
Coeficientes de Fourier das derivadas

Lembremos que

{f ∈ PWC([−L, L]) | f (−L) = f (L)} (⋆)

e
{f ∈ PWCω(R) | f é 2L-periódica}. (†)

são “iguais”.

Note que podemos trocar, na definição dos espaços acima, a propriedade
“ser contínua por partes” por “ser contínua” e ainda assim manter a
“igualdade” entre os correspondentes espaços.



Coeficientes de Fourier das derivadas

Proposição: Seja f ∈ (†) (ou (⋆)), com f contínua. Suponha que f seja
diferenciável em [−L, L] exceto, no máximo, por uma quantidade finita
de pontos, e que f ′ ∈ (†) também (os valores de f ′ onde f não é
diferenciável são irrelevantes). Então

f̂ ′(n) =
inπ

L
· f̂ (n).

Demonstração: Integração por partes.

Note que, uma vez que lim
n→±∞ f̂ ′(n) = 0, segue da igualdade acima que,

sob as condições da proposição, vale lim
n→±∞ n · f̂ (n) = 0.



Coeficientes de Fourier das derivadas

Corolário: Seja f ∈ (†) (ou (⋆)). Suponha que f ∈ Ck−1, i.e., f é k − 1
vezes diferenciável e f (k−1) é contínua. Suponha também que f seja k
vezes diferenciável em [−L, L] exceto, no máximo, por uma quantidade
finita de pontos, e que f (k) ∈ (†) também (os valores de f (k) onde f (k−1)

não é diferenciável são irrelevantes). Então

f̂ (k)(n) =
(

inπ
L

)k

f̂ (n).

Demonstração: Basta aplicar a proposição anterior k vezes.

Observação: Como consequência do corolário acima, quanto mais
derivadas a função f tiver, mais rápido os coeficientes de Fourier decaem
(a zero): se f possui k derivadas, então lim

n→±∞ nk · f̂ (n) = 0



Coeficientes de Fourier das derivadas
Uma condição suficiente para convergência uniforme

Corolário: Seja f ∈ (†) (ou (⋆)). Suponha que
— f seja de classe C1 (diferenciável com derivada contínua) emR,
— f ′′ exista em [−L, L] exceto, no máximo, por uma quantidade finita

de pontos, e
— f ′′ ∈ (†).

Então a série de Fourier de f converge uniformemente para f emR, ou
seja

N∑
n=−N

f̂ (n)einπx/L N→∞−−−→ f .



Coeficientes de Fourier das derivadas
Uma condição suficiente para convergência uniforme

Demonstração: Como lim
n→±∞ “f ′′(n) = 0, existe M ⩾ 0 tal que

|“f ′′(n)| ⩽ M para todo n ∈ Z (pois convergência implica limitação). Daí,
para n ̸= 0, temos (lembre que |eix| = 1, qualquer que seja x ∈ R):

|̂f (n)einπx/L| = |̂f (n)| =
L2

π2n2 |
“f ′′(n)| ⩽

ML2

π2 · 1
n2 .

Como (na primeira das séries a seguir, desconsidere n = 0)∑∞
n=−∞ 1

n2 = 2
∑∞

n=1
1

n2 < ∞, o teste M de Weierstrass garante que a
série de funções

Sf (x) =
∞∑

n=−∞ f̂ (n)einπx/L

converge uniformemente.



Convergência uniforme da série de Fourier

As condições do corolário anterior podem ser enfraquecidas.

Teorema: Seja f ∈ (†) (ou (⋆)). Suponha que
— f seja contínua,
— f ′ exista em [−L, L]exceto, no máximo, por uma quantidade finita de

pontos, e
— f ′ ∈ (†).

Então a série de Fourier de f converge uniformemente para f emR, ou
seja

N∑
n=−N

f̂ (n)einπx/L N→∞−−−→ f .



Convergência uniforme da série de Fourier

Demonstração: Como |̂f (n)einπx/L| = |̂f (n)|, o teste M de Weierstrass
garante que o resultado do teorema é verdadeiro desde que∑∞

n=−∞ |̂f (n)| < ∞. Ora (em todas as somas abaixo, desconsidere
n = 0)

N∑
n=−N

|̂f (n)| = |̂f (0)|+
L
π

N∑
n=−N

|f̂ ′(n)|
|n|

.

