
Relembrando
Seja L ∈ R>0. Para quaisquer n ∈ Z⩾0 e k ∈ Z⩾1 faça

ψn(x) def.
= cos

(nπx
L

)
e φk(x) def.

= sin

(
kπx

L

)

Teorema: Seja f : [−L, L] → R uma função. Suponha que existem
sequências (an)n⩾0 e (bn)n⩾1 tais que para qualquer x ∈ [−L, L] vale

f (x) =
a0

2
+

∞∑
n=1

an ·ψn(x) + bn ·φn(x)

Mais ainda: suponha que a série do lado direito da igualdade converge
uniformemente (para f ) em [−L, L]. Então

— f (−L) = f (L),

— an = L−1 ∫L
−L fψn, para todo n ⩾ 0, e

— bn = L−1 ∫L
−L fφn, para todo n ⩾ 1.



Relembrando

Definição: Seja f : [−L, L] → R uma função integrável. Para cada n ⩾ 0
e k ⩾ 1 faça

an
def.
=

1
L

∫ L

−L
fψn e bk

def.
=

1
L

∫ L

−L
fφk

A série

Sf
def.
=

a0

2
+

∞∑
n=1

anψn + bnφn

é chamada de série de Fourier de f ; os termos das sequências (an)n⩾0 e
(bn)n⩾1 são chamados de coeficientes de Fourier de f .

Observação: Note que se a série de Fourier de uma função convergir
pontualmente em [−L, L], ela converge pontualmente para uma função
2L-periódica emR pois cada parcela da série é uma função 2L-periódica
emR.



Relembrando

Definição: Seja I ⊂ R um intervalo aberto. Dizemos que f : I → R
possui uma descontinuidade de primeiro tipo ou de primeira espécie em
a ∈ I se existem (e são finitos!) os limites laterais

f (a+) def.
= lim

x→a+
f (x) e f (a−) def.

= lim
x→a−

f (x),

mas f é descontínua em a.

Definição: Seja I ⊂ R um intervalo limitado. Diremos que f : I → R é
contínua por partes (piecewise continuous) se f possui apenas uma
quantidade finita de descontinuidades de primeira espécie (saltos) em I.
OR-espaço vetorial de todas as funções contínuas por partes em I será
denotado por PWC(I).

Observação: Note que qualquer função em PWC(I) é integrável.



Relembrando

Definição: Para f , g ∈ PWC(I) faça

⟨f , g⟩ def.
=

∫
I

f · g.

Proposição: A função

⟨·, ·⟩ : PWC(I)× PWC(I) → R

definida acima é
— R-bilinear, i.e., éR-linear nas duas entradas, ou seja: ⟨αf +βg, ·⟩ =
α⟨f , ·⟩+ β⟨g, ·⟩ e ⟨·,αf + βg⟩ = α⟨·, f ⟩+ β⟨·, g⟩,

— simétrica, i.e., ⟨f , g⟩ = ⟨g, f ⟩, e
— positiva, i.e., ⟨f , f ⟩ ⩾ 0.



A seminorma em PWC(I)

A função ⟨·, ·⟩ é quase um produto interno no espaço PWC(I) pois só não
satisfaz

⟨f , f ⟩ = 0 =⇒ f = 0.

De fato, qualquer função f que seja nula exceto numa quantidade finita
de pontos é contínua por partes e satisfaz ⟨f , f ⟩ =

∫
f 2 = 0.

Definição: Para f ∈ PWC(I) faça

∥f∥ def.
=
√

⟨f , f ⟩.

A função ∥ · ∥ : PWC(I) → R⩾0 assim definida não satisfaz

∥f∥ = 0 =⇒ f = 0.

Se f é contínua em I, então ∥f∥ = 0 implica sim que f = 0.



A seminorma em PWC(I)

Proposição (Desigualdade de Cauchy-Schwarz): Para quaisquer
f , g ∈ PWC(I) vale

|⟨f , g⟩| ⩽ ∥f∥ · ∥g∥.

Demonstração: O polinômio ∥f∥2T2 + 2⟨f , g⟩T + ∥g∥2 tem
discriminante negativo.

Corolário (Desigualdade triangular): Para quaisquer f , g ∈ PWC(I)
vale

∥f + g∥ ⩽ ∥f∥+ ∥g∥.

Demonstração: Pela desigualdade de Cauchy-Schwarz, temos que
∥f + g∥2 ⩽ (∥f∥+ ∥g∥)2.



A seminorma em PWC(I)

Corolário (Teorema de Pitágoras): Para quaisquer f , g ∈ PWC(I) vale

∥f + g∥2 = ∥f∥2 + ∥g∥2

se, e somente se, f e g são ortogonais, i.e., ⟨f , g⟩ = 0.

Demonstração: Basta observar que

∥f + g∥2 = ∥f∥2 + 2 · ⟨f , g⟩+ ∥g∥2.

A função ∥ · ∥ em PWC(I) se comporta como a norma (valor absoluto) em
R, exceto que em PWC(I) existem funções não nulas com norma nula
(necessariamente descontínuas), razão pela qual ∥ · ∥ é chamada de
seminorma. Essa seminorma induz uma noção de distância entre
funções em PWC(I), medida em termos de uma integral em I.



A seminorma em PWC(I)
Reescrevendo a proposição da última aula.. .

A proposição que vimos no passado sobre integrais de produtos de senos
e cossenos pode ser reescrita de maneira mais compacta como a seguir.

