8.191).

Observação 8.3.2 Pode-se mostrar que a fun�c~ao u, dada por (8.190), �e a �unica solu�c~ao

do problema acima.
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8.3.0.4 O Problema de Dirichlet num Ćırculo

Para R ∈ (0 ,∞) �xado, este problema consiste em encontrar aum fun�c~ao u : Ω → R, que
satisfazas seguintes condi�c~oes:

∂2u

∂x2
(x , y) +

∂2u

∂y2
(x , y) = 0 , para cada (x , y) ∈ Ω, (8.193)

u∂Ω = f , (8.194)

u ∈ C
(
Ω ; R

)
∩ C2 (Ω ; R) , (8.195)

onde

Ω
.
=

{
(x, y) ∈ R2 ; x2 + y2 = R2

}
, (8.196)

Ω
.
=

{
(x, y) ∈ R2 ; x2 + y2 ≤ R2

}
, (8.197)

ou seja, o fecho do conjunto Ω em R2, e

∂Ω
.
=

{
(x, y) ∈ R2 ; x2 + y2 < R2

}
(8.198)

isto �e, a fronteria do conjunto Ω em R2.
Notemos que o conjunto Ω �e o interior da circunferência de de centro no ponto (0 , 0) e

raio R e ∂Ω �e a circunferência de centro no ponto (0 , 0) e raio R.

A �gura abaixo nos fornede a representa�c~ao geom�etrica do gr�a�co dos conjuntos Ω e ∂Ω

6

-

s

R

Ω

)

∂Ω

x

y

Vamos tratar, com detalhes, o caso em que

R = 1 .

O caso geral, isto �e, R ̸= 1, pode ser obtido de modo semelhante e ser�a deixado como

exerc��cio para o leitor.

Neste caso podemos descrever o c��rculo Ω, dado por (8.197), em coordenadas polares,

utilizando a seguinte mudan�ca de coordenadas:

x = x(r , θ)
.
= r cos(θ) , (8.199)

y = y(r , θ)
.
= r sen(θ) , (8.200)
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para cada (r , θ) ∈ [0 , 1]× [0 , 2π).

A �gura abaixo ilustra o que a transforma�c~ao T : [0 , 1]× [0 , 2 π) → R2, dada por

T(x , y)
.
= (r cos(θ) , r sen(θ)) , (8.201)

para cada (r , θ) ∈ [0 , 1]× [0 , 2 π), faz com a regi~ao [0 , 1]× [0 , 2π).

-

6

r

θ

10

2 π

-

6

x

y
x2 + y2 ≤ 1

	

Notemos que, neste caso, teremos:

x2 + y2
(8.199) e (8.200)

= [r cos(θ)]2 + [r sen(θ)]2

= r2
[
cos2(θ) + sen2(θ)

]
= r2 ,

ou seja, r =

√
x2 + y2 . (8.202)

Notemos tamb�em que se x ̸= 0 e y = 0 e , teremos que

θ =
π

2
. (8.203)

Por outro lado, se y ̸= 0, de (8.202), teremos que r > 0 e, al�em disso,

y

x

(8.199) e (8.200)
=

r sen(θ)

r cos(θ)

=
sen(θ)

cos(θ)

tg(θ) . (8.204)

Portanto, de (8.202), (8.203) e (8.204), segue que

r =

√
x2 + y2 . (8.205)

θ =


arctg

(y
x

)
, para y ̸= 0

π

2
, para y = 0

. (8.206)

De�namos a fun�c~ao v : [0 , 1]× R → R, dada por

v(r , θ)
.
= u [T(x , y)]

(8.201)
= u[x(r , θ) , y(r , θ)]

(8.199) e (8.200)
= u [r cos(θ) , r sen(θ)] , (8.207)
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para cada (r , θ) ∈ [0 , 1]× R.
Observemos que, como a transforma�c~ao T pertence a C∞(Ω ; R2), segue que

u ∈ C
(
Ω ; R

)
∩ C2 (Ω ; R)

se, e somente se

v ∈ C ([0 , 1]× [0 , 2π) ; R) ∩ C2 ([0 , 1)× [0 , 2 π) ; R) .