Pela desigualdade de Cauchy-(Buniakovskii)-Schwarz usual (emR2N):

N∑
n=−N

|f̂ ′(n)|
|n|

⩽

Ã
N∑

n=−N

1
n2 ·

Ã
N∑

n=−N

|f̂ ′(n)|2.

Já sabemos que a primeira das somas do lado direito da desigualdade
acima converge quando N → ∞. A segunda delas, viz.:

∑N
n=−N |f̂ ′(n)|2,

também converge pela desigualdade de Bessel. Logo, a série∑∞
n=−∞ |̂f (n)| também converge. Isso finaliza a demonstração.



Convergência uniforme da série de Fourier
Teorema de Pitágoras infinito

Nas condições do teorema anterior, i.e., sob convergência uniforme, a
desigualdade de Bessel é na verdade uma igualdade, conhecida como
identidade de Parseval.

Corolário: Seja f uma função satisfazendo as condições do teorema
anterior. Tome g ∈ (⋆). Então

1
2L
⟨f , g⟩ =

∞∑
n=−∞ f̂ (n) · ĝ(n).

Em particular

1
2L
∥f∥2 =

∞∑
n=−∞ |̂f (n)|2 =

1
2

(
a2

0
2
+

∞∑
n=1

a2
n + b2

n

)



Convergência uniforme da série de Fourier
Teorema de Pitágoras infinito

Demonstração: Temos que

1
2L
⟨f , g⟩ = 1

2L

∫ L

−L
f (x)g(x) =

1
2L

∫ L

−L

( ∞∑
n=−∞ f̂ (n)einπx/L

)
g(x).

Como a série de Fourier de f converge uniformemente para f e como g é
contínua por partes, a integração acima pode ser feita termo-a-termo:

1
2L
⟨f , g⟩ =

∞∑
n=−∞ f̂ (n)

1
2L

∫ L

−L
g(x)einπx/L =

∞∑
n=−∞ f̂ (n) · ĝ(−n).

Mas ĝ(−n) = ĝ(n) (lembre: a barra denota conjugação complexa).



Convergência uniforme da série de Fourier

A identidade de Parseval aplicada à função f : [−1, 1] → R dada por
f (x) def.

= |x| fornece a seguinte igualdade

∞∑
n=1

1
(2n − 1)4 =

π4

96
.

Embora a função f : [−π,π] → R dada por f (x) def.
= π · χ[0,π[(x) não

satisfaça as condições do teorema sobre convergência uniforme, temos
que a identidade de Parseval aplicada a ela fornece

∞∑
n=1

1
(2n − 1)2 =

π2

8
,

igualdade essa que já verificamos. Isso acontece porque a identidade de
Parseval vale mais geralmente para qualquer função f ∈ (⋆).



EDOs e séries de potências
Extensão analítica

Uma função analítica num intervalo I é globalmente determinada, i.e., é
determinada em todo intervalo I, a partir de informações locais, i.e.,
informações num único ponto. Nesse sentido, analiticidade é uma
condição EXTREMAMENTE forte, restritiva. Mais precisamente, vale o
seguinte:

Teorema: Sejam I ⊂ R um intervalo aberto e f : I → R uma função
analítica em I. Se para algum a ∈ I acontecer f (k)(a) = 0 para todo
k ∈ Z⩾1, então f é identicamente nula em I.



