
Restrição e extensão

Lembre que se a série de Fourier de uma função integrável
f : [−L, L]→ R converge pontualmente em [−L, L], então ela converge
pontualmente emR para uma função 2L-periódica.

Seja f : R→ R uma função 2L-periódica, onde L > 0. Suponha que
f ∈ PWC(I) para qualquer intervalo limitado I ⊂ R. Nesse caso, escrevo
f ∈ PWCω(R). A restrição de f a qualquer intervalo I ⊂ R que seja
fechado e tenha comprimento 2L é uma função f|I ∈ PWC(I) cujos
valores nos extremos de I coincidem.

Em particular, se f ∈ PWCω(R) é 2L-periódica, então a restrição de f ao
intervalo [−L, L] é uma função fL ∈ PWC([−L, L]), e portanto possui uma
série de Fourier Sf . Além disso fL satisfaz

f (L) = f (−L).



Restrição e extensão

Reciprocamente, dada uma função f ∈ PWC([−L, L]) cujos valores nos
extremos coincidem, i.e., que satisfaz f (L) = f (−L), podemos estender f ,
de maneira única, a uma função F ∈ PWCω(R) que é 2L-periódica: basta
definir

F(x) def.
= f (x − 2kL)

onde k ∈ Z satisfaz
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A não ser que ambos extremos da desigualdade acima sejam números
inteiros, um e apenas um inteiro k satisfaz as desigualdades acima. Caso
ambos extremos sejam inteiros, digamos k1 e k2, então x − 2k1L = L e
x − 2k2L = −L, ou vice-versa. Mas uma vez que f (L) = f (−L), a escolha
de k1 ou k2 é irrelevante para a definição de F.



Restrição e extensão
Em resumo: existe uma bijeção entre os conjuntos

{f ∈ PWC([−L, L]) | f (−L) = f (L)} (⋆)

e
{f ∈ PWCω(R) | f é 2L-periódica}. (†)

Como podemos construir a série de Fourier de uma função do primeiro
conjunto, podemos também construir, através da bijeção acima (via
extensão), a série de Fourier de uma função do segundo conjunto. O
primeiro conjunto pode ser encarado como o conjunto das funções
contínuas por partes definidas num círculo de comprimento 2L.
Ora, dada f ∈ PWC([−L, L]), a alteração do valor de f num único ponto
não altera o valor de integrais envolvendo f ; com isso podemos “forçar” f
a ter valores coincidentes nos extremos−L e L sem alterar sua série de
Fourier (pois os coeficientes da série são dados em termos de integrais
envolvendo f ). Em resumo: não há nenhum problema em considerarmos
apenas as séries de Fourier de funções no conjunto (⋆), ou,
equivalentemente, no conjunto (†).



Forma complexa dos coeficientes de Fourier

Lembremos que

sin
(nπx

L

)
= i · einπx/L − e−inπx/L

2
e

cos
(nπx

L

)
=

einπx/L + e−inπx/L

2
.

Das igualdades acima segue que para qualquer n ∈ Z (0 inclusive) vale

anψn + bnφn =

(
an + ibn

2

)
e−inπx/L +

(
an − ibn

2

)
einπx/L.

Faça

f̂ (±n) def.
=

an ∓ ibn

2
para n ∈ Z⩾0.



Forma complexa dos coeficientes de Fourier
Com a definição anterior, podemos reescrever a série de Fourier de
qualquer função integrável f : [−L, L]→ R da seguinte maneira:

Sf =

∞∑
n=−∞ f̂ (n)einπx/L def.

= lim
N→∞

N∑
n=−N

f̂ (n)einπx/L

A integração de uma função de uma variável real a valores complexos é
feita via partes real e imaginária. Com isso, a família de funções
{einπx/L | n ∈ Z} satisfaz as seguintes relações de ortogonalidade:

⟨einπx/L, eimπx/L⟩ = 2Lδ−n,m,

a partir das quais podemos escrever

f̂ (n) =
1

2L
⟨f , e−inπx/L⟩.

A noção de convergência emC é, mutatis mutandis, a mesma daquela em
R. O lema de Riemann-Lebesgue garante então que lim

n→±∞ f̂ (n) = 0.



Forma complexa dos coeficientes de Fourier
Algumas identidades

É imediato verificar que para quaisquer f , g ∈ PWC([−L, L]) eα,β ∈ R
vale ¤�(α · f + β · g)(n) = α · f̂ (n) + β · ĝ(n).