Notemos tamb�em que

∂x

∂r

(8.199)
=

∂

∂r
[r cos(θ)]

= cos(θ) , (8.208)

∂x

∂θ

(8.199)
=

∂

∂θ
[r cos(θ)]

= r [− sen(θ)]

= −r sen(θ) , (8.209)

∂y

∂r

(8.200)
=

∂

∂r
[r sen(θ)]

= sen(θ) , (8.210)

∂y

∂θ

(8.200)
=

∂

∂θ
[r sen(θ)]

= r cos(θ) , (8.211)

Para simpli�car a nota�c~ao nos c�alculo abaixo, denoteremos

x(r , θ) = x e y(r , θ) = y .

Utilizando-se da Regra da Cadeia, para fun�c~oes reais de duas vari�aveis reais, segue que:

∂v

∂r
(r , θ) =

[
∂u

∂x

∂x

∂r
+
∂u

∂y

∂y

∂r

]
(r , θ)

(8.208) e (8.210)
= cos(θ)

∂u

∂x
(x , y) + sen(θ)

∂u

∂y
(x , y) (8.212)

∂v

∂θ
(r , θ) =

[
∂u

∂x

∂x

∂θ
+
∂u

∂y

∂y

∂θ

]
(r , θ)

(8.209) e (8.211)
= −r sen(θ)

∂u

∂x
(x , y) + r cos(θ)

∂u

∂y
(x , y) (8.213)
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∂2v

∂r2
(r , θ) =

∂

∂r

[
∂v

∂r
(r , θ)

]
(8.212)
=

∂

∂r

[
cos(θ)

∂u

∂x
[x(r , θ) , y(r , θ)] + sen(θ)

∂u

∂y
[x(r , θ) , y(r , θ)]

]
= cos(θ)

[
∂2u

∂x2
∂x

∂r
+
∂2u

∂y∂x

∂y

∂r

]
(r , θ) + sen(θ)

[
∂2u

∂y∂x

∂x

∂r
+
∂2u

∂y2
∂y

∂r

]
(r , θ)

(8.208) e (8.210)
= cos(θ)

[
∂2u

∂x2
(x , y) cos(θ) +

∂2u

∂y∂x
(x , y) sen(θ)

]
+ sen(θ)

[
∂2u

∂y∂x
(x , y) , cos(θ) +

∂2u

∂y2
(x, , y) sen(θ)

]
Teor. Schwarz: ∂2u

∂y ∂x
= ∂2u

∂x ∂y
= cos2(θ)

∂2u

∂x2
(x , y) + 2 sen(θ) cos(θ)

∂2u

∂y∂x
(xy)

+ sen2(θ)
∂2u

∂y2
(x , y) , (8.214)

∂2v

∂θ2
(r , θ)

∂

∂θ

[
∂v

∂θ
(r , θ)

]
(8.213)
=

∂

∂θ

[
−r sen(θ)

∂u

∂x
+ r cos(θ)

∂u

∂y

]
(r , θ)

=

{
−r cos(θ)

∂u

∂x
− r sen(θ)

[
∂2u

∂x2
∂x

∂θ
+
∂2u

∂y∂x

∂y

∂θ

]}
(r , θ)

+

{
−r sen(θ)

∂u

∂y
+ r cos(θ)

[
∂2u

∂x∂y

∂x

∂θ
+
∂2u

∂y2
∂y

∂θ

]}
(r , θ)

(8.209) e (8.211)
=

{
−r cos(θ)

∂u

∂x
(x , y) − r sen(θ)

[
[−r sen(θ)]

∂2u

∂x2
(x , y)

+[r cos(θ)]
∂2u

∂y∂x
(x , y)

]}
+

{
−r sen(θ)

∂u

∂y
(x , y) + r cos(θ)

[
[−r sen(θ)]

∂2u

∂x∂y
(x , y)

+r cos(θ)
∂2u

∂y2
(x , y)

]}
= −r cos(θ)

∂u

∂x
(x , y) − r sen(θ)

∂u

∂y
(x , y) + r2 sen2(θ)

∂2u

∂x2
(x , y)

− r2 sen(θ) cos(θ)
∂2u

∂y∂x
(x, , y)

− r2 cos(θ) sen(θ)
∂2u

∂x∂y
(x , y) + r2 cos2(θ)

