Coeficientes de Fourier das derivadas

Lembremos que

{f € PWC([—L, L]) [ f(—L) = f(L)} (%)
e

{f € PWCy (R) | f é 2L-periddica}. ©)
sa0 “iguais”.

Note que podemos trocar, na definicao dos espacos acima, a propriedade
“ser continua por partes” por “ser continua” e ainda assim manter a
“igualdade” entre os correspondentes espacos.



Coeficientes de Fourier das derivadas

ProposicAO: Sejaf € (1) (ou (x)), com f continua. Suponha que f seja
diferencidvel em [—L, L] exceto, no maximo, por uma quantidade finita
de pontos, e que f’ € () também (os valores de f” onde f ndo é
diferenciavel sao irrelevantes). Entao

"(n) == -f(n).

~ n7t
L

DEMONSTRAGAO: Integragio por partes.

Note que, uma vez que Iir£ f’(n) = o, segue da igualdade acima que,
n— 100

sob as condicdes da proposicdo, vale lim n-f(n) = o.
n—=oo



Coeficientes de Fourier das derivadas

COROLARIO: Sejaf € (1) (ou (*)). Suponhaquef € C*" ie,fék —1
vezes diferencidvel e f (*~1) é continua. Suponha também que f seja k
vezes diferenciavel em [—L, L] exceto, no maximo, por uma quantidade
finita de pontos, e que fl) (1) também (os valores de f(k) onde flk—1)
nao é diferenciavel s3o irrelevantes). Entao

. _—
i = (") Fon

DEMONSTRACGAO: Basta aplicar a proposicao anterior k vezes.

OBSERVACAO: Como consequéncia do corolario acima, quanto mais
derivadas a funcao f tiver, mais rapido os coeficientes de Fourier decaem
. . ~ . ~
(azero): se f possui k derivadas, entio lim n*-f(n) =0
n—=+oo



Coeficientes de Fourier das derivadas

Uma condi¢do suficiente para convergéncia uniforme

CoRrOLARIO: Sejaf € (1) (ou (x)). Suponha que
— fsejadeclasse C' (diferencidvel com derivada continua) em R,

— f" exista em [—L, L] exceto, no maximo, por uma quantidade finita
de pontos, e

— e .
Ent3o a série de Fourier de f converge uniformemente paraf em R, ou
seja
N
Z ?(n)einﬂx/L N—oc0 f
n=—N



Coeficientes de Fourier das derivadas

Uma condi¢do suficiente para convergéncia uniforme

DEMONSTRACAO: Como lim f”(n) = o, existe M > otal que
n—=4oo

If"(n)] < Mparatodon € Z (pois convergéncia implica limitacdo). Dai,

paran # o, temos (lembre que [¢*| = 1, qualquer que sejax € R):
o _ 12~ ML2 1
Fme"™ | = [f(ml = ——IF"(ml < — - —.

Como (na primeira das séries a seguir, desconsidere n = 0)

Yoo =22 .2 % < 00,0teste M de Weierstrass garante que a

n=—oo n?
série de funcoes

S0 = Flmem™/!

converge uniformemente.



Convergéncia uniforme da série de Fourier

As condictes do corolario anterior podem ser enfraquecidas.

TEOREMA: Sejaf € (f) (ou (x)). Suponha que
— f sejacontinua,

— f’existaem [—L, L] exceto, no maximo, poruma quantidade finita de
pontos, e

— e .
Ent3o a série de Fourier de f converge uniformemente paraf em R, ou
seja

N
Z ?(n)einm(/L N—oc0 f.
N——



Convergéncia uniforme da série de Fourier

DEMONSTRACAO: Como [f(n)e"™/t| = [f(n)|, o teste M de Weierstrass
garante que o resultado do teorema é verdadeiro desde que

Zﬁ(’:_oo \?(n)l < 00. Ora (em todas as somas abaixo, desconsidere
n=o0)
N N 5
= A L If"(n)]
=[f(o)l + = :
W_ZNW") (o)l ”n_ZN m

Pela desigualdade de Cauchy-(Buniakovskii)-Schwarz usual (em R?V):

N

17 (n)| AN Lo

n=—N n=—N n=—N

Ja sabemos que a primeira das somas do lado direito da desigualdade
acima converge quando N — co. A segunda delas, viz.: ZnszN If"(n))?,
também converge pela desigualdade de Bessel. Logo, a série

00 i , . ~
Y o If(n)] também converge. Isso finaliza a demonstracao.



Convergéncia uniforme da série de Fourier

Teorema de Pitagoras infinito

Nas condicoes do teorema anterior, i.e., sob convergéncia uniforme, a
desigualdade de Bessel é na verdade uma igualdade, conhecida como
identidade de Parseval.

COROLARIO: Seja f uma funcio satisfazendo as condicdes do teorema
anterior. Tome g € (x). Entao

L (f.8) = PR

Em particular

o0

1 A I -
A= f(n)|2:2<2°+Za;+b;>
n=1i

n=—oo



Convergéncia uniforme da série de Fourier

Teorema de Pitagoras infinito

DEMONSTRAGAO: Temos que

1 1 . IHT(X
(o) =5 | gt = J (Zf “) (x).