EDOs e séries de potências
Extensão analítica

Demonstração: Podemos supor que I = ] − R, R[ , para algum R > 0, e
que a = 0. Como f (k)(0) = 0, a série de Taylor de f em torno de 0 é
identicamente nula. Como f é analítica em I, existe r1 > 0 tal que a série
de Taylor de f em torno de 0 coincide com f em ] − r1, r1[ . Portanto, f é
identicamente nula em ] − r1, r1[ . Se r1 < R, existe r2 > 0 tal que a série
de Taylor de f em torno de r1 coincide com f em ]r1 − r2, r1 + r2[ . Como
r1 − r2 < r1, os intervalos ] − r1, r1[ e ]r1 − r2, r1 + r2[ se intesectam. Seja
x1 um ponto nessa intersecção. Como x1 ∈ ] − r1, r1[ , a série de Taylor de f
em torno de x1 é identicamente nula (pois f é identicamente nula em
] − r1, r1[ ). Como x1 ∈ ]r1 − r2, r1 + r2[ também, e como ]r1 − r2, r1 + r2[
é o intervalo no qual a série de Taylor de f em torno de r1 converge,
podemos trocar o centro da série de r1 para x1, depois do que concluímos
que a série de Taylor de f em torno de r1 também é identicamente nula e,
portanto, que f é identicamente nula em ]r1 − r2, r1 + r2[ também. Se
r1 + r2 < R ainda, repetimos o argumento anterior. Isso acaba em R.



EDOs e séries de potências
Extensão analítica

Corolário: Sejam f : I → R e g : I → R duas funções analíticas em um
intervalo aberto I. Se para algum a ∈ I acontecer f (k)(a) = g(k)(a) para
todo k ∈ Z⩾1, então f e g coincidem, i.e., f (x) = g(x) para todo x ∈ I.

Demonstração: Basta aplicar o teorema anterior à função f − g.

Corolário (Extensão analítica): Sejam f : I → R e g : J → R duas
funções analíticas. Suponha que I ∩ J ̸= ∅ e que f e g coincidem em I ∩ J.
Então existe uma única função analítica h : I ∪ J → R que satisfaz

h(x) = f (x) para todo x ∈ I e h(y) = g(y) para todo y ∈ J.

Nesse caso dizemos que h estende analiticamente, ou que h é uma
extensão analítica de f (ou g) a I ∪ J.



EDOs e séries de potências
Equações com coeficientes analíticos

Fato (Teorema de existência para equações com coeficientes
analíticos): Sejam n ∈ Z⩾1 e ak, k = 0, . . . , n − 1, e h funções
analíticas em um intervalo aberto I. Então qualquer solução da equação
diferencial ordinária linear (de ordem n)

y(n) + an−1 · y(n−1) + . . .+ a1 · y′ + a0 · y = h (•)

é também uma função analítica em I.
Vale lembrar que a equação acima sempre possui solução (mesmo
quando os coeficientes não são funções analíticas). O que o fato diz é que
a solução é analítica desde que os coeficientes sejam. Lembro também
que uma equação na qual o coeficiente an da derivada de maior ordem é
1, como em (•), é chamada de normal. Equações não normais exibem
comportamentos patológicos em torno das raízes de an. O estudo de
equações não normais deve ser feito usando o assim chamado “método
de Frobenius”.



EDOs e séries de potências
Equações com coeficientes analíticos

Se queremos encontrar uma solução de (•) podemos proceder como a
seguir. Tome a ∈ I. O fato então garante que podemos escrever

y(x) =
∞∑

k=0

bk(x − a)k.

Se soubermos quais são os coeficientes bk, saberemos completamente
qual é a solução. Como y é analítica em I, podemos derivar a série acima
termo-a-termo. Como os coeficientes (da equação, não da série) ak são
funções analíticas, podemos expandir cada ak como uma série de
potências em torno de a. Como produto de séries de potências que
convergem em I é também uma série de potências que converge em I
(dada, a propósito, pelo produto de Cauchy entre elas), cada parcela
ak · y(k) pode ser expressa como uma série de potências em torno de a.



EDOs e séries de potências
Equações com coeficientes analíticos

Daí que, feitas as manipulações algébricas necessárias, podemos
expressar o lado esquerdo de (•) como uma série de potências em torno
de a, cujos coeficientes vão depender dos coeficientes bk da solução. O
lado direito, sendo também uma função analítica, pode ser expresso
como série de potências em torno de a. Os lados esquerdo e direito de (•),
sendo ambas funções analíticas que coincidem em I, devem ter os
mesmos coeficientes (para ver isto basta avaliar essas funções, bem como
suas derivadas, em a). Essas igualdades entre esses coeficientes são
suficientes para determinar os coeficientes bk da solução. Os coeficientes
ficarão unicamente determinados a menos de n dentre eles, o que faz
sentido posto que a solução de uma EDO linear de ordem n é unicamente
determinada por n condições iniciais.