∂2u

∂y2
(x , y)

Teor. de Schwarz
= −r cos(θ)

∂u

∂x
(x , y) − r sen(θ)

∂u

∂y
(x , y) + r2 sen2(θ)

∂2u

∂x2
(x , y)

− 2 r2 sen(θ) cos(θ)
∂2u

∂y∂x
(x , y) + r2 cos2(θ)

∂2u

∂y2
(x , y) , (8.215)
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para cada (r , θ) ∈ [0 , 1)× R.
Logo a fun�c~ao u = u(x , y) ser�a solu�c~ao da equa�c~ao de Laplace (8.193) em Ω (o interior

da circunferência unit�aria, centrada na origem de R2) se, e somente se, a fun�c~ao v = v(r , θ)

satisfaz

∂2v

∂r2
(r , θ) +

1

r

∂v

∂r
(r , θ) +

1

r2
∂2v

∂θ2
(r , θ)

(8.214),(8.212),(8.215)
= cos2(θ)

∂2u

∂x
(x , y)

+ 2 sen(θ) cos(θ)
∂2u

∂y∂x
(x , y) + sen2(θ)

∂2u

∂y2
)(x , y)

+
1

r

[
cos(θ)

∂u

∂x
(x , y) + sen(θ)

∂u

∂y
(x , y)

]
+
1

r2

[
−r cos(θ)

∂u

∂x
(x , y) − r sen(θ)

∂u

∂y
(x , y) + r2 sen2(θ)

∂2u

∂x2
(x , y)

−2 r2 sen(θ) cos(θ)
∂2u

∂y∂x
(x , y) + r2 cos2(θ)

∂2u

∂y2
(x , y)

]
=
∂2u

∂x2
(x , y) +

∂2u

∂y2
(x , y)

(8.193)
= 0 ,

para cada (r , θ) ∈ [0 , 1)× R.
Al�em disso a condi�c~ao (8.194)) tornar-se-�a:

v(1 , θ)
(8.207)
= u[x(1 , θ) , y(1 , θ)]

(8.199) e (8.200)
= u[cos(θ) , sen(θ)]

(8.194)
= f[cos(θ), sen(θ)] , (8.216)

para cada θ ∈ R.
Logo de�nido-se a fun�c~ao g : R → R, dada por

g(θ)
.
= f[cos(θ), sen(θ)] , para cada θ ∈ R , (8.217)

logo a condi�c~ao (8.216) pode ser reescrita como

v(1 , θ) = g(θ) , para cada θ ∈ R . (8.218)

Observemos que, para cada r ∈ [0 , 1) �xado, a fun�c~ao

θ 7→ v(r , θ)

�e 2π-peri�odica em R.
De fato, pois

v(r , θ+ 2π)
(8.207)
= u [r cos(θ+ 2π) , r sen(θ+ 2π)]

= u [r cos(θ) , r sen(θ)]

(8.207)
= v(r, θ)
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para cada (r , θ) ∈ [0 , 1)× R.
Portanto a fun�c~ao v = v(r , θ) dever�a satisfazer as seguintes condi�c~oes:

r2
∂2v

∂r2
(r , θ) + r

∂v

∂r
(r , θ) +

∂2v

∂θ2
(r , θ) = 0 , para cada (r , θ) ∈ [0 , 1)× R , (8.219)

v(r , θ+ 2π) = v(r , θ) , para cada (r , θ) ∈ [0 , 1)× R , (8.220)

v(1 , θ) = g(θ) , para cada θ ∈ [0 , 2 π) , (8.221)

v ∈ C[0 , 1]× R ; R) ∩ C2([0 , 1)× R ; R) . (8.222)

Tentaremos solu�c~ao n~ao triviais, isto �e,

v(r , θ) ̸= 0 , para cada (r , θ) ∈ [0 , 1)× R . (8.223)

Aplicaremos o m�etodo da separa�c~ao de vari�aveis para obter uma candidata a solu�c~ao envol-

vendo, inicialmente, as condi�c~oes (8.219), (8.220) e (8.222), ou seja, tentaremos encontrar uma

solu�c~ao do tipo

v(r , θ)
.
= ϕ(r)ψ(θ) , para cada (r , θ) ∈ [0 , 1]× R . (8.224)