Como a série de Fourier de f converge uniformemente para f e comog é
continua por partes, a integraciao acima pode ser feita termo-a-termo:

Z f ZLJ g mnx/L Z f

Nn=—o0 n=—oo

Mas g(—n) = g(n) (lembre: a barra denota conjugacio complexa).



Convergéncia uniforme da série de Fourier

Aidentidade de Parseval aplicada 4 funcdo f : [—1,1] — R dada por

f(x) def |x| fornece a seguinte igualdade
S o
— (2n—1) T 96

Emboraafun¢dof : [—mt, 1] — R dada porf(x) e X[o,[(X) ndo
satisfaca as condicGes do teorema sobre convergéncia uniforme, temos
que a identidade de Parseval aplicada a ela fornece

1 ?
(2n —1)2

n=1

gk
U
® |

igualdade essa que ja verificamos. Isso acontece porque a identidade de
Parseval vale mais geralmente para qualquer funcio f € (%).



EDOs e séries de poténcias

Extensdo analitica

Uma funcao analitica num intervalo | é globalmente determinada, i.e., é
determinada em todo intervalo I, a partir de informacoes locais, i.e.,
informacoes num Unico ponto. Nesse sentido, analiticidade é uma
condicdo EXTREMAMENTE forte, restritiva. Mais precisamente, vale o
seguinte:

TEOREMA: Sejam | C R um intervalo abertoef : | — R uma funcio
analiticaem [. Se paraalguma € lacontecer f¥) (a) = o paratodo
k € Z3,,entaof éidenticamente nulaem .



EDOs e séries de poténcias

Extensdo analitica

DEMONSTRACAO: Podemos suporque ! =] — R, R[, paraalgumR > 0, e
quea = 0. Como f®)(0) = o, a série de Taylor de f em torno de 0 é
identicamente nula. Como f é analiticaem |, existe r; > o tal que a série
de Taylorde f em torno de o coincide com f em ] — n,, [ . Portanto, f é
identicamente nulaem ] — 1, 1[. Ser; < R, exister, > otal que asérie
de Taylorde f em torno de r; coincide com f em ], — r,, 1, + r,[. Como
1 —r, < n,osintervalos ] —ry, n[ el —ry, 1y + 1, seintesectam. Seja
X; um ponto nessa interseccio. Como x; €] — 1y, [, asérie de Taylorde f
em torno de x, é identicamente nula (pois f é identicamente nulaem

] —n,nl).Comox; €lr, —r,, 1 + 1, também,ecomo |, — vy, 1 + 15[
éointervalo no qual a série de Taylor de f em torno de r, converge,
podemos trocar o centro da série de r, para x;, depois do que concluimos
que a série de Taylor de f em torno de r, também é identicamente nula e,
portanto, que f é identicamente nulaem ]r, — r,, r; + r,[ também. Se

r, + r, < Rainda, repetimos o argumento anterior. Isso acaba em R.



EDOs e séries de poténcias

Extensdo analitica

CoroLARIO: Sejamf : | — Reg : | — Rduas fun¢bes analiticas em um
intervalo aberto I. Se para algum a € I acontecer f¥) (a) = g(¥) (a) para
todok € Z>,, entdo f eg coincidem, ie., f(x) = g(x) paratodox € I.

DEMONSTRAGAO: Basta aplicar o teorema anteriora funcaof — g.

COROLARIO (EXTENSAO ANALITICA): Sejamf : 1 — Reg:] — Rduas
funcbes analiticas. Suponhaque I N ] # (e que f eg coincidemem I N]J.
Entdo existe uma Gnica funcao analiticah : 1 U] — R que satisfaz

h(x) = f(x) paratodox € leh(y) = g(y) paratodoy € J.

Nesse caso dizemos que h estende analiticamente, ou que h é uma
extensao analiticade f (oug)alU].



EDOs e séries de poténcias

Equagbes com coeficientes analiticos

FATO (TEOREMA DE EXISTENCIA PARA EQUACOES COM COEFICIENTES
ANALITICOS): Sejamn € Z>qeap, k=0, ...,n—1,ehfuncdes
analiticas em um intervalo aberto I. Entdo qualquer solu¢io da equacio
diferencial ordinaria linear (de ordem n)

yWta, oy a -y fag-y=h (o)

é também uma fungao analiticaem I.

Vale lembrar que a equagao acima sempre possui solucao (mesmo
quando os coeficientes nio sao fun¢des analiticas). O que o fato diz é que
a solucdo é analitica desde que os coeficientes sejam. Lembro também
que uma equacao na qual o coeficiente a, da derivada de maior ordem é
1,como em (o), é chamada de normal. Equac6es nao normais exibem
comportamentos patolégicos em torno das raizes de a,,. O estudo de
equacoes nao normais deve ser feito usando o assim chamado “método
de Frobenius”.