Proposição: Seja L > 0. Em PWC([−L, L]) valem:
— ⟨φn,ψm⟩ = 0,
— ⟨φn,φm⟩ = Lδn,m,
— ⟨ψn,ψm⟩ = Lδn,m, desde que n ̸= 0 ou m ̸= 0, e
— ⟨ψ0,ψ0⟩ = 2L.

Nas igualdades acima, δn,m denota o delta de Kronecker.
Essa proposição diz que quaisquer duas funções distintas no conjunto
{ψn | n ⩾ 0} ∪ {φk | k ⩾ 1} são ortogonais e, portanto, linearmente
independentes.



A seminorma em PWC(I)
. . .e os coeficientes de Fourier.

As expressões para os coeficientes de Fourier de uma função
f ∈ PWC([−L, L]) também podem ser reescritas como abaixo:

an =
⟨f ,ψn⟩

L
e bn =

⟨f ,φn⟩
L

.

Com isso, a série de Fourier de f também pode ser reescrita como

Sf (x) =
1
L
·

(
⟨f ,ψ0⟩

2
ψ0 +

∞∑
n=1

⟨f ,ψn⟩ψn + ⟨f ,φn⟩φn

)
,

ou ainda:

Sf (x) =
⟨f ,ψ0⟩
∥ψ0∥2 ψ0 +

∞∑
n=1

⟨f ,ψn⟩
∥ψn∥2 ψn +

⟨f ,φn⟩
∥φn∥2 φn.



A seminorma em PWC(I)
. . .e os coeficientes de Fourier.

Note que a função (vetor em PWC([−L, L]))

⟨f ,ψn⟩
∥ψn∥2 ψn = anψn

é a projeção de f emψn. Analogamente, a função

⟨f ,φn⟩
∥φn∥2 φn = bnφn

é a projeção de f emφn. Logo, se

S
def.
= span(ψ0,ψ1, . . . ,φ1,φ2, . . .) ⩽ PWC([−L, L]),

temos que Sf , a série de Fourier de f , pode ser encarada como a projeção
de f no subespaço S.



Algumas desigualdades

Proposição: Sejam f ∈ PWC([−L, L]) e (an)n⩾0 e (bn)n⩾1 seus
coeficientes de Fourier, como anteriormente. Para quaisquer N, K ∈ Z⩾1
e números reais cn, n = 0, . . . , N, e dk, k = 1, . . . , K, vale:∥∥∥∥∥f −

a0

2
−

N∑
n=1

anψn −

K∑
k=1

bkφk

∥∥∥∥∥ ⩽

∥∥∥∥∥f −
c0

2
−

N∑
n=1

cnψn −

K∑
k=1

dkφk

∥∥∥∥∥
e a igualdade ocorre se, e somente se, os cn’s forem iguais aos an’s e os dk’s
forem iguais aos bk’s.
Dito de outra maneira: dentre todas as combinações lineares das funções
ψ0, . . . ,ψN,φ1, . . . ,φK , aquela feita com os coeficientes de Fourier de f
é a que minimiza a distância, medida através de ∥ · ∥, até a função f .



Algumas desigualdades

Demonstração: Sejam SNK = span(ψ0 = 1, . . . ,ψN,φ1, . . . ,φK),

g(x) def.
= f −

(
a0

2
+

N∑
n=1

anψn +

K∑
k=1

bkφk

)
,

e

h(x) def.
=

a0 − c0

2
+

N∑
n=1

(an − cn)ψn +

K∑
k=1

(bk − dk)φk.

Temos que g é ortogonal a SNK e h ∈ SNK . Segue do teorema de Pitágoras
que ∥∥∥∥∥f −

a0

2
−

N∑
n=1

anψn −

K∑
k=1

bkφk

∥∥∥∥∥
2

= ∥g∥2 + ∥h∥2 ⩾ ∥g∥2.

Além disso, se ∥h∥ = 0 então h = 0 pois h é contínua. O resto segue da
independência linear (ortogonalidade) dasφ’s eψ’s.



Algumas desigualdades

Proposição (Desigualdade de Bessel): Sejam f ∈ PWC([−L, L]) e
(an)n⩾0 e (bn)n⩾1 seus coeficientes de Fourier, como anteriormente.
Então ∞∑

n=0
a2

n <∞ e
∞∑

n=1
b2

n <∞.

Mais ainda, vale:

a2
0

2
+

∞∑
n=1

a2
n +

∞∑
n=1

b2
n ⩽

∥f∥2

L
.



Algumas desigualdades

Demonstração: Basta observar que as quantidades∥∥∥∥∥f −

(
a0

2
+

N∑
n=1

anψn +

K∑
k=1

bkφk

)∥∥∥∥∥
2

e

∥f∥2 − L

(
a2

0
2
+

N∑
n=1

a2
n +

K∑
k=1

b2
k

)
são iguais.



Algumas desigualdades
Decaimento dos coeficientes de Fourier

Corolário (Lema de Riemann-Lebesgue): Sejam f ∈ PWC([−L, L]) e
(an)n⩾0 e (bn)n⩾1 seus coeficientes de Fourier, como anteriormente.
Então

lim
n→∞ an = 0 = lim

n→∞ bn

Demonstração: Como ∞∑
n=1

a2
n <∞,

temos que lim
n→∞ a2

n = 0, que é equivalente a lim
n→∞ an = 0. Vale o mesmo

para a sequência (bn)n⩾1.