De (8.223) segue que para algum (r , θ) ∈ [0 , 1)× R ta�c que

ψ(r)ϕ(θ) ̸= 0 . (8.225)

Supondo que as fun�c~oes ψ e ϕ s~ao duas vezes diferenci�aveis em [0 , 1) e R, respectivamente,

ent~ao, para cada (r , θ) ∈ [0 , 1)× R, teremos:

∂v

∂r
(r , θ)

(8.224)
=

∂

∂r
[ψ(r)ϕ(θ)]

= ψ ′(r)ϕ(θ) , (8.226)

∂2v

∂r2
(r , θ) =

∂

∂r

[
∂v

∂r
(r , θ)

]
(8.226)
=

∂

∂r
[ψ ′(r)ϕ(θ)]

= ψ ′′(r)ϕ(θ) , (8.227)

∂v

∂θ
(r , θ)

(8.224)
=

∂

∂θ
[ψ(r)ϕ(θ)]

= ψ(r)ϕ ′(θ) , (8.228)

∂2v

∂θ2
(r , θ) =

∂

∂θ

[
∂v

∂θ
(r , θ)

]
(8.228)
=

∂

∂θ
[ψ(r)ϕ ′(θ)]

= ψ(r)ϕ ′′(θ) , (8.229)

Sustituindo (8.226), (8.227) e (8.229) em (8.219), obteremos:

r2 [ψ ′′(r)ϕ(θ)] + r [ψ ′(r)ϕ(θ)] + [ψ(r)ϕ ′′(θ)] = 0
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Devidindo a identidade acima por

ψ(r) , ϕ(θ)
(8.225)

̸= 0 ,

bteremos

r2ψ ′′(r)ϕ(θ) + rψ ′(r)ϕ(θ) +ψ(r)ϕ ′′(θ)

ψ(r)ϕ(θ)
= 0

ou seja,
r2ψ ′′(r) + rψ ′(r)

ψ(r)
= −

ϕ ′′(θ)

ϕ(θ)
= constante = λ ,

isto �e,

ϕ ′′(θ) + λϕ(θ) = 0 , para cada θ ∈ R , (8.230)

ϕ(θ+ 2π) = ϕ(θ) , para cada θ ∈ R , (8.231)

ϕ ∈ C2(R ; R) (8.232)

e

r2ψ ′′(r) + rψ ′(r) − λψ(r) = 0 , para cada r ∈ [0 , 1) , (8.233)

ψ ∈ C([0 , 1] ; R) ∩ C2([0 , 1) ; R) . (8.234)

Observação 8.3.3 Notemos que, se a fun�c~ao ϕ �e 2π-peri�odica e diferenci�avel em R,
ent~ao, da regra da cadeia, segue que a fun�c~ao ϕ ′ tamb�em ser�a 2π-peri�odica.

Deixaremos a veri�ca�c~ao deste fato como exerc��cio para o leitor.

Observemos que se a fun�c~ao ϕ = ϕ(θ) for uma solu�c~ao, eventualmente complexa, de

(8.230), deveremos ter:

λ

∫ 2 π
0

|ϕ(θ)|2 dθ︸ ︷︷ ︸
≥0

= λ

∫ 2 π
0

ϕ(θ)ϕ(θ)dθ

=

∫ 2 π
0

[λϕ(θ)]ϕ(θ)dθ

(8.230) e (8.232)
=

∫ 2 π
0

[−ϕ ′′(θ)] ϕ(θ)dθ⟨
u = ϕ(θ) , logo: du = ϕ ′(θ)

dv = ϕ ′′(θ) , logo: v = ϕ ′(θ)

⟩

=
[
−ϕ ′(θ)ϕ(θ)

] ∣∣∣∣t=2 π
t=0

+

∫ 2 π
0

ϕ ′(θ)ϕ ′(θ)dt

= −
[
ϕ ′(2π)ϕ(2 π) − ϕ ′(0)ϕ(0)

]
+

∫ 2 π
0

ϕ ′(θ)ϕ ′(θ)dθ

de (8.231) ϕ,ϕ ′ s~ao 2 π-peri�odoca
=

∫ 2 π
0

ϕ ′(θ)ϕ ′(θ)dt
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=

∫ 2 π
0

|ϕ ′(θ)|
2
dθ︸ ︷︷ ︸

≥0

. (8.235)