A demonstração do fato consiste, essencialmente, no processo que
acabamos de descrever.

Vamos agora ilustrar o processo com uma equação em particular.



EDOs e séries de potências
A equação de Airy

A equação
y′′ + xy = 0

é conhecida como equação de Airy. Alguns matemáticos chamam
y′′ − xy = 0 de equação de Airy, mas isso é irrelevante pois as soluções
de uma podem ser expressas em termos das soluções da outra (através
de uma reflexão em torno do eixo y) e vice-versa. A título de curiosidade:
historicamente essa equação surgiu das investigações do astrônomo
inglês George Airy no campo da ótica. Mas a mesma equação também
aparece no modelo de “queda livre” quântica, e certa solução dela
também está relacionada com uma transformada de Fourier associada à
distribuição de Chernoff.

Perceba que os coeficientes da equação de Airy são analíticos emR.
Logo, suas soluções também serão analíticas emR. Vamos aplicar o
processo descrito anteriormente para descrever as soluções da equação
de Airy como séries de potência em torno de 0.



EDOs e séries de potências
A equação de Airy

Suponha que

y(x) =
∞∑

k=0

anxn

é solução da equação de Airy. Daí

y′′(x) + xy = 2a2 +

∞∑
k=1

((n + 2)(n + 1)an+2 + an−1)xn = 0.

Portanto devemos ter a2 = 0 e, para cada n ∈ Z⩾1,

(n + 2)(n + 1)an+2 = −an−1.



EDOs e séries de potências
A equação de Airy

Para n ⩽ 5, e equação anterior se torna
3 · 2 · a3 = −a0
4 · 3 · a4 = −a1
5 · 4 · a5 = −a2 = 0
6 · 5 · a6 = −a3 = a0/6
7 · 6 · a7 = −a4 = a1/12

.

Mostra-se, por indução, que, para qualquer k ∈ Z⩾0, vale a3k+2 = 0 e

a3k =
(−1)k · a0

3k · k! · (3k − 1)!!!
e a3k+1 =

(−1)k · a1

3k · k! · (3k + 1)!!!
,

onde n!!! def.
= n · (n − 3) · · · (n − 3αn), ondeαn é o maior inteiro tal que

n − 3αn ⩾ 1. Note que (3k)!!! = 3k · k!



EDOs e séries de potências
A equação de Airy

Perceba que, dados a0 = y(0) e a1 = y′(0), todos os outros coeficientes
da série da solução, e portanto a solução, ficam determinados. Podemos
então escrever

y(x) = a0

∞∑
k=0

(−1)k

3k · k! · (3k − 1)!!!
x3k + a1

∞∑
k=0

(−1)k

3k · k! · (3k + 1)!!!
x3k+1.

Em particular, as funções

∞∑
k=0

(−1)k

3k · k! · (3k − 1)!!!
x3k e

∞∑
k=0

(−1)k

3k · k! · (3k + 1)!!!
x3k+1

são duas soluções linearmente independentes (pelo critério do
Wronskiano) da equação de Airy, pois a primeira é obtida fazendo a0 = 1
e a1 = 0, e a segunda é obtida fazendo a0 = 0 e a1 = 1.



EDOs e séries de potências
A equação de Airy

Seja

y1(x) def.
=

∞∑
k=0

(−1)k

3k · k! · (3k − 1)!!!
x3k.

Note que, se x < 0, então x = −|x| e, portanto, (−1)kx3k = |x|3k. Logo,
y1(x) x→−∞−−−−→ +∞. Para x > 0, y1(x) “oscila”.

Denotando por y2(x) a outra função (aquela com condições iniciais
y2(0) = 0 e y′2(0) = 1), um raciocínio idêntico ao anterior permite
concluir que y2(x) x→−∞−−−−→ −∞. Para x > 0, y2(x) também oscila.

Animações das somas parciais das séries que definem as funções y1(x) e
y2(x) estão disponíveis na minha página.