EDOs e séries de poténcias

Equagbes com coeficientes analiticos

Se queremos encontrar uma solucio de (e) podemos proceder como a
seguir. Tomea € I. O fato entdo garante que podemos escrever

Se soubermos quais sao os coeficientes by, saberemos completamente
qual é asolucao. Como y é analitica em I, podemos derivar a série acima
termo-a-termo. Como os coeficientes (da equacao, ndo da série) a;, sao
funcoes analiticas, podemos expandir cada a, como uma série de
poténcias em torno de a. Como produto de séries de poténcias que
convergem em | é também uma série de poténcias que converge em |
(dada, a propésito, pelo produto de Cauchy entre elas), cada parcela

ar, - y'¥) pode ser expressa como uma série de poténcias em torno de a.



EDOs e séries de poténcias

Equagbes com coeficientes analiticos
Dai que, feitas as manipulagoes algébricas necessarias, podemos
expressar o lado esquerdo de (o) como uma série de poténcias em torno
de a, cujos coeficientes vao depender dos coeficientes by, da solucio. O
lado direito, sendo também uma funcio analitica, pode ser expresso
como série de poténcias em torno de a. Os lados esquerdo e direito de (o),
sendo ambas funcoes analiticas que coincidem em I, devem ter os
mesmos coeficientes (para ver isto basta avaliar essas funcdes, bem como
suas derivadas, em a). Essas igualdades entre esses coeficientes sao
suficientes para determinar os coeficientes by, da solucio. Os coeficientes
ficardo unicamente determinados a menos de n dentre eles, o que faz
sentido posto que a solucdo de uma EDO linear de ordem n é unicamente
determinada por n condicdes iniciais.

A demonstracio do fato consiste, essencialmente, no processo que
acabamos de descrever.

Vamos agora ilustrar o processo com uma equagao em particular.



EDOs e séries de poténcias
A equagio de Airy
Aequacao
yll + Xy =0

é conhecida como equacio de Airy. Alguns matematicos chamam

y"" — xy = ode equacio de Airy, mas isso é irrelevante pois as solucdes
de uma podem ser expressas em termos das solucoes da outra (através
de uma reflexdo em torno do eixo y) e vice-versa. A titulo de curiosidade:
historicamente essa equacio surgiu das investigacoes do astronomo
inglés Ceorge Airy no campo da dtica. Mas a mesma equacao também
aparece no modelo de “queda livre” quéntica, e certa solucio dela
também esta relacionada com uma transformada de Fourier associada a
distribuicao de Chernoff.

Perceba que os coeficientes da equagdo de Airy sdo analiticosem RR.
Logo, suas solucoes também serdo analiticas em R. Vamos aplicar o
processo descrito anteriormente para descrever as solugoes da equagao
de Airy como séries de poténciaem torno de o.



EDOs e séries de poténcias
A equagio de Airy

Suponha que
o0
yx) =) ax"
k=0

é solucao da equacao de Airy. Dai

oo
V') +xy =202+ ) ((n+2)(n+1)dniz +a1)x" =o.
k=1

Portanto devemos tera, = Oe, paracadan € Zy,,

(n+2)(n+ 1)“w+2 = —ap—.



EDOs e séries de poténcias
A equagio de Airy

Paran < 5, e equacao anterior se torna

3-2-d3 = —do
4-3-d4 =—0
5-4-43=—a, =0
6506 =—d; = do/6
7:6-d; =—d, = a;/12

Mostra-se, por indugdo, que, para qualquer k € Z>o, vale a4, = 0e

(_1)k'ao (_1)k‘“1

Bk = 0kl k= & BT S e Gk )

def . S
onden!!! = n-(n—3)---(n—3a,), onde &, é o maior inteiro tal que
n—3a, > 1. Note que (3k)!!! = 3k . k!



EDOs e séries de poténcias
A equagio de Airy

Perceba que, dados a, = y(0) ea, = y’(0), todos os outros coeficientes
da série da solucio, e portanto a solucio, ficam determinados. Podemos
entao escrever

_ > (—1)k 3k > (_1)k 3k+1
yx) *“OZ 3kl (3k—1) " +G1Z k- Bk

k=0 k=0

Em particular, as funcoes

- (=) 3k = (—1)* 3k+1
) k- (k—m © ba k- 3R+

k=0 k=0

sdo duas solucdes linearmente independentes (pelo critério do
Wronskiano) da equacao de Airy, pois a primeira é obtida fazendo a, =1
ed, = 0,easegunda é obtida fazendoa, = oea, =1.



EDOs e séries de poténcias
A equagio de Airy

Seja

def. (—)* 3
R My Py T

k=0
Note que, se x < 0, entdo x = —|x| e, portanto, (—1)*x3* = |x[3*. Logo,

X——00

y1(x) —— +o00. Parax > 0,y,(x) “oscila”.

Denotando por y,(x) a outra funcdo (aquela com condicdes iniciais
y.(0) = oey,(0) = 1), um raciocinio idéntico ao anterior permite

. X—r—00 2 .
concluir que y,(x) ——— —oo. Parax > 0, y,(x) também oscila.

Animacbes das somas parciais das séries que definem as funcées y, (x) e
¥, (x) estdo disponiveis na minha pagina.