Da identidade acima segue que λ ∈ R, ou melhor,

λ ≥ 0 (8.236)

Observemos que se λ = 0 ent~ao, da identidade (8.235), dever��amos ter

0 =

∫ 2 π
0

|ϕ ′(θ)|
2
dθ . (8.237)

Como a fun�c~ao ϕ ′ �e cont��nua em R (veja (8.232)) segue, de (8.237), que

|ϕ ′(θ)|
2
= 0 , para cada θ ∈ R ,

ou seja, ϕ ′(θ) = 0 , para cada θ ∈ R ,

implicando que a fun�c~ao ϕ dever�a ser constante em R, ou seja,

ϕ(θ) = c , para cada θ ∈ R . (8.238)

Se λ > 0, ent~ao a solu�c~ao geral da EDO (8.230) ser�a dada por

ϕ(θ)
.
= Aλ cos

(√
λ θ
)
+ Bλ sen

(√
λ θ
)
, (8.239)

para cada θ ∈ R.
A veri�ca�c~ao deste fato ser�a deixada como exerc��cio para o leitos (visto na disciplina de

EDO).

Mas, de (8.231), devemos ter

Aλ cos
(√
λ θ
)
+ Bλ sen

(√
λ θ
)

(8.239)
= ϕ(θ)

(8.231)
= ϕ(θ+ 2π)

(8.239)
= Aλ cos

[√
λ (θ+ 2π)

]
+ Bλ sen

[√
λ (θ+ 2π)

]
= Aλ cos

[√
λ (θ+ 2π)

]
+ Bλ sen

[√
λ (θ+ 2π)

]
= Aλ

[
cos
(√
λ θ
)
cos
(√
λ 2π

)
− sen

(√
λ θ
)

sen
(√
λ 2π

)]
+ Bλ

[
sen
(√
λ θ
)
cos
(√
λ 2π

)
+ cos

(√
λ θ
)

sen
(√
λ 2π

)]
=
[
Aλ cos

(√
λ 2π

)
+ Bλ sen

(√
λ 2π

)]
cos
(√
λ θ
)

+
[
Bλ cos

(√
λ 2π

)
−Aλ sen

(√
λ 2π

)]
sen
(√
λ θ
)
, (8.240)

para cada θ ∈ R.
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Fazendo:

θ = 0 , em (8.240),

obteremos: Aλ = Aλ cos
(√
λ 2π

)
+ Bλ sen

(√
λ 2π

)
(8.241)

θ =
π

2
√
λ
, em (8.240),

obteremos: Bλ = Bλ cos
(√
λ 2π

)
−Aλ sen

(√
λ 2π

)
. (8.242)

Multiplicando a identidade (8.241) por Aλ e a identidade (8.242) por Bλ e somando-se os

resultados, obteremos:

Aλ
2 + Bλ

2 = Aλ
2 cos

(√
λ 2π

)
+Aλ Bλ sen

(√
λ 2π

)
+ Bλ

2 cos
(√
λ 2π

)
− BλAλ sen

(√
λ 2π

)
,

em particular, devermos ter: cos
(√
λ 2π

)
= 1 ,

logo,
√
λ 2π = 2 kπ , para cada k ∈ N ,

ou seja,
√
λ = k , para cada k ∈ N ,

ou ainda, λ = k2 , para cada k ∈ N . (8.243)

Logo, para cada k ∈ N, a identidade (8.239), tornar-se-�a:

ϕ(θ) = Aλ cos
(√
λ θ
)
+ Bλ sen

(√
λ θ
)

(8.243)
=

= Aλ cos
(√

k2 θ
)
+ Bλ sen

(√
k2 θ

)
√
k2=|k|=k∈N

= Ak cos(kθ) + Bk sen(kθ) ,

Para cada k ∈ N, de�namos a fun�c~ao ϕk : R → R, dada por

ϕk(θ)
.
= Ak cos(kθ) + Bk sen(kθ) , (8.244)

para cada θ ∈ R.
Notemos que k = 0 daria origem a fun�c~ao ϕo constante, que j�a foi tratada no caso λ = 0

(veja (8.238).