Se f ∈ PWC([−L, L]), a função h : [−L, L]→ R definida por

h(x) def.
= f (−x)

também está em PWC([−L, L]) e satisfaz

ĥ(n) = f̂ (−n).



Convergência pontual da série de Fourier

Lembremos da seguinte convenção notacional:

lim
x→a±

f (x) def.
= f (a±).

Lema: Seja f ∈ (†) (ou (⋆)). Suponha que f seja diferenciável em [−L, L]
exceto, no máximo, por uma quantidade finita de pontos, e que f ′ ∈ (†)
também (os valores de f ′ onde f não é diferenciável são irrelevantes). Se
f é contínua em 0, então Sf (0) converge para f (0), i.e.,

a0

2
+

∞∑
n=1

an = f (0) =
∞∑

n=−∞ f̂ (n).



Convergência pontual da série de Fourier

Demonstração: Para x ∈ [−L, L] faça (o valor de g em 0 é irrelevante)

g(x) def.
=

ß
(f (x) − f (0))/(eiπx/L − 1), se x ̸= 0
−iLf ′(0+)/π, se x = 0

.

A continuidade de f em 0 e o teorema do valor médio garantem que
existem g(0±). Portanto g ∈ (†) também. Daí, lim

n→±∞ ĝ(n) = 0. Mas

f̂ (n) = ĝ(n − 1) − ĝ(n), se n ̸= 0, e f̂ (0) = ĝ(−1) − ĝ(0) + f (0), de
onde vem que

N∑
n=−N

f̂ (n) = ĝ(−N − 1) − ĝ(N) + f (0) N→∞−−−→ f (0).



Convergência pontual da série de Fourier

Teorema: Seja f ∈ (†) (ou (⋆)). Suponha que f seja diferenciável em
[−L, L] exceto, no máximo, por uma quantidade finita de pontos, e que
f ′ ∈ (†) também (os valores de f ′ onde f não é diferenciável são
irrelevantes). Então Sf (x0) converge para

f (x+0 ) + f (x−0 )

2
,

qualquer que seja x0 ∈ R. Em particular, se f é contínua em x0, Sf (x0)
converge para f (x0).

Observação: Note que, como era de se esperar, alterações no valor de f
num ponto não acarretam nenhuma alteração na sua série de Fourier.



Convergência pontual da série de Fourier

Demonstração: A função h : R→ R definida por

h(x) =
f (x + x0) + f (−x + x0)

2

satisfaz as condições do lema anterior. Logo Sh(0) converge e

Sh(0) =
∞∑

n=∞ ĥ(n) = h(0) =
f (x+0 ) + f (x−0 )

2
.

Mas perceba que

h(0) ∞←N←−−−
N∑

n=−N

ĥ(n) =
N∑

n=−N

f̂ (n)einπx0/L N→∞−−−→ Sf (x0).



Convergência pontual da série de Fourier
Exemplo: onda triangular retificada

A função f : [−1, 1]→ R dada por f (x) def.
= |x| pode ser estendida a uma

função, também denotada por f , em PWCω(R) que é 2-periódica.

No passado calculamos a série de Fourier de f :

Sf (x) =
1
2
−

∞∑
n=1

(
2

(2n − 1)π

)2

cos((2n − 1)πx).

A função f satisfaz as condições do teorema anterior. Daí, como f é
contínua em 0 e f (0) = 0, segue que Sf (0) converge para 0, ou seja

∞∑
n=1

1
(2n − 1)2 =

π2

8
.

Na verdade, como f é contínua emR, Sf converge pontualmente para f
emR.



Convergência pontual da série de Fourier
Exemplo: onda quadrada retificada

A função f : [−π,π]→ R dada por f (x) def.
= π · χ[0,π[(x) pode ser

estendida a uma função, também denotada por f , em PWCω(R) que é
2-periódica. No passado calculamos a série de Fourier de f :

Sf (x) =
π

2
+

∞∑
n=1

2
(2n − 1)

sin((2n − 1)x).

A função f satisfaz as condições do teorema anterior. Daí, como f é
contínua emπ/2 e f (π/2) = π, segue que Sf (π/2) converge paraπ, ou
seja ∞∑

n=1

(−1)n+1

(2n − 1)
=
π

4
,

recuperando o resultado que obtivemos através de integração
termo-a-termo da série de potências de 1/(1 + x2).
Note que Sf (x) converge para f (x) exceto nos pontos da forma nπ, com
n ∈ Z.