Por outro lado, para cada k ∈ N, temos que

λ = k2 ,

assim o problema (8.233), tornar-se-�a:

r2ψ ′′(r) + rψ ′(r) − k2ψ(r) = 0 , para cada r ∈ [0 , 1) , (8.245)

que �e a equação de Euler de 2.a ordem.

Neste caso, procuraremos solu�c~oes da forma

ψ(r)
.
= rα , para cada r ∈ I ⊆ R . (8.246)



454 CAP�ITULO 8. APLICAC� ~AO DE S�ERIE DE FOURIER �AS EDP'S

Para cada k ∈ N, substituindo a express~ao (8.246) na equa�c~ao de Euler (8.245), obteremos:

0 = r2
[
α(α− 1) rα−2

]
+ r

[
α rα−1

]
− k2 rα

=
[
α (α− 1) + α− k2

]
rα

=
[
α2 − k2

]
rα︸︷︷︸
̸=0

,

ou seja, α2 − k2 = 0 ,

ou ainda , (α− k) , (α+ k) = 0 ,

isto �e, α = ±k . (8.247)

Portanto, para cada k ∈ N, de (8.247), a solu�c~ao da geral da equa�c~ao de Euler (8.245)

ser�a dada por :

ψk(r)
.
= Ck r

k +Dk r
−k , para cada r ∈ I ⊆ R . (8.248)

Para cada k ∈ N, como estamos procurando uma fun�c~ao ψk que deva satisfazer (8.234), ela

dever�a, em particular, ser uma fun�c~ao cont��nua em [0 , 1], ou ainda , ser uma fun�c~ao cont��nua

em r = 0.

Portanto, de (8.248), deveremos ter

Dk = 0 . (8.249)

Logo, para cada k ∈ N, a solu�c~ao da equa�c~ao de Euler (8.245), que nos interessar�a, ser�a

dada por:

ψk(r)
.
= Ck r

k , para cada r ∈ [0 , 1] . (8.250)

Assim, para cada k ∈ {0} ∪ N, de (8.244), (8.250) e (8.224), segue que

vk(r, θ)
(8.224)
= ψk(r)ϕk(θ)

(8.244) e (8.250)
= rk [Ak cos(kθ) + Bk sen(k θ)] , (8.251)

para cada (r , θ) ∈ [0 , 1]× R.
Logo tentaremos uma solu�c~ao (formalmente) de (8.219), (8.220), (8.221), (8.222) da forma:

v(r , θ)
.
=

∞∑
k=0

vk(r , θ)

(8.224)
=

∞∑
k=0

ψk(r)ϕk(θ)

(8.251)
=

∞∑
k=0

rk [Ak cos(kθ) + Bk sen(k θ)] , (8.252)

para cada (r , θ) ∈ [0 , 1]× R, ou ainda, na forma complexa, ser�a dada por:

v(r , θ) =

∞∑
k=−∞Ck e

i k θ r|k| , (8.253)
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para cada (r , θ) ∈ [0 , 1]× R onde

Co
.
=
Ao

2
,

Ck
.
=
Ak − i Bk

2
,

C−k
.
=
Ak + i Bk

2
,

Lembremos que

cos(kθ) =
ei k θ + e−i k θ

2
e sen(kθ) =

ei k θ − e−i k θ

2 i
.

Impodo a condi�c~ao inicial, isto �e, (8.221), obteremos:

g(θ)
(8.221)
= v(1 , θ)

(8.253) , com r=1
=

∞∑
k=0

Ck e
i k θ ,

para θ ∈ R.
Logo, para cada k ∈ Z, o coe�ciente Ck dever�a ser o k-�eismo coe�ciente de Fourier

associado �a fun�c~ao g, na forma complexa, ou seja,

Ck = ĝ (k)
(7.191) , com L=π

=
1

2π

∫π
−π

g(t) e−i k t dt . (8.254)

Utilizando (8.254) podemos obter, formalmente, uma candidata a solu�c~ao para (8.219),

(8.220), (8.221) e (8.222), a saber:

v(r , θ)
.
=

∞∑
k=0

Ck e
i k θ r|k|

=
1

2π

∞∑
k=0

[∫π
−π

g(t) e−i k t dt

]
ei k θ r|k| , (8.255)

para cada (r , θ) ∈ [0 , 1]× R.
Pode-se mostrar que a s�erie de fun�c~oes (8.255) converge uniformemente em [0 , 1]×R, que

pode ser derivada parcialmente, termo a termo, duas vezes em rela�c~ao �a r e em rela�c~ao �a θ,

em [0 , 1)× R e portanto ir�a satisfazer ao problema (8.219), (8.220), (8.221) e (8.222).

A demostra�c~ao desse fato ser�a deixada como exerc��cio para o leitor.

Com isto podemos obter a fun�c~ao

u(x , y) = v(r , θ)

(veja (8.207)) uma solu�c~ao do problema (8.193), (8.194) e (8.195), em

Ω
.
=

{
(x , y) ∈ R2 ; x2 + y2 < 1

}
e assim provar o:
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Teorema 8.3.2 Sejam Ω ⊆ R2, como acima, e f ∈ C(∂Ω ; R).
Se a fun�c~ao v : [0 , 1] × R → R �e dada por (8.255), ent~ao a fun�c~ao u : Ω → R dada

por:

u(x , y)
.
=

{
v(r , θ) , onde x = r cos(θ) e y = r sen(θ) , para (r , θ) ∈ [0 , 1)× R
f(x , y) , para x2 + y2 = 1

,

(8.256)

para cada (x , y) ∈ Ω, �e uma solu�c~ao do problema (8.193), (8.194)e (8.195).

Observação 8.3.4 Pode-se mostrar que a solu�c~ao (8.256) �e �unica.
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da raz~ao, por limites, para convergência

de s�eries num�ericas, 118

da s�erie num�erica alternada ou de Libnitz,

142

de Cauchy para convergência de s�eries num�ericas,

98

de Leibnitz para convergência de s�eries

num�ericas alternadas, 142

de Weierstrasspara convegência uniforme

de s�eries de fun�c~oes, 199

descontinuidade

de 1.a esp�ecie para uma fun�c~ao, em um

ponto, 331

desenvolvimento de
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McLaurin, de ordem n, da fun�c~ao f, 275

Taylor, de ordem n, da fun�c~ao f, em torno

de x = a, 275

desigualdade

de Bessel para fun�c~oes a valores comple-

xos, 378

de Bessel, na forma complexa), 373

de Bessel, na forma real, 371

triangular, 340

Dirichlet

problema de, 330

divergentes

teorema da compara�c~ao para sequências,

58

el��ptico

EDP do tipo, 445

equa�c~ao

da onda, 310

da onda, 329

de Euler, 461

de Laplace, 310

do calor, 310

Euler-Fourier

f�ormulas de, 354

f�ormula

de McLaurin, associada �a fun�c~ao f, 274

de Taylor, associada a fun�c~ao f, em x = a,

274

de Taylor, com resto de Lagrange, 274

Fourier

m�etodo de, 311

fun�c~ao

anal��tica (real)

de�ni�c~ao de, 290

cont��nua por partes, 331

inteira

de�ni�c~ao de, 290

seccionalmente cont��nua, 331

hiperb�olica

EDP do tipo, 329, 431

Lagrange

f�ormula de Taylor com resto de, 274

Laplace

equa�c~ao de , 445

Laplaciano

operador, 446

Lema

de Riemann-Lebesgue, na forma complexa,

379

lema

de Riemann-Lebesgue, na forma real, 379

matem�atica

indu�c~ao, 49

n�umero complexo

conjugado de um, 338

Newman

problema de, 330

onda

dente de serra, 334

equa�c~ao do, 430

quadrada, 333

parab�olica

EDP, 311

Parseval

identidade de, 400

Pit�agoras

teorema de, 341

polinômio

de McLaurin, de grau n associado �a fun�c~ao

f, 275

de Taylor, de grau n associado �a fun�c~ao f,

em x = a, 274

resto

de McLaurin, de grau n, associado �a fun�c~ao

f, 275

de Taylor, de grau n, associado �a fun�c~ao

f, em x = a, 274

de Taylor, na forma de Lagrange, 274

de Taylor, na forma integral, 278

Riemann-Lebesgue
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lema, na forma complexa, de, 379

lema, na forma real, de, 379

Rolle

Teorema de, 271

s�erie

de cossenos, 327

de Fourier, 309, 328

de MacLaurin, associada a uma fun�c~ao,

287

de senos, 320

de senos e cossenos, 328

de Taylor, associada a uma fun�c~ao, em

x = a, 287

geom�etrica de raz~ao c, 84, 87

harmônica, 86, 87

harmônica alternada, 145, 146

s�erie de Fourier

associada �a uma fun�c~ao, 354

na forma complexa, 362

s�erie de fun�c~oes

convergência pontual de uma, 193

convergência uniforme de uma, 196

de�ni�c~ao, 189

sequência das somas parciaias da, 189

soma de uma, 193

soma parcial de ordem n da, 189

termo da, 189

s�erie de potências

binomial, 299

centrada x = 0, 213

centrada x = c, 213

coe�cientes de uma, 214

de (x− c), 213

de x, 213

fun�c~ao representada em, 283

intervalo de convegência de uma, 237

intervalo de convergência de uma, 224

raio de convegência de uma, 237

raio de convergência de uma, 224

representa�c~ao de uma fun�c~ao em, 283

s�erie num�erica, 73

n-�esimo termo da, 73

n-�esima soma parcial, 73

absolutamente convergente, 154

adi�c~ao de, 78

alternada, 141

crit�erio de Leibnitz para convergência

de uma, 142

com termos n~ao-negativos, 101

condicionalmente convergente, 158

convergente, 80

crit�erio da divergência de, 99

crit�erio da integral, ou de Cauchy, esten-

dido para convergência de, 133

crit�erio da integral, ou de Cauchy, para

convergência de, 130

crit�erio da raiz estendido para convergência

de, 125

crit�erio da raiz para convergência de, 123

crit�erio da raiz, por limites, para convergência

de, 125

crit�erio da raz~ao estendido para convergência

de, 118

crit�erio da raz~ao para convergência de, 115

crit�erio da raz~ao, por limites, para con-

vergência de, 118

crit�erio de Cauchy para convergência de,

98

crit�erio para compara�c~ao estendido para

convergência de, 108

crit�erio para compara�c~ao para convergência

de, 104

crit�erio para compara�c~ao, por limites, para

convergência de, 110

diferen�ca de, 78

divergente, 81

do tipo valor principal, 361

multiplica�c~ao de um n�umero real por uma,

78

propriedades b�asicas de convergência de,

87

reagrupamento de uma, 151

reduzida de ordem n, 73

soma de uma, 81
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soma parcial de ordem n, 73

termo da, 73

semi-norma

de uma fun�c~ao, 340

separa�c~ao de vari�aves

m�etodo da, 311

sequência de fun�c~oes

n-�esimo termo de uma, 161

crit�erio de Cauchy para a convergência uni-

forme de uma, 178

convergência pontual de uma, 163

convergência uniforme, em um conjunto,

de uma, 167

convergência, ponto a ponto, de uma, 163

convergente em um ponto, 163

convergente, ponto a ponto, em um con-

junto, 163

de Cauchy, 177

de�ni�c~ao, 161

pontualmente convergente em um conjunto,

163

termo de uma, 161

sequência num�erica, 15

conjunto dos valores de uma, 15

convergência de uma, 20

convergente, 20

crescente, 39

crit�erio de Cauchy para convergência de,

68

das somas parciais, 74

de Cauchy, 63

decrescente, 39

divergente para ±∞, 53

estritamente crescente, 39

estritamente decrescente, 39

ini�t�esimo, 31

ini�tesimais, 31

limitada, 25

mon�otona, 39

oscilat�oria, 58

produto de duas, 17

produto de um n�umero por uma, 17

quociente de duas, 17

soma de duas, 17

subsequência de uma, 60

teorema da compara�c~ao para, 31

teorema do sanduiche ou do confronto para,

31

termos de uma, 15

Taylor

teorema de, 272

telesc�opica

soma, 385

teste M de Weierstrass

para convegência uniforme de s�eries de fun�c~oes,

199

valor m�edio

teorema do, 271

vari�aveis

m�etodo da separa�c~ao de, 310, 321, 410,

422, 431, 433, 436, 449, 458


